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Abstract Stereo vision systems with additional flash/no-
flash cues have been demonstrated to be robust to depth
discontinuities. The ratio of a flash and no-flash image pair
naturally provides additional scene depth information and
thus can serve as a strong cue for preserving depth dis-
continuities. However, existing solution simply uses ratio
as the guidance to perform matching cost aggregation and
thus is still vulnerable to occlusions. Inevitable misalign-
ment of flash and no-flash images due to camera and/or scene
motion remains unsolved as well. This paper investigates
into these two problems. An occlusion detection approach is
derived based on foreground/background extraction. Match-
ing cost computed in the occluded regions (which is useless
and harmful) is thus discarded so that reliable information
from non-occluded regions can be easily propagated in. The
foreground, occlusion and depth estimation is modeled in
a uniform framework base on Expectation-Maximum. The
proposed solution is evaluated using both indoor and outdoor
data sets, showing clear improvement over the state-of-the-
art methods.
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1 Introduction

Accurate depth acquisition is one of the fundamental research
areas in computer vision. The depth information are very use-
ful to many vision tasks like scene understanding (Kaehler
andReid 2013;Xiong et al. 2009), 3Dobjectmodeling (Roth-
ganger et al. 2006; Ye et al. 2012), robot vision (Murray and
Little 2000) and tracking (Prisacariu andReid 2012;Ren et al.
2013). Depth images can be computed using active depth
sensing techniques or passive stereo. For instance, laser scan-
ner (Riegl vz 1000 scanner, http://www.riegl.com/nc/prod
ucts/terrestrial-scanning/produktdetail/product/scanner/27/,
time-of-flight (ToF) (Softkinetic depth sensor, http://www.
softkinetic.com/Products/DepthSenseCameras, 2015) and
structured-light (Zhang 2012) depth cameras. There are other
depth sensing systems based on different types of techniques
including light field (Chen et al. 2014; Yu et al. 2013), XSlit
cameras (Ye et al. 2013) and mixed camera types (Bastan-
lar et al. 2012). However, they are less popular. Some of the
commercial depth cameras can even capture depth images in
real time with sufficient depth quality. However, most popu-
lar depth sensing techniques have limitations as summarized
in Table 1 and some failure cases are presented in Fig. 1.

A state-of-the-art laser scanning system can be extremely
accurate and of high resolution. However, it is very expensive
and extremely slow. For instance, the Riegl vz 1000 scan-
ner, http://www.riegl.com/nc/products/terrestrial-scanning/
produktdetail/product/scanner/27/ takes about half an hour
to capture a 4343×2848 depth image. Additionally, the fore-
ground depth will be blended with the background because
the width of the adopted laser beam cannot be infinitely small
in practice. Such a failure case is presented in the closeups
in Fig. 1a. Figure 1b, c show that Structured-Light and ToF
depth sensing techniques are not suitable for thin-structured
objects due to limited sensor resolution. Passive stereo cannot
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Table 1 Popular depth sensing techniques

Advantages Disadvantages

Laser scanner Accurate; Slow and expensive;

High resolution Blurred depth edges.

Structured-
light

Accurate Low resolution;

Limited in depth range;

Sensitive to occlusion

Time-of-
flight

Accurate; Low resolution;

Robust to occlusion Limited in depth range

Traditional
passive
stereo
(Hosni et al.
2013)

High resolution. Sensitive to occlusion;

Cannot distinguish color

Edges and depth edges

Flash stereo
(Zhou et al.
2012)

High resolution; Sensitive to occlusion;

Robust to depth edges Sensitive to motion;

Require camera flash

Proposed High resolution; Require camera flash.

Robust to occlusion,

Depth edges and motion.

distinguish color edges and depth edges and thus is sensitive
to occlusions and depth discontinuities as demonstrated in
Fig. 1d. Flash stereo (Zhou et al. 2012) uses an additional
flash stereo pair. It can provides approximated depth infor-
mation and thus can better preserve depth discontinuities.
However, is still vulnerable to occlusions and inevitable mis-
alignment of flash and no-flash images due to camera motion
and scene motion. The depth sensing technique proposed in
this paper aims at solving these limitations.

A typical stereomatching algorithmconsists of amatching
cost computation step followed by a cost aggregation and/or
a disparity optimization step (Scharstein and Szeliski 2002).
Cost aggregationmethods usually perform awinner-takes-all
(WTA) operation for each pixel after aggregating matching
costs from other pixels, while optimization methods strive to
infer a global optimal disparity value for each pixel.

Thanks to the Middlebury stereo benchmark (Scharstein
and Szeliski, http://vision.middlebury.edu/stereo/eval/), sig-
nificant progress on stereo matching has been achieved in
the past several decades. However, there are still some cru-
cial issues which are intractable in practice. For instance,
distinguishing depth and color edges for preserving depth
discontinuities and inferring depth inside large occlusions.
Most of the state-of-the-art solutions use edge-aware aggre-
gation/filtering techniques (Yoon and Kweon 2006; He et al.
2013; Hosni et al. 2013; Yang 2012; Ma et al. 2013) based
on the assumption that depth discontinuities co-exist with
color edges. Nevertheless, this assumption is not suitable for
textured scenes.
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Fig. 1 Limitation of existing depth sensors/cameras. From a to d:
Color images and depth images captured by a state-of-the-art high-
resolution (but extremely slow) laser scanner (Riegl vz 1000 scanner,
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/
product/scanner/27/), Kinect (Structured-Light) (Zhang 2012), Soft-
Kinetic (Time-of-Flight) (Softkinetic depth sensor, http://www.
softkinetic.com/Products/DepthSenseCameras, 2015) and Point Grey
Bumblebee2 stereo camera (Point-gray stereo camera, http://www.
ptgrey.com//bumblebee2-firewire-stereo-vision-camera-systems,
2015), respectively. As can be seen in the closeups in (a), the fore-
ground depth from a laser scanner will be blended with the background
because the width of the adopted laser beam cannot be ignored. b,
c show that Structured-Light and Time-of-Flight depth sensing tech-
niques are not suitable for thin-structured objects due to limited sensor
resolution, and apparently passive stereo is non-robust around depth
edges as demonstrated in (d). The proposed depth sensing technique
aims at solving these limitations

123

http://vision.middlebury.edu/stereo/eval/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/27/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/27/
http://www.softkinetic.com/Products/DepthSenseCameras
http://www.softkinetic.com/Products/DepthSenseCameras
http://www.ptgrey.com//bumblebee2-firewire-stereo-vision-camera-systems
http://www.ptgrey.com//bumblebee2-firewire-stereo-vision-camera-systems


258 Int J Comput Vis (2016) 120:256–271

The optimal guidance for matching cost aggregation is
indeed the depth/disparity image to be computed. A more
robust way to guide the weighting scheme is thus to utilize
additional cues which can provide reliable depth discontinu-
ity information. It is a great success in digital image matting
when (Sun et al. 2006) propose to add a flash image cues for
matting. It is based on the observation that most noticeable
difference betweenflash and no-flash image is the foreground
object if the background is relatively far away. The use of the
additional flash image simplifies the image matting problem.
An accurate foreground/background layer extraction method
named FlashCut is later proposed by Sun et al. (2007) based
on the same observation. It is more practical than the mat-
ting solution as the flash and no-flash image misalignment
problem is considered. Zhou et al. (2012) further prove that
the ratio map of a flash and no-flash image pair varies based
on the surface normal and object distance. This method is
referred to asFlash Stereo in this paper. The ratiomap is thus
used as the guidance (of a joint bilateral filter) for matching
cost aggregation and has been demonstrated to impressively
outperform the traditional color guidance. However, Zhou
et al. (2012) merely uses the ratio map as the guidance to per-
form matching cost aggregation and thus is still vulnerable
to occlusions. Inevitable misalignments of flash and no-flash
images due to camera motion and scene motion are not con-
sidered either.

This paper proposes a new framework for the integrated
estimation of the foreground, occlusion and depth using
flash/noflash stereo image pairs. Considering these problems
separately has clear limitations and fails to take advantage of
their complementary nature. For instance, FlashCut back-
ground modeling technique (Sun et al. 2007) relies on the
difference between the flash and noflash images and thus
the performance is directly related to the surface albedo and
the distance of the background object as shown in Fig. 2a,
c. These limitations can be successfully suppressed with
depth estimates from stereo matching as demonstrated in
Fig. 2d. Matching cost aggregation based on only the ratio
of the flash/noflash images is vulnerable to camera/scene
motion. The use of ratio does not sufficiently utilize the
rich information containing in a flash/noflash image pair.
For instance, the matching costs computed inside occlu-
sions are mostly outliers and should be excluded from cost
aggregation. Otherwise the depth estimates of the occlusions
are likely to be incorrect as demonstrated in Fig. 2e. This
paper derives an occlusion map from background modeling
(using the flash/noflash pair) and integrate it with the fore-
ground/background segmentation result for edge-aware and
occlusion-aware stereo matching as shown in Fig. 2f. The
combination of background modeling and cost aggregation
also solves the inevitable misalignments of flash and no-flash
images problem in Flash Stereo (Zhou et al. 2012).

Flash No-flash

Foreground from Flash Cut Proposed foreground

Depth from Flash Stereo Proposed depth

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Some limitations of FlashCut (Sun et al. 2007) and Flash Stereo
(Zhou et al. 2012) are visualized in c and e, respectively. The per-
formance of FlashCut drops when the background gets close to the
foreground (as the background will be also changed significantly by
flash) while Flash Stereo is sensitive to occlusions and motions. The
proposed system is more robust to these limitations as demonstrated in
d and f

By modeling the foreground, occlusion and depth estima-
tion in a uniform framework base on Expectation-Maximum,
a robust depth sensing system is proposed in this paper. It has
been evaluated using sufficient indoor and outdoor data sets,
and both visual and numerical comparison demonstrate clear
improvement over the state-of-the-art.

2 Proposed Solution

This section proposes a uniform framework to jointly esti-
mate foreground, occlusion and depth with a flash and
no-flash stereo image pair. A brief review of the FlashCut
background modeling technique (Sun et al. 2007) and Flash
stereo (Zhou et al. 2012) is presented in Sect. 2.1. A detailed
Expectation-Maximization (EM)basedparameter estimation
model is then introduced to estimate the foreground, occlu-
sion and depth from Sects. 2.2 to 2.5. The whole system
pipeline is briefly summarized in Algorithm 1.
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Algorithm 1 Occlusion-aware stereo matching.
Initialize

- foreground probabilities αl and αr with flash differences between
flash and no-flash images;

- disparity maps with Hosni et al. (2013);
- foreground/background layers with Sun et al. (2007).

repeat
- Estimate parameters αl and αr with EM optimization

(Sect. 2.3);
- Improve foreground/background layers (Sect. 2.4);
- Improve disparity map (Sect. 2.5).

until Convergence.

2.1 Motivation

Flash cue is used in FlashCut (Sun et al. 2007) for fore-
ground segmentation. FlashCut (Sun et al. 2007) assumes that
the foreground will be significantly brightened by the flash
while the background appearance change is very small. This
assumption is valid when the background is sufficiently far
away from the foreground. Meanwhile, FlashCut (Sun et al.
2007) handles misalignments caused by camera shake and/or
scene motion. However, real scenes may contain white/black
objects which are hard to be brightened by flash. Slanted sur-
faces (which are not perpendicular to flash source) can not
be significantly brightened by flash neither. Indoor scenes are
also quite difficult because background will be also affected
by flash as shown in Fig. 2a, b. These limitations may reduce
the performance of FlashCut in practice as demonstrated in
Fig. 2c. The foreground fingers cannot be fully detected by
FlashCut as the background is close to the fingers.

On the other hand, Flash Stereo (Zhou et al. 2012) prove
that the ratio of a flash and no-flash image pair varies
based on the surface normal and object distance and is thus
used as the guidance for matching cost aggregation. It has
been demonstrated to impressively outperform the traditional
color guidance. However, it is still vulnerable to occlusions.
Inevitable misalignments of flash and noflash images due to
camera motion and scene motion are not considered either.
These limitations lead to the incorrect depth estimates in
Fig. 2e.

This section analyzes the complementary nature of the
FlashCut (Sun et al. 2007) and Flash Stereo (Zhou et al. 2012)
and proposes to utilize the flash cue and depth cue simultane-
ously. Accurate foreground/background layers can provide a
good guidance to tackle occlusions in stereo matching using
the proposed occlusion detection technique (as detailed in
Sect. 2.3.1). By separately estimating depth on foreground
and background, the proposed stereo matching solution will
be also robust to depth discontinuities and misalignments of
the flash and noflash images. On the other hand, the estimated
depth can be integrated with the flash cue to overcome the
limitations of FlashCut (Sun et al. 2007). These two prob-

lems are integrated in a uniform probabilistic framework and
solved using Expectation-Maximization (EM) (in Sect. 2.3).

2.2 Model Initialization

Our system uses two stereo image pairs captured with and
without flash. Let d(p) denote the disparity at pixel p in the
left/reference image Fl and Fl(p) denote the color/intensity
at p. A general assumption in stereo matching is that pixel
p has the same color/intensity value or related transformed
pattern (e.g., Census transform Zabih and Woodfill 1994) as
the corresponding pixel in right/corresponding image Fr :

Fl(p) = Fr (p − d(p)). (1)

Assuming that each scene contains a separable foreground
and background layer and let αl(p) and αr (p−d(p)) denote
the foreground probability at pixel p in Fl and the corre-
sponding pixel p − d(p) in Fr , respectively. Some of the
background pixels will be occluded by the foreground. This
paper addresses this problem by performing stereo match-
ing on foreground and background layer separately. Let F f

denote foreground layer of image F and Fb denote back-
ground layer of image F . From Eq. (1) we have:

αl(p)F
f
l (p) = αr (p + d f (p))F f

r (p + d f (p)); (2)

(1 − αl(p))F
b
l (p) = (1 − αr (p + db(p)))Fb

r (p + db(p)),

(3)

where d f (p), db(p) denote the disparities for latent pixels in
foreground and background respectively. This paper aims at
simultaneously estimating disparity dp and foreground prob-
ability αl(p) and αr (p−d(p)) using Expectation-Maximum
(EM).

Before EM optimization (which is detailed in Sect. 2.3),
all the unknown variables in themodelwill be initialized. The
initial disparity map d can be estimated by a typical edge-
preserving stereo matching algorithm (e.g., CostFilter Hosni
et al. 2013) and the initial foreground/background layer F f

and Fb can be extracted from FlashCut (Sun et al. 2007).
Unlike FlashCut (Sun et al. 2007), we initialize the fore-

ground probability αl using motion compensated ratio map
between flash left image and no-flash left image. Let Δp

denote the motion between the flash and no-flash images
obtained from optical flow (Weinzaepfel et al. 2013; Sun
et al. Jan. 2014) or descriptor-based dense correspondence
(Liu et al. 2008; Yang et al. 2014). The ratio at pixel p is
computed as follows:

R(p)Δ(p) = log
F(p) + ε

N (p + Δ(p)) + ε
, (4)
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Flash No-flash

Ratio of (a) and (b) Flow map [27]

Ratio from optical flow Disparity map

(a) (b)

(d)(c)

(e) (f)

Fig. 3 Direct integration with optical flow estimation is not practical
as shown in the derived ratio map in e and the estimated disparity map
in f

where, ε is a small value to avoid division by zero and Fp and
Np+Δ(p) are the pixel values of the flash and no-flash images
at pixel p and p + Δ(p), respectively. Figure 3d presents
the flow map computed using the state-of-the-art DeepFlow
algorithm (Weinzaepfel et al. 2013) from Fig. 3a, b. Note
that optical flow estimation cannot provide a reliable motion
estimate at pixel level on real-world images, especially due to
the significant brightness changes between the flash and no-
flash image. As can be seen in Fig. 3e, the ratio map obtained
from motion is very noisy in background. The disparity map
obtained based on this ratio map in Fig. 3f shows that direct
combination of optical flow estimation and the stereomethod
in (Zhou et al. 2012) is sensitive to misalignments of flash
and no-flash images even for small movements presented in
Fig. 3a, b.

This paper uses the motion compensated ratio map (in
Fig. 3e) to estimate the initial foreground probability. First,
the ratio value of each pixel is normalized to be an integer
within (0, 255). After that, the ratio histogram is constructed.
In general, a pixel with a large ratio value R(p)Δ(p) is likely
to be assigned into foreground layer and has large foreground
probability.Wemodel those pixels that take large ratio values
in ratio histogram as a Gaussian distributionN (R(p)|μ, σ 2)

with mean μ and variance σ 2. Then the initial foreground
probability of pixel p is further formulated as:

αl(p) = exp
(
−σi (R(p) − μ)2

)
, (5)

where σi = ln2/(3σ)2. The initial foreground probability of
flash right image αr (p− d(p)) can be estimated in the same
manner.

2.3 Expectation-Maximization Optimization

In this section, we describe an EM optimization framework
to estimate the parameters αl , αr with hidden data d f , db.
We want to maximize the log-likelihood log

∑
d f
i ,dbj

P(d f
i ,

dbj , αl , αr , Fl , Fr ). Let L denote the disparity search range,

we assume that both d f
i and dbj range from 0 to L − 1.

With the estimated parameters αl and αr , we can further
improve the accuracy of the foreground/background extrac-
tion (in Sect. 2.4) and disparity estimation on foreground and
background layers (in Sect. 2.5).

2.3.1 E-step

In this step, given the foreground probabilities (αl ,αr ) of both
left and right flash images, we compute the expectation of
d f and db which are disparities on the foreground and back-
ground layer, respectively. Assuming that the distributions
of d f and db are statistically independent, the expectation of
d f (p) and db(p) at pixel p can be formulated as:

E(P(d f (p), db(p)|α(t)
l , α(t)

r , Fl , Fr ))

= E(P(d f (p)|α(t)
l , α(t)

r , Fl , Fr )

·P(db(p)|α(t)
l , α(t)

r , Fl , Fr ))

= E(P(d f (p)|α(t)
l , α(t)

r , Fl , Fr ))

·E(P(db(p)|α(t)
l , α(t)

r , Fl , Fr )). (6)

The occluded regions will be located only on the background
layer, and thus the expectation of foreground disparity d f and
background disparity db is computed separately as follows.

Expectation of ForegroundDisparityAccording to Bayes’
theorem, the conditional probabilities of foregrounddisparity
d f at pixel p is modeled as:

P(d f (p)|α(t)
l , α(t)

r , Fl , Fr )

∝ P(α
(t)
l , α(t)

r |d f (p), Fl , Fr ) · P(d f (p)|Fl , Fr ), (7)

where P(·|d f (p), Fl , Fr ) is the conditional likelihood given
d f and P(d f (p)|Fl , Fr ) is the prior probabilities of fore-
ground disparity d f .
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Let likelihood P(α
(t)
l , α

(t)
r |d f (p), Fl , Fr ) denote the sim-

ilarity measurement between pixel p and its correspondence
and both are on the foreground layer. According to Eq. 2, the
matching cost at pixel p with disparity d(p) is formulated
as:

C f (p) = ‖αl(p)F f
l (p)

−αr (p − d f (p))F f
r (p − d f (p))‖, (8)

where ‖ represents a distance measurement (e.g., L1 dis-
tance). We next model foreground disparity likelihood
P(α

(t)
l , α

(t)
r |d f (p), Fl , Fr ) as a Gaussian distribution N

(C f (p)|0, σ 2
c f ) with mean 0 and variance σ 2

c f :

P(α
(t)
l , α(t)

r |d f (p), Fl , Fr ) = 1√
2σc f

exp

(
−C f (p)2

2σ 2
c f

)
.

(9)

σc f is a constant and set to 6 in our experiments. To sup-
press noise, an edge-preserving image filtering operation
(e.g., bilateral filtering (Tomasi and Manduchi 1998; Yang
et al. 2009; Yang 2012), guided filtering (He et al. 2013) will
be used to smooth C f (p) before computing the foreground
likelihood in Eq. 9.

To model the foreground disparity distribution, we first
generate a disparity histogram (as shown in Fig. 4) from dis-
parity map computed in the previous iteration t or the initial
disparity map for the first iteration. We model the dispar-
ity histogram with two Gaussian distributions: one models
foreground disparities and the other models background
disparities. Let N (d f |μd f , σ

2
d f ) denote the foreground dis-

parity distribution with mean μd f and variance σ 2
d f , and

N (db|μdb, σ
2
db) denote the background disparity distribu-

tion with mean μdb and variance σ 2
db. The prior probabilities

of foreground disparity d f is formulated as follows:

P(d f (p)|Fl , Fr ) = 1√
2σd f

exp

(
− (d f (p) − μd f )

2

2σ 2
d f

)
.

(10)

Fig. 4 A histogram of disparity map in Fig. 2e

Fig. 5 Occlusion Detection

According to Eqs. (9) and (10), the expectation of fore-
ground disparity d f (p) at pixel p is written as:

E(P(d f (p)|α(t)
l , α(t)

r , Fl , Fr ))

= P(d f (p)|α(t)
l , α

(t)
r , Fl , Fr )∑

d f
i (p)

P(d f
i (p)|α(t)

l , α
(t)
r , Fl , Fr )

, (11)

where, d f
i (p) ∈ {0, 1, · · · , L − 1}.

Expectation of Background Disparity Similarly, the con-
ditional probabilities of background disparity db at pixel p
can be modeled as:

P(db(p)|α(t)
l , α(t)

r , Fl , Fr )

∝ P(α
(t)
l , α(t)

r |db(p), Fl , Fr ) · P(db(p)|Fl , Fr ), (12)

where P(·|db(p), Fl , Fr ) is the conditional likelihood given
db and P(db(p)|Fl , Fr ) is the prior probabilities of back-
ground disparity db.

We define the likelihood P(α
(t)
l , α

(t)
r |db(p), Fl , Fr ) as the

similarity measurement between the corresponding pixels on
background layers. Similar to Eq. (8), the matching cost at
pixel p on the background is modeled based on Eq. (3):

Cb(p) = ‖(1 − αl(p)F
b
l (p))

−(1 − αr (p + d f (p)))Fb
r (p + db(p))‖. (13)

Differing from the foreground pixels, some pixels on back-
ground are occluded and the matching costs of these pixels
are not reliable for the computation of the background like-
lihood P(·|db(p), Fl , Fr ).

A new occlusion detection method is proposed based
on extracted foreground/background layers. The occlusion
problem in binocular stereo matching refers to the fact that
some points in the background are visible to only one cam-
era, due to the shielding from foreground. For instance, the
purple line B in Fig. 5a can be seen by the left camera but
is invisible to the right camera. The projection of line B on
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the left camera is thus the occlusion region. The occlusion
information is encoded in the two known foreground layers.
Let xL denote the left intersection of a scanline and the fore-
ground in the left image and xR denote the corresponding
intersection of the same scanline and the foreground in the
right image as shown in Fig. 5a. xL and xR can be directly
obtained from the foreground layer. Under the assumption
of a rectified stereo pair, it is clear that the occlusion to the
left of xL is the purple line B in Fig. 5 a. Let x LR denote a
pixel in the left image that has the same coordinates as xR in
the right image as shown in Fig. 5b), then scanline segment
between pixel x LR and xL will correspond to the combination
of line segment A and B, which is obviously larger than or
equal to the occlusion. It is equal to the occlusion only when
line A is infinitely far way from the left camera. In practice,
most flash and no-flash image pairs based computer vision
and computer graphics tasks assume that the background is
sufficient far away from the foreground, it is safe to assume
that the region between x LR and xL is a good approximation
of the occlusion. In practice, it will never be smaller than
the ground-truth occlusion region, which means that we can
use the foreground layer to exclude all pixels reside in the
occluded regions, and very likely, a small amount of pixels on
left of the occlusion will be also excluded. Nevertheless, the
removal of these small amount of non-occluded pixels will
not deteriorate the performance much as has been demon-
strated by many weighted median filtering based disparity
refinement approaches (Ma et al. 2013). Figure 6e presents
the occluded areas detected by two extracted foreground lay-
ers presented in Fig. 6c, d. Note that the estimated occluded
areas are marked in white.

Let O(p) denote the occlusionmask value (1 for occluded
areas and 0 for unoccluded areas) at pixel p. And the match-
ing cost of pixel p is rewritten as:

C̃b(p) = (1 − O(p))Cb(p) + O(p)Cb
o (p), (14)

where Cb(p) is the original matching cost from Eq. (13),
and Cb

o (p) denote the matching cost in occluded areas. To
compute Cb

o (p), we first fill matching cost in detected occlu-
sion regions with 0, and then propagate the matching costs
from the non-occluded neighborhood into occlusion regions,

using edge-preserving image filtering techniques (Tomasi
and Manduchi 1998; Yang et al. 2009; Yang 2012; Ma et al.
2013; He et al. 2013).

According to C̃b(p) in Eq. (14) , the background dis-
parity likelihood P(α

(t)
l , α

(t)
r |db(p), Fl , Fr ) is modeled as

a Gaussian distribution N (C f (p)|0, σ 2
c f ) with mean 0 and

variance σ 2
cb:

P(α
(t)
l , α(t)

r |db(p), Fl , Fr ) = 1√
2σcb

exp

(
− C̃b(p)2

2σ 2
cb

)
.

(15)

In our experiments, σcb is set as 6.
Similar to Eq. (10), the prior probabilities of background

disparity db can bemodeled as a Gaussian Distribution given
an existing disparity map:

P(db(p)|Fl , Fr ) = 1√
2σdb

exp

(
− (db(p) − μdb)

2

2σ 2
db

)
,

(16)

where μdb denote mean and σ 2
db denote variance.

From Eqs. (15) and (16), the expectation of the back-
ground disparity at pixel p can be formulated as follows:

E(P(db(p)|α(t)
l , α(t)

r , Fl , Fr ))

= P(db(p)|α(t)
l , α

(t)
r , Fl , Fr )∑

dbi (p) P(dbi (p)|α(t)
l , α

(t)
r , Fl , Fr )

, (17)

where dbi (p) ∈ {0, 1, · · · , L − 1}.

2.3.2 M-step

In this section, we maximize the expected log-likelihood
with respect to the parameters αl , αr given Fl , Fr . Let
X = {αl , αr } denote the parameter set,D = {d f

i , dbj } denote
the hidden data set andO = {Fl , Fr } denote the observation,
then:

Left image Right image Left foreground Right foreground Occlusion(a) (b) (c) (d) (e)

Fig. 6 Occlusion detection. a and b are left and right color images, the white regions in c and d are the extracted left and right foreground layers,
and the white region in e is the estimated occluded regions
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X (t+1) ∝ argmax
X

∑
D∈S

P(D|X (t),O) log P(X ,D,O)

= argmax
X

∑
D∈S

P(D|X (t),O) log(P(D,O|X )P(X ))

(18)

where S is the disparity space which contains all combina-
tions of disparity of foreground with that of background. Let
L(·) denote log P(·),

L(D,O|X )

= log P(D,O|X )

= −
∑
p∈Fl

(αl(p) − αr (p − d(p)))2

2σ 2
α

; (19)

L(X )

= log P(X ) ∝ log P(αl) + log P(αr )

= −
∑
p∈Fl

(αl(p) − μαl )
2

2σ 2
αl

−
∑
p∈Fl

(αr (p − d(p)) − μαr )
2

2σ 2
αr

. (20)

Eq. (19) models the distribution of foreground probability
difference between left and right image as Gaussian distrib-
ution with mean 0 and variance σ 2

α (which is set to 0.06 in
our experiments) and Eq. (20) models the distribution of αl
and αr as Gaussian distributions with mean μαl and μαr and
variance σ 2

αl
and σ 2

αr
, respectively.

Equation (18) can be solved with Eqs. (19) and (20) by
minimizing −∑

D∈S P(D|X (t),O)(L(D,O|X ) + L(X )),
and X ∗ denote the final parameter set.

2.4 Improving Foreground/background Extraction

After EM optimization, the best parameters αl , αr are esti-
mated. Similar to FlashCut (Sun et al. 2007), we formulate
foreground/background segmentation of left image Fl as a
binary labeling problem and model our Markov Random
Field (MRF):

E(B) =
∑
p

Ed(b(p)) + λ
∑
p,q

Es(b(p), b(q)), (21)

where B is the binary foreground mask, bp is the mask value
(1 for foreground and 0 for background) at pixel p, and λ

is a scaling factor is set to 12 in our experiments. Es is
the smoothness term which penalizes the different labeling
(b(p),b(q)) for two adjacent pixels (p, q) in textureless areas.
Similar to FlashCut (Sun et al. 2007), it is formulated as:

Es(b(p), b(q)) = |b(p) − b(q)|
· exp

(
−β‖Fl(p) − Fl(q))‖2

)
, (22)

where β = (2〈‖Fl(p)− Fl(q)‖2〉)−1 (Blake et al. 2004) and
〈·〉 denotes the expectation. Note that the MRF energy in Eq.
(21) can be optimized using Graph Cuts (Boykov et al. 2001)
or Belief Propagation (Sun et al. 2003).

For the data term Ed , we model it based on the the fore-
ground and color likelihood:

Ed(b(p)) = Er (b(p)) + ηE f (b(p)) + ζ Ec(b(p)), (23)

where η and ζ are two factors and both are set to 0.1. Er

follows the flash cue used in FlashCut (Sun et al. 2007)
which assumes that foreground pixels have lager flash differ-
ences. E f tends to label the pixels that have large foreground
probabilities (αl that have been estimated from EM opti-
mization in Sects. 2.3.1 and 2.3.2) as foreground. Based on
the foreground probabilities, Ec models the foreground and
background color likelihoods using Gaussian Mixture Mod-
els (GMMs).

Flash Term Similar to FlashCut (Sun et al. 2007), we
model the global influence of flash on foreground with his-
togram based flash ratio:

r(p) f = max

⎧⎨
⎩
h f
indp

− hn findp

h f
indp

, 0

⎫⎬
⎭ , (24)

where indp is the bin index at pixel p, h
f
indp

and hn findp are bin
values in the histogramsof theflash image andno-flash image
respectively. This flash ratio tends to assign larger values to
the pixels which are brightened by flash and we are more
likely to label these pixels as foreground. More details can
be found in Sun et al. (2007). The energy of flash term is thus
modeled as:

Er (b(p)) =
{
2(max{r(p) f , 0.2} − 0.2), b(p) = 0;
2(0.2 − min{r(p) f , 0.2}), b(p) = 1.

(25)

Foreground Term The energy of foreground term is mod-
eled based on the foreground probabilities αl :

E f (b(p)) =
{
2max{αl(p), 0.6} − 1.2, b(p) = 0
0.8 − 2min{αl(p), 0.4}, b(p) = 1

(26)

This term gives penalties to pixels which have been assigned
into background layer but has a higher foreground prob-
abilities (>0.6). In contrast, pixels with lower foreground
probabilities (<0.4) are more likely to be assigned to back-
ground layer.Unlike FlashCut (Sun et al. 2007), the depth cue
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Flash left Left FlashCut [25] Proposed CostFilter [15] Flash stereo [16] Proposed(a) (b) (c) (d) (e) (f) (g)

Fig. 7 Evaluation on data sets captured in indoor environments. a, b
are the flash and no-flash images captured from the left camera, and
there are some misalignments between them due to object movement
or camera shake. b, c are the foreground layers extracted by FlashCut

and the proposed system. e–g are the disparity maps computed from
CostFilter, Flash stereo and the proposed system, respectively. Unlike
the state-of-the-art, the proposed stereo system is robust to occlusions,
depth discontinuities and misalignments

in this term is introduced by using optimal parameters (fore-
ground probabilities αl ) estimated from EM optimization in
Sects. 2.3.1 and 2.3.2.

Color TermBased on foreground probabilitiesαl , the fore-
ground/background color likelihood from depth is modeled
as Gaussian Mixture Models (GMMs) (Blake et al. 2004):

pc(Fl(p)|b(p) = 1) =
K∑
i=1

φ
f
i N

(
Fl(p)|μ f

i ,Σ
f
i

)
, (27)

where Fl(p) is the color value at pixel p and K = 10 is
the number of components. The i th component of this fore-
ground color GMMs is characterized by normal distributions
with theweightφ f

i , meanμ
f
i and covariancematrixΣ

f
i . The

pixels with higher depth foreground probabilities (>0.6) will
be used to train the foreground GMMs while pixels with the
lower depth foreground probabilities (<0.4) are gathered to
train the background GMMs. The color term are formulated
as:

Ec(b(p)) =
{− log(pc(Fl(p)|b(p) = 1)), b(p) = 1;

− log(pc(Fl(p)|b(p) = 0)), b(p) = 0.
(28)

2.5 Improving Disparity Estimation

The EM optimization gives reliable matching cost. This sec-
tion introduces an adaptive cost aggregation method in this
section to further improve disparity map. It is robust to
occlusion, depth discontinuities andmisalignments.With the
binary foreground mask B obtained from Sect. 2.4, the fore-
ground layer F f

l and background layer Fb
l of flash left image

are updated:

F f
l (p) = b(p) · Fl(p), (29)

Fb
l (p) = (1 − b(p)) · Fl(p). (30)

These two color layers are used as guidance of the popular
guided filtering technique (He et al. 2013) for efficient cost
aggregation. We also tested other fast edge-preserving filters
including the domain transform filter (Gastal and Oliveira
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Fig. 8 Evaluation on data sets captured in outdoor environments. a,
b are the flash and no-flash images captured from the left camera, and
there are some misalignments between them due to object movement
or camera shake. b, c are the foreground layers extracted by FlashCut

and the proposed system. e–g are the disparity maps computed from
CostFilter, Flash stereo and the proposed system, respectively. Unlike
the state-of-the-art, the proposed stereo system is robust to occlusions,
depth discontinuities and misalignments

2011), non-local filter (Yang 2012) and the recursive bilat-
eral filter (Yang 2012). But according to our experiments, the
performance of the guided image filter is the highest as it is

difficult for the other fast filters to propagate reliable match-
ing cost from non-occluded pixels to occluded pixels around
texture regions.
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The detailed aggregation using the two color guidance
images F f and Fb can be expressed as follows:

C f
I (p) =

∑
q∈Np

ω
f
q · b(q) · C f

EM (q), (31)

Cb
I (p) =

∑
q∈Np

ωb
q · (1 − b(q)) · Cb

EM (q), (32)

where Np is a local patch around pixel p, C
f
EM (q) = -log P

(d f (q)|X ∗,O) is the foregroundmatching cost at pixelq and
Cb
EM (q)= − log P(db(q)|X ∗,O) is the background match-

ing cost at pixel q. ω
f
q and ωb

q are the supporting weights
assigned to pixel q (by the adopted guided image filter). The
final cost is simply a direct combination of the two aggregated
costs at each pixel location:

CI (p) = C f
I (p) + Cb

I (p). (33)

The benefit of this fusion is that it have the similar property
of ratio image at depth discontinuities between foreground
and background. The matching cost from foreground pixels
will not be propagated into the background and thus will not
deteriorate the detected occlusions. Meanwhile, the unreli-
able edges and ratiomeasures frommotion compensation are
disposed with the use of the clean color information.

After cost aggregation, a simpleWinner-Takes-All (WTA)
is performed to calculate disparity for each pixel.

3 Experimental Results

We evaluate our system on different flash/no-flash stereo
image pairs captured by Fujifilm FinePix Real 3D W1 cam-
era which is a standard consumer stereo camera. Each data
set contains two stereo image pairs (with and without flash).
There will be misalignments between every two flash and
no-flash images. They are caused either by object movement
or camera shake. The stereo images are rectified after camera
calibration.

The proposed system is evaluated against the state-of-
the-art techniques: (1) FlashCut foreground segmentation
method (Sun et al. 2007) which uses a flash/no-flash image
pair; (2) CostFilter stereo matching method (Hosni et al.
2013) which uses a stereo pair and adopts the guided image
filter (He et al. 2013) to maintain the depth edges; and (3)
Flash stereo (Zhou et al. 2012) which also uses a flash/no-
flash stereo image pair.

According to our experiments, the proposed algorithm
normally converges in only 2 iterations and thus we man-
ually fix the number of iterations to be 2. A 3 × 3 Census
transform (Zabih and Woodfill 1994) is used to compute the
matching cost as it has been proven to be robust to outliers and
radiometric differences in real environments (Hirschmuller Ta
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Table 3 Numerical comparisons of foreground extraction

Errors in all(%) Errors in discontinuities (%) Errors in non-discontinuities (%)

Board Plank3 Plank4 Board Plank3 Plank4 Board Plank3 Plank4

Flash cut (Sun et al. 2007) 3.61 7.90 4.18 15.63 28.80 21.89 0.20 2.64 0.49

Proposed 1.65 2.31 1.24 7.28 10.83 6.89 0.06 0.16 0.06

The “Errors in all (%)” columns are percentages of bad pixels in the whole reference images; “Errors in discontinuities (%)” columns are percentages
of bad pixels in discontinuities; “Errors in non-discontinuities (%)” columns are percentages of bad pixels outside discontinuities. Note that the
reference foreground masks were extracted by manually thresholding on the (ground truth) disparity maps first. Then the accuracy were evaluated
by counting the number of pixels with foreground binary values that differ from reference foreground masks. Proposed solution can produce more
accurate foreground masks than those obtained from Flash cut (Sun et al. 2007)
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Flash left Left FlashCut Proposed CostFilter Flash Proposed Ground
[25] [15] Stereo [16] truth

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9 Evaluation with the ground truth. a, b are the flash and no-flash
images captured from the left camera, and there are some misalign-
ments between them due to object movement or camera shake. b, c are
the foreground layers extracted by FlashCut and the proposed system.
e–g are the disparity maps computed from CostFilter, Flash stereo and

the proposed system, respectively. h is the ground truth. As can be seen,
the disparity maps obtained from the proposed stereo system appear to
be quite close to the ground truth. The quantitative evaluation presented
in Table 2 confirms the visual evaluation

and Scharstein 2009). To make sure that the comparison is
fair, the guided image filter (He et al. 2013) is adopted in
the cost aggregation step for all the stereo methods (although
the original Flash Stereo Zhou et al. 2012 uses joint bilateral
filter). The guided image filter parameters are set to r = 15
and ε = 8. A winner-takes-all (WTA) selection will be per-
formed after cost aggregation to compute the disparity values
(without any post-processing step).

3.1 Visual Evaluation

Figures 7 and 8 present the visual comparisons on several
data sets captured in the indoor and outdoor environments,
respectively. As can be seen, FlashCut (Sun et al. 2007) is not
suitable for indoor scenes inFig. 7 as itwill be hard to separate
the foreground and background objects using flash. Flash-
Cut (Sun et al. 2007) has problems with the thin-structured
foreground objects as well. For instance, the blue cables in
the “Cable1” data set in Fig. 7 and the white strings in the
“Racket” data set and the plant stems in the “Plant1” data set
in Fig. 8. It is difficult for Flash to brighten these objects as
they are either in white/black color or have different surface
orientations to flash near boundaries. In contrast, our seg-

mentation results are more robust to these limitations thanks
to the depth cue that compensates the flash limitations.

Figures 7 and 8 contain complex real-world scenes. Most
of them are very challenging for stereo matching. Figures 7e
and 8e present the disparity maps computed from CostFitler
stereo method. We can see that this traditional method is
vulnerable to occlusions and cannot successfully distinguish
color edges from depth edges. There will be visible errors
when the foreground is visually similar to the background
(e.g., leaves in “Plant1”). On the other hand, Flash stereo
(Zhou et al. 2012) uses the ratio between flash and no-flash
image pair which provides a more accurate guidance for
matching cost aggregation than the original color informa-
tion. The disparity maps obtained from Flash stereo (Zhou
et al. 2012) are presented in Figs. 7f and 8f. Flash stereo
assume no motion between the flash and no-flash stereo pair,
and thus its performance is even lower than CostFilter in
Figs. 7f and 8f due to inevitable motion in practice. Besides,
both CostFilter and Flash stereo are vulnerable to occlusions.
The disparity maps computed from the proposed system are
presented in Figs. 7g and 8g. It is visually much more robust
to depth discontinuities and occlusions when camera and/or
object motion is presented.
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Original left image CostFilter [15] Flash stereo [16] Proposed(a) (b) (c) (d)

Fig. 10 Bokeh effect. The proposed system is occlusion-aware which
is essential for producing bokeh effect for a commercial stereo cameras.
The state-of-the-art stereo algorithms can easily introduce noticeable

artifacts around occlusions as shown in b, c. The proposed system can
better suppress these artifacts as demonstrated in d
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3.2 Numerical Evaluation

We further evaluate the performance of our system on several
indoor data sets 1 with ground-truth disparitymaps generated
from Kinect sensor and Kinect fusion technique (Izadi et al.
2011). The reconstruction accuracy is measured by the per-
centage of bad pixels in both the whole reference image and
the occlusion. Same as the Middlebury benchmark, the dis-
parity error threshold is set to 1 and a pixel is treated a bad
pixel if the difference between the estimated disparity and
the ground truth is larger than the error threshold.

Table 2 presents the detailed numerical results. As can
be seen, the performance of proposed system is much higher
CostFilter andFlashStereo, especially aroundocclusions and
depth discontinuities. Table 2 also shows that although there
are misalignments between the flash and no-flash images due
to motion, Flash stereo still outperforms CostFilter when the
whole image is considered. This is mainly because the back-
ground is highly-textured in color while the depth is almost
constant. Using the color as guidance for cost aggregation is
thus not suitable.

The numerical comparisons presented in Table 2 supports
the visual comparisons in Figs. 7 and 8 that the proposed
system ismore robust to depth discontinuities and occlusions
and can generate more accurate disparity maps. On the other
hand, the proposed system can simultaneously produce a
foreground mask which is more accurate than FlashCut (Sun
et al. 2007). The detailed evaluation is presented Table 3. The
three data sets used in this numerical evaluation is presented
in Fig. 9. The foreground layer and disparity map estimated
from different methods are presented from Fig. 9c–g, respec-
tively.

3.3 Application to Bokeh Effect

The proposed system is occlusion-aware which is essential
for producing bokeh effect for a commercial stereo cameras
(e.g., Fujifilm FinePix Real 3DW3 camera or mobile phones
like Huawei Honor 6 Plus). Figure 10 demonstrates that the
proposed system outperforms traditional stereo algorithms
for this application. It can better suppress visible artifacts
thanks to the accurate depth estimates around depth edges.
Figure 10 was produced based on the flash images of the
Hand3, Student and Tree2 data sets presented in Fig. 8a and
the corresponding disparity maps in e–g.

3.4 Comparison of Computational Time

This section analyzes the computational cost of different
stereo algorithms. Figure 11 compares the runtime of var-

1 Most of the current commercial active sensors are not reliable under
outdoor environment and thus only indoor environment was tested.

Fig. 11 Computational cost

ious algorithms on a typical data set (image size: 960× 720;
disparity range: 0 − 100 pixels). The proposed algorithm
takes over 140 s to process an flash/noflash stereo pair. It is
relatively slower than the CostFilter (Hosni et al. 2013) (×7)
and Flash stereo (Zhou et al. 2012) (×3). The experiments
were conducted on a 1.7 GHz Intel Core i5 CPU. Parallel
implementations can be used to accelerate the cost volume
filtering operations (twice in initialization step and once in
disparity map improving step after EM optimization in each
iteration) adopted in proposed algorithm.

4 Conclusion

This paper presents a practical stereo system with a flash
and no-flash stereo pair. Unlike the state-of-the-art Flash
stereo algorithm (Zhou et al. 2012), it is robust to occlusions
and inevitable misalignments between flash and no-flash
image due to camera shake and scenemotion. Additionally, it
can simultaneously extract accurate foreground/background
layer. Due to the integration of the depth information from
stereo vision, it is much more robust to the traditional flash
limitations and outperforms the state-of-the-art FlashCut
foreground extraction technique (Sun et al. 2007).

Some scenes do not have clear foreground and back-
ground. For instance, slant surfaces (floor) in Fig. 12a, b.
In this case, neither FlashCut (Sun et al. 2007) nor the pro-
posed algorithm can extract accurate foreground layer. The
difference between the flash and noflash image pair is closely
related to the surface orientation and will be relatively small
in this case. FlashCut (Sun et al. 2007) can completely fail on
these scenes as shown in Fig. 12c. The proposed algorithm
benefits from the fusion of depth cue and thus can produce a
slightly more reliable foreground layer as shown in Fig. 12d.
On the other hand, although accurate foreground/background
layers are not reachable in this case, the adopted cost aggre-
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Flash left Left FlashCut Proposed CostFilter Flash Proposed
[25] [15] Stereo [16]

(a) (b) (c) (d) (e) (f) (g)

Fig. 12 Sceneswithout obvious foreground and background (e.g., slant surfaces). Neither FlashCut (Sun et al. 2007) nor the proposed algorithm can
extract accurate foreground layer as shown in c, d. Nevertheless, all stereo algorithms are able to obtain correct disparity estimates as demonstrated
in e–g

Flash left Left

Foreground Disparity

(a)

(c) (d)

(b)

Fig. 13 A failure case. Similar to the traditional stereo matching algo-
rithms, the proposed stereo system is vulnerable to transparent and
specular objects

gation method (proposed in Sect. 2.5) is still able to produce
correct disparity map as can be seen from Fig. 12g.

However, the proposed stereo system shares some limi-
tations with the traditional stereo matching algorithms. It is
also vulnerable to transparent and specular objects and an
example is presented in Fig. 13.
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