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Abstract Supervoxel segmentation has strong potential to
be incorporated into early video analysis as superpixel seg-
mentation has in image analysis. However, there are many
plausible supervoxel methods and little understanding as
to when and where each is most appropriate. Indeed, we
are not aware of a single comparative study on supervoxel
segmentation. To that end, we study seven supervoxel algo-
rithms, including both off-line and streaming methods, in
the context of what we consider to be a good supervoxel:
namely, spatiotemporal uniformity, object/region boundary
detection, region compression and parsimony. For the eval-
uation we propose a comprehensive suite of seven quality
metrics to measure these desirable supervoxel characteris-
tics. In addition, we evaluate the methods in a supervoxel
classification task as a proxy for subsequent high-level uses
of the supervoxels in video analysis. We use six existing
benchmark video datasets with a variety of content-types and
dense human annotations. Our findings have led us to con-
clusive evidence that the hierarchical graph-based (GBH),
segmentation by weighted aggregation (SWA) and temporal
superpixels (TSP)methods are the top-performers among the
seven methods. They all perform well in terms of segmenta-
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tion accuracy, but vary in regard to the other desiderata: GBH
captures object boundaries best; SWA has the best potential
for region compression; and TSP achieves the best underseg-
mentation error.
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1 Introduction

Images have many pixels; videos have more. It has thus
become standard practice to first preprocess images and
videos into more tractable sets by either extraction of
salient points (Schmid and Mohr 1997) or oversegmenta-
tion into superpixels (Ren and Malik 2003). Preprocessing
output—salient points or superpixels—is more perceptually
meaningful than raw pixels, which are merely a consequence
of digital sampling (Ren andMalik 2003).However, the same
practice does not entirely exist in video analysis. Although
many methods do indeed initially extract salient points or
dense trajectories, e.g., Laptev (2005), we are aware of few
methods that rely on a supervoxel segmentation, which is
the video analog to a superpixel segmentation. In fact, those
papers that do preprocess video tend to rely on a per-frame
superpixel segmentation, e.g., Lee et al. (2011), or use a full-
video segmentation, e.g., Grundmann et al. (2010).

The basic position of this paper is that supervoxels have
great potential in advancingvideo analysismethods, as super-
pixels have for image analysis. To that end, we perform a
thorough comparative evaluation of seven supervoxel meth-
ods: five off-line and two streaming methods. The off-line
methods require the video to be available in advance and
short enough to fit in memory. They load the whole video
at once and process it afterwards. The five off-line methods
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we choose—segmentation by weighted aggregation (SWA)
(Sharon et al. 2000, 2006; Corso et al. 2008), graph-based
(GB) (Felzenszwalb and Huttenlocher 2004), hierarchical
graph-based (GBH) (Grundmann et al. 2010), mean shift
(Paris and Durand 2007), and Nyström normalized cuts
(NCut) (Fowlkes et al. 2004; Shi and Malik 2000; Fowlkes
et al. 2001)—broadly sample the methodology-space, and
are intentionally selected to best analyze methods with dif-
fering qualities for supervoxel segmentation. For example,
both SWA and NCut use the normalized cut criterion as the
underlying objective function, but SWA minimizes it hier-
archically whereas NCut does not. Similarly, there are two
graph-based methods that optimize the same function, but
one is subsequently hierarchical (GBH). We note that, of the
off-line methods, only GBH had been proposed intrinsically
as a supervoxel method; each other one is either sufficiently
general to serve as one or has been adapted to serve as one.
We also note a similar selection of segmentation methods
has been used in the (2D) image boundary comparative study
(Arbelaez et al. 2011) and nonetheless our selections share a
good overlap with the ones studied in the recent video seg-
mentation benchmark (Galasso et al. 2013).

In contrast, streaming methods require only constant
memory (depends on the streamingwindow range) to execute
the algorithm which makes them feasible for surveillance or
to run over a long video on a less powerful machine. The
two streaming methods we choose—streaming hierarchical
video segmentation (streamGBH) (Xu et al. 2012) and tem-
poral superpixels (TSP) (Chang et al. 2013) employ different
strategies to treat video data. The streamGBH approximates
a full video segmentation by both hierarchical and temporal
Markov assumptions. Each time it segments video frames
within a streaming window, and the length of the streaming
window can be as short as one frame or as long as the full
video, which equates it to full-videoGBH segmentation. TSP
represents a set ofmethods (Chang et al. 2013;Van denBergh
et al. 2013; Reso et al. 2013) that computes the superpixel
segmentation on the first frame and then extends the super-
pixels to subsequent frames (one by one) in a video. The TSP
method (Chang et al. 2013) uses a Gaussian Process for the
streaming segmentation.

Our paper pits the five off-line and two streaming meth-
ods in an evaluation on a suite of metrics designed to assess
the methods on basic supervoxel desiderata (Sect. 2.2), such
as following object boundaries and spatiotemporal coher-
ence. The specific metrics we use are 3D undersegmentation
error, 3D segmentation accuracy, boundary recall distance
and label consistency. They evaluate the supervoxel seg-
mentations against human annotations. We also use a set
of human-independent metrics: explained variation, mean
size variation and temporal extent of supervoxels, which
directly explore the properties of each method. Finally, we
compare the supervoxelmethods in a particular application—

supervoxel classification—that evaluatesmethods in a recog-
nition task, which we consider to be a proxy to various
high-level video analysis tasks inwhich supervoxels could be
used. We use six complementary video datasets to facilitate
the study: BuffaloXiph (Chen and Corso 2010), SegTrack v2
(Tsai et al. 2010; Li et al. 2013), CamVid (Brostow et al.
2008), BVDS (Sundberg et al. 2011; Galasso et al. 2013),
Liu et al. (2008a) and Middlebury Flow (Baker et al. 2011).
They span from few videos to one hundred videos, and from
sparse annotations to dense frame-by-frame annotations.

A preliminary version of our work appears in Xu and
Corso (2012). Since its initial release, the LIBSVX bench-
mark has been widely used in supervoxel method evaluation
by the community, including but not limited to Xu et al.
(2012), Xu et al. (2013), Chang et al. (2013), Palou and
Salembier (2013), Reso et al. (2013), Van den Bergh et al.
(2013), Lee and Choi (2014), de Souza et al. (2014), Tripathi
et al. (2014). In this paper,we complement the librarywith the
two streaming methods and a set of new benchmark metrics
on new video datasets. In addition, we add a new experiment
of supervoxel classification to evaluate methods in terms of
a middle-level video representation towards high-level video
analysis. We also note that a recent video segmentation eval-
uation is proposed in Galasso et al. (2013). We distinguish
our work from them by evaluating directly on supervoxel
segmentation, the oversegmentation of a video, and using
various datasets including densely labeled human annota-
tions with a set of novel benchmark metrics. It is our position
that evaluations of both over-segmentation and segmentation
in video are necessary to establish a thorough understanding
of the problem-space within the computer vision community.

Our evaluation yields conclusive evidence that GBH,
SWA and TSP are the top-performers among the seven meth-
ods. They all performwell in terms of segmentation accuracy,
but vary in regard to the other desiderata: GBH captures
object boundaries best; SWA has the best potential for region
compression; and TSP follows object parts and achieves the
best undersegmentation error. Although GBH and SWA, the
twoofflinemethods, are quite distinct in formulation andmay
perform differently under other assumptions, we find a com-
mon feature among the two methods (and one that separates
them from the others) is themanner inwhich coarse level fea-
tures are incorporated into the hierarchical computation. TSP
is the only streaming method among the three and generates
supervoxels with the best spatiotemporal uniformity. Finally,
the supervoxel classification experiment further supports our
findings and shows a strong correlation to our benchmark
evaluation.

The complete supervoxel library, benchmarking code,
classification code and documentation are available for
download at http://www.supervoxels.com. Various super-
voxel results on major datasets in the community (including
the existing six datasets—Chen and Corso 2010; Tsai et al.
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2010; Li et al. 2013; Brostow et al. 2008; Sundberg et al.
2011; Galasso et al. 2013; Liu et al. 2008a; Baker et al. 2011)
are also available at this location to allow for easy adoption
of the supervoxel results by the community.

The rest of the paper is organized as follows. We present a
theoretical background inSect. 2 and abrief description of the
methods in Sect. 3. We introduce the datasets and processing
setup in Sect. 4. We thoroughly discuss comparative per-
formance in terms of benchmark in Sect. 5 and supervoxel
classification in Sect. 6. Finally, we conclude the paper in
Sect. 7.

2 Background

2.1 Superpixels

The term superpixel was coined by Ren and Malik (2003) in
their work on learning a binary classifier that can segment
natural images. The main rationale behind superpixel over-
segmentation is twofold: (1) pixels are not natural elements
but merely a consequence of the discrete sampling of the
digital images and (2) the number of pixels is very high mak-
ing optimization over sophisticated models intractable. Ren
and Malik (2003) use the normalized cut algorithm (Shi and
Malik 2000) for extracting the superpixels, with contour and
texture cues incorporated. Subsequently, many superpixel
methods have been proposed (Levinshtein et al. 2009; Vek-
sler et al. 2010; Moore et al. 2008; Liu et al. 2011; Zeng et al.
2011) or adopted as such (Felzenszwalb and Huttenlocher
2004; Vincent and Soille 1991; Comaniciu and Meer 2002)
and used for a variety of applications: e.g., human pose esti-
mation (Mori et al. 2004), semantic pixel labeling (He et al.
2006; Tighe and Lazebnik 2010), 3D reconstruction from a
single image (Hoiem et al. 2005) and multiple-hypothesis
video segmentation (Vazquez-Reina et al. 2010) to name a
few. Few superpixel methods have been developed to per-
formwell on video frames, such asDrucker andMacCormick
(2009) who base the method on minimum cost paths but do
not incorporate any temporal information.

2.2 What Makes a Good Supervoxel Method?

First, we define a supervoxel—the video analog to a super-
pixel. Concretely, given a 3D lattice �3 (the voxels in the
video), a supervoxel v is a subset of the lattice v ⊂ �3 such
that the unionof all supervoxels comprises the lattice and they
are pairwise disjoint:

⋃
i vi = �3∧vi

⋂
v j = ∅ ∀i, j pairs.

Obviously, various image/video features may be computed
on the supervoxels, such as color histograms and textons. In
this initial definition, there is nomention of certain desiderata
that one may expect, such as locality, coherence, and com-
pactness. Rather than include them in mathematical terms,

we next list terms of this sort as desirable characteristics of
a good supervoxel method.

We define a good supervoxel method based jointly on cri-
teria for good supervoxels, which follow closely from the
criteria for good segments (Ren and Malik 2003), and the
actual cost of generating them (videos have an order of mag-
nitude more pixels over which to compute). Later, in our
experimental evaluation, we propose a suite of benchmark
metrics designed to evaluate these criteria (Sect. 5).

Spatiotemporal Uniformity The basic property of spa-
tiotemporal uniformity, or conservatism (Moore et al. 2008),
encourages compact and uniformly shaped supervoxels in
space-time (Levinshtein et al. 2009). This property embodies
many of the basic Gestalt principles—proximity, continu-
ation, closure, and symmetry—and helps simplify compu-
tation in later stages (Ren and Malik 2003). Furthermore,
Veksler et al. (2010) show that for the case of superpix-
els, compact segments perform better than those varying in
size on the higher level task of salient object segmentation.
For temporal uniformity [called coherence in Grundmann
et al. (2010)], we expect a mid-range compactness to be most
appropriate for supervoxels (bigger than, say, five frames and
less than the whole video).

Spatiotemporal Boundaries and Preservation The super-
voxel boundaries should align with object/region boundaries
when they are present and the supervoxel boundaries should
be stable when they are not present; i.e., the set of super-
voxel boundaries is a superset of object/region boundaries.
Similarly, every supervoxel should overlap with only one
object (Liu et al. 2011). Furthermore, the supervoxel bound-
aries should encourage a high-degree of explained variation
(Moore et al. 2008) in the resulting oversegmentation. If we
consider the oversegmentation by supervoxels as a compres-
sion method in which each supervoxel region is represented
by the mean color, we expect the distance between the com-
pressed and original video to have been minimized.

Computation The computation cost of the supervoxel
method should reduce the overall computation time required
for the entire application in which the supervoxels are being
used.

Performance The oversegmentation into supervoxels sho-
uld not reduce the achievable performance of the application.
Our evaluation will not directly evaluate this characteristic
(because we study the more basic ones above).

Parsimony The above properties should be maintained
with as few supervoxels as possible (Liu et al. 2011).

3 Methods

We study seven supervoxel methods—mean shift (Paris and
Durand 2007), graph-based (GB) (Felzenszwalb and Hutten-
locher 2004), hierarchical graph-based (GBH) (Grundmann
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et al. 2010), streaming hierarchical graph-based (stream-
GBH) (Xu et al. 2012), Nyström normalized cut (NCut) (Shi
and Malik 2000; Fowlkes et al. 2001, 2004), segmentation
by weighted aggregation (SWA) (Sharon et al. 2000, 2006;
Corso et al. 2008) and temporal superpixels (Chang et al.
2013)—that broadly sample the methodology-space among
statistical and graph partitioning methods (Arbelaez et al.
2011). We have selected these seven due to their respective
traits and their inter-relationships: for example, Nyström and
SWA both optimize the same normalized cut criterion, and
streamGBH extends GBH to handle arbitrarily long videos
and still keeps the hierarchy property.

We describe the methods in some more detail below. We
note that many other methods have been proposed in the
computer vision literature for video segmentation, e.g., Vin-
cent and Soille (1991), Greenspan et al. (2004), Brendel and
Todorovic (2009), Liu et al. (2008b), Vazquez-Reina et al.
(2010), Veksler et al. (2010), Khan and Shah (2001), Megret
and DeMenthon (2002), Budvytis et al. (2011), Galasso et al.
(2012), but we do not cover them in any detail in this study.
We also do not cover strictly temporal segmentation, e.g.
Patel and Sethi (1997).

3.1 Mean Shift

Mean shift is amode-seekingmethod, first proposedbyFuku-
naga and Hostetler (1975). Comaniciu and Meer (2002) and
Wang et al. (2004) adapt the kernel to the local structure of the
feature points, which is more computationally expensive but
improves segmentation results. Original hierarchical mean
shift in video (DeMenthon and Megret 2002; Paris 2008)
improves the efficiency of (isotropic) mean-shift methods by
using a streaming approach. The mean shift algorithm used
in our paper is presented by Paris and Durand (2007), who
introduce Morse theory to interpret mean shift as a topolog-
ical decomposition of the feature space into density modes.
A hierarchical segmentation is created by using topological
persistence. Their algorithm is more efficient than previous
works especially on videos and large images. We use the
author-provided implementation1 to generate a supervoxel
hierarchy and then stratify the pairwise merging into a fixed-
level of hierarchy.

3.2 Graph-Based (GB)

Felzenszwalb and Huttenlocher (2004) propose a graph-
based algorithm for image segmentation; it is arguably the
most popular superpixel segmentation method. Their algo-
rithm runs in time nearly linear in the number of image pixels,
which makes it suitable for extension to spatiotemporal seg-
mentation. Initially, each pixel, as a node, is placed in its own

1 http://people.csail.mit.edu/sparis/.

region R, connected with 8 neighbors. Edge weights mea-
sure the dissimilarity between nodes (e.g. color differences).
They define the internal difference of a region, I nt (R), as
the largest edge weight in the minimum spanning tree of R.
Traversing the edges in a non-decreasing weight order, the
regions Ri and R j incident to the edge are merged if the cur-
rent edge weight is less than the relaxed minimum internal
difference of the two regions:

min(I nt (Ri ) + τ(Ri ), I nt (R j ) + τ(R j )) , (1)

where τ(R) = k/|R| is used to trigger the algorithm and
gradually makes it converge. k is a scale parameter that
reflects the preferred region size. The algorithm also has an
option to enforce a minimum region size by iteratively merg-
ing low-cost edges until all regions contain theminimum size
of pixels.We have adapted the algorithm for video segmenta-
tion by building a 3D lattice over the spatiotemporal volume,
in which voxels are nodes connected with 26 neighbors in
the lattice (9 to the previous and the next frames, 8 to the
current frame). One challenge in using this algorithm is the
selection of an appropriate k for a given video, which the
hierarchical extension (GBH, next) overcomes. We use a set
of k as well as various minimum region sizes to generate the
segmentation output for our experiment.

3.3 Hierarchical Graph-Based (GBH)

The hierarchical graph-based video segmentation algorithm
is proposed by Grundmann et al. (2010). Their algorithm
builds on an oversegmentation of the above spatiotempo-
ral graph-based segmentation. It then iteratively constructs
a region graph over the obtained segmentation, and forms a
bottom-uphierarchical tree structure of the region (segmenta-
tion) graphs. Regions are described by local Lab histograms.
At each step of the hierarchy, the edge weights are set to be
the χ2 distance between the Lab histograms of the connected
two regions. They apply the same technique as above, Felzen-
szwalb andHuttenlocher (2004), tomerge regions. Each time
they scale the minimum region size as well as k by a constant
factor s. Their algorithm not only preserves the important
region borders generated by the oversegmentation, but also
allows a selection of the desired segmentation hierarchy level
h, which is much better than directly manipulating k to con-
trol region size.We set a large h to output segmentations with
various numbers of supervoxels.

3.4 Graph-Based Streaming Hierarchical (streamGBH)

Graph-based streaming hierarchical video segmentation is
proposed in our earlier work (Xu et al. 2012) to extend GBH
(Grundmann et al. 2010) to handle arbitrarily long videos
in a streaming fashion and still maintain the segmentation
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hierarchy. The algorithm approximates the full video GBH
segmentations by both a hierarchical and a temporal Markov
assumption, allowing a small number of frames to be loaded
into a memory at any given time. Therefore the algorithm
runs in a streaming fashion. In our comparison experiments,
we set a fixed streaming window size (10 frames) for all
subsequences and, again, a large h as in GBH to output seg-
mentations with various numbers of supervoxels.

3.5 Nyström Normalized Cut (NCut)

Nyström Normalized Cuts (Shi and Malik 2000) as a graph
partitioning criterion has been widely used in image segmen-
tation. A multiple eigenvector version of normalized cuts is
presented in Fowlkes et al. (2004). Given a pairwise affinity
matrixW , they compute the eigenvectors V and eigenvalues
Γ of the system

(D−1/2WD−1/2)V = VΓ, (2)

where D is a diagonal matrix with entries Dii = ∑
j Wi j .

Each voxel is embedded in a low-dimensional Euclidean
space according to the largest several eigenvectors. The k-
means algorithm is then be used to do the final partitioning.
To make it feasible to apply to the spatiotemporal video vol-
ume, Fowlkes et al. (2001) use the Nyström approximation
to solve the above eigenproblem. Their paper demonstrates
segmentation on relatively low-resolution, short videos (e.g.,
120 × 120 × 5) and randomly samples points from the first,
middle, and last frames.

However, in our experiments, NCut is not scalable as the
number of supervoxels and the length of video increases.
Sampling too many points makes the Nyström method
require too much memory, while sampling too few gives
unstable and low performance. Meanwhile, the k-means
clustering algorithm is sufficient for a video segmentation
with few clusters, but a more efficient clustering method is
expected regarding the number of supervoxels. Therefore,we
run NCut for a subset of our experiments with lower solu-
tion and we set 200 sample points. We run k-means on 20%
of the total voxels and k-nearest neighbor search to assign
supervoxel labels for all voxels.

3.6 Segmentation by Weighted Aggregation (SWA)

SWA is an alternative approach to optimizing the normalized
cut criterion (Sharon et al. 2000, 2006; Corso et al. 2008) that
computes a hierarchy of sequentially coarser segmentations.
Themethod uses an algebraicmultigrid solver to compute the
hierarchy efficiently. It recursively coarsens the initial graph
by selecting a subset of nodes such that each node on the
fine level is strongly coupled to one on the coarse level. The
algorithm is nearly linear in the number of input voxels, and

produces a hierarchy of segmentations, which motivates its
extension to a supervoxel method. The SWA implementation
is based on our earlier 3D-SWAwork in the medical imaging
domain (Corso et al. 2008).

3.7 Temporal Superpixels (TSP)

The temporal superpixels method computes the superpixel
segmentation on the first frame and then extends the existing
superpixels to subsequent frames in a video. Therefore, this
set of methods (Chang et al. 2013; Van den Bergh et al. 2013;
Reso et al. 2013), by their nature, are computing supervox-
els in a streaming fashion, which is similar to streamGBH
with a streaming window of one frame. We choose Chang
et al. (2013) as the representative method for evaluation. The
algorithm first extends the SLIC (Achanta et al. 2012) super-
pixel algorithm to form a generative model for constructing
superpixels. Each pixel is modeled using five dimensional
feature vector: three channel color and the 2D location in
image. Superpixels are inferred by clustering with a mix-
ture model on individual features as a Gaussian with known
variance. After generating superpixels for the first frame, the
algorithm applies a Gaussian Process with a bilateral kernel
to model the motion between frames. We use the implemen-
tation2 provided by the authors with the default parameters
to run the algorithm in evaluation.

4 Datasets

We make use of six video datasets for our experimental
purposes, with varying characteristics. The datasets have
human-annotator drawn groundtruth labels at a frame-by-
frame basis (four out of six) or at densely sampled frames in
the video (two out of six). The sizes of the selected datasets
vary from a few videos to one hundred videos. The set of
datasets we choose are BuffaloXiph (Chen and Corso 2010),
SegTrack v2 (Li et al. 2013; Tsai et al. 2010), BVDS (Sund-
berg et al. 2011; Galasso et al. 2013), CamVid (Brostow
et al. 2008), Liu et al. (2008a) and Middlebury Flow (Baker
et al. 2011). The datasets are originally built solving differ-
ent video challenges: BuffaloXiph is gathered for pixel label
propagation in videos; SegTrack is built for object track-
ing; BVDS has contributed to occlusion boundary detection;
CamVid is taken in driving cars for road scene understand-
ing; and Liu et al. (2008a) andMiddlebury Flow (Baker et al.
2011) are used for optical flow estimation. Rather than eval-
uating supervoxel methods on a single dataset, we conduct
the evaluation on all six datasets [with only label consis-
tency metric on Liu et al. (2008a) and Middlebury Flow
(Baker et al. 2011)], as the datasets are complementary and

2 http://people.csail.mit.edu/jchang7/code.php.
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we believe supervoxels have potential to be a first processing
step towards various video applications and problems. We
briefly describe the six datasets used in our experiments.
BuffaloXiph from Chen and Corso (2010) is a subset of the
well-known xiph.org videos that have been supplemented
with a 24-class semantic pixel labeling set (the same classes
from the MSRC object segmentation dataset Shotton et al.
(2009)). The eight videos in this set are densely labeled with
semantic pixels that leads to a total of 638 labeled frames,
with a minimum of 69 frames-per-video (fpv) and a maxi-
mum of 86 fpv. The dataset is originally used for pixel label
propagation (Chen and Corso 2010) and videos in the dataset
are stratified according to camera motion, object motion,
the presence of articulated objects, the complexity of occlu-
sion between objects and the difficulty of label propagation.
Distinct regions with the same semantic class label are not
separated in this dataset.

SegTrack v2 from Li et al. (2013) is an updated version of the
SegTrack dataset (Tsai et al. 2010) and provides frame-by-
frame pixel-level foreground objects labeling rather than the
semantic class labeling as in BuffaloXiph. It contains a total
of 14 video sequences with 24 objects over 947 annotated
frames. The videos in the dataset are stratified according
to different segmentation challenges, such as motion blur,
appearance change, complex deformation, occlusion, slow
motion and interacting objects.

BVDS is initially introduced in Sundberg et al. (2011) for
occlusion boundary detection and then used for evaluating
video segmentation algorithms by Galasso et al. (2013). It
consists of 100HDquality videoswith amaximumof 121 fpv
and videos in the dataset are stratified according to occlusion,
object categories and sizes, and different kinds of cam-
era motion: translational, scaling and perspective motion.
Each video is labeled with multiple human annotations by
a sampling rate of 20 frames. We use all 100 videos in the
evaluation ignoring the training/testing split (because BVDS
is used only in the unsupervised parts of our evaluation).

Furthermore, the dataset has three different groupings for
videos with moving objects, non-rigid motion, and consid-
erable camera motion. Our experimental results show that
all methods preserve the same performance order over these
three video groupings, except TSP has better temporal extent
than GB when only using videos with considerable camera
motion. We show this additional result in the supplement.

CamVid from Brostow et al. (2008) provides five long video
sequences recorded at daytime and dusk from a car driving
through Cambridge, England. The videos are composed by
over ten minutes high quality 30Hz footage and are labeled
with 11 semantic object class labels at 1Hz and in part 15Hz
that leads to a total of 701 densely labeled frames. It also pro-
vides the training/test split, with two daytime and one dusk

sequence for training and one daytime and one dusk sequence
for testing. Therefore, this dataset in addition allows us to
evaluate methods in terms of supervoxel semantic label clas-
sification. We use all videos, in total 17898 frames,3 in the
evaluation in Sect. 5, and follow the training/test split in
Sect. 6.

The remaining two datasets, Liu et al. (2008a) andMiddle-
bury Flow (Baker et al. 2011) are used for evaluating label
consistency in Sect. 5.4. They are densely annotated with
groundtruth flows. Liu et al. (2008a) contains five videos
with a minimum of 14 fpv and a maximum of 76 fpv. Mid-
dlebury Flow contains eight videos, but groundtruth for only
two frames (one optical flow estimate) is available.We treat it
as a special case where algorithms only process two frames.

4.1 Processing

To adapt all seven supervoxel methods to run through all
videos in the datasets within reasonable time and memory
consumption, we use BuffaloXiph, SegTrack v2 and Mid-
dlebury Flow at the original resolution; Liu et al. (2008a)
at half the original resolution; BVDS and CamVid, the two
large datasets, at a quarter of the original HD resolution.
One exception is NCut which runs at a fixed resolution of
240 × 160 on BuffaloXiph and SegTrack v2 datasets (the
results are scaled up for comparison) and is not included in
the experiments with BVDS and CamVid datasets due to its
high computational demands. The comparison of NCut and
other methods at the same downscaled resolution on Buf-
faloXiph and SegTrack are shown in our conference version
of the paper (Xu and Corso 2012), where the relative perfor-
mance is similar to here.

We compare the sevenmethods as fairly as possible. How-
ever, each method has its own tunable parameters; we have
tuned these parameters strictly to achieve a certain desired
number of supervoxels per video (or per frame, depending on
the experiment); parameters are tunedpermethodper dataset.
For hierarchicalmethods, such asGBH, streamGBH, SWA, a
single run over a video can generate fine-to-coarse multiple
levels of supervoxels. For Mean Shift, we tune the persis-
tence threshold to get multiple stratified segmentations. For
NCut, we vary the final step K-means clustering to get a
set of supervoxels varying from 100 to 500 on BuffaloXiph
and SegTrack v2. We use the suggested parameters by the
authors for the two other methods (Mean Shift and TSP) and
we provide all parameters to reproduce our experiments.

After we have generated a range of supervoxels for each
video in a dataset, we use linear interpolation to estimate
each methods’ metric outputs for each video densely. The

3 We manually exclude the corrupted frames, and organize the dataset
into short clips with roughly 100 frames-per-clip. The organized short
clips can be downloaded from our website.
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performance over a dataset at a certain number of supervoxels
is drawn by averaging the interpolated values from all videos
at the same number of supervoxels. This strategy can better
align videos in a dataset and therefore avoids outliers with
too many or too few supervoxels by simply taking averaged
number of supervoxels over a dataset, especially when the
videos are diverse in a dataset.

5 Benchmark Evaluation

Rather than evaluating the supervoxel methods on a particu-
lar application, as Hanbury (2008) does for superpixels and
image segmentation, in this section we directly consider all
of the base traits described in Sect. 2.2 at a fundamental level.
We believe these basic evaluations have a great potential
to improve our understanding of when a certain supervoxel
method will perform well. Nonetheless, we further evalu-
ate the performances of the supervoxel classification on the
CamVid dataset in Sect. 6.

We note that some quantitative superpixel evaluation
metrics have been recently used inMoore et al. (2008), Levin-
shtein et al. (2009), Veksler et al. (2010), Liu et al. (2011),
Zeng et al. (2011). We select those most appropriate to val-
idate our desiderata from Sect. 2.2. One way to conduct the
experiments is by evaluating the frame-based measures and
take the average over all the frames in the video. However, if
we directly apply these methods to the supervoxel segmen-
tation, the temporal coherence property can not be captured.
Even amethodwithout any temporal information can achieve
a good performance in those 2D metrics, which have driven
us to extend the above frame-based measures to the volumet-
ric video-based measures when appropriate.

In the rest of this section, we first introduce a pair of
volumetric video-based 3D metrics that score a supervoxel
segmentation based on a given human annotation and they
are 3D undersegmentation error (Sect. 5.1) and 3D segmen-
tation accuracy (Sect. 5.2). We also evaluate the boundary
recall distance of the supervoxel segmentation to the human
drawn boundaries (Sect. 5.3), as well as measure the label
consistency in terms of annotated groundtruth flows in a
video (Sect. 5.4). Then we evaluate some basic properties
of supervoxel segmentation that do not require human anno-
tation, namely explained variation, mean size variation and
temporal extent of supervoxels, in Sect. 5.5. We also report
the computational cost of each supervoxelmethod (Sect. 5.6).
We give visual comparison of the supervoxel segmentations
against the groundtruth annotation in Fig. 6. Finally, we dis-
cuss our findings in Sect. 5.7.

5.1 3D Undersegmentation Error (UE3D)

Undersegmentation error in image segmentation was pro-
posed in Levinshtein et al. (2009). It measures the fraction

of pixels that exceed the boundary of the groundtruth seg-
ment when overlapping the superpixels on it. We extend
this concept to a spatiotemporal video volume to measure
the space-time leakage of supervoxels when overlapping
groundtruth segments. Given a video segmented into super-
voxels s = {s1, s2, . . . , sn} and a set of annotated groundtruth
segments g = {g1, g2, . . . , gm} in video, we define the fol-
lowingUE3Das the average fraction of the voxels that exceed
the 3D volume of groundtruth segments:

UE3D(s, g)= 1

m

m∑

i=1

∑n
j=1 Vol(s j |s j ∩ gi �= ∅)−Vol(gi )

Vol(gi )
,

(3)

where Vol(·) denotes the amount of voxels that are con-
tained in the 3D volume of a segment. Equation 3 takes
the average score from all groundtruth segments g. We note
that the score from a single groundtruth segment gi is not
bounded. The metric imposes a greater penalty when super-
voxels leak on smaller groundtruth segments. For example,
if a video has a very small object, it will be equally weighted
with a large object (e.g. background). Missing a pixel in the
small object has a greater penalty than missing a background
pixel. We also note that it is possible to set different weights
for groundtruth segment classes when evaluating against a
dataset with pixel semantic labels (e.g. BuffaloXiph). For a
dataset with multiple human annotations (e.g. BVDS), we
simply take the average score, which equally weights differ-
ent human perceptions.

5.2 3D Segmentation Accuracy (SA3D)

Segmentation accuracy measures the average fraction of
groundtruth segments that is correctly covered by the super-
voxels: each supervoxel belongs to only one groundtruth
segment (object) as a desired property from Sect. 2.2. We
define the volumetric SA3D as

SA3D(s, g) = 1

m

×
m∑

i=1

∑n
j=1 Vol(s j ∩ gi )1[Vol(s j ∩gi )≥Vol(s j ∩ ḡi )]

Vol(gi )
,

(4)

where ḡi = g \ {gi } and the indicator function decides when
there is an association of supervoxels between segment s j and
groundtruth segment gi . Similar to UE3D, SA3D also takes
the average score from all groundtruth segments g. However,
the score from a single groundtruth segment gi is bounded in
[0, 1], where the extreme situations 1 and 0 are respectively
definewhen gi is perfectly partitioned by a set of supervoxels
(e.g. Fig. 1a), and gi is completely missed (e.g. Fig. 1b).
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Fig. 1 A toy example of a single groundtruth segment g with five dif-
ferent supervoxel segmentations.We show the example in 2D for simple
illustration.Wedraw the groundtruth segment g as a 2×2dashed square
shape. All supervoxel segments are shown in solid square shapes and

are defined in three different sizes: 1×1 (e.g. s1 in a), 1.5×1.5 (e.g.
s1 in b), and 2×2 (e.g. s1 in e). Segment s3 in c and e is offset by 1/4.
The gray areas are counted toward SA3D. The scores of UE3D, SA3D
and BRD for each cases are shown in Table 1

We note that UE3D and SA3D are complementary to
evaluate an algorithm, as UE3D measures the leakage of
all supervoxels touching a groundtruth segment and SA3D
measures the fraction of the groundtruth segment that is
correctly segmented. To further elucidate the differences
between UE3D and SA3D, we show a toy example in Fig. 1
with scores shown in Table 1, where (c) and (d) have the
same UE3D score but different SA3D scores, and (c) and
(e) have the same SA3D score but different UE3D scores.
(c) has the best scores for both UE3D and SA3D among all
imperfect segmentation cases (b)-(e). Both the metrics are
evaluated in space-time, such that they penalize supervox-
els that break not only spatial boundaries but also temporal
boundaries of the groundtruth segments—a good superpixel
method can achieve high performance. However, it typically
does so with a large number of supervoxels (the temporal
extent is only one frame in this case) for the per-video basis.
Therefore datasets with dense human annotations, such as
BuffaloXiph and SegTrack v2, are more precise in terms of
the 3D volumetric measures.

5.3 Boundary Recall Distance (BRD)

So far we have introduced a pair of 3D metrics defined by
the set of groundtruth segments. They intrinsically use the
groundtruth boundaries for locating the volume of the seg-
ments.Wenowdirectly evaluate the boundary recall distance,
which measures how well the groundtruth boundaries are
successfully retrieved by the supervoxel boundaries. We use
BRD proposed in Chang et al. (2013) to calculate the average
distance frompoints on groundtruth boundaries to the nearest
ones on supervoxel boundaries frame-by-frame in a video.
It does not require a fixed amount of dilation for boundary
matching as in typical boundary recall measures to offset
small localization errors. The specific metric is defined as
follows:

Table 1 The scores of UE3D, SA3D and BRD for the toy example in
Fig. 1

Metric (a) (b) (c) (d) (e)

UE3D 0.00 1.25 0.63 0.63 1.06

SA3D 1.00 0.00 0.75 0.50 0.75

BRD 0.00 0.50 0.27 0.25 0.39

The larger the better for SA3D, and the small the better for UE3D and
BRD. The top two scores are bolded for each metric. BRD is calculated
strictly for vertical boundary matching only and horizontal boundary
matching only in this toy example, which is slightly different than Eq. 5

BRD(s, g) = 1
∑

t |B(gt )|
T∑

t=1

∑

i∈B(gt )

min
j∈B(st )

d(i, j), (5)

whereB(·) returns the 2D boundaries of segments in a frame,
d(·, ·) is the Euclidean distance between the two arguments,
| · | denotes the amout of pixels contained by the argument at
a frame, t indexes frames in a video (e.g. gt denotes the set
of all groundtruth segments on frame t), and i and j denote
points on boundaries.

We also compute BRD for all cases in Fig. 1 and show
the scores in Table 1. We note that BRD captures different
aspects of an algorithm than UE3D and SA3D. For example,
among the imperfect segmentation cases (b)-(e) (which are
typical situations), (c) has the best scores in terms of UE3D
andSA3D, butworse inBRD than (d)which is poor in SA3D.
Therefore, there is no single segmentation that has the best
scores for all three metrics (except the perfect partition in
(a)) in this toy example.

5.4 Label Consistency (LC)

LC is also proposed in Chang et al. (2013), which provides
a possible way to measure how well supervoxels track the
parts of objects given annotated groundtruth flows. Define
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F = {Ft−1→t |t = 2, . . . , T } as the vectorized groundtruth
forward flow field in a video, and Ft−1→t (si ) as the operator
that projects pixels contained in si at frame t − 1 to pixels at
frame t by the flow (subjected to the image boundary). The
metric is defined as follows:

LC(s,F) =
∑T

t=2
∑n

i=1 |sti ∩ Ft−1→t (si )|
∑T

t=2
∑n

i=1 |Ft−1→t (si )|
, (6)

where sti denotes the slice of supervoxel si at frame t , and the
numerator measures the agreement of supervoxel labels and
the projected labels by flow. We evaluate this metric on Liu
et al. (2008a) and Middlebury Flow where the groundtruth
flow annotation is available.

5.5 Human-Independent Metrics

The following are human-independent metrics; in other
words, they are not susceptible to variation in annotator
perception that would result in differences in the human
annotations, unlike the previousmetrics. They directly reflect
basic properties of the supervoxel methods, such as the tem-
poral extent of generated supervoxels.

5.5.1 Explained Variation (EV)

The metric is proposed in Moore et al. (2008) and it con-
siders the supervoxels as a compression method of a video
(Sect. 2.2):

EV(s) =
∑

i (μi − μ)2
∑

i (xi − μ)2
, (7)

where xi is the color of the video voxel i , μ is the mean
color of all voxels in a video and μi is the mean color of the
supervoxel that contains voxel i . Erdem et al. (2004) observe
a correlation between EV and the human-dependent metrics
for a specific object tracking task.

5.5.2 Mean Size Variation (MSV)

Chang et al. (2013) propose superpixel size variation that
measures the size variation of all superpixels in a video (as
a set of frames). Here, we extend their metric to measure the
size variation of the 2D slices of a supervoxel. MSV is the
average score of such variation defined by all supervoxels in
a video:

MSV(s) = 1

n

n∑

j=1

√
√
√
√

∑
t

((|sti | − |ŝi |
)2

1
[|sti | > 0

])

∑
t 1[|sti | > 0] − 1

, (8)

where |ŝi | =
∑

t |sti |∑
t 1[|sti |>0] is the average size of 2D slices of a

supervoxel. MSV favors the kind of supervoxels whose 2D
sizes varies minimally over time.

5.5.3 Temporal Extent (TEX)

TEX measures the average temporal extent of all supervox-
els in a video. The measure of supervoxel temporal extent
is originally proposed in Xu et al. (2012) as a way to com-
pare different streaming video segmentation methods. Later,
Chang et al. (2013) extend the measure by normalizing over
the number of frames contained in a video. We also use it
here for the evaluation. The metric is defined as follows:

TEX(s) = 1

nT

n∑

i=1

T∑

t=1

1[|sti | > 0]. (9)

We note that using TEX alone is not sufficient to determine
what method to use, and, in fact, it must be combined with
another metric, such as UE3D, SA3D or LC. We illustrate
this point using a combination of TEX and LC, since they
are complementary. An ideal method, in terms of capturing
the temporal movement of objects in video, is expected to
have long TEX and good LC. A shortcoming in either of the
metrics can hurt the performance. For example, having long
TEX and bad LC means that the supervoxels are long in the
time dimension but they do not track well the fine-grained
motion of the movement.

5.6 Computational Cost

We report the computational cost of all methods for a typi-
cal video with 352 × 288 × 85 voxels—we record the time
and peak memory consumption on a laptop featured with
Intel Core i7-3740QM@ 2.70GHz and 32GB RAM running
Linux, see Table 2. All methods are implemented in C except
NCut (Matlab) and TSP (Matlab with MEX). Furthermore,
all methods are single threaded except NCut running with 8
threads with resized resolution to 240 × 160.

5.7 Discussion

We evaluate seven methods over six datasets by the met-
rics defined above. We focus the evaluation in the range of 0
to 2000 supervoxels per-video (Figs. 2, 4) as well as 0 to 1500
supervoxels per-frame (Figs. 3, 5). We do the best to accom-

Table 2 Computational cost

GB GBH streamGBH SWA TSP MeanShift NCut

Time (s) 115 1166 1000 934 1440 101 1198

Memory
(GB)

6.9 9.4 1.6 19.9 0.9 3.8 20.9
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Fig. 2 Graphs plot the number of supervoxels per-video (x-axis)
against various metrics (y-axis). Datasets are organized by columns
and metrics are organized by rows. Black arrows in each row are used
to indicate the direction of better performance with regard to the metric.

Plot ranges along the y-axis are aligned for all metrics except UE3D.
Plotted dots are the average score of linear-interpolated values from all
videos in a dataset at the same number of supervoxels per-video (Color
figure online)
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Fig. 3 Graphs plot the number of supervoxels per-frame (x-axis)
against various metrics (y-axis). Datasets are organized by columns
and metrics are organized by rows. Black arrows in each row are used
to indicate the direction of better performance with regard to the metric.

Plot ranges along the y-axis are aligned for all metrics except UE3D.
Plotted dots are the average score of linear-interpolated values from all
videos in a dataset at the same number of supervoxels per-frame (Color
figure online)
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Liu et al (2008a) Middlebury Flow

Fig. 4 Plots for Label Consistency (LC) against the number of super-
voxels per-video (x-axis). Black arrow indicates the direction of better
performance. Plotted dots are the average score of linear-interpolated
values from all videos in a dataset at the same number of supervoxels
per-video (Color figure online)

modate all methods in the above range, but not all methods
can generate the full range of plots (e.g. Mean Shift requires
hugememory to generate over 500 supervoxels per-frame for
a typical video). The visualization of supervoxel segmenta-
tions can be found in Fig. 6. For the rest of this section, we
first discuss the choice of two plot bases in Sect. 5.7.1, then
conclude our findings in Sect. 5.7.2.

5.7.1 Plot Bases

We plot the results with two types of plot bases, namely the
number of supervoxels per-video and per-frame. We sum-
marize the rationale below, which basically distinguishes the
two bases according to how space and time are treated.
Number of Supervoxels Per-Video (spv) In the earlier version
of our paper (Xu and Corso 2012), the number of supervox-
els per-video is used for plotting figures of metric scores.
Here, time is considered as an analogous, third dimension
and treated accordingly, as in the definition of supervoxels.
Hence, for example, one can consider this as a means of eval-
uating the compression-rate of a video as a whole. However,
it may incorrectly relate videos of different lengths.
Number of Supervoxels Per-Frame (spf) Chang et al. (2013)
use the number of supervoxels per-frame (in this case, it is the
same as the number of superpixels per-frame) in their evalu-
ation. The mindset behind that differentiates the time dimen-
sion in a video from the spatial dimensions, such that the
plot basis is not subject to different video lengths or motion.
However, this approach fails to account for the temporal qual-
ities of supervoxels—a good superpixel method can do well.
For example, UE3D degenerates to UE2D for a superpixel
method because it has perfect temporal boundaries.
Summary We hence present plots against both bases and we
discuss their comparisons.

5.7.2 Top Performing Methods

Themetrics using human annotations, namelyUE3D, SA3D,
BRD and LC, reflect different preferences for supervoxels
(see Sect. 2.2). A perfect segmentation can have all the best
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Fig. 5 Plots for Label Consistency (LC) based on the number of super-
voxels per-frame (x-axis). Black arrow indicates the direction of better
performance. Plotted dots are the average score of linear-interpolated
values from all videos in a dataset at the same number of supervoxels
per-frame (Color figure online)

scores with respect to these metrics, while, often, a typical
segmentationhas its strengths in a subset of themetrics (recall
the example in Fig. 1). Therefore, we organize our findings
of the top performing methods by each metric and discuss
the differences among datasets, if any. Recall that our choices
of datasets in Sect. 4 represent many different types of video
data (e.g. SegTrack v2 has only foreground object labels, and
BuffaloXiph has pixel-level semantic class labels). Belowwe
list the key results.
UE3D For most cases, TSP has the best performance fol-
lowed by SWA and GBH. The three methods perform
similarly well on CamVid for spv in Fig. 2. However, TSP
stands out when evaluating for spf in Fig. 3.
SA3D GBH performs best on BuffaloXiph for spv, whereas
TSP performs best when plotted by spf. GBH, SWA and TSP
perform almost equally well on SegTrack v2. TSP performs
best on BVDS, where annotators are instructed to label all
objects on sampled frames of a video. SWA and GBH per-
form equally best on CamVid for spv, but when plotting by
spf, SWA and TSP perform the best.
BRD GBH is the clear winner method in this metric, and
following that are streamGBH and SWA. GB has a faster
trend to approach GBH than streamGBH on CamVid and
BVDS for spf.
LC TSP (the only method that uses optical flow in the imple-
mentations we use) has the best performance and there is a
clear performance gap on Middlebury Flow, where videos
only have two frames (Figs. 4, 5). Furthermore, unlike the
othermethods, the performance of TSP dose not dramatically
decrease when spv and spf increase on Middlebury Flow.
EV SWA has the overall best performance and followed by
GBH and TSP. GBH ranks better than TSP on BuffaloXiph
for spv, but the ordering swapped when plotting against spf.
MSV TSP has the best performance followed by streamGBH
and GB except on CamVid for spv, where GB performs the
best.
TEX GBH has the longest temporal extent for both spv and
spf within the range we plotted. We note Chang et al. (2013)
show thatTSPhas better performance thanGBH in a different
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Fig. 6 Visual comparative results of the sevenmethods onvideos. Each
supervoxel is rendered with its distinct color and these are maintained
over time. We recommend viewing these images zoomed on an elec-
tronic display. In the top part, we show a video from Liu et al. (2008a)
where label consistency is computed and shown in black and white

(white pixels indicate inconsistency with respect to groundtruth flow).
In the middle part, we show videos from SegTrack v2 and BuffaloXiph,
where groundtruth object boundaries are drawn in black lines. We show
a video from BVDS on the bottom
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spectrum of spf on Liu et al. (2008a) and SegTrack (Tsai et al.
2010).

Over all seven methods, GB and Mean Shift are the most
efficient in time. Interestingly, neither GB nor Mean Shift
performs best in any of the human annotation related quality
measures—there is an obvious trade-off between the com-
putational cost of the methods and the quality of their output
(in terms of our metrics).

We have focused on the facts here. Although under-
standing why these various algorithms demonstrate this
comparative performance is an ultimate goal of ourwork, it is
beyond the scope of this paper and would require a substan-
tionally deeper understander of how space and time relate in
video analysis. To overcome this limitation, we map these
comparative performances onto specific problem-oriented
needs in the Conclusion (Sect. 7).

6 Supervoxel Classification

In this section, we evaluate the supervoxel methods in a
particular application: supervoxel semantic label classifica-
tion. We use this application as a proxy to various high-level
video analysis problems. For example, superpixel classifi-
cation scores are frequently used as the unary term when
building subsequent graphical model for scene understand-
ing in images, e.g., Gould et al. (2009). We use the CamVid
dataset for this task due to its widely use in semantic pixel
labeling in videos. Recall that CamVid has videos over ten
minutes and labeled frames with 11 semantic classes at 1Hz,
such as building, tree, car and road. We follow the standard
training/test split: two daytime and one dusk sequence for
training, and one daytime and one dusk sequence for test-
ing. We process the videos into supervoxel segmentations
as described in Sect. 4.1. We use all supervoxel methods
except for the NCut method because of its high memory
requirement for these CamVid data, which rendered the
size of the supervoxels too large to train meaningful clas-
sifiers.
Supervoxel Features Tighe and Lazebnik (2010) extract a set
of low-level features on superpixels and use the supervoxels
generated by Grundmann et al. (2010) for their video parsing
on CamVid dataset. We apply a similar set of features with
some modifications to suit for our task. We first dilate the
2D slices of supervoxels by 3 pixels and then extract fea-
tures histograms from supervoxel volumes. To be specific,
we compute histogram of textons4 and dense SIFT descrip-
tors with 100 dimensions each.We also compute two types of
color histograms, RGB and HSV, with 8 bins each channel.
We describe the location of a supervoxel volume by averag-
ing the distances of bounding boxes of its 2D slices to image

4 http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html.

boundaries. In addition to image features, we calculate dense
optical flow and quantize flows in a supervoxel volume to 8
bins each according to vertical and horizontal velocity, and
speedmagnitude.Note that thewaywe extract the feature his-
tograms is different than Tighe and Lazebnik (2010), where
they use one representative superpixel of a supervoxel (the
2D slice with largest region). We think that the volume has
better potential to represent the change of a supervoxel over
time. We also note that more sophisticated video features
can be added to supervoxel volumes such as dense trajec-
tories (Wang et al. 2013) and HOG3D (Kläser et al. 2008).
However, for a fair comparison of supervoxel methods, we
stick to the dense image features and optical flow in order to
prevent favoring one supervoxel method than another.
Supervoxel Labels We assign a supervoxel with the most
frequent groundtruth label occur in its volume and ignore
supervoxels that fail to touch groundtruth frames (labeled
at 1Hz on CamVid). We note that this step is distinct from
most image superpixel classification work, e.g., Gould et al.
(2009), since videos are often sparsely labeled while images
are densely labeled. Therefore, this step may introduce more
noise in both training and testing than the image super-
pixel classification work, and it is closely related to two of
our benchmark metrics—UE3D in Sect. 5.1 and SA3D in
Sect. 5.2. We apply the pixel-level average per-class accu-
racy and global pixel accuracy to evaluate this supervoxel
label assignment step and the top part in Fig. 7 shows the
performance for all six methods in the experiment. Rather
than using linear interpolated values as in Figs. 2, 3, 4, and 5,
the plotted dots here map to actual segmentations generated
by a single run of the algorithm over the dataset, and the plot
basis is the number of supervoxels for every 100 frames.
Classification Performance Finally, we use linear SVMs5 on
supervoxels to get the classification results on the test set. The
output segmentations are for the entire video but we evaluate
only on the labeled frames. We again show the performance
in terms of pixel-level average per-class and global accuracy
in the bottom part in Fig. 7 with the number of supervoxels
ranging from less that 100 tomore than 900 every 100 frames.
To compare with pixel-based image segmentation method,
we note that Brostow et al. (2008) report 53.0% average per-
class and 69.1% global accuracy by using both appearance
and geometric cues. The supervoxel-based methods with our
setup in general achieve a better global pixel performance
but a worse average per-class accuracy (e.g. 500 supervoxels
in Fig. 7) with respect to the range of supervoxel numbers we
sampled for the evaluation.We suspect that some classeswith
small regions, such as sign symbol and bicyclist, become too
small to capture when we scale the videos down to a much
lower resolution (a quarter of the original) to accommodate
all six supervoxel methods.

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Fig. 7 Plots on the top are the pixel-level average per-class accuracy
(left) and global accuracy (right) for both training and testing sets when
supervoxels directly take groundtruth labels (the most frequent ones in
volumes). Plots on the bottom are the pixel-level classification perfor-
mance on the test set with SVMs trained on supervoxels. We show the
plots in the range of 100–900 supervoxels every 100 frames (x-axis).
The plotted dots are from actual segmentations rather than interpolated
values. We note that Brostow et al. (2008) report 53.0 % average per-
class and 69.1% global accuracy using random forests trained on pixels
with both appearance and geometric cues, where we only use appear-
ance cues with supervoxels (Color figure online)

Figure 8 shows the pixel-level labeling accuracy for each
class in the dataset. For large classes, such as road and sky,
the performance of all methods is not largely affected by the
number of supervoxels, except the performance for building,
which rises then falls. This rise and fall results in a decrease

in the overall global performance (see bottom right in Fig. 7).
We explain this rise and fall behavior of the building class
due to the overall scale-varying texture of buildings and the
challenge to learn classifiers on them that perform equally
well at different scales; for example, smaller supervoxels will
cover small portions of buildings, say windows or bricks,
which have distinct visual characteristics, yet a single clas-
sifier is to be learned (in our evaluation). For other classes
the performance increases when adding more supervoxels,
and different methods have distinct performance on differ-
ent classes. For example, GBH leads the score on pedestrian
whileTSPandSWAare themethods of choice on car. Further
investigation is needed to better understand these nuances.

Figure 9 shows visual comparison of six methods on two
clips from the daytime test video. Although GB and Mean
Shift successfully segment the sidewalk in the supervoxel
segmentation, they miss a large portion of the sidewalk in
the labeling, while the other methods capture it well. The
tree tends to be better labeled by GBH. All methods seg-
ment the moving cars well. However none of the method
get the small sign symbol in the second clip. We also show
the results during dusk in Fig. 10. GB works poorly here;
the greedy algorithm of GB is highly sensitive to local color
thus it easily produces large incorrect segments. TSP visually
segments bicyclist well regardless the incorrect boundaries.
We think this is due to the compact shape of supervoxels that
TSP generated can better track the superpixels on the bicy-
clist and prevent easily merging with other large segments
such as sidewalk, tree and road. However, it also brings more
fragmented segments on large smooth regions, such as road
and sidewalk and weak boundary accuracy.

Overall, GBH, SWA and TSP achieve equally strong per-
formance in the supervoxel classification experiment (see
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Fig. 8 Pixel-level labeling accuracy for each semantic class in the
CamVid dataset, where the percentages of total pixels for each class
are shown on top. All plots are shown in the range of 0 to 1000 super-
voxels every 100 frames (x-axis). The first six plots (horizontal) are

plotted with an accuracy range from 0 to 1, and the other plots are from
0 to 0.3. We do not show the class Sign Symbol (0.17%) here due to its
low accuracy for all methods (Color figure online)
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Fig. 9 Example results on two short clips from the CamVid daytime test video. Images in the first column are video frames and groundtruth labels
and the remaining columns are individual methods with supervoxel segmentation and semantic labeling on supervoxels
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Fig. 10 Example results on a clip from the CamVid dusk test video. Images in the first column are video frames and groundtruth labels and the
remaining columns are individual methods with supervoxel segmentation and semantic labeling on supervoxels

Fig. 7), and, again, they are the top performing ones in terms
of our benchmark evaluation in Sect. 5. Methods such as GB
andMeanShift have poor classification performance also per-
form less well on the benchmark metrics. For the streaming
methods, streamGBH achieves very similar performance to
its full-video counterpart GBH.

7 Conclusion

Wehave presented a thorough evaluation of seven supervoxel
methods including both off-line and streaming methods on a
set of seven benchmark metrics designed to evaluate super-
voxel desiderata as well as the recognition performance on a
particular application. Samples from the datasets segmented
under all seven methods are shown in Figs. 6, 9, and 10.
These visual results convey the overall findings we have
observed in the quantitative experiments. GBH, SWA and
TSP are the top-performers among the seven methods in
both our benchmark evaluation and the classification task.
They all share a common feature in that they perform well

in terms of segmentation accuracy, but they comparatively
vary in performance in regard to the other metrics. GBH cap-
tures object boundaries best making it well suited for video
analysis tasks when accurate boundaries are needed, such as
robot manipulation. SWA has the best performance in the
explained variation metric, which makes it most well-suited
for compression applications. TSP follows object parts and
achieves the best undersegmentation error making it well-
suited for fine-grained activity analysis and other high-level
video understanding problems. It seems evident that themain
distinction behind the best offlinemethods, namely GBH and
SWA, is the way in which they both compute the hierarchi-
cal segmentation. Although the details differ, the common
feature among the two methods is that during the hierar-
chical computation, coarse-level aggregate features replace
or modulate fine-level individual features. In contrast, TSP
processes a video in a streaming fashion and also produces
supervoxels that are the most compact and regular in shape.
These differences suggest a complementarity that has the
potential to be combined into a new method, which are cur-
rently investigating.
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In this paper, we have explicitly studied the general super-
voxel desiderata regarding a set of proposed benchmark
metrics including both human annotation dependent and
independent ones. In addition, we compare the supervoxel
methods in a particular application—supervoxel classifica-
tion that evaluates methods in a recognition task, which we
consider to be a proxy to various high-level video analysis
tasks in which supervoxels could be used. A strong corre-
lation is presented between the benchmark evaluation and
the recognition task. Methods, such as GBH, SWA and TSP,
that achieve the top performance in the benchmark evalua-
tion also perform best in the recognition task. The obvious
question to ask is how well will the findings translate to
other application-specific ones, such as tracking and activ-
ity recognition. A related additional point that needs further
exploration for supervoxel methods is the modeling of the
relationship between spatial and temporal domains in a video.
We plan to study these important questions in future work.
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