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Abstract Diffusion tensor magnetic resonance imaging
(DT-MRI) is a non-invasive imaging technique allowing
to estimate the molecular self-diffusion tensors of water
within surrounding tissue. Due to the low signal-to-noise
ratio of magnetic resonance images, reconstructed tensor
images usually require some sort of regularization in a post-
processing step. Previous approaches are either suboptimal
with respect to the reconstruction or regularization step. This
paper presents a Bayesian approach for simultaneous recon-
struction and regularization of DT-MR images that allows
to resolve the disadvantages of previous approaches. To this
end, estimation theoretical concepts are generalized to tensor
valued images that are considered as Riemannian manifolds.
Doing so allows us to derive a maximum a posteriori esti-
mator of the tensor image that considers both the statistical
characteristics of the Rician noise occurring in MR images
as well as the nonlinear structure of tensor valued images.
Experiments on synthetic data as well as real DT-MRI data
validate the advantage of considering both statistical as well
as geometrical characteristics of DT-MRI.
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1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI)
allows estimating diffusion tensor images. 1 Each voxel con-
tains a second order tensor represented by a 3×3 symmetric
positive definite matrix. Basis of this technique builds a
physical model of water self-diffusion, here the Stejskal–
Tanner equation (Stejskal and Tanner 1965), which relates
the observed DT-MRI data with the diffusion tensor image.
In this paper we generalize estimation theoretical concepts
from Euclidean space to non-Euclidean spaces, i.e. the Rie-
mannian manifold of diffusion tensor images. This allows
us to estimate diffusion tensor images from DT-MRI data
in a way respecting the specific geometry of diffusion ten-
sor images as well as considering the statistical properties of
DT-MRI data.

To this end, a likelihood function based on the statisti-
cal properties of the DT-MRI data and the Stejskal–Tanner
equation is derived.We examine prior distributions and relate
them to their deterministic counterparts. In particular, we
generalize the concept of anisotropic diffusion filtering from
gray-scale images to diffusion tensor images within the Rie-
mannian framework. This paper closes with experimental
evaluations of our framework.

1.1 Related Work

Our approach combines reconstruction with regularization
of diffusion tensor images. Consequently, it is related to both
techniques that have been proposed in this field since the
seminal work of Bihan et al. (1986, 2001).

1 Diffusion tensor images belong to the more general class of tensor-
valued images where tensors might represent different information, e.g.
orientation in case of structure tensors.
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The maybe most common way to reconstruct diffusion
tensors is based on a linearized version of theStejskal–Tanner
equation (1) combined with a least squares estimator (cf.
Bihan et al. 2001). In order to obtain a consistent and effec-
tive estimator from a least squares approach requires the
image noise to be identical independent Gaussian distrib-
uted. For high signal-to-noise ratios the underlying Gaussian
assumption on the image noise has been shown to be satis-
fied (Gudbjartsson andPatz 1995).However, the independent
assumption does not hold for the linearized Stejskal–Tanner
equation.Moreover, the linear estimator ofBihan et al. (2001)
does not account for the nonlinear structure of the space of
diffusion tensors and therefore may lead to physical mean-
ingless non-positive definite diffusion tensors.

There are reconstruction methods considering Rician
noise and/or positive definiteness. Andersson (2008) pro-
posed a Bayesian estimator for diffusion tensor images
including a Rician noise model. Landman et al. (2007a)
proposed a maximum likelihood estimator based on the
Rician noise model. A robust variant, considering observa-
tions beyond the Rician noise model, has been proposed in
Landman et al. (2007b). Cox and Glen (2006) force positive
definiteness, but did not consider Rician noise. All meth-
ods (Cox and Glen 2006; Landman et al. 2007a; Andersson
2008) do not account for the nonlinear structure of diffusion
tensor images. A Riemannian approach respecting the non-
linear structure has been proposed in Lenglet et al. (2006).
Unfortunately, no Rician noise has been considered. Both
approaches, Landman et al. (2007a) and Lenglet et al. (2006)
did not incorporate any denoising or regularization strategies.

Besides the reconstruction of diffusion tensor images from
DTI-MRI data, numerousmethods for denoising and regular-
ization of diffusion tensor images have been proposed. These
methods can be classified into ones based on the Euclidean
metric (Tschumperlé and Deriche 2001; Martin-Fernandez
et al. 2003; Weickert and Brox 2002; Coulon et al. 2001;
Feddern et al. 2006; Burgeth et al. 2007, 2009) and oth-
ers based on the Riemannian metric (Gur and Sochen 2005;
Moakher 2005; Fletcher and Joshi 2004, 2007; Lenglet et al.
2005, 2006; Batchelor et al. 2005; Fillard et al. 2005; Pennec
et al. 2006; Castano-Moraga et al. 2007; Zéraï and Moakher
2007a; Gur et al. 2007, 2009, 2012). Methods using the
Euclidean metric consider the diffusion tensor image to be
embedded in the space of symmetric matrix-valued images
which constitutes a vector space. Distances between tensors
are computed with respect to the Euclidian metric of the
space of symmetric matrices. To keep tensors positive def-
inite, they are projected back onto the manifold of positive
definite tensors (Tschumperlé and Deriche 2001), only posi-
tive definite tensors are accepted within stochastic sampling
steps (Martin-Fernandez et al. 2003), additional constraints
are incorporated (Tschumperlé and Deriche 2002) or image
processing is restricted to operations assuring positive defi-

niteness, e.g. convex filters (Weickert and Brox 2002;Westin
and Knutsson 2003; Krajsek and Mester 2006; Burgeth et al.
2007). Although tensors are forced to be positive definite
within such approaches, the Euclidean metric turns out to
be less appropriate for regularizing diffusion tensor images
as tensors become deformed. This is known as eigenvalue
swelling effect and can be circumvented by using the Rie-
mannian metric (Chefd’hotel et al. 2004; Pennec et al. 2006;
Castano-Moraga et al. 2007).

Riemannian approaches consider diffusion tensor images
as aRiemannianmanifold2 equippedwith ametric on the tan-
gent bundle which is invariant under affine transformations.
For instance, Fillard et al. (2005) and Pennec et al. (2006)
proposed a ‘Riemannian framework for tensor computing’
which generalizes several well established image processing
techniques, originally developed for gray-scale images, to
diffusion tensor images, including interpolation, restoration
and nonlinear isotropic diffusion filtering. The framework
is based on the matrix representation of diffusion tensors
and heavily uses computational costly matrix operations like
the exponential and the logarithmic map. A computational
more efficient approach than the Riemannian framework of
Pennec et al. (2006) is based on the so called log-Euclidean
metric (Arsigny et al. 2005, 2006; Fillard et al. 2007). The
log-Euclidean metric is not invariant under affine coordinate
transformations and consequently it depends on the position
of the origin of the coordinate system. Zéraï and Moakher
(2007a), Gur et al. (2007, 2009, 2012) propose Riemannian
regularization approaches which are based on local coordi-
nates and therefore less computationally demanding as the
matrix representation of Fillard et al. (2005), Pennec et al.
(2006).

In principle, Euclidean denoising and regularization
approaches are compatible with the reconstruction approach
of Landman et al. (2007a), i.e. they can be combined with
the Rician noise model to obtain a simultaneous reconstruc-
tion and denoising method but in general suffer from the
eigenvalue swelling effect. On the other hand, Riemannian
denoising and regularization approaches do not show the
eigenvalue swelling effect and are compatible with the Rie-
mannian reconstruction approach proposed by Lenglet et al.
(2006). However, such a reconstruction scheme leads to a
bias towards smaller diffusion tensors as it does not consider
the Rician distributed noise in the DT-MRI data as we will
show in this paper.

In summary, we observe that in the literature on diffusion
tensor image reconstruction several approaches have been
proposed either considering the Rician noise in DT-MRI data
or considering the Riemannian geometry of the diffusion ten-
sor images. However no method has been published so far,
that simultaneously

2 cf. Helgason (1978) for an overview about Riemannian manifolds.
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(a) assures positive definiteness,
(b) considers the Riemannian geometry of diffusion tensor

images,
(c) considers Rician noise, and
(d) provides a Bayesian estimator with error bounds.

All previous papers fail in providing at least two of the points
(a)–(d). For instance, the method proposed in Andersson
(2008) covers (a) and (c) but does not include (b) and (d).
The approach proposed in Lenglet et al. (2006) does not pro-
vide (c) leading to biased estimates and does not cover (d).

1.2 Own Contribution

We present a Riemannian approach to Bayesian estimation
of diffusion tensor images fromDT-MRI data covering (a) to
(d). To this end, we derive a Bayesian estimation framework
for diffusion tensor images from DT-MRI data considering
both the statistical characteristics of the measured DT-MRI
data as well as the specific Riemannian geometry of dif-
fusion tensor images. To the best of our knowledge, only
classical statistical (frequentistic) methods or deterministic
regularization approaches have been generalized to diffusion
tensor images within the Riemannian framework. Thus this
Bayesian framework is new.

In a first step, we reformulate estimation theoretical con-
cepts, e.g. the Bayesian risk, from Euclidean spaces to the
Riemannian space of diffusion tensor images in Sect. 5. In
Sect. 6 we derive a likelihood model for diffusion tensor
images that accounts for the Rice distribution. In Sect. 7.2
we generalize the regularization taxonomy for gray-scale
images to diffusion tensor images needed for the covariance
estimator in Sect. 9. To this end, we relate already known
regularization schemes to their MRF counterparts but also
derive newones that have not been considered in the literature
so far. The latter are linear and nonlinear anisotropic regu-
larization schemes. In Sect. 7.1.1 we derive mixed second
order derivatives needed for anisotropic regularization. In
Sect. 7.1.3we derive discrete approximations for the continu-
ous regularization schemes and demonstrate their stability in
numerical experiments in Sect. 10.1.1. Our approach is based
on thematrix representation introduced by Fletcher and Joshi
(2004, 2007), Fillard et al. (2005), Pennec et al. (2006). A
major drawback of the matrix representation is its large com-
putational costs due to the heavy use of matrix operations. In
Sect. 7.1.4 we introduce an analytical computation of these
matrix functions leading to a considerable speedup compared
to commonly used numerical computations. In Sect. 7.1.2 we
relate the matrix representation of the diffusion tensor used
here to the local coordinate representation used in e.g. Zéraï
andMoakher (2007a), Gur et al. (2007) and show that numer-
ical cumbersome Christoffel symbols can be avoided within
our approach. In addition to themaximumaposteriori (MAP)

estimator, we derive in Sect. 9 an estimator for the covariance
matrix of the posterior probability distribution.

Parts of this paper have already been presented at two con-
ferences Krajsek et al. (2008) as well as Krajsek et al. (2009).
In addition to the work in Krajsek et al. (2008, 2009) the cur-
rent paper introduces (1) the speedup of thematrix operations
via analytic matrix operations, (2) new stable discretization
schemes compared to less stable ones presented in Krajsek
et al. (2008), (3) a robust likelihood function in order to cope
with noise statistics beyond the Rice distribution, (4) a reg-
ularization taxonomy generalizing Euclidean approaches to
Riemannian ones, as well as (5) new experiments evaluating
the new framework in detail.

In addition to the abovementioned contributions, Sects. 2–
4 introduce diffusion tensor imaging, Riemannianmanifolds,
and treatment of diffusion tensors as Riemannian manifolds,
in order to introduce notations and make the paper more self-
contained.

2 Diffusion Tensor Imaging

In this section we give a brief overview on the physical dif-
fusion process of water molecules within biological tissues
and how it can be measured by means of an NMR scanner.
It is beyond the scope of this contribution to give a detailed
introduction in diffusion tensor imaging (DTI). We refer the
interested reader to the review paper (Bihan et al. 2001).

DTI is a variant of magnetic resonance imaging (MRI)
that allows measuring the tensor of water self-diffusion. The
basic characteristics of diffusion tensors like their trace or
fractional anisotropy (FA) have been shown to be valuable
indicators in medical diagnostic/therapy (Müller et al. 2007;
Alexander et al. 2007), e.g. being used in medical imaging
to delineate infarcted tissue from healthy brain (Edlow et al.
2016). Therefore a precise estimate of the diffusion tensors
is a crucial step, helping to provide reliable diagnostics in
these cases. However, the clinical application of our method
goes far beyond the scope of this paper.

Self diffusion of water origins from thermally induced
Brownian motion and takes place irrespective from the con-
centration gradient of the water molecules. The diffusion can
be described by means of the diffusion tensor, i.e. a symmet-
ric positive definite 3 × 3 matrix. The eigenvalues of the
diffusion tensor encode the amount of diffusion along the
principal directions given by the corresponding eigenvectors.
The most common model for estimating the diffusion ten-
sor Σk at spatial position xk is given by the Stejskal–Tanner
equation (Stejskal and Tanner 1965)

A jk = A0k exp
(− b j gT

j Σk g j
)
, j =1, . . . , L , k = 1, . . . , N ,

(1)
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where N denotes the number of pixels. It relates the dif-
fusion tensor Σk with the diffusion weighted (DW) image
values A jk , the reference signal A0k , and the so called ‘b-
value’ b j , a scalar value containing a few material constants
and experimental parameters, as well as the L unit vec-
tors g j ∈ R

3, ‖g j‖ = 1 indicating the direction of the
diffusion encoding. The ‘b-values’ as well as the diffusion
encoding directions g j are usually determined by the experi-
mental design. Thus, by measuring the DW image values for
different ‘b-values’ and different diffusion encoding direc-
tions allows to estimate the diffusion tensor components by
means of the Stejskal–Tanner equation (1). Six or more sig-
nals per image pixel measured with non-collinear g j vectors
can be used to estimate the diffusion tensor by minimizing a
cost functional of the residua of the corresponding Stejskal–
Tanner equations.

3 Riemannian Manifolds

This section gives a short introduction into Riemannianman-
ifolds (cf. Helgason 1978). A manifold M is an abstract
mathematical space that locally looks like the Euclidean
space. A typical example of a 2D manifold is the sphere
S2 embedded in the 3D Euclidean space. In general, an
n-dimensional manifold can at least be embedded into a
2n dimensional Euclidean space according to Whitney’s
embedding theorem (Whitney 1944; Cohen 1985). Thus,
each manifold can be represented by a surface in a higher
dimensional Euclidean space which is denoted as the extrin-
sic view. Except from the extrinsic view, we can describe
an n-dimensional manifold locally by the n-dimensional real
space R

n which is denoted as the intrinsic view. A local
chart(ϑ, U ) is an open subset of the manifold U ⊆ M
together with a one to one map ϑ : U → R

n from this
open subset to an open set of the Euclidean space. The image
ϑ(p) ∈ R

n of a point of the manifold p ∈ M is denoted as
local coordinates. The piecewise one to one mapping to the
Euclidean space allows the generalization of concepts devel-
oped for the Euclidean space onto manifolds. For instance, a
function f : M → R defined on the manifold is denoted as
differentiable at point p ∈ M if the function fϑ := f ◦ ϑ−1

is differentiable under the chart at point ϑ(p). At each point
on the manifold p ∈ Mwe can attach a tangent space TpM
that contains all directions one can pass through p. More
precisely, let γ (t) : R → M denote a continuously differen-
tiable curve in the manifold going through γ (0) = p ∈ M
and γϑ(t) = ϑ◦γ (t) its representation in a local chart (ϑ, U ).
A representation of a tangent vector −→pvϑ is then given by the
instantaneous speed −→pvϑ := ∂tγϑ(t)|t=0 of the curve and
the speed vectors of all possible curves constitute the tangent
space at p. The definition of the tangent vector is indepen-
dent of the chosen local chart and is denoted as −→pv ∈ TpM.

The set of all tangent spaces of the manifold is denoted as
the tangent bundle. A Riemannian manifold owns additional
structure that allows to define distances between different
points on the manifold. Each tangent space is equipped with
an inner product

〈−→px |−→py〉p = −→pxT
ϑ Gϑ

p
−→pyϑ (2)

defined by the Riemannian metric G p : TpM× TpM → R

(with its matrix representation Gϑ
p in the local chart) that

smoothly varies from point to point on the manifold. The

inner product induces the norm ||−→px ||p =
√

〈−→px,
−→px〉p on

the manifold. The curve length Lq2
q1(γ ) of the curve γ (t)

between two points q1 and q2 with q1 = γ (a), q2 = γ (b)

is then given in a natural way by integrating the norm of the
instantaneous speed γ̇ϑ (t) := ∂tγϑ(t) along the curve3

Lq2
q1(γ ) =

∫ b

a

√
〈γ̇ϑ (t), γ̇ϑ (t)〉γϑ (t)dt. (3)

The distance dist(q1, q2) between two points q1, q2 ∈ M
is defined by the infimum of the set of curve lengths of
all possible curves between them. The locally shortest path
between two points is denoted as a geodesic γ g . The Rie-
mannian metric is intrinsic as it does not make use of any
space in which the manifold might be embedded and allows
the computation of distances on the manifold without using
the extrinsic view. Important tools for working on manifolds
are the Riemannian logarithmic and exponential map. The
exponential map expp : TpM → M is a mapping between
the tangent space TpM and the corresponding manifoldM.
It maps the tangent vector −→px to the element of the mani-
fold expp(

−→px) = x that is reached by the geodesic at time
step one, i.e. x = γ g(1) with p = γ g(0). The manifold of
positive definite tensors considered in this paper is equipped
with additional structure, namely, it is a so called homoge-
nous space with non-negative curvature from which follows
that the exponential map is one to one (Helgason 1978).
In particular there exists an inverse, the logarithmic map
logp(x) = −→px .

Minimizing a function f defined on the manifold might
require the computation of its gradient ∇ f . Let us denote
with γ (t) a curve in M passing through p at time t = 0
with its corresponding tangent vector −→px . Furthermore, let
us assume that the directional derivative

X−→px ( f ) := d f (γ (t))

dt

∣∣∣∣
t=0

(4)

3 Here we assume the curve to be in U . Otherwise the curve has to
be divided into several parts each represented by its own chart and the
overall curve length is obtained by summing up the curve length of its
parts.
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exists for all possible tangent vectors −→px ∈ TpM. The gra-
dient ∇ f at point p and its representation ∇ fϑ in the chart
(ϑ, U ) is then uniquely defined by the relation

X−→px ( f ) = 〈∇ f,−→px
〉
p = ∇ f T

ϑ Gϑ
p
−→pxϑ . (5)

Applying the chain rule, we can rewrite the directional deriv-
ative

X−→px ( f ) =
n∑

j=1

∂ j fϑ∂tγϑ j (t)
∣∣
t=0

= ∇⊥ f T
ϑ

−→pxϑ , (6)

where γϑ j (t) = ϑ j ◦ γ (t) denotes the j coordinate in
the chart ϑ and we introduce the abbreviation ∇⊥ fϑ :=
(∂1 fϑ , . . . , ∂n fϑ)T . Comparing (5) with (6) allows us to
express the gradient in a local chart by means of the par-
tial derivatives and the inverse metric tensor

∇ fϑ = (Gϑ
p

)−1∇⊥ fϑ . (7)

As the gradient points in the direction of largest ascent of
the function value, the gradient can be used for designing a
gradient descent schemewhich will be discussed in Sect. 4.3.

4 Diffusion Tensor Riemannian Manifolds

A diffusion tensor image contains at each pixel (or voxel
in case of a three dimensional image domain) position x a
symmetric positive definite n × n matrix (also denoted as a
tensor in the following). Mathematically, such an image can
be described by a tensor valued function f : � → P(n)

from the image domain � ⊂ R
m , (usually m = 2 or

m = 3) into the space of n × n positive definite tensors
P(n) := Sym+(n,R) = {A ∈ R

n×n|AT = A, A � 0}
where the symbol� denotes the positive definiteness. In case
of a discrete image domain we consider one tensor at each
spatial position. Such an image can be described by a point in
the N -times Cartesian product PN (n) := P1(n) × P2(n) ×
· · · × PN (n) of the individual tensor manifolds at each of
the N grid points. Independent from a continuous or dis-
crete modeling, image processing techniques, e.g. denoising
or interpolation, need some mechanism to compare image
values at different spatial positions which can be done by a
metric on the space of tensors.

4.1 The Euclidean Metric of P(n)

The space of positive definite tensors can be considered
as a manifold embedded into the vector space of sym-
metric matrices Sym(n,R) = {A ∈ R

n×n|AT = A}.
The space Sym(n,R) together with the Frobenius norm

||A||F =
√
trace

(
AT A
)
(Golub and Loan 1996) is isomet-

ric to the n2-dimensional Euclidean space with the usual
Euclidean metric (L2 norm), i.e. there exists a distance pre-
serving isomorphism Vec : P(n) → R

n2 that is commonly
denoted as vectorization by stacking the columns (or alter-
natively the rows) of a matrix A ∈ Sym(n,R) on top
of one another yielding the n2-dimensional column vec-
tor Vec(A) = (A11, . . . , An1, A12, . . . , Ann)T where Ai j

denote elements of A. Due to the redundancy of symmetric
tensors, P(n) is even isometric to the n(n+1)

2 dimensional
Euclidean space which can be obtained by a projection

v : R
n2 → R

n(n+1)
2 with a n(n+1)

2 × n2 projection matrix
P

v(A) = PVec(A) (8)

=
(

A11, . . . , Ann,
√
2A12, . . . ,

√
2A1n

)T
. (9)

The factor
√
2 takes the redundance of the off-diagonal

elements into account such that the Frobenius norm in
the matrix notation corresponds to the canonical inner
product within the vector representation, i.e. ||A||2F =
(PVec(A))T PVec(A).

The inverse mapping v−1 : R
n(n+1)

2 → R
n2 from

the reduced Euclidean representation v(A) to the vectorized
matrix representation is given by the pseudo inverse P† of
the projection matrix.

The space of positive definite tensors P(n) lies within
the vector space of symmetric tensors, i.e. Sym+(n,R) ⊂
Sym(n,R). However, Sym+(n,R) does not form a vector

space but a curved sub-manifold of R
n(n+1)

2 which will be
denoted with D. Using the Euclidean metric within P(n)

restricted onD corresponds to an exterior view, i.e. distances
are measured in the Euclidean space Sym(n,R) in which the
manifold is embedded.

An argument against applying the exterior view in the
context of diffusion tensors is illustrated in Fig. 1 showing
the space P(2) being isomorphic to the interior of a cone
embedded in the 3D Euclidian space. The factor

√
2 of the

off-diagonal term has neglected for visualization purpose,
i.e. each axis shows the value of the corresponding matrix
entry. The iso-surfaces of different colors depict surfaces of
constant values of the tensor determinant. The determinant
is directly related to the size of the tensor as it is given by the
product of its eigenvalues and each eigenvalue determines the
length of the corresponding principal axis. In case of DTI,
diffusion tensors encode the average thermal inducedBrown-
ian motion of water molecules within some local area. It is
evident that the encoded average amount of motion should
not be changed by image processing operations applied to
the diffusion tensor image. However, the Euclidean metric
does not fulfill this requirement. The straight line indicates
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Fig. 1 Illustration of P(2) embedded in the 3D Euclidean space. We
neglect the factor

√
2 of the off-diagonal term for visualization purpose.

The spaceP(2) is the interior of a cone. The plot shows surfaces inP(2)
for which tensors have the same determinant. The solid line shows the
distance between two points on P(2) with respect to the flat Euclidean
metric. The dotted curve illustrates the corresponding geodesic with
respect to the affine invariant metric

the distance between two tensors having the same determi-
nant. As the average of two points in a metric space lies on
the geodesic between them (Helgason 1978), the average of
both tensors lies somewhere on the straight line above the
isosurface of both original tensors. Consequently, the corre-
sponding determinant increases through the average process.
This phenomenon is known as the eigenvalue swelling effect
(Tschumperlé and Deriche 2001; Chefd’hotel et al. 2004;
Pennec et al. 2006; Castano-Moraga et al. 2007).

4.2 The Affine Invariant Metric of P(n)

Alternative to the extrinsic view, we can consider the space
of positive definite tensors P(n) as a Riemannian manifold
where distances are defined by its interior metric.4 At each
position Σ ∈ P(n) a tangent space TΣP(n) is attached
equipped with an inner product

〈·, ·〉Σ : TΣP(n) × TΣP(n) → R (10)

that smoothly varies from point to point inducing a metric on
P(n). A preferred property of a metric is affine invariance.
On P(n) such metric has been shown to be induced by the
inner product

4 If not otherwise stated we use the standard matrix elements as global
coordinates such that the corresponding chart becomes the identity. In
favor of uncluttered notation we make no difference between manifold
elements and their matrix representation.

〈Λ1,Λ2〉Σ = trace
(
Σ− 1

2 ΛT
1 Σ−1Λ2Σ

− 1
2

)
. (11)

where thematrix square-root of a symmetricmatrix is defined
by the square root of its eigenvalues. This affine invariant
inner product and the corresponding metric have been moti-
vated from information geometric arguments (Rao 1945) by
considering the space of probability distributions as Rie-
mannian manifolds with the Fisher information matrix as
an appropriate metric. In case of multivariate normal distri-
butions with fixed mean the Fisher information matrix boils
down to the affine invariant metric (Atkinson and Mitchell
1981; Skovgaard 1981; Lenglet et al. 2006). Themetric prop-
erties of (11) have been examined in Förstner and Moonen
(1999). Originally developed as a distance measure between
fixed mean normal distributions, the affine invariant metric
has been extensively used in conjunction with tensor valued
data (Fletcher and Joshi 2004; Lenglet et al. 2005, 2006;
Fillard et al. 2005; Pennec et al. 2006; Zéraï and Moakher
2007a).

4.3 The Geodesic Marching Scheme

As our diffusion tensor image reconstruction approach is
formulated as an energy minimization problem some opti-
mization method is required. The geodesic marching scheme
(GMS) (Pennec 1999, 2006) is a generalization of the clas-
sical gradient descent approach to Riemannian manifolds.
The main components of the GMS are the exponential and
logarithmic map. Besides its theoretical justifications, e.g.
independence of the chosen coordinate system, the affine
invariant metric allows to derive analytical expressions of
the Riemannian exponential map

expΣ (Λ) = Σ
1
2 exp

(
Σ− 1

2 ΛΣ− 1
2

)
Σ

1
2 (12)

with Λ ∈ TΣP(n) and logarithmic map

logΣ (�) = Σ
1
2 log

(
Σ− 1

2 �Σ− 1
2

)
Σ

1
2 (13)

for any � ∈ P(n) (Fletcher and Joshi 2004) and the matrix
exponential andmatrix logarithmare defined by the exponen-
tials of their eigenvalues. According to Eq. (7), the gradient
of a function f : P(n) → R is the product of the inversemet-
ric tensor times the partial derivatives, i.e. ∇ f = G−1∇⊥ f .
Before we describe the GMS, we derive a general expression
of the gradient in the matrix notation needed for diffusion
tensor images.

By means of the definition of the inner product (2) and the
vectorization map (8), the inner product can be expressed as
a matrix vector product

〈Λ1,Λ2〉Σ = v (Λ1)
T Gv (Λ2) , (14)
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where G denotes the matrix representation of the affine
invariant metric. On the other hand, we can transform
the affine invariant metric (11) using the (cyclic) permu-
tation invariance property of the trace, i.e. trace (ΣΛ) =
trace (ΛΣ), as

〈Λ1,Λ2〉Σ = trace
(
Σ− 1

2 ΛT
1 Σ−1Λ2Σ

− 1
2

)
(15)

= trace
(
ΛT

1 Σ−1Λ2Σ
−1
)

(16)

= 〈Λ1,Σ
−1Λ2Σ

−1〉I (17)

= v (Λ1)
T v
(
Σ−1Λ2Σ

−1
)

. (18)

Comparing v (Λ1)
T v
(
Σ−1Λ2Σ

−1
)
with v (Λ1)

T Gv (Λ2)

reveals that the left multiplication of a vectorized tangent
vector at Σ with the matrix form of the metric tensor G
equals the vectorized tangent vector translated by Σ−1, i.e.
Gv (Λ2) = v

(
Σ−1Λ2Σ

−1
)
. Thus, the left multiplication of

the inversemetric tensorG−1v (Λ2) equals the vector version
of vector translated by Σ , i.e. G−1v (Λ2) = v (ΣΛ2Σ).
Finally, the matrix valued gradient ∇ f at Σ

∇ f = Σ (∇⊥ f )Σ =: Σ ∗ ∇⊥ f (19)

can be computed conveniently by means of the partial deriv-
ative (∇⊥ f )i j = ∂Σi j f with respect to the i, j-th matrix
element followed by a transformation with Σ .

So far we considered only a single tensor manifold P(n).
In case of a tensor valued image we are confronted with a
tensor at each position in the image domain. As weminimize
only functions on a discrete image domainwe restrict our dis-
cussion to this case. Such a tensor valued image is described
by the N -tuple Σ = (Σ1,Σ2, . . . , ΣN )T with the corre-
sponding tangent vector Λ = (Λ1,Λ2, . . . , ΛN )T ∈ TΣM.
Affine transformations of tensors of such a tensor valued
image are explained by an n-tuple of invertiblematrices W =
(W1, W2, . . . , WN )T where the transformation is applied ele-
ment wise, i.e. W ∗Σ = (W1∗Σ1, W2∗Σ2, . . . , WN ∗ΣN )T

and W ∗ Λ = (W1 ∗ Λ1, W2 ∗ Λ2, . . . , WN ∗ ΛN )T with
Wi ∗ Σi := WiΣi W T

i and Wi ∗ Λi := WiΛi W T
i . The affine

invariant inner product generalized to

〈Λ1,Λ2〉Σ =
N∑

j=1

trace

(
Σ

− 1
2

j ΛT
1 jΣ

−1
j Λ2 jΣ

− 1
2

j

)
(20)

and the gradient of a function f : PN (n) → R generalizes
to

∇ f =
(
Σ1 ∗ ∇1⊥ f,Σ2 ∗ ∇2⊥ f, . . . , ΣN ∗ ∇N⊥ f

)
(21)

with components

(∇k⊥ f
)

i j = ∂(Σk )i j f. (22)

The geodesic marching scheme is based on the fact that
the gradient ∇ f is an element of the tangent space, ∇ f ∈
TPN (n), and indicates the direction of steepest ascent. Thus
we can find an argument with a lower value of f by going a
sufficiently small step in the negative direction of the gradient
Λ = −dt∇ f and mapping this point back on the manifold
using the exponential map (12). This procedure is then iter-
ated until convergence (cf. with Sect. 8).

5 Bayesian Estimation

5.1 Probabilities on Tensor Fields

Based on (Pennec 2006)we introduce basic concepts of prob-
ability theory on manifolds and extend them with respect to
Bayesian interpretation of probability and estimation theory.

Let (Θ,F , P) denote the probability space consisting of
the sample space Θ , the σ -algebra F of events and a prob-
ability measure P and let M denote the state space with
corresponding σ -algebra E . A M-valued random variable
Σ : Θ → M is a function from the sample space Θ to the
state space M which is (F , E) measurable. The state space
M consists of the Cartesian product M = PN (n) of the
space of tensors.

To each subset A ∈ E a probability P(Σ ∈ A) :=
P({ω ∈ F : Σ(ω) ∈ A}) can then be assigned describing the
chance to find a realization of the random variable Σ within
A. Generalizing the concept of probability density func-
tions to Riemannian manifolds requires a measure which is
induced in a natural way by the volume form dM onM. In a
local coordinate system z = (v(Σ1); v(Σ2); . . . ; v(ΣN )) ∈
D ⊂ R

nN (n+1)
2 the volume form reads

dM(z) = √|G|dz. (23)

The metric tensor G can be inferred from the definition of
the affine invariant inner product (20) and the isometry (8)
between the space of n ×n symmetric tensors and the n(n+1)

2
Euclidean space (cf. Zéraï and Moakher 2007b)

G−1(Σ j ) = (P†)TVec
(
Σ j ⊗ Σ j

)
P†, (24)

where ⊗ denotes the tensor product and P† denotes the
pseudo inverse of P . The determinant of the metric tensor
at positionΣ j can then be calculated from (24) and using the
relation det

(
G−1
) = (det G)−1.

A function p : M → R
+
0 is then denoted as probability

density function (pdf) with respect to the volume form dM
if the probability of any eventA ∈ E can be expressed in the
form

P(z ∈ A) =
∫

A
p dM. (25)

123



Int J Comput Vis (2016) 120:272–299 279

In order to stress the special choice of the reference measure
dM, the pdf is also denoted as a volumetric probabil-
ity in the literature (Tarantola and Valette 1982; Tarantola
2005).

The expectation value EΣ [·] of a function f : M → R

with respect to the pdf p(Σ) is defined by

EΣ [ f ] =
∫

M
f (Σ)p(Σ) dM (26)

=
∫

D
f (z)p(z)

√|G(z)|dz. (27)

Important expectation values are the moments of a distribu-
tion, in particular themean and the variance. The variance can
be defined as the expectation value of the squared distance
σ 2

z̄ (z) = Ez
[
dist(z, z̄)2

]
from themean value z̄. However, on

manifolds the mean is not necessarily unique. Furthermore,
a mean value z̄ cannot be defined by an integral or sum over
a random variable as the concept of addition and integration
is not defined for elements of a manifold. The Frechét mean
is defined by the set (if it exists) minimizing the variance
(Pennec 2006)

z̄ := argmin
y

Ez

[
dist(z, y)2

]
(28)

Alternatively to the Frechét mean, Karcher means (Karcher
1977) are defined by all local minima in (28). The covariance
matrix (Pennec 2006) is defined by the expectation value of
the outer product of tangent vectors u ∈ Tz̄D attached at a
mean value

C =
∫

Tz̄D
uuT pz̄(u)

√|Gz̄(u)|du (29)

with pz̄(u) := p(expz̄(u)).

5.2 Estimation Theory

Bayesian decision theory in Euclidean space Rn (cmp. with
Kay 1993) defines a Bayesian estimator of a random vec-
tor z ∈ R

n given some observation g ∈ R
m by the

minimum of a Bayesian risk R(ε) = Ez|g[L(ε)]. The
Bayesian risk depends on a loss function L(ε) weighting
the error ε = z − ẑ between the estimate ẑ ∈ R

n and
the current realization z. Commonly used loss functions
are the quadratic loss function L2(ε) = ||ε||2 penaliz-
ing the squared norm of the error leading to the minimum
mean squared error (MMSE) estimator ẑ = Ez|g[z]. The
hit and miss loss function penalizes all errors equal whose
norm is above a small threshold ρ and zero otherwise and
leads to the maximum a posteriori (MAP) estimator ẑ =
argmaxz{p(z|g)}.

Whenwe generalize the concept of Bayesian decision the-
ory to the manifold of diffusion tensors5 we have to assure
the estimators to be invariant with respect to the chosen
chart (Jermyn 2005). We denote with g ∈ X an observa-
tion which is an entity of the observation manifold X and
with z ∈ D the entity which we like to estimate based on
the posterior pdf p(z|g). We define the quadratic loss func-
tion as L2(z, ẑ) = dist(z, ẑ)2. The condition of the minimum
of the corresponding Bayesian risk is obtained by setting its
gradient with respect to the estimate ẑ equal zero

∇ẑR = ∇ẑ

∫

D
dist(z, ẑ)2 p(z|g)

√|G(z)|dz (30)

=
∫

D
∇ẑdist(z, ẑ)2 p(z|g)

√|G(z)|dz (31)

=
∫

TẑD
∇ẑ‖u‖2ẑ pẑ(u|g)

√|Gẑ(u)|du (32)

= −2
∫

TẑD
upẑ(u|g)

√|Gẑ(u)|du (33)

!= 0 (34)

where we denote with u := −→̂
zz the element of the tangent

space attached at ẑ that ismapped to z by the exponentialmap.
From (30) to (31)we exchange differentiation and integration
and from (31) to (32) we apply a coordinate transformation
by means of the logarithmic map logẑ where Gẑ(u) denotes
themetric tensor in the transformed coordinate system. From
(32) to (33) we use ∇ẑ‖u‖2ẑ = −2u which directly follows
from Theorem 2 in Pennec (2006). The Riemannian MMSE
estimator is invariant with respect to the chosen coordinate
system as it is fully defined by the integral equation (33,34).

A loss function sharing the same idea as the hit and miss
loss function, i.e. giving the sameweight to all errors, is given
by the negative delta distribution Lδ(z, ẑ) := −δẑ(z). It gives
noweight to all points z �= ẑ and a negative ‘infinitive’weight
to z = ẑ. The corresponding Bayesian risk yields

R(ẑ) =
∫

M
Lδ(z, ẑ)p(z|g)dM(z) = −p(ẑ|g), (35)

which is obviously minimized by the value ẑ maximizing the
volumetric probability function p(z|g).

Thus, we can take over the concepts of Euclidean estima-
tion theory by considering volumetric probability functions,
i.e. pdfs defined with respect to the volume form. In par-
ticular, the Bayesian rule holds for volumetric probability
functions such that we can derive the posterior pdf by means
of a corresponding likelihood function and prior distribution

5 We assume the exponential as well as the logarithmic map to be
globally one to one as it is the case for the tensor manifold considered
in this paper.
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as in case of the Euclidean space (Jermyn 2005; Tarantola
2005).

6 Likelihood Models

6.1 Noise in NMR Images

Examinations on NMR noise characteristics can be traced
back toHoult andRichards (1976),Libove andSinger (1980),
Edelstein et al. (1983, 1984), Ortendahl et al. (1983, 1984),
Henkelman (1986). The Rician distribution, also denoted as
Rice distribution (Rice 1944), has first been examined by
Bernstein et al. (1989) as a theoretical model for the noise
in the NMR signal. Since then, a large number of different
analyzing and denoising methods based on the Rician noise
model have been proposed, e.g.McGibney and Smith (1993),
Gudbjartsson and Patz (1995), Macovski (1996), Andersen
(1996), Sijbers et al. (1998, 2007), Nowak (1999), Wood
and Johnson (1999), Sijbers and Dekker (2004), Koay and
Basser (2006). NMR imaging systems provide at each spatial
position xk and direction g j a quadrature pair I jk, R jk of
signal values that can be interpreted as a complex image
value R jk + j I jk . The magnitude image S jk := S j (xk) is
related with the complex NMR image via

S jk =
√

I 2jk + R2
jk . (36)

The noise in the real part R jk as well as in the imaginary
part I jk are well described by additive Gaussian noise com-
ponents with same standard deviation σ for both channels
(Wang and Lei 1994). Furthermore, the noise at different
spatial positions xk as well as in different channels can be
assumed to be statistically independent (Wang andLei 1994).
Due to the nonlinear relation (36) between the complex val-
ued NMR signal and real valued magnitude signal the latter
is not Gaussian distributed any more, but follows a Rician
distribution (Rice 1944)

p(S jk |A jk, σ ) = S jk

σ 2 exp

(

− S2
jk + A2

jk

2σ 2

)

I0

(
S jk A jk

σ 2

)
,

(37)

where A0k denotes the noise free reference image, A jk , j > 0
the noise free DW images at position xk and I0 the zero order
modified Bessel function of first kind6In accordance with the

6 Some medical NMR imaging systems apply multiple, e.g. ι par-
allel working signal detectors to speed up the recording process
(Roemer et al. 1990). As a result one obtains ι complex valued
NMR images corrupted by zero mean additive Gaussian noise hav-
ing all the same standard deviation (Constantinides et al. 1997;
Koay and Basser 2006). The NMR magnitude image is obtained by
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Fig. 2 Upper left Rician probability density function p(x |μ, σ) with
μ = 1anddifferent standarddeviations: red curveσ = 0.3, SNR ≈ 5.1,
green curve σ = 0.9, SNR ≈ 1.7, blue curve σ = 1.4, SNR ≈ 1.1;
Upper right image and lower row The Rician pdfs and corresponding
Gaussian approximations (dotted curves) with same standard deviation
as the Rician pdfs. In case of high SNR (lower right image) also a
Gaussian distribution (dotted dashed curve) of the additive Gaussian
noise model with meanμ = 1 and standard deviation σ = 0.3 is shown
(Color figure online)

literature on DTI reconstruction, e.g. (Chen and Hsu 2005),
we define the signal-to-noise ratio (SNR) as the quotient
SNR = μ/σb of the mean μ of the image magnitude in the
region of interest divided by the background standard devi-
ation. The background standard deviation can be estimated
from regions containing no tissue. For high signal-to-noise
ratios (i.e. approx. SNR ≥ 3) the Rician distribution is quite
well approximated by a Gaussian distribution (cf. Fig. 2,
lower right) with standard deviation σ and mean

√
μ2 + σ 2

(Gudbjartsson and Patz 1995). But due to the nonlinear rela-
tionship between the signal and noise, the observed signal
Sik is not related by an additive noise term with the true
underlying noise free signal μ, i.e. the mean of the Gaussian
approximation does not correspond with the true underlying
signal value μ.

For low SNR (Fig. 2, upper right) and medium SNT
(Fig. 2, lower left) SNR the distribution is skewed with a
longer right tail distinguished clearly from the correspond-
ing Gaussian approximation with standard deviation σ and
mean

√
μ2 + σ 2. In particular, for all SNRs, the observed

DW image is not related to true underlying noise free signal
μ by an additive noise term. Our real data set (cmp. with
Sect. 10.2.2) has a SNR of 5.2. We conclude that an additive

Footnote 6 continued
S j (xk) =

√∑ι
i=1 I 2jki + R2

jki and follows a non-central Chi distribu-

tion (Constantinides et al. 1997) containing the Rician distribution as a
special case (ι = 1). The likelihoodmodel for multiple detector systems
can straightforwardly be obtained from our model by exchanging the
Rician distribution with the non-central Chi distribution.
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Gaussian model for NMR signal is not always a good idea
even in the case of high signal-to-noise ratios.

6.2 The Likelihood Model

Although theRician noisemodel has been applied for restora-
tionMMRmagnitude images for a long time (McGibney and
Smith 1993; Gudbjartsson and Patz 1995; Macovski 1996;
Andersen 1996; Sijbers et al. 1998, 2007; Nowak 1999;
Wood and Johnson 1999; Sijbers and Dekker 2004; Koay
and Basser 2006), as a noise model for the likelihood func-
tion of diffusion tensors images it has been proposed quite
recently (Landman et al. 2007a; Andersson 2008; Jeong and
Anderson2008). In contrast to (Landman et al. 2007a;Ander-
sson 2008; Jeong and Anderson 2008) where the likelihood
function has been formulated within an Euclidean setting,
we formulate the likelihood function within the Riemannian
framework. In order to relate the observations S jk with the
diffusion tensor image Σk := Σ(xk) we insert the Stejskal–
Tanner equation (1) of the j th measurement into the Rician
noise model (37)

p
(
S jk |A0k,Σk, σ

) := p
(

S jk |A0k exp
(
−b j g

T
j Σk g j

)
, σ
)

(38)

where A0k denotes the noise free reference signal at position
xk . The noise in eachDWsignal S jk for j different ‘b-values’
is mutually independent as DW images are acquired in inde-
pendent measurements steps.

As we can assume statistical independence (Gudbjarts-
son and Patz 1995) of signal magnitudes at different spatial
positions xk we can express the overall sampling distribution
by the product of sampling distributions at different spatial
positions and different ‘b-values’

p(S|A0,Σ, σ ) =
N∏

k=1

L∏

j=1

p
(
S jk |A0k,Σk, σ

)
, (39)

where we introduced the abbreviations S = {S jk}, A0 =
{A0k} and Σ = {Σk}. After inserting the measurements S,
the sampling distribution (39) serves as the likelihood func-
tion of the tensor imageΣ , the noise free reference image A0
and the noise levels σ . In a next step, we decouple the estima-
tion of nuisance parameters (A0, σ ) from the estimation of
the tensor valued image Σ . We first estimate the noise level
directly from water-free regions in NMR data volume such
that all signal values above zero are due to noise. Using a non-
informative prior for the noise variance, i.e. p(σ ) ∝ 1/σ ,
and the Rician pdf p(S jk |0, σ ) for mean value7 equal 0 we
estimate noise variance by the MAP estimator

7 TheRician distribution becomes theRayleigh distribution in that case.

σ̂ = argmax
σ

p(σ |S) (40)

= argmax
σ

∏

jk

p(S jk |0, σ )/σ (41)

The estimate Â0 of the noise-free reference image A0 can be
estimated from theobserved reference image S0 usingone the
denoising approaches for Rician distributed data proposed by
Sijbers et al. (1998).

6.2.1 Maximum Likelihood

Applying the geodesic marching scheme to the posterior pdf

p
(
Σ |S, Â0, σ̂

)
∝ p
(

S| Â0,Σ, σ̂
)

p(Σ) (42)

requires the calculation of the gradient of the likelihood func-
tion or its negative logarithm. According to (19) the gradient
of the negative log likelihood, EL := − log(pL), with pL

given by (38) with respect to the tensor at spatial position m
yields

∇ΣmEL =
L∑

j=1

χ jmb j Â0me−b j gT
j Σm g j Σm g j g

T
j Σm, (43)

with

χ jm =
(

I1
I0

S jm

σ 2 − Â0me−b j gT
j Σm g j

σ 2

)

. (44)

We left out the arguments of the modified Bessel functions
of zero order I0(x) and first order I1(x) in favor of an
uncluttered notation. Let us compare this gradient with the
gradient of the log likelihood model we would obtain for an
additive Gaussian noise model, i.e. Sik = Aik + ε jk with
εik ∼ N (0, σ ) and p(Sik |Aik) = N (Aik, σ ) proposed by
Lenglet et al. (2006). The likelihood function for the ten-
sor image is then obtained by inserting the Stejskal–Tanner
equation in the noise model

p
(

S jk | Â0k,Σm, σ
)

= N
(

Â0k exp
(
−b j g

T
j Σm g j

)
, σ
)

.

(45)

The gradient of the negative log likelihood of (45) equals the
gradient of the Rician noise model (43) except for the cor-
rection term I1(x)

I0(x)
which equals one for the additive Gaussian

noise model. The correction term S j �→ S j
I1
I0

accounts for
the skewed Rician probability density function with heavy
right tail. For the Rician noise model, the correction term
becomes nearly one for large arguments, e.g. I1(x)

I0(x)
> 0.99

for x = Â0k S jk

σ 2 > 51. However, one should be careful in
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applying the Gaussian approximation as the DW magnitude
depends on the diffusion process. Even a high SNR in the ref-
erence image A0m might correspond with low SNRs in the
DW images (cf. Eq. (1)) making the correction term indis-
pensable. In order to better understand the influence of the
correction term on the estimated diffusion tensor image we
examine the maximum of the likelihood function (39). For
the moment being we neglect the influence of the prior dis-
tribution which occurs for instance in case of flat priors or
in case of a sufficient large amount of observations. At the
maximum of the likelihood function the term (44) needs to
be zero8 for each observation j and each spatial position m,
i.e.

Â0me−b j gT
j Σm g j = I1

I0
S jm (46)

The term gT
j Σm g j describes the diffusion component in

direction g j . As
I1(x)
I0(x)

< 1 for finite arguments x the right
hand side of (46) is smaller compared to the additiveGaussian
noise model. In return, the term on the left hand side must
also be smaller at the likelihood maximum which can be
accomplished by a larger diffusion component gT

j Σm g j .

Consequently, the correction term leads to estimates Σ̂m

encoding larger diffusion as for the additive Gaussian noise
model or reversely, the Gaussian noise model leads to a bias
towards too small diffusion.

6.2.2 Robust Likelihood Functions

So far, we assumed the MRI images, i.e. the imaginary and
real part, to be corrupted by additive Gaussian noise. How-
ever, outliers that do not follow the assumed statistical model
might lead to serious estimation errors. If the statistical dis-
tribution of other error sources are available, the estimators
can be made robust by modifying the potential function of
the error model as illustrated with the following example.

Example Figure 3 (left) shows a Gaussian distribution (red
curve) with mean μ = 1 and standard deviation σ = 1
and Fig. 3 (right) the corresponding Rician distribution
p(x |μ, σ) (red curve). If we model outliers by Gaussian dis-
tributions with larger standard deviation (σ = 4) we end up
with a mixture of Gaussian distributions [(Fig. 3 (left, blue
bar plot)] with larger tails than the single Gaussian distribu-
tion. These tails in the Gaussian mixture distribution lead to
a larger tail on the right side of the distribution of the signal
magnitude S = √x2 + y2 where x, y follow the Gaussian
mixture distribution [(cf. Fig. 3 (right, blue bar plot)].

8 except for the pathologic cases, i.e. Â0m = 0 and S jm = 0 for all m
and j .
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Fig. 3 Left The normal distribution (red curve) with mean μ = 1
and standard deviation σ = 1 as well as the (normalized) his-
togram of 106 samples of a Gaussian mixture model, i.e. pm(x) =
0.7N (1, 1) + 0.3N (1, 4). Right The Rician distribution (red curve)
and the (normalized) histogram (blue bars) of the magnitude distribu-
tion S = √x2 + y2 where x, y follow theGaussianmixture distribution
shown on the left side (Color figure online)

The modified distribution explains both types of random
variables such that outliers with respect to the Rician noise
model become part of the new probability model. How-
ever, such outlier model might not be available in closed
form.

Instead of explicitly modeling outlier distributions we
use the idea of robust statistics: outliers are detected and
excluded (or at least their influence is reduced) from the
estimation process without modeling them explicitly (Huber
1981; Hampel et al. 1986). Additive Gaussian noise models
can be made robust against outliers by introducing potential
functions depending on the residua of the constraint equa-
tions. These potential functions have a lower slope than the
quadratic potential function of the Gaussian noise model for
residua which are unlikely to occur. As a consequence the
influence function, as the derivative of the potential function,
reduces the influence of the corresponding terms in the gradi-
ent or constraint equation. A corresponding modification of
Rician noise model is not that obvious as the residua of the
constraint equation cannot be isolated from the true signal
due to the nonlinear relation between magnitude image and
noise. Thus, instead of modifying the likelihood function, we
change the negative log likelihood gradient by introducing
the influence functions ψ(ζ jm) depending on the likelihood
function

ζ jm = p
(

S jm | Â0m exp
(
−b j g

T
j Σm g j

)
, σ̂
)

(47)

Multiplying each summand in (43) by the influence func-
tion

∇ΣmEL =
L∑

j=1

ζ jmb j Â0me−b j gT
j Σm g j Σm g j g

T
j Σmψ(ζ jm),

(48)

allows outliers to be suppressed or reduced by choosing a
low value ψ(ζ jm) for unlikely arguments.
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7 Prior Models

7.1 Mathematical Issues

In this subsections several mathematical concepts are dis-
cussed that will be useful for the subsequent analysis.

7.1.1 Energy Functionals

An intrinsic linear isotropic regularization scheme for tensor
valued images has been derived in Pennec et al. (2006) and
has been used to define nonlinear anisotropic regularization
schemes by giving different weights to different directions
of the linear regularizer. In Fillard et al. (2005) an intrin-
sic nonlinear isotropic regularization has been derived from
a corresponding energy functional. A semi-intrinsic nonlin-
ear isotropic diffusion scheme has been derived in Gur et al.
(2007, 2009), i.e. the data term has been handled extrin-
sic whereas the regularization term has intrinsically been
handled. In this section we extend the intrinsic approach
of Pennec et al. (2006) to the linear anisotropic case which
serves as a basis for a further generalization to nonlinear
isotropic and nonlinear anisotropic regularization/diffusion
schemes. Let us denote with ∂iΣ(x) the partial derivatives
of the diffusion tensor images in the direction i = 1, . . . , n
and with di j the components of the diffusion tensor9 which
locally controls the amount and direction of the regulariza-
tion and does not depend on the tensor valued image Σ . We
define the energy functional for linear anisotropic regulariza-
tion by

E(Σ) = 1

2

∫ ∑

i, j

di j 〈∂iΣ, ∂ jΣ〉Σ dx (49)

with 〈∂iΣ, ∂ jΣ〉Σ = trace
(
(∂iΣ)Σ−1(∂ jΣ)Σ−1

)
.

Astationary imageΣ is an image forwhich the energy attains
a (local) extremum.Avariation of the image is parameterized
with the test vector field W : � → TP(n) and defined by
Σε = expΣ(εW ). According to the fundamental lemma of
calculus of variations (Courant and Hilbert 1953), the func-
tional derivative δE can then be deduced by the relation

∂ E(Σε)

∂ε

∣∣∣
∣
ε=0

=
∫

〈δE, W 〉Σdx, (50)

leading to

δE = −
∑

i, j

(
∂ j

(
di j∂iΣ

)
− di j (∂iΣ)Σ−1(∂ jΣ)

)
. (51)

9 Not to be confused with the elements of the diffusion tensor of the
DTI.

For i = j and di j = 1 (51) reduces to the operator � =∑
i �i i derived in Pennec et al. (2006) with the components

�i iΣ := ∂i∂iΣ − (∂iΣ)Σ−1(∂iΣ), (52)

In addition to Pennec et al. (2006), we also derive the mixed
components

�i jΣ = ∂i∂ jΣ − (∂iΣ)Σ−1(∂ jΣ), i �= j (53)

needed for anisotropic regularization. The nonlinear
anisotropic regularizer can then be deduced from (51) by
making the diffusion tensor di j dependent on the tensor field
Σ .

7.1.2 Local Coordinate Representation

In this section, we discuss the relation of our energy formu-
lation (49) to the energy formulation proposed by Gur et al.
(2007, 2009). Firstly, the energies in both approaches are
different. The authors in Gur et al. (2007, 2009) motivate
their energy from a differential geometric point of view, i.e.
they consider the tensor valued image as a section in the
fibre bundle of the trivial product space of image—and ten-
sor domain and derive their energy from high energy physics
(Polyakov action). We motivate our energy functional from a
generalization of the linear anisotropic diffusion scheme for
gray-scale images. Explaining the whole idea of Gur et al.
(2007, 2009) goes beyond the scope of this paper and we
have to refer the interested reader to the original work. The
point we would like to make here concerns the different rep-
resentations of both approaches. In our energy formulation
we use the metric in the form (11). We call this the matrix
representation in the following. The approach of Gur et al.
uses a matrix form of the metric with vectorized tangent vec-
tors which will be denoted as local coordinate representation
in the following.

These are two equivalent ways for writing down the same
mathematical entity. But the matrix representation leads to
considerable practical simplifications of the variational prob-
lem: We write our energy functional in the local coordinate
representation with Einstein summation convention10

E(Σ) = 1

2

∫ (
di j gαβ∂iΣ

α∂ jΣ
β
)

dx . (54)

where gαβ denote the α, βth component of the metric tensor.
The variation yields

10 If an index variable occurs at least twice, it is understood to sum
over its full range.
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∂ E(Σε)

∂ε

∣
∣∣∣
ε=0

= −
∫ (

∂ j

(
di j∂iΣ

α
)

+ di j�α
ηγ ∂iΣ

η∂ jΣ
γ
)

gαβ W βdx (55)

with the Christoffel symbols �
η
αβ defined by

gηγ �
η
αβ = 1

2

(
∂Σβ gαγ + ∂Σα gβγ − ∂Σγ gαβ

)
(56)

From (55) we can infer the αth component of the functional
derivative as

δEα = −∂ j

(
di j∂iΣ

α
)

− di j�α
ηγ ∂iΣ

η∂ jΣ
γ (57)

Although of outstanding importance in theory, Christoffel
symbols become a nuisance if they have to be computed
explicitly. In the case of DTI (Gur et al. 2007, 2009) have
been facedwith 78 nontrivial Christoffel symbolswhen using
the standard matrix chart11 resulting in numerical difficul-
ties when computing the functional derivative. As a solution,
they proposed a particular chart, given by the so called Iwa-
sawa decomposition of the tensors, which allows them to
reduce the number of nonzero Christoffel symbols to 26. If
we compare (57) with the αth component of the functional
derivative inmatrix form in (51) we see that the term contain-
ing the Christoffel symbols is given implicitly in the matrix
representation

(
(∂iΣ)Σ−1(∂ jΣ)

)α = −�α
ηγ ∂iΣ

η∂ jΣ
γ . (58)

Consequently, the matrix representation allows to compute
the functional derivative without the need for explicitly com-
puting any Christoffel symbols at all.

7.1.3 Discretization of Differential Operators

So far we assumed the tensor valued image Σ(x) to be
defined on a continuous image domain �. In an experien-
tial setting we are confronted with diffusion tensor images
defined on a discrete grid Gh where h denotes the width
between the nodes of the regular grid. Consequently, we
require discrete approximations of ∂iΣ and �i jΣ . In prin-
ciple, we could apply finite difference approximations as
proposed in Moakher (2005), Gur et al. (2007, 2009), Zéraï
and Moakher (2007a) but such a treatment might lead to
unstable regularization schemes (cmp. with Sect. 10.1.1).

Alternatively, we can rely on intrinsic approximation
schemes that make use of the tangent space in order to
approximate partial derivatives. In the following we denote

11 The matrix entries parameterize the positive definite tensor.

with T Σ
±e j
x := −−−−−−−−−−−→

Σ(x)Σ(x ± he j ) the tangent vector defined
by the logarithmic map (13)

T Σ
±e j
x = Σ

1
2 log

(
Σ− 1

2 Σ(x ± he j )Σ
− 1

2

)
Σ

1
2 , (59)

and we denote with e j the unit vector pointing in j th direc-
tion.

Proposition 1 The second order discrete approximation of
the partial derivative in direction j reads

∂ jΣ = 1

2h

(
T Σ

+e j
x − T Σ

−e j
x

)
+ O(h2). (60)

Proposition 2 The second order discrete approximation of
�i iΣ reads

�i iΣ = 1

h2

(
T Σei

x + T Σ−ei
x

)+ O(h2). (61)

where ei denotes a unit vector in direction i .
The proofs of Proposition I and II can be found in (Fillard
et al. 2005; Pennec et al. 2006). For the anisotropic regular-
ization schemes, we also need the mixed derivative operator
�i jΣ provided by Proposition III

Proposition 3 The second order discrete approximation of
the mixed derivative operator �[i j] := �i jΣ + � j iΣ in
direction ei and e j is given by

�[i j] = TΣ
xn
x + TΣ

−xn
x − TΣ

x p
x − TΣ

−x p
x

2h2 + O(h2) (62)

with the unit vectors en = ei +e j√
2

and ep = ei −e j√
2

pointing

towards the diagonal adjacent grid points xn := √
2en and

x p := √
2ep.

Proof We start with expanding the tangent vector in a Taylor
series

T Σ xn
x = √

2h∂nΣ+h2∂2n Σ−h2(∂nΣ)Σ−1(∂nΣ)+O(h3).

(63)

In a second step we express the derivative in direction n by
derivatives along the coordinate axes in i and j direction ,
∂n = 1√

2
∂i + 1√

2
∂ j , yielding

T Σ xn
x = h(∂iΣ+∂ jΣ)+ h2

2

((
∂2i Σ+∂2j Σ+2∂i∂ jΣ

)

− (∂iΣ)Σ−1(∂iΣ) − (∂ jΣ)Σ−1(∂ jΣ)

− (∂iΣ)Σ−1(∂ jΣ) − (∂ jΣ)Σ−1(∂iΣ)
)
+O(h3).

(64)
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Computing the sum T Σ
�xn
x := T Σ

xn
x + T Σ

−xn
x becomes a

fourth order approximation as all uneven terms with respect
to h cancel out

T Σ�xn
x = h2

((
∂2i Σ+∂2j Σ+2∂i∂ jΣ

)
−(∂iΣ)Σ−1(∂iΣ)

− (∂ jΣ)Σ−1(∂ jΣ) − (∂iΣ)Σ−1(∂ jΣ)

− (∂ jΣ)Σ−1(∂iΣ)
)

+ O(h4). (65)

Expanding T Σ
�x p
x := T Σ

x p
x + T Σ

−x p
x in the same way

yields

T Σ
�x p
x = h2

((
∂2i Σ + ∂2j Σ− 2∂i∂ jΣ

)
−(∂iΣ)Σ−1(∂iΣ)

− (∂ jΣ)Σ−1(∂ jΣ) + (∂iΣ)Σ−1(∂ jΣ)

+ (∂ jΣ)Σ−1(∂iΣ)
)

+ O(h4). (66)

By subtracting Eqs. (66) from (65) and dividing by 2h2 we
obtain the second order approximation for the mixed deriva-
tive �i jΣ + � j iΣ which concludes the proof. ��

7.1.4 Analytic Matrix Functions

In addition to its theoretical justification, the affine invariant
metric has outperformed the flat Euclidean metric in numer-
ous applications (Gur and Sochen 2005; Moakher 2005;
Fletcher and Joshi 2004; Lenglet et al. 2005, 2006; Fillard
et al. 2005; Pennec et al. 2006; Zéraï andMoakher 2007a). In
order to becomean establishedmethod inDTI imageprocess-
ing, the involved matrix functions need to be computed in an
effective way. In this section we present an analytical method
for matrix functions f : P(3) → P(3) which allows us to
evaluate themmuch faster than their numerical counterparts.
This analytical scheme has been extensively examined in the
context of finite element computation (Morman 1986; Hart-
mann 2003) but has not been applied in the context of DTI
estimation so far. In fact, an analytical scheme for eigenvec-
tor and eigenvalue computation has been proposed in Hasan
et al. (2001). However, this scheme can only deal with pair-
wise different eigenvalues not being guarantied in DTI. For
instance, at convergence of the geodesic marching scheme,
the energy gradient converges to the zero matrix such that we
also need to handle the case of three identical eigenvalues,
i.e. zero eigenvalues in this case.

In the following we discuss the direct analytical computa-
tion of matrix functions by means of eigendyades (Morman
1986). The starting points are the three principle matrix
invariants

I1 = tr (Σ) , I2 = 1

2

(
(trΣ)2−trΣ2

)
, I3 = det A, (67)

from which eigenvalues λk , k = 1, 2, 3 can then analytically
be computed using Cardano’s formula (Dunham 1990)

λk = 1

3

(
I1 + 2

√
I2
1 − 3I2 cos β + (k − 1)2π

3

)
(68)

β = arcos
2I3

1 − 9I1I2 + 27I3
2
√(I2

1 − 3I2
)3

for I2
1 > 3I2. (69)

In case of I2
1 = 3I2 all three eigenvalues are identi-

cal equal λk = I1/3. The case I2
1 < 3I2 does not occur

which can be simply proven by inserting tr (Σ) =∑k λk in
the matrix invariants I1 and I2. For computing the matrix
functions f (A) we have to distinguish the cases of (a) three
pairwise different eigenvalues, (b) exact two identical eigen-
values and (c) three identical eigenvalues. In the first case (a)
the matrix function in analytical form is given by Morman
(1986)

f (A) =
3∑

i=1

f (λi )ni ⊗ ni (70)

where the eigendyades read

ni ⊗ ni =
(
I3λ−1

i I + (λi − I1)A + A2
)

D−1
i (71)

with

Di = 2λ2i − λiI1 + I3λ−1
i . (72)

The analytical matrix function requires besides the matrix
invariants, only the computation of the squared matrix A2

and basic algebraic operations. In the second case (b), i.e.
λi = λ j �= λk , the analytical tensor function reads

f (A) = f (λi )I + ( f (λk) − f (λi ))nk ⊗ nk . (73)

Finally, for three identical eigenvalues (c), i.e. λ = λi , i =
1, 2, 3 the analytical matrix function is given by

f (A) = f (λ)I. (74)

We evaluate the run-time of our analytical Matlab imple-
mentation both on the CPU as well as on the GPU. As a
reference method we implemented a matrix function in C
based on the Lapack library.12 Table 1 shows the run-times
(averaged over ε) for different numbers of matrices and con-
firms a significant speedup of the analytical approach by a
factor 2.8–7.2

It is a well known fact that the analytical computation of
eigenvalues are sensitive to numerical inaccuracies,13 espe-

12 Lapack is freely-available at http://www.netlib.org/lapack/.
13 The analytical solutions of matrix functions are in fact exact.
However, due to inevitable numerical inaccuracies occurring in their
practical computation its sensitiveness to these inaccuracies have to be
taken under consideration.
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Table 1 Run-time (in seconds) for the matrix exponential function
implemented with the proposed analytical schemes in Matlab executed
on the CPU and the GPU compared to our numerical implementation
based on the Lapack library

Method/N 2002 3002 4002 5002

Num. (Lapack) 0.195 0.437 0.796 1.236

Analytic (CPU) 0.114 0.286 0.487 0.764

Analytic (GPU) 0.070 0.102 0.129 0.171

N denotes the number of computed matrices
Shortest run-times are indicated in bold

Table 2 Numerical errors of the matrix function exp (log(Aε)) imple-
mented with the proposed analytical scheme and with the build-in
Matlab functions expm and logm

Method/ε 1e−4 1e−6 1e−8 1e−10

Analytic 1.4e−15 7.9e−14 7.9e−18 7.9e−22

Numeric 5.5e−33 2.8e−45 3.0e−49 1.7e−52

cially in the case of similar eigenvalues λi � λ j (Hartmann
2003) when the nominator in (69) tends to become nearly
zero. We examine these numerical inaccuracies by comput-
ing thematrix logarithm subsequently followed by thematrix
exponential function of the matrices

Aε =
⎛

⎜
⎝

1 0 0

0 1 + ε
4

√
3ε
4

0
√
3ε
4 1 +

√
3ε
4

⎞

⎟
⎠ , ε = 10−4, . . . , 10−10, (75)

using the build-in Matlab functions expm and logm as
well using our own analytical implementation. As an error
measure we compute the Frobenius norm of the differ-
ence original matrix and the transformed one i.e. error=
‖Aε − exp (log (Aε)) ‖F .

Table 2 shows the numerical error for the function
exp (log(Aε)). As expected, we observe a significant smaller
error for the numerical approach. The error of the analytical
implementation depends on the transformed matrices and its
largest value is in the range of 10−14.

One has to keep this differences in mind and examine if
the precision of the analytical schemes is sufficient for the
problem at hand. For our purpose, i.e. reconstruction and dif-
fusion/regularization of tensor valued images, we observed
no increase of the estimation error when applying the analyti-
calmatrix valued functions. In order to prevent the nominator
in (69) to become zero we add or subtract a small ε = 10−10

to one eigenvalue if two of them are closer than 10−10.

7.2 Regularization Taxonomy

In this section we present the regularization taxonomy for
tensor valued images. We discuss the energy functionals and

Fig. 4 Illustration of different kind of image boundaries in Σ(x) :
R
2 → P(2). The left and the middle image show a change in eigen-

values in the upper triangle and the right image shows a change of the
eigenvector directions in the corresponding area

derive the functional derivatives as well as their discrete
approximation. If possible, we derive for each energy func-
tional the corresponding MRF energy function which is later
needed for estimating the posterior covariance (cmp. with
Sect. 9).

7.2.1 Isotropic Regularization

In order to define an edge-preserving regularizer, we need
a proper definition of edges within tensor valued images.
In case of gray-scale images, region boundaries have been
characterized by significant changes in the intensity indi-
cated by a sufficiently large local change in the gradient norm
|∇ f (x)| (e.g. Canny 1986). In analogy to gray-scale images,
we characterize region boundaries of tensor valued images by
means of the norm of the spatial gradient ||∇Σ(x)||Σ(x) =√∑m

j=1

〈
∂ jΣ(x), ∂ jΣ(x)

〉
Σ(x)

of the imagemanifold. Here,

the feature space P(n) consists of a multidimensional man-
ifold such that region boundaries might origin from changes
in different degrees of freedom of the image features. How-
ever, changes in each particular degree of freedom in P(n)

yield a change in the gradient magnitude.

Example Different types of image boundaries occurring in
tensor valued images are illustrated with a synthetically gen-
erated tensor valued image Σ(x) : R2 → P(2) defined on
a 2D image domain (see Fig. 4). The feature space, i.e. the
domain of the diffusion tensor images, has three degrees of
freedom as a symmetric 2×2 matrix is uniquely determined
by its two eigenvalues λ j and the orientation α of eigen-
vectors. Figure 4 illustrates some possible boundaries due to
changes of either one of the eigenvalues or the eigenvector
orientation. General boundaries have their origin in a com-
bination of changes in all degrees of freedom.

Variational formulation In Fillard et al. (2005) an energy
functional for nonlinear isotropic regularization has been
defined by

E p(Σ) = 1

2

∫
φ
(
||∇Σ(x)||2Σ(x)

)
dx, (76)
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with the corresponding functional derivative

δE = −
∑

i j

Σ∂i
(
φ′Σ−1(∂ jΣ)Σ−1)Σ+φ′(∂iΣ)Σ−1(∂ jΣ)

(77)

They discretize (77) approximating �i iΣ and ∂iΣ using
Proposition I (60) and II (61), respectively. Partial derivatives
∂iφ

′ have been approximated by standard finite difference
technique. As we will show in Sect. 10.1.1, such a scheme
leads to an unstable diffusion process. Furthermore it is,
according to Pennec et al. (2006), considered as ineffective.

We do not have a stability proof for numerical regular-
ization schemes for diffusion tensor images. However, we
require that a numerical scheme is consistent with a stable
scheme in a special Riemannian space, the flat Euclidean
space, i.e. it converges to the Euclidean counterpart in the
Euclidean limit.

Such a numerical scheme can be derived from (77) via
basic algebraicmanipulations and approximating δE p(xs) =
∇ΣsE p(xs) + O(h) with

∇ΣsE p(xs) =−
m∑

i=1

φ′(xs)+φ′(xs +hei )

2h2 T Σei
s

−
m∑

i=1

φ′(xs)+φ′(xs −hei )

2h2 T Σ−ei
s . (78)

This scheme converges to the vector version of a well known
scheme in the Euclidean limit (cf. with Weickert (1999b),
pp. 436) which can be proven easily by setting T Σ

±ei
s ≈

± (Σxs±hei ∓ Σs
)
.

MRF formulation The gradient of the MRF energy

E p(Σ) = 1

4h2

N∑

k=1

m∑

j=1

φ

⎛

⎝
∑

j

||T Σ
e j
xi ||2Σi

+ ||T Σ
−e j
xi ||2Σi

⎞

⎠ ,

(79)

with respect to the tensor at position xs leads directly to (78).

7.2.2 Anisotropic Regularization

Variational formulation In a similar way as in case of gray-
scale images (cf. Weickert 1996), we design the diffusion
tensor di j at position x by analyzing the structure of the
image Σ in a local neighborhood V around x . Let us denote
with ∇⊥Σ(x) = (∂1Σ(x), . . . , ∂mΣ(x))T the vector con-
taining the partial derivatives along all m spatial coordinate
directions and let a denote a unit vector inRm such that direc-
tional derivatives in direction a can be written as ∂aΣ(x) =
aT ∇⊥Σ(x). The direction amin of least variation of the image
value around position xm can then be inferred by minimizing
the local energy, i.e. amin = argmina E(a) with

E(a) =
∫

V
wm(x)〈∂aΣ(x), ∂aΣ(x)〉Σ(x)dx (80)

= aT Ja. (81)

where wm(x) denotes a weighting mask around the position
xm . In the last term (81) we defined the structure tensor J by
its components

Ji j =
∫

V
wm(x)〈∂iΣ(x), ∂ jΣ(x)〉Σ(x)dx . (82)

The direction of least/largest variation is characterized by a
minimum/maximum of the energy E(a) and can be deduced
by a spectral decomposition of the structure tensor. The dif-
fusion tensor D = ψ(J ) is finally obtained by applying a
(matrix valued) influence function ψ to the structure tensor
J , i.e. a scalar valued influence function ψ is applied to the
eigenvalues of J .

As for the gray-scale counterpart (Weickert 1996), non-
linear anisotropic diffusion filtering schemes with a diffusion
tensor D defined above cannot be derived from a correspond-
ing energy formulation (cf. Scharr et al. 2003). However,
we can define such a nonlinear diffusion scheme as a gen-
eralization of the corresponding linear scheme by making
the components of the diffusion tensor di j depended on the
evolving diffusion tensor image.

In order to approximate (51) on a discrete grid we split
the functional derivative δE p(x) = δE1

p(x) + δE2
p(x) in a

part δE1
p(x) := δE p;i= j (x) containing the diagonal terms

of the diffusion tensor and a part δE2
p(x) := δE p;i j∈χ (x)

with χ := {i, j : i �= j and i, j ∈ {1, . . . , m}}, containing
the off-diagonal terms of the diffusion tensor. We observe
that terms with i = j can directly be deduced from the cor-
responding derivation of the isotropic regularizer [(cf. Eq.
(78)] by exchanging φ′ with dii . In addition, we have to
approximate the mixed derivative terms

δE2
p(x) = −

∑

i j∈χ

di j (x)�i jΣ(x) −
∑

i j∈χ

∂i d
i j (x)∂ jΣ(x)

(83)

An approximation scheme14 being consistent with its Euclid-
ean limit is given by δE2

p(xs) = ∇ΣsE
2
p(xs) + O(h) with

∇ΣsE
2
p(xs)= −

∑

i j∈χ

di j (xs)+di j
(

xs + √
2hen

)

4h2 TΣ xn
xs

−
∑

i j∈χ

di j (xs)+di j
(

xs − √
2hen

)

4h2 TΣ−xn
xs

14 A detailed derivation of (84) can be found in the supplementary
material.
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Table 3 Diffusion filtering
based on the geodesic marching
scheme

Diffusion filtering

Input: Energy gradient ∇ΣEp or
corresponding diffusion scheme in case of nonlinear anisotropic diffusion
initial tensor image Στ=0 ∈ PN (n), time step dt ∈ R

+

maximal number τmax ∈ N of time steps
Output: Filtered diffusion tensor image Σ
For τ = 0 To τmax − 1 Do

1. Compute ∇ΣEp at current position Στ either according to (78) for the
isotropic and with the additional term (84) for the anisotropic case.

2. Go a small step in the opposite gradient direction, i.e. Λτ+1 = −dt∇ΣEp

3. Map Λτ+1 back to the next position on the manifold PN (n)
using the exponential map, i.e. Στ+1 = expΣτ Λτ+1

End
Σ = Στ+1

+
∑

i j∈χ

di j (xs)+di j
(

xs + √
2hep

)

4h2 TΣ
x p
xs

+
∑

i j∈χ

di j (xs)+di j
(

xs − √
2hep

)

4h2 TΣ
−x p
xs .

(84)

MRF formulation In order to find theMRF energywhose gra-
dient leads to the discrete approximated linear15 anisotropic
diffusion scheme, we first make use of the fact that the
condition equation is the sum of terms involving second
derivatives, i.e. i = j and terms involving mixed derivatives,
i.e. i �= j . Due to the linearity property of the gradient,we can
model energies for each of these terms separately denoted as
Eiso for terms with i = j and Ean for terms with i �= j with
E(Σ) = Eiso(Σ)+Ean(Σ). The energy Eiso(Σ) is obtained
from the MRF energy of the linear isotropic regularizer

Eiso(Σ) = 1

4h2

∑

ki

dii (xk)
(
||T Σei

xk
||2Σk

+||T Σ−ei
xk

||2Σk

)
,

(85)

by exchanging φ′(xk) with dii (xk). For the anisotropic part
it is not difficult to see that the gradient of the energy

Ean(Σ) = 1

8h2

∑

k,i j∈χ

di j (xk)
(
||T Σ xn

xk
||2Σk

+ ||T Σ−xn
xk

||2Σk
− ||T Σ

x p
xk ||2Σk

− ||T Σ
−x p
xk ||2Σk

)
.

(86)

leads to (84).

15 Note that there exists no energy formulation for nonlinear anisotropic
diffusion, hence no MRF can be constructed.

8 Point Estimation

We consider two point estimates: diffusion filtering on given
diffusion tensor images and reconstruction of a diffusion ten-
sor images from MRI data.

8.1 Diffusion Filtering

Diffusion filtering can be applied for denoising or interpo-
lating observed diffusion tensor images. To this end, the
observed image Σ0 is evolved by means of the geodesic
marching scheme (cf. Table 3): In a first step, the gradient

∇ΣE p
∣∣
Σ=Στ=0 :=

⎛

⎜⎜⎜
⎝

∇Σ1E p(x1)
∣∣
Σ1=Στ=0

1∇Σ2E p(x2)
∣∣
Σ2=Στ=0

2

. . .

∇ΣNE p(xN )
∣
∣
ΣN =Στ=0

N

⎞

⎟⎟⎟
⎠

T

(87)

is computed by one of the discrete schemes presented in Sect.
7.2. In a second step, we map the negative gradient (scaled
by some time step dt) onto the manifold by means of the
exponential map. This process is repeated until themaximum
number of iteration steps have been accomplished. Table 3
summarizes the diffusion filtering algorithm in pseudo-code.

8.2 Image Reconstruction

In addition to isotropic and anisotropic diffusion filtering,
we consider the MAP estimation of diffusion tensor images
from MRI data, i.e. by minimizing the posterior energy

E(Σ) = − log
(

p
(
Σ |S, Â0, σ̂

))
(88)

∝ EL(Σ) + λE p(Σ) (89)

Due to page number limitations we restrict the MAP esti-
mate to isotropic regularization terms. The posterior energy
E(Σ) is proportional to the linear-combination of likelihood

123



Int J Comput Vis (2016) 120:272–299 289

Table 4 Diffusion tensor image reconstruction based on the geodesic marching scheme with a isotropic prior

Image reconstruction

Input: Posterior energy E : PN (n) → R, initial tensor image Στ=0 ∈ PN (n),
time step dt ∈ R+, convergence tolerance ∈ R+

Output: Diffusion tensor image Σ
Repeat

1. Compute posterior gradient ∇ΣE at current position Στ according to (89), (43) and (78).
2. Go a small step in the opposite gradient direction, i.e. Λτ+1 = −dt∇ΣE
3. Map Λτ+1 back to the next position on the manifold PN (n)

using the exponential map, i.e. Στ+1 = expΣτ Λτ+1

Until convergence, i.e. dist Στ , Στ+1

Σ = Στ+1

EL(Σ) and prior energy E p(Σ) where the regularization
parameter λ balances both terms. In a first step, diffusion
tensor image Στ=0 is initialized, e.g. by isotropic diffusion
tensors. In a next step, the energy gradient ∇ΣE

∣∣
Σ=Στ=0 is

evaluated at the initial diffusion tensor image Στ=0. The
posterior energy gradient consists of the sum of likelihood
(sampling) energy gradient ∇ΣEL which is either based on
theGaussian noisemodel (45) or theRician noisemodel (43),
as well as the prior energy gradient∇ΣE p (87). As the energy
gradient points in the direction of the largest ascent, we can
minimize the energy by going in the opposite direction. To
this end, we map the negative gradient, scaled by some small
‘time’ step dt , back on the manifold by means of the expo-
nential map. This process is repeated until convergence, i.e.
the change in the evolved diffusion tensor image falls below
some threshold. Table 4 summarizes the geodesic marching
based MAP estimator in pseudo-code.

9 Covariance Estimation

In case of image reconstruction (cf. Sect. 8.2) we can
make use not only of the maximum of the posterior pdf
but also use its width as a reliability measure of the point
estimate. We apply the Laplace approximation to the pos-
terior pdf to approximate the posterior covariance. To this
end, we expand the negative log posterior pdf E(Σ) =
− log(p(Σ |S, Â0, σ̂ )) in a second order Taylor series around
its minimum Σmin

E(a) ≈ E(0) + 1

2
aT Ha. (90)

which requires the computation of the Hessian. On general
manifolds, the computation of the Hessian H in local coor-
dinates of a function f : M → R reads (cf. Pennec 2006)

Hi j ( f ) = ∂i∂ j f − �k
i j∂k f (91)

requiring the cumbersome evaluation of the Christoffel
symbols�k

i j . For our Riemannian manifoldPN(n), the expo-
nential/logarithmic map allows us to define an exponential
chart ϕ := v◦ logΣa

(
Σ
)
mapping each pointΣ of the mani-

fold first to the tangent space attached atΣa and subsequently

mapped on an element of the Euclidean space R
n(n+1)

2 by

means of the projection map v : Sym(n,R) → R
n(n+1)

2 ,
A �→ a, defined in Sect. 4.1.

In the exponential chart ϕ all Christoffel symbols become
zero, i.e. �k

i j = 0. In order to see this, let us remind (cf. Sect.
3) that geodesics γ (t) between Σa and Σb are mapped on
straight lines by the exponential chart, i.e. v ◦ ϕ ◦ γ (t) = at

with a := v ◦−−−→
ΣaΣb ∈ R

n(n+1)
2 . Each geodesic is represented

as a curve γ (t) := v ◦ ϕ ◦ γ (t) = at in the Euclidean space

R
n(n+1)

2 . On the other hand, a geodesic in local coordinates
needs to fulfill the geodesic equations (Helgason 1978)

d2(γ (t))k

dt2
+ �k

i j

d(γ (t))i

dt

d(γ (t)) j

dt
= 0, (92)

which reduces to �k
i j ai a j = 0 in our exponential chart.

In general, this geodesic equation can only be fulfilled for
zero Christoffel symbols leading to the Hessian compo-
nents Hi j ( f ) = ∂i∂ j f evaluated in the exponential chart. In
favor of an uncluttered notation we define Pj := Σmin(x j ),

A j := −−−−−→
PjΣ(x j ), Aspq := (As)pq , J pq

s := ∂ As
∂ Aspq

. A rather
length but straightforward computation of the second deriva-
tive of the energy of the isotropic regularization energy reads

∂2EL(A)

∂ Aspq∂ A�mn

∣∣
∣∣

A=0

= b2i
σ 2

L∑

i=1

(
I1
I0

Sis S0s +
(

(I0 + I2)

2I0
− I 21

I 20

)
S2

is S2
0s

σ 2

− 2S2
0s

)

gT
i Ps J pq

s Ps gi g
T
i P� J mn

� P�giδs�
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+ bi

σ 2

L∑

i=1

(
I1
I0

Sim S0m − S2
0m

)

×gT
i P

3
2

s
(
J pq

s J mn
s + J mn

s J pq
s
)

P
3
2

s gi

2
δs� (93)

The Hessian of the nonlinear isotropic energy can directly
be deduced from (78) as

∂2Eiso(a)

∂ast∂a�w

∣∣∣
∣
a=0

=
m∑

j=1

2φ′(xs) + φ′(x+ j
s ) + φ′(x− j

s )

2h2 δs�

(94)

where we introduce the abbreviation ast := at (xs) as well as
x+ j

s := xs + he j and x− j
s := xs − he j . Finally, we estimate

the covariance matrix by means of a Gauss Markov random
sampling algorithm. To this end, we consider (29) as the
expectation

C = E

[
aaT
√|Gx (a)|

]
(95)

of the outer product of the tangent vectors times the Jacobian
factor

√|Gx (a)| with respect to the pdf in the tangent space
at x . The inverse of H is estimated via Gauss Markov Monte
Carlo sampling. To this end let pk ∼ N (0, I ), k ∈ 1, . . . , K
be K samples from the zero mean Gaussian distribution with
identity covariance matrix I . Further let H = L LT be the
Cholesky decomposition of H . The solutions qk of the linear
equation systems LT qk = pk have then the desired covari-

ance matrix C(q) = C(L−T p) = (L LT
)−1 = H−1, and

thus C ≈ ∑k
√|Gx (ak)|qkqT

k /K . In contrast to the case
of gray-scale images, here the empirical mean has to be
weighted by the Jacobian factor

√|Gx (ak)|.

10 Experiments

In this section, we experimentally examine our diffusion
image estimation framework. The following experiments
have been carried out: (a) a quantitative and qualitative eval-
uation of our Riemannian diffusion filtering approaches (b)
a qualitative demonstration of the edge enhancing property
of our anisotropic diffusion filter scheme on a real data set,
(c) qualitative as well as quantitative comparison of our DTI
reconstruction approach to reference methods on synthetic
data, (d) qualitative demonstrations of the covariance esti-
mates (e) the runtime performance of the DTI reconstruction
approach as well as a (f) qualitative comparison on real NMR
data.

10.1 Diffusion Filtering

In this experiment we examine the image reconstruction
properties of our Riemannian isotropic and anisotropic diffu-
sion scheme, i.e. we apply the corresponding regularization
terms without data term to a given tensor valued image.

10.1.1 Synthetic Data

First, we examine diffusion filtering schemes on synthetic
tensor valued images. In order to generate noisy diffusion
tensor images we add symmetric matrices W ∈ Sym(n,R)

with zeromean i.i.dGaussian randomvariableswith standard
deviation σ at each entry to the tangent vectors of the noise
free diffusion tensor image. In a first step, each tensor of
the noise free diffusion tensor image Σ0 is mapped to its
tangent space at the identity matrix by the standard matrix
logarithm, Λ0 = logI (Σ0). In a second step, all elements of
the tangent vectors are corrupted by additive Gaussian noise,
i.e. symmetric matrices W containing random variables as
matrix elements are added to each tangent vector Λ = Λ0 +
W . In a third step, all tangent vectors are mapped back to
the manifold by means of the standard matrix exponential
to obtain the noisy image Σ = expI (Λ). Figure 5 shows
the noise free and noisy diffusion tensor images with five
different noise scales (σ = 0.1, 0.2, 0.3, 0.4, 0.5).

In a first experiment we evaluated the denoising potential
of our Riemannian isotropic diffusion (RID) andRiemannian
anisotropic diffusion (RAD) compared to its Euclidean
counterparts, i.e. Euclidean nonlinear isotropic (EID) and
Euclidean anisotropic diffusion (EAD) proposed by Weick-
ert and Brox (2002). We applied the influence function
ψ(x2) = 1/(1 + κx2) with varying contrast parameter in
the range κ ∈ {10−2, 10−1, . . . , 103}.

Fig. 5 Synthetic diffusion tensor images.Upper row from left to right:
noise free image, noisy images with noise variance σ = 0.1, 0.2,
respectively. Lower row from left to right: noisy images with noise
variance σ = 0.3, 0.4, 0.5
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We applied the diffusion schemes to the noisy images (Fig.
5) with a constant time step of dt = 0.1 for all schemes
except for the Euclidean anisotropic scheme which has been
evolved with dt = 0.01 as it otherwise leads to non-positive
diffusion tensors.

For each diffusion filtering scheme at each noise level we
choose the contrast parameter and stopping timewith the low-
est error measure under consideration. This means that we
look at the potential of the four schemes to denoise images.
On real noisy images we cannot compute this distance and
thus cannot choose the best suitable contrast parameter for
each individual image. Nonetheless we can observe the max-
imal possible image reconstruction quality of the different
schemes.

In order to measure the performance of the four differ-
ent diffusion schemes we estimate the mean and its standard
deviation of theRiemannian aswell as the Euclidean distance
distribution over the image. As the Euclidean anisotropic
scheme might lead to non-positive definite diffusion ten-
sor images and the Riemannian distance is not defined for
non-positive tensors, we project such tensors to the space of
positive definite tensors P(n) by replacing negative eigen-
values by a small constant, i.e. 10e−9 in our case.

Furthermore, we consider the absolute difference between
the noise free and the denoised image for the following differ-
ent tensor entities: the determinant of each diffusion tensor as
well as the fractional anisotropy (FA) (Basser and Pierpaoli
1996). The determinant of the diffusion tensor is directly
related to the strength of the physical diffusion process:
the larger the determinant the larger the physical diffusion
process. The fractional anisotropy (FA) is computed from
the eigenvalues (λ1, λ2, λ3) of the tensor and their mean
λ̄ = 1

3 (λ1 + λ2 + λ3) via

FA =
√
1

2

√√√√
(
λ1 − λ̄

)2 + (λ2 − λ̄
)2 + (λ3 − λ̄

)2

λ21 + λ22 + λ23
. (96)

FA is a scalarmeasure characterizing the degree of anisotropy
of the diffusion process. It is zero for isotropic diffusion
tensors and one for maximal anisotropic diffusion tensors.
Figure 6 shows the mean and its standard deviation for all
four error measures.

Our RID scheme shows the best denoising properties with
respect to all considered error measures for all noise levels.
Our RAD scheme performs twice as good with respect to all
considered error measures for higher noise levels and per-
forms less accurate as the Euclidean isotropic scheme for
lower noise levels (σ = 0.1, 0.2) with respect to the Euclid-
ean distance, the Determinant and FA error measure.We also
observe an artefact at the border of the line (cmp. Fig. 7, lower
row), especially for higher noise levels: the diffusion tensors
become more isotropic and point in different directions. This
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Fig. 6 Estimated mean and its standard deviation of the error measure
distribution over the image versus the noise level for different diffu-
sion filteringmethods: Euclidean isotropic (EID), Euclidean anisotropic
(EAD), Riemannian isotropic (RID), Riemannian anisotropic (RAD)

Fig. 7 Denoising results. The contrast parameter κ has been cho-
sen such that the Riemannian error is minimized for each filtering
scheme and each noise level. From left to right noise levels σ =
0.1, 0.2, 0.3, 0.4, 0.5. From upper row to lower row EID, EAD, RID,
RAD

artefact persists also for different influence functions and also
for alternative diffusion schemes. In particular, we applied
the influence functions ψ(x2) = √10−4/(10−4 + x2) and
ψ(x2) = exp

(−κx2
)
.

Visual inspection of the denoised images (Fig. 7) of the
Euclidean schemes confirms the eigenvalue swelling effect
reported in Pennec et al. (2006), i.e. the volume of the ten-
sors in the line structure increases due to the iterative local
averaging with respect to the Euclidean metric.

Furthermore, the anisotropic Euclidean diffusion scheme
can lead to non-positive definite tensors (Fig. 7, upper right:
shown by the corresponding non-closed second order sur-
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Fig. 8 Upper row: discretization RID diffusion scheme proposed in
Fillard et al. (2005) for σ = 0.1, dt = 0.1, and for different diffusion
times (from left to right) t = 10, 20, 30, 40. Lower row our discretiza-
tion scheme (78) for the same parametrization as above

face) in accordance with our considerations in Sect. 4. In
order to obtain a stable anisotropic diffusion scheme (cmp.
with Weickert 1996; Scharr 2000) strict conditions on the
eccentricity of the diffusion tensor steering the filtering
process has to be imposed, i.e. the ratio between smallest and
largest eigenvalues is not allowed to fall belowa certain value.
We conclude that anisotropic diffusion filtering steered by
general diffusion tensors, i.e. applying an influence function
to the eigenvalues of the structure tensor without bounding
the eccentricity of the resulting diffusion tensor, does not pro-
vide a reliable denoising method for tensor valued images.

In a second experiment we compared the performance of
our discretization scheme (78) with the scheme proposed in
Fillard et al. (2005) in which the terms in (77) have been
directly discretizised. Figure 8 shows the temporal evolu-
tion of both schemes for t = 10, 20, 30, 40. While our
approach shows the desired denoising property the approx-
imation scheme of Fillard et al. (2005) reveals numerical
instabilities, i.e. the tensors at the border of the line structure
as well as the tensors of the line structures increase their
anisotropy for increasing diffusion time. We observe this
behavior also for varying time steps as well as for different
influence functions. Our scheme reduces to a stable scheme
for gray scale images when we replace tangent vectors on
the manifold by tangent vectors in the Euclidean space, i.e.
T ei

x Σ � Σ(x + hei ) − Σ(x), whereas the approximation
scheme of (Fillard et al. 2005) reduces to a non-stable scheme
(cf. Weickert 1999b, pp. 423). A sound theoretical proof of
stability for general diffusion images, i.e. P(n), n > 1, is
still an open issue and will be postponed to future research.

In a third experiment, we examine the diffusion schemes
to close gaps in line structures of tensor valued images. This
is the most prominent property of the anisotropic diffusion
concept in case of gray-scale images and has successfully
been applied to enhance fingerprint images (Weickert 1996).
In diffusion tensor images such line structures occur in nerve
fiber bundles of the human brain as well as in transport
systems in biological tissues. Due to errors in the imaging

Fig. 9 From left to right: original synthetic image, RID scheme (t =
100, dt = 0.1), RAD scheme (t = 100, dt = 0.1)

process such gaps also occur in line structures within dif-
fusion images. We applied the RAD scheme to the tensor
valued image (Fig. 9, left) where several tensors in the line
structure have been replaced by tensors of the surrounding.
For the RAD scheme we modify the diffusion tensor in that
we only apply the influence function to the largest eigenvalue
of the structure tensor and set the smallest eigenvalue equal
one. This scheme is known as edge-enhancing diffusion in
the scalar valued case (Weickert 1999a) and has been gener-
alized to matrix valued data in an Euclidean setting (Burgeth
et al. 2009). In each step of the geodesic marching scheme
only tensors in this gap are allowed to change. As starting
points for the diffusion process we choose unit tensors, i.e.
tensors with eigenvalues (λ1 = λ2 = λ3 = 1).

The RADfiltered image after 103 iteration of the geodesic
marching scheme is shown in Fig. 9, right. Due to the local
orientation encoded by the structure tensor (cmp. with Sect.
7.2.2), the anisotropic scheme (RAD) is steered by the aver-
age direction in the local region. Thus, the diffusion process
in the gab is steered by the local line structure allowing to
fill the gab with tensors pointing in the direction of the line
structure. We conclude that we generalized the coherence-
enhancing diffusion concept to tensor valued images within
the Riemannian framework.

10.1.2 Real Data

In order to illustrate the application of our Riemannian dif-
fusion schemes on real data we consider the post-processing
of a diffusion tensor image of a plant, i.e. a fresh rhubarb
(Fig. 10, upper left). Plants build sophisticated architectures
to transport water and nutrients. While plant anatomy can
be assessed invasively, dynamics and pathways of long dis-
tance transport need to be investigated non-invasively. To this
end, water mobility has to be measured using a non-invasive
technique, e.g. DT-MRI (Scheenen et al. 2007). The diffu-
sion tensor image (Fig. 10, the main diffusion direction has
been color-coded) of a fresh rhubarb (Rheum rhabarbarum)
has been reconstructed in conjunction with a Ph.D.-thesis
(Menzel 2002) by means of a least squares estimate16 using

16 cmp. with Menzel (2002) for a detailed description of the imaging
system and reconstruction method.
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Fig. 10 Upper left cross section of two rhubarbs; upper right Least
squares estimated diffusion image; Lower right: RID diffusion filtered
image; lower right: RAD diffusion filtered image; The color code is
red, green, blue indicating the three spatial dimensions (Color figure
online)

the Stejskal–Tanner Equation (1). The reconstructed tensor
image is noisy and it is difficult to identify the plant transport
systems from the surrounding tissue.

We applied the Riemannian nonlinear isotropic (RID, Fig.
10 lower left) and Riemannian anisotropic diffusion (RAD,
Fig. 10 lower right) to the noise tensor valued image (Fig. 10,
upper right) with a time step dt = 0.1. We stopped the diffu-
sion process according to subjective criteria from observing
the evolving image.

The Riemannian anisotropic diffusion process enhances
the pathways of the plant (the dark blue spots) much better
than theRiemannian isotropic diffusion.However, evaluating
the use-fullness of this methods in the context of restor-
ing biological based diffusion tensor images requires further
examinations involving expertise from thebiological science.

10.2 DTI Reconstruction

This section provides an experimental evaluation of our dif-
fusion tensor image reconstruction MAP and covariance
estimator from synthetic and real NMR data.

10.2.1 Synthetic Data

In this experiment we reconstruct several diffusion tensor
images from synthetic generated DW and reference images
corrupted by Rician distributed noise. We start with a set of
synthetic diffusion tensor images. Based on the Stejskal–
Tanner equation (1) we generate the corresponding noise
free magnitude DW images Aik(x), where we set the ref-
erence signal equal to one, i.e. A0k = 1. The ‘b-values’
are set to the same values as in our experiment on real data
described in Sect. 10.2.2. The DW images Aik(x) are the

norm of the complex valued NMR images. As we know the
noise free magnitude DW images, we can define the imag-
inary �(AR j (x)) = S j (x) sin(η) and real �(AR j (x)) =
S j (x) cos(η) part of the NMRmagnitude image values (DW
and reference image) where η can be chosen to an arbitrary
value within [0, 2π ]. Noisy DW images are then generated
by choosing η from a uniform distribution in the interval
[0, 2π ] and additive noise components for the imaginary
as well as real NMR signal that both follow a zero mean
Gaussian distribution with standard deviation σ . We corrupt
the ground truth NMR signals with five different noise levels
(σ = 0.04, 0.08, 0.12, 0.16, 0.2), compute the correspond-
ing DW signals S j as well as the reference image S0(x) for
each spatial position x. The five chosen noise levels cor-
respond to average SNRs of (7.5:1,4.5:1,3.5:1,3.0:1,2.7:1).
Based on the noisy images, we reconstruct the tensor field
using the reference methods as well as our method.

The least squares estimator on the linearized Stejskal–
Tanner equation (1) leads to some non-positive definite
tensors for all considered noise levels. Consequently, this
method does not lead to physical meaningful reconstruction
results and will not be considered in the following analysis.

As reference methods we consider the method of Lenglet
et al. (2006) which uses a Gaussian noise model within
the Riemannian framework as well as the method of Land-
man et al. (2007a) which uses a Rician noise model in
the Euclidean geometry. Both approaches do not apply
spatial regularization. Additional to the original reference
methods we adapt them by applying a nonlinear isotropic
spatial regularization term. Our approach is denoted as
Rician–Riemannian17 using the same non-linear spatial reg-
ularization term. As influence function we choose ψ(x) =
10−3/

√
10−3 + x2 and optimize the regularization parame-

ter λ for each noise level on the image shown in Fig. 12.
For subsequent experiments we fix these ‘learned’, optimal
regularization parameters. We initialize the geodesic march-
ing scheme with identity matrices I . The geodesic marching
scheme is considered to be in convergencewhen the diffusion
tensor components change less 10−5 on average.

Figure 11 shows the different error measures versus the
five noise levels for the different reconstruction methods.

Our Rician–Riemannian approach performs best on all
noise levels and with respect to all error measures. The
Gaussian–Riemannian approach, i.e. the approach of
(Lenglet et al. 2006) combined with our Riemannian reg-
ularization scheme, yields similar results as our Rician–
Riemannian approach for small noise levels, but its perfor-
mance breaks down for medium and larger noise levels.

17 We use the shorthand naming convention ‘noise-model’—
‘regularization geometry’, thus e.g. ‘Gaussian–Riemannian’ is the
Gaussian noise assumption based method of Lenglet et al. (2006) com-
bined with our isotropic nonlinear Riemannian spatial regularization.
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Fig. 11 Estimated mean and its standard deviation of the error mea-
sures (Euclidean error, Riemanian error, FA error, determinant error)
versus the noise level (σ = 0.04, 0.08, 0.12, 0.16, 0.2) for the different
reconstruction methods: Gaussian–Euclidean, Gaussian–Riemannian,
Rician–Euclidean, Rician–Riemannian

Visual inspection of the reconstructed diffusion tensor
images (Figs. 12 and 13) supports the quantitative results: For
the smallest noise level all approaches show similar recon-
struction results. Methods without regularization become
very noisy for larger noise levels in the NMR images. For
methods utilizing the Gaussian likelihoodmodel we observe,
in accordance with our theoretical considerations in Sect.
6.2.1, a bias towards smaller diffusion tensors whereas the
Rician noise model leads to reconstruction results much
closer to ground truth. For medium (σ = 0.08) and larger
noise scales our Rician–Riemannian approach visually out-
performs all reference methods, i.e. it keeps closest to the
ground truth.

In a second experiment we examine our covariance esti-
mator described in Sect. 9. To this end, we compute the
posterior covariance matrices for our approach for the NMR
image data also used for the results shown in Fig. 12. The
bottom row in Fig. 12 shows the trace of the estimated covari-
ance for each spatial position encoded in a gray scale image.
As expected the covariance increases at the edges within the
image. This is due to the reduced influence of the prior term
in the vicinity of edges indicated by a larger image gradient.

In the next experiment we examine the influence of out-
liers in DW and reference images on reconstructed diffusion
tensor images. To this end, we corrupted the components of
the complex MRI images �(AR j (x)) and �(AR j (x)) used
in the previous experiment (cf. Fig. 12) with noise following
a Gaussian mixture distribution pε(x) = 0.7 N (1, 0.01) +
0.3 N (0, 1) at one spatial position xs . MRI images at other
positions were corrupted with Gaussian noise N (0, 0.01).
Figure 14 (upper right) shows a DW image as a gray-scale

Fig. 12 Reconstructed diffusion tensor images for different noise lev-
els (from left to right; σ = 0.04, 0.08, 0.12, 0.16, 0.2), for the different
reconstruction methods (from upper to lower row): Gaussian with-
out regularization, Rician without regularization, Gaussian–Euclidean,
Gaussian–Riemannian, Rician–Euclidean, Rician–Riemannian. The
last row shows the trace of the estimated covariance at each pixel posi-
tion for the Rician–Riemannian method

imagewith an outlier at lower right.We reconstructed the dif-
fusion tensor image using our Rician–Riemannian approach
with the same parametrization described in the previous sec-
tion. The outlier at position xs in the DW image leads to a
significant error in the estimated diffusion tensor at the cor-
responding position as shown in Fig. 14 (upper left). The
influence function of the regularizer reduces the regulariza-
tion such that the error in theDW image and reference images
proceed to the estimated diffusion tensor. As the regular-
ization is only reduced and not completely suppressed also
neighbor tensor values are affected by the non-Rician noise
distribution in the DW and reference images at position xs .

Next,we applied our robust likelihood function (cmp.with
Sect. 6.2.2 ). As influence function we chose a constant func-
tion with value one for arguments equal or larger than 0.01
and with a value of zero for arguments smaller than 0.01.
Applying the robust likelihood term allows to reconstruct
a diffusion tensor image that visually does not differ from

123



Int J Comput Vis (2016) 120:272–299 295

Fig. 13 Reconstructed diffusion tensor images from four different
synthetic DTI data corrupted with Rician noise (σ = 0.16) and differ-
ent reconstruction methods (from left to right): Gaussian–Euclidean,
Gaussian–Riemannian, Rician–Euclidean, Rician–Riemannian. The
underlying noise free images are composed from the same two ten-
sor types (green and magenta ellipsoids) as the line image in Fig. 5
(Color figure online)

Fig. 14 Reconstruction of a synthetic DTI fromDW images corrupted
by outliers: Upper row: Rician noise model with nonlinear isotropic
regularization (left), Robust noise model with nonlinear isotropic regu-
larization (middle), DW image corrupted by non Gaussian noise at one
spatial position; lower row covariance estimation (trace of the covari-
ance matrix) of the Rician noise model with nonlinear isotropic (left),
covariance estimation of the robust noisemodelwith nonlinear isotropic
(middle), covariance estimation (trace of the covariance matrix) of the
Rician noise model with nonlinear isotropic reconstructed from DW
image without outliers (right)

the image reconstructed without any outliers [(cf. Fig. 14
(upper middle)]. The usefulness of the covariance estimator
becomes obvious in this experiment. In case of the Rician
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Fig. 15 Runtime versus square root of number of pixels for the four
reconstruction methods (Gaussian–Euclidean, Gaussian–Riemannian,
Rician–Euclidean, Rician–Riemannian) for a line-like structure (cmp.
Fig. 12) with noise level σ = 0.12 (Color figure online)

noise model, the covariance estimator indicates a reduction
of the reliability of the estimator due to the reduced prior
distribution (Fig. 14 (lower left)). In case of the robust like-
lihood term, the covariance estimator also indicates slightly
less reliability (Fig. 14 (lower middle)) compared to the out-
lier free image (Fig. 14 (lower right)).

In a last experiment we examine the runtime of the four
approaches: Gaussian–Euclidean, Gaussian–Riemannian,
Rician–Euclidean and Rician–Riemannian. To this end we
reconstructed images with a line like structure with noise
level σ = 0.12 for different image sizes and measured the
time until convergence of the corresponding method. Fig-
ure 15 shows the measured run-time of the four methods
versus the size of the reconstructed image indicated by the
square root of the number of pixels. As expected the Euclid-
ean approaches are faster than the Riemannian approaches.
However, due to the analytical computation of the required
matrix functions (cf. Sect. 7.1.4), theRiemannian approaches
are only about a factor of two slower than the Euclidean
ones. Runtime of an approach using numerical matrix func-
tion computation is about a factor of four slower than its
Euclidean counterpart (data not shown).

10.2.2 Real Data

In this experiment, we apply the different reconstruction
methods: Gaussian, Rician, Gaussian–Euclidean, Gaussian–
Riemannian, Rician–Euclidean, Rician–Riemannian, to 3D
MRI images measured from a human brain in-vivo. A
single-shot diffusion-weighted twice-refocused spin-echo
echo planar imaging sequence was used with the following
measurement parameters: TR = 6925 ms, TE = 104 ms, 192
matrix with 6/8 phase partial Fourier, 23 cm field of view,
and 36 2.4-mm-thick contiguous axial slices. The in-plane
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Fig. 16 The matrix properties: Fractional anisotropy (left column),
determinant (middle column) and the trace (right column) of the recon-
structed diffusion tensor images for the Rician (upper row) and the
Gaussian (lower row) noise model without any regularization (Color
figure online)

resolution was 1.2 mm/pixel. For each of the 36 slices, dif-
fusion weighted images were acquired involving diffusion
gradients with eight different b values (250, 500, 750, 1000,
1250, 1500, 1750, 2000 s/mm2), each being applied along six
non-collinear directions [ (x , y, z) gradient directions were
(1, 0, 1), (−1, 0, 1), (0, 1, 1), (0, 1, −1), (1, 1, 0), (−1, 1, 0)],
and an individual set of reference images without diffusion
weighting (b = 0 s/mm2).

We estimated a SNR of 5.2 by estimating the background
standard deviationσb from regions ofMRI images containing
no brain tissue and by estimating the mean from the region of
interest. All parameters of the algorithms, e.g. regularization
parameters, are set to interpolated values of the optimized
values obtained in the synthetic experiment.

Figure 16 shows the tensor characteristics for the recon-
structions without regularization, namely the method pro-
posed in Lenglet et al. (2006) as well as the method proposed
in Landman et al. (2007a). Figure 17 shows the tensor char-
acteristics for the regularized reconstruction methods. We
observe that the images from the non-regularized methods
are quite noisy, especially the FA images, whereas all reg-
ularized methods appear significant less noisy, as expected.
We additionally observe that the four regularized methods
lead to significant different tensor characteristics. The eval-
uation of the medical use of these results goes beyond the
scope of this paper and requires corresponding expertise.

As no ground truth is available we cannot make any quan-
titative comparisons between the methods by means of a
Riemannian or Euclidean error measure.

What we can do here, though, is the comparison of the
tensor characteristics with results obtained from synthetic
MRI images. To this end we compute the mean of the tensor

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0
0.5
1
1.5
2
2.5
3
3.5
4

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

1

2

3

4

5

6

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 17 The matrix properties: fractional anisotropy (upper row),
determinant (middle row) and trace (lower row) of the reconstructed
diffusion tensor images with regularization for (from left to right): the
Rician–Riemannian, the Rician–Euclidean, the Gaussian–Riemannian
and the Gaussian–Euclidean reconstruction method (Color figure
online)

Table 5 Tensor characteristics for the synthetic (synth.) and real MRI
data

T.C./M. RR GR RE GE

FA (real) 0.162 0.162 0.140 0.112

FA (synth.) 0.507 0.481 0.534 0.512

Det. (real) 0.424 0.014 0.470 0.015

Det. (synth.) 0.906 0.313 1.006 0.339

Trace (real) 1.789 0.444 1.873 0.491

Trace (synth.) 2.993 2.099 3.176 2.208

RR Rician–Riemannian, GR Gaussian–Riemannian, RE Rician–
Euclidean, GE Gaussian–Euclidean

characteristics, i.e. fractional anisotropy (FA), determinant,
and trace, for synthetic and real (Table 5) NMR signals.

For the FA we could not observe any correspondences
between real and synthetic data which is reasonable as the FA
should not show any distinct bias for the different methods,
i.e. the FA is sometimes too large and sometimes too small.
Evidently, the sign of the FA error depends on the considered
data and we cannot expect it to be comparable for synthetic
and real data sets.

For the determinant and the trace, on the other hand, all
reconstruction methods show the same qualitative behavior
on both MRI data sets which is again reasonable as these
values show a clear bias according to our theoretical consid-
erations and already validated by experiments on synthetic
data. The determinant and trace are lower for the Gaussian
noise model in accordance with our theoretical consideration
in Sect. 6: The Gaussian noise model leads to a bias towards
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smaller diffusion tensors and hence to smaller traces and
determinants. The eigenvalue swelling effect of the Euclid-
ean regularization approaches leads to the opposite effect, an
increase of determinant and trace which explains the larger
values for Gaussian–Euclidean approach compared to the
Gaussian–Riemannian approach.

We observe that the tensor characteristics of real data is
well in accordance with our findings on synthetic data and
theoretical considerations.

11 Summary and Outlook

In this paperwe formulated aBayesian estimation framework
for tensor valued images. We formulated a likelihood func-
tion for diffusion tensor images based on the Rician noise
model. We provide a regularization taxonomy for tensor val-
ued images within the matrix representation. In particular,
we derived anisotropic diffusion equations within this rep-
resentation. We introduced discrete approximations for the
regularization schemes and experimentally validated their
stability. Last but not least we formulate an estimator for
the covariance matrix as a confidence measure for the point
estimate. In order to speed up the estimator we introduced
analytical matrix functions which have not been used in
the context of DTI so far. Experiments on synthetic data
demonstrate that our fully intrinsic one-step reconstruction
approach yields more accurate and reliable results than com-
peting algorithms. Overall we conclude that the consequent
usage of the intrinsic view for model derivation in conjunc-
tion with suitable Bayesian estimation schemes yields the
most accurate and reliable approach to DTI reconstruction
from DW images presented so far.

It is evident that we cannot cover all aspects of Bayesian
estimation theory which have been investigated for Euclid-
ean spaces so far such that there is plenty of room for future
research. For instance, learning and estimation techniques
for model parameters have not been tackled at all. However,
supervised learning requires suitable training data which is
not available, yet. A further research topic is a sound the-
oretical stability analysis of the geodesic marching scheme
including an analysis of different approximation schemes of
the continuously formulated diffusion equation.

DTI has its limitations where the model assumption, i.e.
the Stejskal–Tanner equation, is violated, e.g. at crossing
fiber structures in the brain tissue. In such cases models
allowing multiple orientations like orientation distribution
functions based on high angular resolution diffusion imaging
can extend the approach presented here, cmp. e.g. (Krajsek
and Scharr 2012). Adapting our approach to the more gen-
eral framework of Finsler geometry (Melonakos et al. 2007;
Florack and Fuster 2014) might be another interesting future
research direction.
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