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Abstract Fast-Match is a fast algorithm for approximate
template matching under 2D affine transformations that
minimizes the Sum-of-Absolute-Differences (SAD) error
measure. There is a huge number of transformations to con-
sider but we prove that they can be sampled using a density
that depends on the smoothness of the image. For each poten-
tial transformation, we approximate the SAD error using a
sublinear algorithm that randomly examines only a small
number of pixels. We further accelerate the algorithm using
a branch-and-bound-like scheme. As images are known to
be piecewise smooth, the result is a practical affine tem-
plate matching algorithm with approximation guarantees,
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that takes a few seconds to run on a standard machine. We
perform several experiments on three different datasets, and
report very good results.
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matching · Sublinear algorithms

1 Introduction

Image matching is a core computer vision task and template
matching is an important sub-class of it. In this paper, we
propose an algorithm that matches templates under arbitrary
2D affine transformations. The algorithm is fast and is guar-
anteed to find a solution that is within an additive error of the
global optimum. We name this algorithm: Fast-Match.

Template matching algorithms usually consider the set of
all possible 2D-translations of a template. They differ in the
way they discard irrelevant translations [see Ouyang et al.
(2012) for a comprehensive survey of the topic]. Template
matching under more general conditions, which include also
rotation, scale or 2D affine transformation leads to an explo-
sion in the number of potential transformations that must be
evaluated.

Fast-Match deals with this explosion by properly dis-
cretizing the space of 2D affine transformations. The key
observation is that the number of potential transformations
that should be evaluated can be bounded based on how
smooth the template is. Small variations in the parameters of
the transformation will result in small variations in the loca-
tion of the mapping, and therefore the smoother the template
is, the less the Sum-of-Absolute-Difference (SAD) error can
change.

Given a desired accuracy level δ we construct a net of
transformations such that each transformation (outside the
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Fig. 1 Shortcomings of current methods. Left Direct Methods (OF)
require (good) initialization. They find the correct template location
(green parallelogram) given a close enough initialization (dashed green
parallelogram), but might fail (converge to solid red parallelogram)
with a less accurate initialization (dashed red parallelogram). Right
Indirect Methods (feature based) require (enough) distinct features.
They typically will not detect a single matching feature in such an
example. Fast-Match solves both these cases (Color figure online)

net) has an SAD error which differs by no more than δ from
that of some transformation in the net. For each transforma-
tion in the net we approximate the SAD error using random
sampling. When we take a small δ the net size becomes large
and we therefore apply a branch-and-bound-like approach.
We start with a sparse net, discard all transformations in the
net whose errors are not within a bound from the best error
in the net and then increase the sampling rate around the
remaining ones. By choosing which transformations to dis-
card carefully we maintain the bounds on the approximation
while typically improving the runtime significantly. An exact
branch-and-bound approach could be obtained by analyz-
ing the exact worst-case constants of the presented bounds.
However, for better clarity and efficiency we use asymptoti-
cal bounds, whose constants we derive empirically, resulting
in an algorithm that is not strictly a branch-and-bound
scheme.

It is instructive to contrast Fast-Matchwith classical direct
methods, such as Parametric Optical Flow (OF) (Lucas et al.
1981). OF methods improved considerably over the years
and are the building blocks of many computer vision appli-
cations. However, at their core OF are solving a nonlinear
optimization problem and as such they rely on an initial guess
andmight be trapped in a local minimum. Fast-Match, on the
other hand, does not rely on an initial guess and is guaranteed
to find an approximation to the global optimum.

To overcome the limitations ofOF there is a growing focus
on feature based methods, such as SIFT (Lowe 2004). Such
methods assume that feature points can be reliably detected
and matched in both the image and the template so that there
are enough potent matches to estimate a global transforma-
tion model, perhaps using RANSAC (Fischler and Bolles
1981).Despite the large body ofwork in this field, the process
can fail, especially if there are not enough distinct features
in the template or the image. See Fig. 1 for illustrations.

OF is clearly less practical when the size of the template
is considerably smaller than the size of the image because

it does not have a good initial guess. In such cases we can
use feature point matching to seed the initial guess of an
OF algorithm. However, it is increasingly difficult to detect
distinct feature points as the size of the template decreases.
Fast-Match does not suffer from this problem.

Fast-Match has some disadvantages when compared to
other techniques. When dealing with images where the
important information is sparse, e.g. diagrams and text, Fast-
Match treats background pixels as if they are as important as
foreground pixels, potentially achieving good SAD error at
the expense of good localization, in contrast to feature based
techniques. In addition, the smoothness of a template deter-
mines the complexity-accuracy tradeoff of Fast-Match,while
other methods are generally agnostic to this property of the
template. In general, while Fast-Match handles a generalized
version of (the standard 2D-translation) template matching,
it does not deal with a wider range of problems that are
addressed using optic-flow or feature-based techniques.

By design, Fast-Match minimizes the SAD error and our
experiments validate this, however we also show that min-
imizing SAD error serves as a proxy to finding the correct
location of the template and we show results to this effect.
Often, evenwhen the size of the template is small, Fast-Match
can still find the correct match, whereas feature based meth-
ods struggle to detect and match feature points between the
template and the image.

We present a number of experiments to validate the pro-
posed algorithm.We run it on a large number of images from
the Pascal VOC 2010 data-set (Everingham et al. 2010) to
evaluate its performance on templates of different sizes, and
in the presence of different levels of degradation (JPEG arti-
facts, blur, and Gaussian noise). We also test Fast-Match on
the data sets of Mikolajczyk and Schmid (2005) and Miko-
lajczyk et al. (2005). Finally, we report results on real-life
image pairs from the Zurich Buildings data-set (Shao et al.
2003).

2 Background

Our work grew out of the template matching literature which
we review next. Since image-matching techniques can be
used for template-matching we also include a short reference
to this topic, whose full review is beyond the scope of this
paper.

2.1 Template Matching

Evaluating only a subset of the possible transformations was
considered in the limited context ofTemplateMatchingunder
2D translation. Alexe et al. (2011) derive an upper bound on
appearance distance, given the spatial overlap of two win-
dows in an image, and use it to bound the distances of many
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window pairs between two images. Pele andWerman (2007)
ask “How much can you slide?” and devise a new rank mea-
sure that determines if one can slide the test window bymore
than one pixel.

Extending Template Matching to work with more gen-
eral transformations was also considered in the past. Fuh
and Maragos (1991) proposed an affine image model for
motion estimation, between images which have undergone
a mild affine deformation. They exhaustively search a range
of the affine space (practically—a very limited one, with
only uniform scale). Fredriksson (2001) used stringmatching
techniques to handle also rotation.KimandDeAraújo (2007)
proposed a grayscale template matching algorithm that con-
siders also rotation and scale. Yao and Chen (2003) propose
a method for the retrieval of color textures, which considers
also variations in scale and rotation. Finally, Tsai and Chiang
(2002) developed a template matching method that consid-
ers also rotation, which is based on wavelet decompositions
and ring projections. The latter three methods do not pro-
vide guarantees regarding the approximation quality of the
matching.

Rucklidge (1997) proposed a branch-and-bound search
for a gray-level pattern under affine transformations. His
scheme is based on calculating worst-case ranges of pixel
intensities in rectangles of the target image, which are in
turn used to impose lower bounds on the improvement of
match scores as a result of sub-divisions in transformation
space. Another related work is that of Tian and Narasimhan
(2012), that estimates non-rigid distortion parameters of an
image relative to a template under a wide variety of defor-
mation types. Their method also employs an efficient search
in parameter space, providing bounds on the distance of
the discovered transformation, in parameter space, from the
underlying deformation. Our method, is contrast, seeks a
transformation that minimizes the distance in image (appear-
ance) space. This allows us to provide provable guarantees
even when the true deformation is not in the transformations
space (e.g. in the existence of image noise or other geometric
or photometric changes) or when the pattern appears repet-
itively in the image. We also explicitly show how distances
in parameter space and distances in image space are related
through the smoothness of the template.

2.2 Image Matching

Image matching algorithms are often divided into direct and
feature-based methods.

In direct methods, such as Lucas et al. (1981), a paramet-
ric Optic-Flow mapping is sought between two images so as
to minimize the Sum-of-Squared-Difference (SSD) between
the images. See the excellent review by Baker and Matthews
(2004) on optic flow image alignment algorithms. Such iter-
ative methods do not generally guaranty global convergence

and may discover local minima, unless provided with good
initializations which are not always known in advance. One
exception is the ‘Filter-Flow’work of Seitz andBaker (2009),
which gives an algorithm that can find globally optimal solu-
tions for a broad range of transformations. However, it is
done by solving a very large linear program, with impracti-
cable runtime and memory requirements, even for the setting
of limited scale and motion over low-res images.

Alternatively, one can use feature-based methods such as
SIFT (Lowe 2004), or its variant ASIFT (Morel andYu 2009)
which is designed to be fully affine invariant. Similarly,Wang
andYou (2007) provide a fast imagematchingmethod, based
on a kernel projection scheme for matching detected interest
points between images.

In this scenario, interest points are detected independently
in each image and elaborate image descriptors are used to rep-
resent each such point. Given enough corresponding feature
points it is possible to compute the global affine transfor-
mation between the images. This approach relies on the
assumption that the same interest points can be detected in
each image independently and that the image descriptors are
invariant to 2D affine transformations so that they can be
matched across the images.

In the feature based approach, it is common to search for
a nearest-neighbor of the descriptor vector using a dedicated
data-structure (e.g. ANNArya et al. (1998) or FLANN (Muja
and Lowe (2014)) built in a preprocessing stage. Such tree
structures allow for an efficient search through descriptor
space at test time. In contrast, the proposed approach comes
to show that the model space can be sampled efficiently to
find the correct transformation. Its branch-and-bound version
can be seen as a tree search through transformation space.

2.3 Other Related Work

Our work is also inspired by techniques from the field of
sublinear algorithms, which are extremely fast (typically
approximation) algorithms. They are generally randomized
and access only a subset of their input. The runtime of
such algorithms is sublinear in the input size, and gener-
ally depends on some given accuracy parameters. The use
of sublinear algorithms in the field of computer vision was
advocated by Raskhodnikova (2003) and later followed by
Kleiner et al. (2011) and Tsur and Ron (2010).

3 The Main Algorithm

3.1 Preliminaries

We are given two grayscale images I1 and I2 of dimensions
n1 × n1 and n2 × n2 respectively, with pixel values in the
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range [0, 1].1 We will refer to I1 as the template and to I2
as the image. The total variation of an image I , denoted
by V(I ), is the sum over the entire image of the maximal
intensity difference between each pixel p and any of its eight
neighbors q ∈ N (p) (we omit the dependence on I as it is
always clear from the context). That is,

V =
∑

p∈I
max

q∈N (p)
|I (p) − I (q)| (1)

We generally consider global geometric transformations
T that map pixels p in I1 to pixels in I2. Specifically, we deal
with the setA of 2D-affine transformations of the plane that
have scaling factors in the range [1/c, c] for a fixed positive
constant c. Any transformation T ∈ A can be seen as multi-
plying the pixel location vector by a 2×2 non-singularmatrix
and adding a “translation” vector, finally rounding the result-
ing numbers. Such a transformation can be parameterized by
six degrees of freedom.

For images I1 and I2 and transformation T , we define the
error ΔT (I1, I2) to be the (normalized) SAD between I1 and
I2 with respect to T . More formally:

ΔT (I1, I2) = 1

n12
∑

p∈I1
|I1(p) − I2(T (p))| (2)

Note that this error is in the interval [0, 1], as this is the
range of pixels intensity values. If a pixel p is mapped out
of the area of I2 then the term |I1(p) − I2(T (p))| is taken to
be 1. We wish to find a transformation T that comes close to
minimizing ΔT (I1, I2). The minimum over all affine trans-
formations T of ΔT (I1, I2) is denoted by Δ(I1, I2).

A crucial component of our algorithm is the net of
transformations. This net is composed of a small set of trans-
formations, such that any affine transformation is “close” to
some transformation in the net. To this end we define the
�∞ distance between any two transformations T and T ′ that
quantifies how far themapping of any point p in I1 according
to T may be from its mapping by T ′. Formally,

�∞(T, T ′) = max
p∈I1

‖T (p) − T ′(p)‖2 (3)

where the ‖ · ‖2 is the Euclidean distance in the target image
plane. Note that this definition does not depend on the pixel
values of the images, but only on the mappings T and T ′, and
on the dimension n1 of the source image I1. The key observa-
tion is that we can bound the difference between ΔT (I1, I2)
and ΔT ′(I1, I2) in terms of �∞(T, T ′) as well as the total

1 The algorithm is not restricted to square images but we discuss these
for simplicity throughout the article.

Algorithm 1 Approximating the Best Transformation

Input: Grayscale images I1, I2; a precision parameter δ;

Output: A transformation T

1. Create a net Nδ/2 that is a
δ·n21V -cover of the set of

affine transformations

2. For each T ∈ Nδ/2 approximate �T (I1, I2) to within
precision of δ (Sect. 3.4). Denote the result by dT .

3. Return the transformation T with the minimal value dT

variation V of I1. This will enable us to consider only a lim-
ited set of transformations, rather than the complete set of
affine transformations.

For a positive α, a net of (affine) transformations T =
{Ti }li=1 is an α-cover ofA if for every transformation T ∈ A,
there exists some Tj in T , such that �∞(T, T ′

j ) = O(α). In
our algorithm, we use a net, which we denote by Nδ , with a
very particular choice of the density parameterα of the cover:

α = δ·n21V , where δ ∈ (0, 1] is the accuracy parameter of the
algorithm and n1 and V are the dimension and total-variation
of the image I1. Note that number of transformations in the
net will grow as a function of both 1/δ and V .

3.2 Algorithm Details

We describe a fast randomized algorithm that returns, with
high probability, a transformation T such that ΔT (I1, I2) is
close to Δ(I1, I2). The algorithm, outlined in Algorithm 1,
basically enumerates the transformations in a net Nδ and
finds the one with the lowest error. In Step 2 of the algo-
rithm we use a sublinear method for the approximation of
ΔT (I1, I2) (instead of computing it exactly), which is pre-
sented in Sect. 3.4.

The rest of this section is dedicated to establishing guar-
antees on the algorithm’s quality of approximation. We wish
to bound the difference between the quality of the algo-
rithm’s result and that of the optimal transformation (i.e. one
which attains the optimal error Δ(I1, I2)) in terms of two
parameters—the template total variation V and the precision
parameter δ.

The following theorem, which is our main theoretical
contribution, formulates a relation which will enable us to
bound the degradation in approximation that occurs as a
result of sampling the space of transformations rather then
enumerating it exhaustively. More specifically, it bounds the
difference between ΔT ′(I1, I2) and ΔT (I1, I2) for a general
affine transformation T ′ and its nearest transformation T on
the sampling net.
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Fig. 2 Intuition for Theorem 1. Transformations that have an �∞ dis-
tance of 1 from each other map neighboring pixels from the template to
the same pixel in the image. Thus, the change in error (when changing
from one transformation to the other) is bounded by the total variation
of the template

Theorem 1 Let I1, I2 be images with dimensions n1 and n2
and let δ be a constant in (0, 1]. For a transformation T ′, let
T be the closest transformation to T ′ in the net Nδ (which

is a
δ·n21V -cover). It holds that: |ΔT ′(I1, I2) − ΔT (I1, I2)| ≤

O(δ) .

The full proof of Theorem 1 can be found in the “Appen-
dix” section. To get an intuition of why it holds, consider
a degenerate case of horizontal translations, which is illus-
trated in Fig. 2. Let T be a translation of k pixels and
let T ′ be a translation of k + 1. Now consider the value
of |ΔT ′(I1, I2) − ΔT (I1, I2)|. Every pixel p = (x, y) in
I1 is mapped by T to the same location that the pixel
p′ = (x − 1, y) is mapped to by T ′. Thus the difference
between ΔT ′(I1, I2) and ΔT (I1, I2) is bounded by the total
sum of differences between horizontally neighboring pixels
in I1. The sum of these differences is related linearly to the
total variation of I1. Likewise, in the case that one of the trans-
lations is by k pixels and the other is by k + δn1 pixels—the
change in the SAD is bounded by the total variation multi-
plied by δn1. After normalizing by the size of I1 we get the
bound stated in the theorem.

In Sect. 3.3 we provide a construction of a netNδ , which

is a
δ·n21V -cover of the space A of affine transformations, and

whose size is Θ
(
( n2n1

)2( Vn1 )
6 1

δ6

)
. The correctness of Theo-

rem 1, along with the existence of such a net and the fact
that each δ-approximation of ΔT (step 2 of Algorithm 1)
takes Θ̃(1/δ2),2 lead directly to the following result on the
accuracy and complexity of Algorithm 1.

Theorem 2 Algorithm 1 returns a transformation T such
that |ΔT (I1, I2) − Δ(I1, I2)| ≤ O(δ) holds with high con-
stant probability. The total runtime (and number of queries)
is Θ

(
( n2n1

)2 ·( Vn1 )6 · 1
δ8

)
.

The term high constant probability in this claim refers to
the fact that we can amplify the probability of correctness
arbitrarily. Assuming the initial run of the algorithm gives

2 The symbol Θ̃ hides (low order) logarithmic factors.

the correct result with probability 2/3, the algorithm can be
run repeatedly, and by taking the median result we could get
an arbitrarily low probability of error. Indeed, as explained
below, this can be separately done for each part of the algo-
rithm that may make an error, in order to control the overall
error using a uniounionn bound.

Interestingly, the fact that Algorithm 1’s complexity
depends on the total variation of the template I1 is not an
artifact of the analysis of the algorithm. In a theoretical analy-
sis of the query complexity of such problems (Korman et al.
2011) we prove a lower bound that demonstrates how the
number of pixels that need to be examined by any algorithm
(and hence its runtime) grows with the total variation of the
template.

3.3 Construction of the Net Nδ

(
a

δ·n21
V −Cover

)

Once the density parameter of the net α = δ·n21V has been
selected, an appropriate α-cover of the space of affine trans-
formations can be constructed. As a reminder, we consider
the set of affine transformations from an image I1 of dimen-
sion n1 × n1 to an image I2 of dimension n2 × n2, which
we denote by by A. The cover will be a product of several
1-dimensional grids of transformations, each covering one of
the constituting components of a standard decomposition of
Affine transformations (Hartley and Zisserman 2003), which
is given in the following claim.

Claim 1 Every orientation-preserving affine transformation
matrix A can be decomposed into A = Tr R2SR1, where
Tr, Ri , S are translation, rotation and non-uniform scaling
matrices.3

We now describe a 6-dimensional grid,Nδ , which we will

soon prove to be a
δ·n21V -cover of A. The basic idea is to dis-

cretize the space of Affine transformations, by dividing each
of the dimensions into Θ(δ) equal segments. According to
Claim 1, every affine transformation can be composed of a
rotation, scale, rotation and translation. These basic transfor-
mations have 1, 2, 1 and 2 degrees of freedom, respectively.
These are: a rotation angle, x and y scales, another rotation
angle and x and y translations.

The idea will be to divide each dimension into steps, such
that for any two consecutive transformations T and T ′ on
any of the dimensions it will hold that:

�∞(T, T ′) < Θ
(δ · n21

V
)

(4)

3 Arguments are similar for orientation-reversing transformations
(which include reflection).
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Starting with translations (x and y), since the template
should be placed within the bounds of the image I2, we con-
sider the range [−n2, n2]. Taking step sizes of Θ(δn21/V),
guarantees by definition that Eq. (4) holds. Similarly, for
rotations we consider the full range of [0, 2π ], and use steps
of size Θ(δn1/V). This suffices since rotating the template
I1 by an angle of δn1/V results in pixel movement which
is limited by an arc-length of Θ(δn21/V). Finally, since the
scales are limited to the interval [ 1c , c] and since I1 is of
dimension n1, steps in the scale axes of size Θ(δn1/V) will
cause a maximal pixel movement of Θ(δn21/V) pixels.

The final cover Nδ , of size Θ
(
( n2n1

)2 · ( V
δn1

)6
)
, is simply a

Cartesian product of the 1-dimensional grids whose details
are summarized in the following table.

Transformation Step size Range Num. steps

x translation Θ(δn21/V) pixels [−n2, n2] Θ( n2n1
·V/δn1)

y translation Θ(δn21/V) pixels [−n2, n2] Θ( n2n1
·V/δn1)

1st rotation Θ(δn1/V) radians [0, 2π ] Θ(V/δn1)
2nd rotation Θ(δn1/V) radians [0, 2π ] Θ(V/δn1)
x scale Θ(δn1/V) pixels [1/c, c] Θ(V/δn1)
y scale Θ(δn1/V) pixels [1/c, c] Θ(V/δn1)

Thefinal result is formulated in the following claim,where
the proof follows directly from the above construction: Given
the netNδ and an arbitrary affine transformation A inA, there
exists a transformation A′ in Nδ , such that A and A′ differ
by at most Θ(

δ·n21V ) (in the sense of the distance �∞) in each
of the 6 constituting dimensions. Now, taking an arbitrary
pixel p in I1 and applying either A or A′ on it, the results

may not differ by more than Θ(
δ·n21V ) pixels, and this can be

shown by a sequential triangle-inequality argument on each
dimension.

Claim 2 The net Nδ is a
δ·n21V -cover of A of size Θ

(
( n2n1

)2 ·
( V
δn1

)6
)
.

3.4 Approximating the Distance dT (I1, I2)

We now turn to describe a sublinear algorithm which we use
in Step 2 ofAlgorithm1 to approximateΔT (I1, I2). This dra-
matically reduces the runtime of Algorithm 1 while having a
negligible effect on the accuracy. The idea is to estimate the
distance by inspecting only a small fraction of pixels from
the images. The number of sampled pixels depends on an
accuracy parameter ε and not on the image sizes. Algorithm
2 summarizes this procedure, whose guarantees are specified
in the following claim.

Claim 3 Given images I1 and I2 and an affine transfor-
mation T , Algorithm 2 returns a value dT such that |dT −
ΔT (I1, I2)| ≤ ε with probability 2/3. It performs Θ(1/ε2)
samples.

Algorithm 2 Single Transformation Evaluation

Input: Grayscale images I1 and I2; a precision parameter ε;
and a transformation T ;

Output: An estimate of the distance �T (I1, I2)

– Sample m = 
(1/ε2) values of pixels p1 . . . pm ∈ I1.

– Return dT = ∑m
i=1 |I1(pi ) − I2(T (pi ))|/m.

The claim holds using an additive Chernoff bound. The
success probability of Algorithm 2 can be amplified arbi-
trarily by repeating it sequentially and taking a median.
For example, for a net of O(1/η) transformations, we can
perform Θ(log(1/η)/ε2) sets of samples (i.e. repetitions of
Algorithm 2) for each transformation. Since each has a prob-
ability of 2/3 of giving a result with the required error, the
median of these approximations gives a correct result with
probability of error η. Using a union bound this should allow
us with probability 2/3 to approximate the value of all of the
O(1/η) transformations correctly.

3.5 Possible Extensions

In this section we propose two natural extensions of Algo-
rithm 1 which can help increase its robustness to some
real-world conditions that occur, for example, due to differ-
ence in viewpoint between the images to be matched. Such
difficulties are not typically considered in the context of tem-
plate matching. The first, allows it to deal with a global affine
illumination change, while the second, allows it to deal with
partial occlusions, which often occur in complex geometric
landscapes. Both extensions are evaluated in the last experi-
ment of Sect. 5, using pairs of images with large viewpoint
difference.

3.6 Photometric Invariance

An adaptation of Algorithm 2 allows us to deal with affine
photometric changes (adjusting brightness and contrast). We
calculate the best affine fit between the corresponding sam-
ples of pixels, every time we run Single Transformation
Evaluation. This is done by normalizing each sample by
its mean and standard-deviation. This adjustment allows our
method to deal with real life images at a small additional cost
in runtime.

3.7 Partial Matching

Another simple adaptation of Algorithm 2 (Single Transfor-
mation Evaluation) allows us to deal with cases where only
part of the template appears in the image, due to occlusions.
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Algorithm 3 Fast-Match: a Branch-and-Bound-like Algo-

rithm

Input: Grayscale images I1, I2, a precision parameter δ∗
Output: A transformation T .

1. Let S0 be the complete set of transformations in the net
Nδ0 (for initial precision δ0)

2. Let i = 0 and repeat while δi > δ∗

(a) Run Algorithm 1 with precision δi , but considering
only the subset Si of Nδi

(b) Let T Best
i be the best transformation found in Si

(c) Let Qi = {q ∈ Si : �q(I1, I2) − �T Best
i

(I1, I2) <

L(δi )}
(d) Improve precision: δi+1 = f act · δi

(by some constant factor 0 < f act < 1)
(e) Let Si+1 = {T ∈ Netδi+1 : ∃q ∈ Qi s.t.

�∞(T, q) < δi+1 · n21/V}
3. Return the transformation T Best

i

For any given percentile p (e.g. 50%), instead of taking the
average of allm matching pixel errors we can use the average
of the p lowest percent of errors. Working with such an error
is possible, since our asymptotic guarantees can be shown to
hold for the average of anyfixedpercentile of best pixelmatch
errors, not necessarily the 100%. This variant can not always
be used successfully in practice, since it would require the
knowledge of the suitable percentile p to work with, which
in turn depends on the amount of occlusion which is typi-
cally unknown. One solution would be to try it with different
values of p for a best result.

4 The Branch-and-Bound-like Scheme

To achieve an additive approximation of O(δ) in Algorithm 1
wemust test the complete net of transformationsNδ . Achiev-
ing a satisfactory error rate would require using a net Nδ

where δ is small. The rapid growth of the net size with the
reduction in the value of δ (linear in 1/δ6) renders our algo-
rithm impractical, despite the fact that our testing of each
transformation is extremely efficient. Nevertheless, it turns
out that it is possible to devise a branch-and-bound-lime
scheme, which is very efficient in practice, that applies Algo-
rithm 1 on nets of increasing resolution.

The main advantage of such a scheme, is that the num-
ber of transformations we test in order to achieve a certain
precision is reduced dramatically, since at each resolution it
typically needs to test only a small fraction of the transfor-

Fig. 3 Branch-and-Bound Analysis. One stage of the branch-and-
bound-like scheme. For simplicity the space of transformations is in
1D (x-axis) against the SAD-error (y-axis). Vertical gray lines are the
sampling intervals of the net. Dots are the samples. Horizontal dotted
lines are SAD errors of: Black (Optimal transformation, which is gen-
erally off the net), Red (best transformation found on the net), Green
(closest-to-Optimal transformation on the net) and Blue (threshold).
Only areas below the (blue) threshold are considered in the next stage.
The choice of the threshold is explained in the text (Color figure online)

mations in the rapidly growing net sizes. The correctness of
the branch-and-bound-like approach is based on the bound
from Theorem 1, regarding the change in error as a result of
change in transformation space. Intuitively, all transforma-
tions close to a particular high error transformation T will
also have fairly high error. Thus, if the difference between the
error associated with T and that of the transformation with
the lowest error sampled so far exceeds our bound, we can
safely discard a certain area aroundT in the net of transforma-
tions. The practical efficiency of the branch-and-bound-like
approach is based on a straightforward observation, that for
most templates and images, the vast majority of transforma-
tions in a sample will give an error that is much higher than
that of the best transformation in the sample.

A detailed analysis of the Branch-and-Bound-like scheme
is provided below. Note however, that it is not globally opti-
mal in the exact mathematical sense, but rather it has the
same properties of Algorithm 1. Namely, its bounds are not
absolute but rather asymptotic, for which in practice we fit
parameters based on real data (see details below). Also, due
to the use of random sampling in Algorithm 1, the result in
each round is guaranteed only with provable high probabil-
ity (based on the Chernoff bound). In the remainder of this
section we formalize the correctness of the scheme.

The pseudo-code for the branch-and-bound-like scheme
is given in Algorithm 3 (Fast-Match). In each stage, Algo-
rithm 1 is run on a subset S of the net Nδ . Figure 3 gives
an illustration of transformations examined by the algorithm
and their errors (in particular Opt—the optimal, Best—the
best examined, and Closest—the closest on the net to opt).
We denote by e(Opt) the error of opt and similarly for best
and closest.

We wish to rule out a large portion of the transforma-
tion space before proceeding to the next finer resolution net,
where the main concern is that the optimal transformation
should not be ruled out. Hadwe known e(Closest), we could
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have used it as a threshold, ruling out all transformationswith
error exceeding it. We therefore estimate e(Closest) based
on the relations between e(Opt), e(Best) and e(Closest). On
one hand, e(Best) − e(Opt) = O(δ) (following Theorem 2)
and on the other hand, e(Closest) − e(Opt) = O(δ) (by
the construction of the net and following Theorem 1). It fol-
lows that e(Closest) − e(Best) = O(δ) hence e(Closest) <

e(Best)+O(δ). If we set the parameters for such an algorithm
by computing bounds exactly we could keep the guarantees
of the original algorithm. However, for efficiency purposes,
we use an empirically set bound that gives good results in
practice. Using a large set of data, we estimated constants
c1 and c2, such that e(Closest) < e(Best) + c1 · δ + c2)
holds for 97% of the test samples. This learned function
L(δ) = c1 · δ + c2 is used in Step 2c of Algorithm 3, for the
choice of the points that are not ruled out, for each net reso-
lution. In specific cases where the template occurs in much
of the image (e.g. flat blue sky patch), we limit the size of Qi

so that the expanded Si+1 will fit into RAM.

5 Experiments

In this section we present three experiments that evaluate the
performance of our algorithm under varying conditions and
setups, using several data-sets. In the first such experiment
(Sect. 5.2) each template is extracted from an image and
matched back to it. In the second (Sect. 5.4), the template
is extracted from one image and matched to another, that
is related to it geometrically by a homography. In the third
experiment (Sect. 5.5) the template is taken from one image
of a scene and is mapped to an entirely different image of the
same scene.4

5.1 Implementation Details

Fast-Match, when evaluating a transformation, estimates the
SAD error between the template and the image region in the
target location. This is consistent with the general approach
of template matching schemes, minimizing a photometric
measure (e.g. SAD, SSD) between the matching subimages.
This approach allows the analysis of approximation quality,
however it may not be informative in practice. A location-
dependentmeasure of the correctmapping (which guarantees
with respect to it could not be provided, due to ambiguity) is
the overlap error, which quantifies the overlap between the
‘correct’ location and mapped location of the template in the
image (see for example the green and magenta quadrilaterals
in Fig. 4). The overlap error is defined (following, e.g.,Miko-
lajczyk and Schmid (2005); Mikolajczyk et al. (2005)) to be:

4 Source-code and extended results are available at www.eng.tau.ac.il/
~simonk/FastMatch.

Fig. 4 Example from a Fast-Match Run. Left The template (shown
enlarged for clarity), with the 152 pixels that Fast-Match samples. Right
Target image,with origin of the template (ground truth location) ingreen
and a candidate area it is mapped to in magenta

1 minus the ratio between the intersection and union areas of
the regions. In addition to validating our performance with
respect to the SAD error, we use the overlap error to evalu-
ate performance in the first two experiments (where ‘ground
truth’ location is available).

Achieving an accuracy of O(δ) was based on using a net

Nδ which was a
δ·n21V -cover of transformation space A. The

size of the required net is template-specific, depending not
only on the precision δ but also on the template dimension
n1 and its total-variation V . Recall that V can, theoretically,
take any value in the range [0, n21]. Nevertheless, we can take
advantage of the fact that natural images are known to be
piecewise smooth (see, e.g., van der Schaaf and van Hateren
(1996)). In fact, we provide here a simple experiment, using
the large collection of natural images of the Pascal VOC2010
data-set (Everingham et al. 2010), to show that templates
typically have low total-variation, according to its definition
in the paper.

We repeatedly extracted ‘random’ templates from these
images using the following steps: (i) choose an image, uni-
formly at random; (ii) pick a random dimension n1 for a
square template to be extracted (between 10 and 90% of the
smaller image dimension) and a random center location; (iii)
Measure the total variation V of the extracted template and
normalize it by its own dimension n1. We then organized the
9500 values of V/n1 in a histogram of 30 bins, as can be
seen in Fig. 5. When examining the distribution of the per-
template normalized values V/n1—the high concentration
around very low values (considering the mean E[n1] ≈ 200
and the standard deviation σ(n1) ≈ 100 of the dimensions
n1 over the 9500 random templates) suggests that taking V
to be a relatively small constant times n1 will suffice for a
vast majority of templates.

This typical behavior allowed us to take an ‘average-case’
approach regarding the total-variation, in which we model
it as a linear function of n1. This This allows the net sizes
to depend only on the template dimension dimension n2 and
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Fig. 5 Normalized total variation of 9500 random templates: Wemea-
sured the total variation V of 9500 random square templates of varying
edge dimension n1. The total-variation values are arranged in a 30-bin
histogram after dividing each by the specific template dimension n1.
The fact that natural image templates are typically smooth results in a
distribution of values which allows us to empirically upper bound the
total-variation V by a small constant times the template dimension n1.
See text for further details

precision δ, resulting in more average, predictable, memory
and runtime complexity. In our implementation, we set V =
n1 rather than fit constants to V = O(n1). This works since
the constants c1 and c2 that are learned to capture the O(δ)

bound in the Branch-and-Bound-like scheme account for this
relation as well.

5.2 Affine Template Matching

In this large scale experiment, we follow the methodology
used in the extensive pattern matching performance evalua-
tion of Ouyang et al. (2012). We use images from the Pascal
VOC 2010 data-set (Everingham et al. 2010), which has been
widely used for the evaluation of a variety of computer vision
tasks. Each pattern matching instance involves selecting an
image at random from the data-set and selecting a random
affine transformation, which maps a square template into the
image (the mapped square being a random parallelogram).
The parallelogram within the image is then warped (by the
inverse affine transformation) in order to create the square
template. See Fig. 4 for an example.

We test the method on different template sizes, where the
square template dimensions are between 10 and 90% of the
minimum image dimension. For each such size, we create
200 template matching instances, as described above. In the
Table 1 we report SAD and overlap errors of Fast-Match for
the different template sizes. Fast-Match achieves low SAD
errors, which are extremely close to those of the ground-
truth mapping. The ground-truth errors are at an average of
4 graylevels (not zero), since interpolation was involved
in the creation of the template. As can be seen, Fast-Match
does well also in terms of overlap error. In the following
experiments, we measure success only in terms of overlap
error.

Table 1 Fast-Match evaluation: SAD and overlap errors

Template dimension 90% 70% 50% 30% 10%

Avg. Fast-Match SAD err. 5.5 4.8 4.4 4.3 4.8

Avg. ground truth SAD err. 4.1 4.1 4.0 4.4 6.1

Avg. Fast-Match overlap err. (%) 3.2 3.3 4.2 5.3 13.8

SAD errors are in graylevels (in [0,255]). Low SAD error rates are
achieved across different template dimensions (10–90% of the image
dimension). Fast-Match guarantees finding an area with similar appear-
ance, and this similarity translates to a good overlap error, correctly
localizing the template in the image. Fast-Match SAD error is compa-
rable to that of the ground truth. See text for details

5.3 Comparison to a Feature Based Approach

After we have evaluated Fast-Match on the Pascal dataset,
we now show that its performance is comparable to tem-
plate matching that can be achieved through a feature based
approach. To this end, we compare its performance to that
of ASIFT (Morel and Yu 2009)—a state of the art method
which is a fully affine invariant extension of SIFT (Lowe
2004), for extracting feature point correspondences between
pairs of related images. As a disclaimer, we note that feature-
based methods, such as SIFT, were designed (and are used)
for handling awide range of tasks,which ourmethod does not
attempt to solve. For example, they can be used for sparsely
matching images that undergo more than a single global
transformation. Nevertheless, they are most commonly used
in practice for finding a global geometric transformation
between a pair of images, e.g. in the process of stitching
a panorama.

We examine Fast-Match’s performance under 3 types of
image degradations: additive white Gaussian noise, image
blur and JPEG distortion. We show its performance under
varying template sizes at different levels of such degra-
dations. Since ASIFT (without additional post-processing
for transformation recovering) and Fast-Match cannot be
directly compared due to their different output types,5 we
define for ASIFT a success criterion which is the minimal
requirement for further processing: Namely, it is required to
return at least 3 correspondences, which are fairly close to
being exact—the distance in the target image between the
corresponded point and the true corresponding point must be
<20% of the dimension of the template. The success crite-
rion for Fast-Match is an overlap error of <20%.6 This is an
extremely strict criterion, especially for templates mapped

5 Unlike our method, such feature based methods do not directly pro-
duce a geometric mapping. These can be found, based on good quality
sets of matching points, using robust methods such as RANSAC Fis-
chler and Bolles (1981) by assuming a known geometric model that
relates the images (e.g. affine).
6 Note that the 20% has a slightly different meaning in the different
criterions.
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(a) (b)

Fig. 6 Performance under different template sizes and image degra-
dations. Analysis is presented for two different template dimensions: a
50% and b 20% of image dimension. In each, the x-axis stands for the
increasing levels of image degradation, ranging from 0 (no degradation)
to 5 (highest). The y-axis stands for the success rates of Fast-Match
and ASIFT. Fast-Match is capable of handling smaller and smaller

template sizes, while the feature based method ASIFT, deteriorates sig-
nificantly as template dimension decreases. Like ASIFT, Fast-Match is
fairly robust to the different image degradations and is evenmore robust
to high levels of image blur than ASIFT (σ = 4/7/11 pixels). See text
for details

to small areas—see a variety of examples, below and above
this criterion, in www.eng.tau.ac.il/~simonk/FastMatch. As
is claimed in Mikolajczyk et al. (2005), an overlap error of
20% is very small since regions with up to 50% overlap error
can still be matched successfully using robust descriptors.

We consider 2 different template dimensions which are
50 and 20% of the minimal dimension of the image. For
each such size, we repeat the template matching process
described above. We consider 6 degradation levels of each
type (applied to the target image), as follows: Image blur-
ringwithGaussian kernels with STDof {0,1,2,4,7,11} pixels,
additive Gaussian noise with STDs of {0,5,10,18,28,41} grey
levels and finally—JPEG compression with quality parame-
ter (in Matlab) set to {75,40,20,10,5,2}.7

The comparison of the above success rates of ASIFT and
Fast-Match is presented in Fig. 6. This experiment validates
our claim that unlike feature-based methods (e.g. ASIFT)
our method can handle smaller and smaller templates (10%
in each image dimension—which translate to 30×30 tem-
plates). In addition, Fast-Match is fairly robust with respect
to noise and JPEG compression and even more robust to blur
in comparison with ASIFT.8 The Table 2 shows the algo-
rithm’s average runtimes for several templates sizes, run on
a single cpu of an Intel i7 2.7 MHz processor.

5.4 Varying Conditions and Scene Types

In the second experiment we examine the performance of
Fast-Match under various imaging conditions and on dif-

7 Note that in the 3 distortion types, the lowest degradation level is
equivalent to no degradation at all.
8 ASIFT is based on SIFT, which has been shown in Mikolajczyk and
Schmid (2005) to be prominent in its resilience to image blur, with
respect to other descriptors.

Table 2 Runtimes on different template sizes

Template dimension 90% 70% 50% 30% 10%

ASIFT 12.2 s. 9.9 s. 8.1 s. 7.1 s. NA

Fast-Match 2.5 s. 2.4 s. 2.8 s. 6.4 s. 25.2 s.

Average runtimes (in seconds) over 100 instances for each template
dimension. Fast-Match is much faster in general. As opposed to ASIFT,
Fast-Match’s runtime increases with the decrease of template dimen-
sion. The reason is twofold: (1) The size of our net grows linearly in the
image-area/template-area ratio. (2) Smaller templates are more com-
mon in the image and hence the Branch-And-Bound-like enhancement
becomes less effective

ferent scene types. We test our algorithm on a dataset by
Mikolajczyk and Schmid (2005) and Mikolajczyk et al.
(2005), originally used to evaluate the performance of
interest-point detectors and descriptors. The data set is com-
posed of 8 sequences of images, 6 images each: Blur (2), a
combination of rotation and zooming (2), viewpoint change
(2), JPEG compression (1) and light conditions (1). In each
sequence the degradation increases, e.g., in a blur sequence,
from entirely unblurred extremely blurred. Unlike the first
experiment, here the template is taken from one image and
searched for in a different one, related by a homography
(rather than an affinity), increasing the difficulty of the task.

Each experiment is conducted as follows: We first choose
a random axis-aligned rectangle in the first image, where
the edge sizes are random values between 10 and 50% of the
respective image dimensions.We then use Fast-Match tomap
this template to each of the other 5 images in the series. We
perform 50 such experiments for which the success rates are
given in the Table 3. The success criterion is identical to the
first experiment (i.e. overlap error <20%).9 The sequences

9 Note that because we are approximating a projective transformation
using an affine one (whichmeansmatching a general quadrilateral using
a parallelogram), the optimal overlap error may be far >0.
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Table 3 Percent of successful matches (overlap error<20%) per
sequence and degradation level

Seq. \Distortion Level 1 2 3 4 5

Zoom + Rotation (Bark) (%) 100 100 87.5 97.5 87.5

Blur (Bikes) (%) 100 100 100 100 100

Zoom + Rotation (Boat) (%) 100 100 75 87.5 55

Viewpoint change (Graffiti) (%) 95 95 87.5 90 85

Brightness change (Light) (%) 97.5 100 100 100 97.5

Blur (Trees) (%) 100 100 100 97.5 100

JPEG compression (UBC) (%) 97.5 100 100 100 100

Viewpoint change (Wall) (%) 100 100 100 5 0

Several examples appear in Fig. 7

of images (with an example of a single experiment for each)
are shown in Fig. 7.

We achieve high success rates across the dataset, with the
exception of the higher degradation levels of the ‘Wall’ and
‘Boat’ sequences. Note that, the smaller the template area
in the target image, the more demanding the overlap error
criterion becomes.10 This is relevant especially to the zoom
sequences. The ‘Wall’ images are uniform in appearance and
this makes it difficult to translate good SAD error to correct
localization. The results of Experiment II can not be com-
pared with those of Mikolajczyk and Schmid (2005) as they
do not deal directly with template or image matching. In
this experiment too, Fast-Match deals well with photometric
changes as well as the blur and JPEG artifacts.

5.5 Matching in Real-World Scenes

In the third experiment, we present the algorithm’s perfor-
mance in matching regions across different view-points of
real-world scenes. We use pairs of images from the Zurich
buildings dataset (Shao et al. 2003). As done in the sec-
ond experiment, we choose a random axis-aligned rectangle
in the first image, where the edge sizes are random values
between 10 and 50% of the respective image dimensions.
This data-set is more challenging for the algorithm, as well
as for experimentation itself: The template typically includes
several planes (which do not map to the other image under
a global transformation), partial occlusions and changes of
illumination and of viewpoint.

As there is no global transformation between the images,
we evaluated the performance of fast match on 200 images
visually.On129of thesewe found that themapping produced
by the algorithm was good, in the sense that it corresponded
almost exactly to what we judged as the best mapping. In
most of the remaining cases producing a good mapping from

10 This issue has been extensively discussed in Mikolajczyk et al.
(2005).

Fig. 7 A typical experiment for each of the Mikolajczyk et al. (2005)
sequences. In the leftmost image—the area marked in blue is the input
given to Fast-Match. In each of the remaining images a blue parallel-
ogram indicates the mapping produced by Fast-Match, while a green
quadrilateral marks the ground truth (Color figure online)

Fig. 8 Zurich Dataset (Shao et al. 2003)—Good Examples: In the blue
rectangle on the left of each pair of images is the template presented to
Fast-Match. In the blue parallelogram on the right is the regionmatched
by the algorithm. Note that also for some of the non-affine mappings
Fast-Match gives a good result (Color figure online)
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Fig. 9 Zurich Dataset (Shao et al. 2003)— the remaining: Failures
(row 1), Occlusions (row 2), Template or Target template is out of
plane/image (row 3)

Fig. 10 Zurich Dataset (Shao et al. 2003)—‘photometric invariance’
extension. Four cases where the use of the ‘photometric invariance’
extension enabled locating the template correctly. In each triplet, left
The source imagewith the template,middle result without the extension
(failure), right result with the extension

the given template was impossible: On 40 of the images, the
location corresponding to the template was not present in
the other image, or that the template spanned several planes
which can not be mapped uniquely. In 12 of the images the
location that the template was a photograph of was occluded
by some outside element, such as a tree. In only 19 of the
images was locating the template possible, and the algorithm
failed to do so. Examples of good mappings can be found in
Fig. 8. Examples of cases where a good match was not found
appear in Fig. 9. The results on the entire dataset appear in
www.eng.tau.ac.il/~simonk/FastMatch.

5.6 Results on Extensions

In Sect. 3.5, we suggested two possible extensions to Algo-
rithm 1. Their goal was to increase the robustness of our
method to deal with real-world conditions, that common
(SAD or SSD based) template matchers are not designed
to handle.

First, we suggested the photometric invariance extension
that allows a global affine illumination change.Due to the fact
that the different images of each building were taken from
different viewpoints, some at different hours of the day, we
used this extension throughout this experiment, in all results
that were reported above. By repeating the experiment with-
out the extension, we found that it was quite significant for
this data-set, improving the overall success rate by around
10% (we obtain only 117 ‘good’ cases without it). Figure 10
shows several examples where the method succeeds, only
when it uses the photometric invariance extension.

Fig. 11 Zurich Dataset (Shao et al. 2003)—‘partial occlusion’ exten-
sion. Four cases where the use of the ‘partial occlusion’ extension
enabled locating the template correctly. In each triplet, left the source
image with the template, middle result without the extension (failure),
right result with the extension

Second, we suggested the extension for handling partial
occlusions. This extension was not used in the experiment,
since it requires the knowledge of the suitable percentile p
to work with, reflecting the percent of the template that is
non-occluded. Naturally, using a percentage that is far from
the true non-occlusion rate can give unpredictable results.

In presence of this uncertainty, we chose to run this exten-
sion on the data-set with a fixed value of p = 60%. As
expected, in many cases where significant exclusion was
involved, the extension was able to correct the wrong detec-
tion that occurred without using it. See Fig. 11 for several
such examples. However, this extension did not change the
overall success rate significantly (132 instead of 129). This
is since it was not suitable in many cases where no occlusion
existed, biasing the solution based on only a subset of the
template.

6 Conclusions

We presented a new algorithm, Fast-Match, which extends
template matching to handle arbitrary 2D affine transforma-
tions. It overcomes someof the shortcomings of current,more
general, image matching approaches. We give guarantees
regarding the SAD error of the match (appearance related)
and these are shown to translate to satisfactory overlap errors
(location related). The result is an algorithmwhich can locate
sub-images of varying sizes in other images. We tested Fast-
Match on several data sets, demonstrating that it performs
well, being robust to different real-world conditions. This
suggests that our algorithm can be suitable for practical appli-
cations.An interestingdirection for future research is to apply
similar methods to more diverse families of transformations
(e.g. homographies) and in other settings, such as matching
of 3D shapes.

Appendix: Proof of Theorem 1

We first restate Theorem 1 for completeness:
Let I1, I2 be images with dimensions n1 and n2 and let δ

be a constant in (0, 1]. For a transformation T ′, let T be the
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Fig. 12 A template mapped to an image by two close transformations.
The close transformations map the template to close parallelograms.
The error of T ′ cannot be very different from that of T . Most of the
change in error is from different points beingmapped to the intersection
area (in yellow). This difference depends on the total variation of the
template. The remaining error depends on the green areawhich is small
because the transformations are close (Color figure online)

closest transformation to T ′ in the net Nδ (which is a
δ·n21V -

cover). It holds that: |ΔT ′(I1, I2) − ΔT (I1, I2)| ≤ O(δ).
To understand why the claim holds we refer the reader to

Fig. 12. Two close transformations T, T ′ map the template
to two close parallelograms in the target image. Most of the
error of the mapping T ′ is with respect to the area in the
intersection of these parallelograms (the yellow region in
Fig. 12). This error cannot be greater than the total variation
multiplied by the distance between the transformations T and
T ′, as shown below. The rest of the error originates in the
area mapped to by T ′ that is not in the intersection (the green
region). The size of this area is also bounded by the distance
between the transformations. Thus, the distance between the
transformations, and the total variation, bound the difference
in error between T and T ′. This is formalized in the remainder
of the section.

For convenience, throughout the discussion of the algo-
rithm’s guarantees we consider points in a continuous image
plane instead of discrete pixels. Analyzing the problem in
the continuous domain makes the theorem simpler to prove,
avoiding several complications that arise due to the discrete
sampling, most notable, that several pixels might be mapped
to a single pixel. We refer the reader to a (slightly more
involved) proof in the discrete domain, which wemade avail-
able in a previous manuscript (Korman et al. 2011).

In order to switch to the continuous domain, we give some
definitions and state some claims for points in the image
plane. We begin by relating the intensity of points to that of
pixels.

Definition 1 The intensity of a point p = (x, y) in the image
plane (denoted I1(p)) is defined as that of the pixel q =
([x], [y]), where [·] refers to the ‘floor’ operation. The point
p is said to land in q.

We now define the variation of a point and relate it to the
variation of a pixel.

Definition 2 The variation of a point p, which we denote
v(p), is maxq : d(p,q)≤1 |I1(p) − I1(q)|. Note that this is
upper-bounded by the variation of the pixel that p lands in.
For convenience of computation (this does not change the
asymptotic results), for points p that have a distance of <1
from the boundary of the image, we define v(p) = 1.

Finally, we define the total variation of an image in terms
of the total variation of points in the image plane.

Definition 3 The total variation of an image (or template)
I1 is

∫
I1
v(p). We denote this value V . Note that this is upper

bounded by the total variation computed over the pixels.

Our strategy towards proving Theorem 1 involves two
ideas. First, instead of working with the pair of transforma-
tions T and T ′, we will more conveniently (and we show
the equivalence) work with the identity transformation I and
the concatenated transformation T ′−1T . Second, note that
in Theorem 1, we bound the difference in error between
transformations T and T ′, which are δn1 apart. A simpli-
fying approach, is to ‘relate’ the transformations T and T ′
through a series of transformations {Ti }mi=1 (where T0 = T
and Tm = T ′), which are each at most at a unit distance apart,

with m = O(
δ·n21V ). Thus, in Claim 6 we handle the case of

transformations that are a unit distance apart.
In the following lemmas we introduce a constant u, such

that if �∞(T, T ′) ≤ u it holds that �∞(T−1, T ′−1) ≤ 1.

Claim 4 Given affine transformations T, T ′ with scaling

factors in the range [1/c, c] such that �∞(T, T ′) ≤ δ·n21V ,

it holds that �∞(T−1, T ′−1) = O(
δ·n21V ).

Proof To see that the claim above holds, consider a point q

and we will show that ||T ′−1(q) − T−1(q)|| ≤ c
δ·n21V (see

Fig. 13). Let p′ = T ′−1(q) and let p = T−1(q). We wish
to bound ||p′ − p||. Let r = T (p′). We get ||p′ − p|| =
||T−1r − T−1q|| = ||T−1(r − q)|| ≤ c||r − q|| ≤ c

δ·n21V . 
�
Claim 5 There exists a value u ∈ (0, 1) such that for any
affine transformations T, T ′ where �∞(T, T ′) ≤ u and for
any point p ∈ I1, it holds that ||p, T ′−1(T (p))|| ≤ 1.

The correctness of Claim 5 follows directly from Claim 4
by noting that p = T−1(T (p)).

Fig. 13 Illustration for Claim 4. The distance between the points p
and p′ can be no more than a constant size greater than the distance
between the points q and r , which is itself bounded by δn1
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Claim 6 Let I1, I2 be images with dimensions n1 and n2.
There exists a constant u ∈ (0, 1) for which the following
holds. For any two affine transformations T and T ′ such that
�∞(T, T ′) ≤ u:

|ΔT ′(I1, I2) − ΔT (I1, I2)| ≤ O
( V
n12

)
.

Note that the value O
(

V
n12

)
, bounds the difference in error

for two transformations that have unit distance. This scales
to the value O(δ) that appears in Claim 1 for transformations

that have a distance of
δ·n21V .

Proof Using the triangle inequality we can write:

∣∣∣ΔT ′(I1, I2) − ΔT (I1, I2)
∣∣∣

=
∣∣∣
∫

I1
|I1(p) − I2(T

′(p))| −
∫

I1
|I1(p) − I2(T (p))|

∣∣∣

≤
∫

I1
||I1(p) − I2(T

′(p))| − |I1(p) − I2(T (p))||

where integrals go over points p in the template I1.
We now bound this sum. Aswe know that �∞(T, T ′) ≤ u,

we know that only points that have a distance of at most 1 (as
u ≤ 1) from the boundary of I1 are mapped to ‘new’ areas of
I2 - areas to which no point from I1 wasmapped before. Each
of these points has an error of 1 at worst (this is the greatest
distance possible between intensities from 0 to 1). The total
area of such points is O(n1), and thus they contribute O(n1)
to the difference betweenΔT ′(I1, I2) andΔT (I1, I2), before
normalization. This is equal to their contribution to the total
variation.

For the remaining points (that have distance >1 from the
boundary of I1), under T each such point p is mapped to a
point T (p), and the pre-image of that point T ′−1(T (p)), is in
the area of I1. Instead of considering the value ET,I1,I2(p) for
each such point p in I1, consider instead the error over each
point q = T (p) in I2 that has points mapped to it both by T
and by T ′. The distance between p and T ′−1(T (p)) is atmost
1 (as seen in Claim 5), and the value of p and of T ′−1(T (p))
differ by at most v(p), and thus |I2(q) − I1(p)| − |I2(q) −
I1(T ′−1(q))| ≤ v(p) (By a triangle inequality). Thus, for
points that have a distance >1 from the boundary of I1, the
affect on the difference |ΔT ′(I1, I2) − ΔT (I1, I2)| for each
point p is at most v(p) and thus the total contribution is
bounded by V .

Summing both contributions and normalizing by n12 we
obtain |ΔT ′(I1, I2) − ΔT (I1, I2)| = O(V/n12) as required.


�
However, not all transformations have a distance of u from

the net. We now turn to the goal of this section, proving
Theorem 1.

Proof As T is the closest transformation to T ′ it holds that
�∞(T, T ′) ≤ δ·n21V . Furthermore, from the construction that
is summarized in Claim 2 we have that T = Tr R2SR1 and
T ′ ∈ Nδ where T ′ = Tr ′R′

2S
′R′

1 such that d(Tr, Tr ′) ≤
δ·n21V , . . . d(R1, R′

1) ≤ δ·n21V . Now consider a series of trans-
formations {Ti }mi=1 where T0 = T and Tm = T ′. For each
transformation Ti+1 it will hold that �∞(Ti , Ti+1) ≤ u (for
the constant u from Claim 6). For such a series, repeated use
of Claim 6 (and of the triangle inequality) will give us that

|Δ(T ) − Δ(T ′)| = |Δ(T0) − Δ(Tm)| ≤ O
(mV
n12

)
.

To construct such a series of transformations we first add
(or subtract) u from the translation matrix until it changes

from Tr to Tr ′. This takes O(
δ·n21V ) steps. We then change

the rotation matrix beginning with R2 by u/n1 for O(
δ·n21V )

steps until we get to R′
2. We proceed like this and after m =

O(
δ·n21V ) steps transition from T to T ′, giving us the required

bound of O(δ). 
�
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