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Abstract This paper proposes a new similarity mea-
sure that is invariant to global and local affine illumination
changes. Unlike existing methods, its computational com-
plexity is very low. When used for stereo correspondence
estimation, its computational complexity is linear in the num-
ber of image pixels and disparity searching range. It also
outperforms the current state of the art similarity measures
in terms of accuracy on the Middlebury benchmark (with
radiometric differences).

Keywords Stereo Matching · Minimum spanning tree ·
Radiometric variation

1 Introduction

Computational stereo continues to be an active area of intense
research interest (Brown et al. 2003; Scharstein and Szeliski
2002b). The community has made significant progress in
terms of both accuracy (Yang et al. 2009; Klaus et al. 2006;
Wang and Yang 2011) and efficiency (Yang et al. 2010;
Yang 2015) in the past decade. However, most of these
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achievements were obtained based on the intensity consis-
tency assumption, i.e., the intensity should be the same in
both images if it corresponds to the same world point in the
scene.

In practice, there will be radiometric differences caused
by exposure and illumination changes, especially on com-
munity photo collections (Snavely et al. 2006; Goesele et al.
2007). Themost popular affine illumination invariant similar-
ity measure is normalized cross-correlation (NCC). It is used
inmany other vision tasks besides stereomatching. However,
it suffers from the fattening effect around occlusions. Cen-
sus transform (Zabih and Woodfill 1994) is more robust to
occlusion. It is indeed an image transform that captures the
local order of intensities rather than the raw intensity value,
and thus the computational complexity of the transform is
independent of the disparity search range. However, it can
be operated only on a single image channel and reconstruc-
tion accuracy is not comparable to the current state-of-the-art
around depth edges.

The first edge-preserving affine illumination invariant
similarity measure—ANCC was proposed by Heo et al.
(2011). It is essentially an integration of the joint bilateral
filter with NCC for maintaining depth edges, which are nor-
mally also the color edges. In Yoon and Kweon (2006), the
joint bilateral filter is used with the reference camera image
as guidance to smooth the matching cost for noise reduction
without blurring across the color edgeswhichnormally corre-
sponds to the depth edges. Mutual Information (MI) (Egnal
2000; Kim et al. 2003; Hirschmuller 2008) is also used as
a similarity measure in stereo matching but is only robust
to global illumination changes (Hirschmuller and Scharstein
2009). Heo et al. (2009) later combined MI with the SIFT
descriptor to handle local radiometric variations. Heo et al.
(2013) also developed an iterative framework that infers both
accurate depth maps and color-consistent stereo images for
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radiometrically varying stereo images. All the above similar-
ity measure metrics were developed under the assumption of
Lambertian scenes. Using as few as two stereo image pairs
captured under different illumination conditions, Wang et al.
(2007) proposed a new invariant measure called light trans-
port constancy based on a rank constraint for non-Lambertian
surfaces.

This paper proposes a new similarity measure that out-
performs the state of the art in terms of both accuracy and
speed. It is invariant to global and local affine illumination
changes and is valid only for Lambertian scenes. The simi-
larity measure is derived as follows: (1) finding an optimal
local affine transform at every correspondence based on the
local linear model; (2) computing the similarity according
to the affine transform. The computation of the affine trans-
form is formulated as an image filtering problem that can
be solved efficiently and effectively using edge-preserving
filters (e.g., the tree filter Yang (2015) whose computational
complexity is the same as the box filter). The experimental
results are evaluated on the Middlebury data set (Scharstein
and Szeliski 2002a), showing that our similarity measure is
the top performer.

2 Illumination Invariant Stereo Correspondence

In this section, we give a detailed description of the pro-
posed similarity measure and its usage in stereo matching.
Section 2.1 gives a brief overview of the linear local model
and Sect. 2.2 presents the detailed extension of this model
for a new affine illumination invariant similaritymeasure and
formulates correspondence estimation as an image filtering
problem.

The derivation of the affine illumination invariant simi-
larity measure is closely related to the Matting Laplacian
proposed in Levin et al. (2008) and its approximate -Guided
Image Filter in He et al. (2013). The detailed relationship is
discussed in Sect. 2.2.1. Section 2.3 extends the framework
in Sect. 2.2 to color image. Section 2.4 gives a detailed dis-
cussion of the potential image filters that are suitable for the
proposed framework and Sect. 2.5 presents a new filtering
method for the proposed similarity measure.

2.1 Linear Local Model

This section gives a brief introduction of the linear local
model in computer vision. The linear local model is normally
used to find a locally affine projection/mapping between two
images by minimizing the projection error between the two.
It has been demonstrated to be very effective for many com-
puter vision applications including super resolution (Zomet
and Peleg 2002), natural image matting (Levin et al. 2008),
haze removal (He et al. 2011), and image filtering (He et al.

2013). The fast edge-aware filtering technique proposed in
He et al. (2013) is a great success and has beenwidely used as
a basic tool in many computer vision and computer graphics
tasks like image matting (He et al. 2011), stereo matching
(Hosni et al. 2013; De-Maeztu et al. 2011; Zhu et al. 2012),
image retargeting (Ding et al. 2011), and image coloriza-
tion (Chia et al. 2011), etc. The affine illumination invariant
similarity measure proposed in Sect. 2.2 is an extension of
the linear local model used in Levin et al. (2008) and its fast
solutions presented in Sect. 2.4 and 2.5 are inspired by He
et al. (2013).

2.2 Affine Transform for Gray-Scale Images

Let IL and IR denote the left and right image of a gray-scale
stereo image pair, respectively. The traditional similarity
measure metric for stereo matching is based on the inten-
sity/color consistency assumption. That is, the corresponding
pixels in IL and IR should have the same intensities:

IL(p) = IR(p′), (1)

where p and p′ denote the corresponding pixels in IL and
IR , respectively.

However, there will be radiometric differences caused by
exposure and illumination changes in practice. In this case,
the corresponding pixels will have different brightness val-
ues, and the intensity of the image cannot be used as the
matching invariant anymore. Under the assumption of global
affine illumination changes, we can linearly transform IR
so that the resulting image intensity can be directly used
for matching. This assumption is, however, too restrictive
and not practical. This paper relaxes it by assuming that the
affine illumination changes are locally smooth so that the
affine transform will be the same or very close inside a local
region:

IL(p) = Ap,p′(IR(p′)) = ap,p′ · IR(p′) + bp,p′ , (2)

where ap,p′ and bp,p′ are two parameters of the affine trans-
form Ap,p′ between pixel p and p′. Let Δ=p − p′ denote
the motion vector between p and p′, and IR,Δ be the shifted
version of image IR according to motion vector Δ so that
IR,Δ(p)=IR(p′), Eq. (2) can be rewritten according to each
possible motion vector candidate Δ as follows:

IL(p) = ap · IR,Δ(p) + bp, (3)

where ap=ap,p′ and bp=bp,p′ .
Note that in practice, nonlinear gamma correction will be

normally applied to the response of the camerawhich is linear
in the flux of the incident light; thus the local affine transform
assumption will be violated. A potential solution is using the
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logarithm of the image but the dissimilarity between images
will be reduced. As a result, ANCC (Heo et al. 2011) com-
bines the similarity measure obtained from both the original
image and its logarithm. However, we use only the original
image to demonstrate that the proposed similarity measure is
robust to the violation of the local affine transform assump-
tion.

The illumination invariant stereomatchingproblem is then
formulated as the computation of the affine transform at each
pixel location using Eq. (3). Let Φp denote all pixels that
have the same affine transform as pixel p in IL , Eq. (3) can
be extended as

⎛
⎜⎜⎝

...
...

IR,Δ(q) 1
...

...

⎞
⎟⎟⎠ ·

(
ap
bp

)
=

⎛
⎜⎜⎝

...

IL(q)
...

⎞
⎟⎟⎠ , (4)

where q ∈ Φp.
Let

A =

⎛
⎜⎜⎝

...
...

W(p, q) · IR,Δ(q) W(p, q) · 1
...

...

⎞
⎟⎟⎠ (5)

and

B =

⎛
⎜⎜⎝

...

W(p, q) · IL(q)
...

⎞
⎟⎟⎠ , (6)

Eq. (4) can be rewritten as

A ·
(
ap
bp

)
= B (7)

for any pixel q ∈ IL under the assumption that there exists a
functionW that can perfectly decide whether q has the same
affine transform as p:

W(p, q) =
{
1 ap = aq and bp = bq ,
0 otherwise.

(8)

The linear system presented in Eq. (7) can be solved
efficiently using Conjugated Gradient (Hestenes and Stiefel
1952) because the order of the linear system is very low with

AT A

=
(∑

q∈IR,Δ
W(p, q)2 · I 2R,Δ(q)

∑
q∈IR,Δ

W(p, q)2 · IR,Δ(q)∑
q∈IR,Δ

W(p, q)2 · IR,Δ(q)
∑

q∈IR,Δ
W(p, q)2

)

(9)

and

AT B =
(∑

q∈IL W(p, q)2 · IL(q) · IR,Δ(q)∑
q∈IL W(p, q)2 · IL(q)

)
. (10)

Note that each element of AT A and AT B can be treated
as the response of a spatial filter (without a normalization
step) weighted by W(p, q)2 = W(p, q). Let F denote this
filter,FX (p) denote the corresponding response of an image
X at a pixel location p, and I · J denote the the element-by-
element multiplication result of image I and another image
J ; the linear system in Eq. (7) can be rewritten as:

(FIR,Δ·IR,Δ
(p) FIR,Δ

(p)
FIR,Δ

(p) 1

)
· X =

(FIL ·IR,Δ
(p)

FIL (p)

)
, (11)

where X =
(
ap
bp

)
. The matching cost obtained at pixel p

with motion vector Δ is

∑
q∈IL

W(p, q) · (
IL(q) − ap · IR,Δ(q) − bp

)2

= FIL ·IL (p) + a2p · FIR,Δ·IR,Δ
(p) + b2p − 2bp · FIL (p)

−2ap · FIL ·IR,Δ
(p) + 2apbp · FIR,Δ

(p). (12)

The detailed derivation of Eq. (12) is presented in Appen-
dix 1.

Apparently, the computational complexity of the match-
ing cost at each correspondence/disparity candidate mainly
depends on the computational complexity offilterF .Accord-
ing to Eqs. (11) and (12), filter F will be applied to a total
of five images including IL , IL · IL , IR,Δ, IL · IR,Δ and
IR,Δ · IR,Δ. Nevertheless, image IL and IL · IL is indepen-
dent of motion vector Δ, and thus is only filtered once. As a
result, the computational complexity of the proposed invari-
ant matching cost can be very efficient - O(1) at every pixel
given a motion vector candidate Δ, as long as filter F has a
O(1) solution.

2.2.1 Relation to the Matting Laplacian (Levin et al. 2008)
and Guided Image Filter (Scharstein and Szeliski
2002a)

The derivation of the affine illumination invariant similarity
measure in Sect. 2.2 is closely related to the solutions of the
linear systems in Levin et al. (2008) and He et al. (2013). Let
β denote a coarse alpha matte (e.g., a trimap); Levin et al.
(2008) expresses the alpha matte α of a grayscale image I as
a locally linear function

αp = ap Ip + bp, (13)
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with the constraint that

αp ≈ βp (14)

at each pixel location p, for instance, αp = βp for confident
pixels in the coarse alpha matte.

Note that Eq. (13) is the same as Eq. (3) in Sect. 2.2, and
Eq. (14) gives a weight to each linear equation in the linear
system in Eq. (13). This is indeed very close to function W
defined in Eq. (8).

In practice, Levin et al. (2008) computes an N ×N matrix
L named Matting Laplacian at each pixel location to elim-
inate the linear mapping functions {ap, bp} and formulates
the computation of the unknown alpha matte as

(L + Λ)α = Λβ, (15)

where Λ is a diagonal matrix encoded with the weights of
the constraints. The fast filtering technique presented in He
et al. (2013) can be used as a good approximation of the
global optimized solution in Levin et al. (2008) when β is
reasonably good. Based on the following linear system

βp = ap Ip + bp, (16)

it computes linear mapping functions {ap, bp} via linear
regression:

ap =
1

|wp |
∑

q∈wp
Iqβq − μpβ̄p

σ 2
p + ε

, (17)

bp = β̄p − apμp, (18)

where μp and σ 2
p are the mean and variance of I in a local

patch wp around pixel p, |wp| is the number of pixels inwp,
and β̄p is the mean of β in wp. The mean of the mapping
function (āp = 1

|wp |
∑

q∈wp
ap and b̄p = 1

|wp |
∑

q∈wp
bp) is

used to compute the alpha matte

αp = āp Ip + b̄p. (19)

The computational complexity of this approximation is very
low. The main computation is the box filtering/mean oper-
ations in Eq. (17) which can be computed in time linear in
the number of pixels. It is similar to our solution for Eq. (12)
whose computational complexity is also O(1) at every pixel
given a motion vector candidate Δ, as long as filter F has a
O(1) solution.

2.3 Extension to Color Images

The illumination invariant stereo correspondence framework
in Sect. 2.2 is derived based on grayscale images. This sec-
tion further extends it to color images. A color image has

three color channels: red, green, and blue channel. A simple
extension is using the sumof thematching cost obtained from
each color channel. However, this extension ignores the rela-
tionship between the color channels. Similar to Levin et al.
(2008), this section extends the affine transform presented in
Eq. (3) by assuming that there is a linear affine relationship
between a color channel of an image (e.g., IL ) and all the
color channels of the image to be matched (e.g., IR). Let I c

denote the c-th channel of an image I , Eq. (3) can be extended
for color images as follows:

I 1L(p) = a11p I 1R,Δ(p) + a12p I 2R,Δ(p) + a13p I 3R,Δ(p) + b1p,

I 2L(p) = a21p I 1R,Δ(p) + a22p I 2R,Δ(p) + a23p I 3R,Δ(p) + b2p,

I 3L(p) = a31p I 1R,Δ(p) + a32p I 2R,Δ(p) + a33p I 3R,Δ(p) + b3p.

(20)

Let I c · I ′c′
denote the element-by-element multiplication

result of the c-th channel of a color image I and c′-th channel
of another color image I ′, and

X̃ =
⎛
⎝
a11p a12p a13p b1p
a21p a22p a23p b2p
a31p a32p a33p b3p

⎞
⎠

T

(21)

Eq. (11) can be extended for color images as follows:

⎛
⎜⎜⎜⎜⎝

FI 1R,Δ·I 1R,Δ
(p) FI 1R,Δ·I 2R,Δ

(p) FI 1R,Δ·I 3R,Δ
(p) FI 1R,Δ

(p)

FI 2R,Δ·I 1R,Δ
(p) FI 2R,Δ·I 2R,Δ

(p) FI 2R,Δ·I 3R,Δ
(p) FI 2R,Δ

(p)

FI 3R,Δ·I 1R,Δ
(p) FI 3R,Δ·I 2R,Δ

(p) FI 3R,Δ·I 3R,Δ
(p) FI 3R,Δ

(p)

FI 1R,Δ
(p) FI 2R,Δ

(p) FI 3R,Δ
(p) 1

⎞
⎟⎟⎟⎟⎠

· X̃

=

⎛
⎜⎜⎜⎜⎝

FI 1R,Δ·I 1L (p) FI 1R,Δ·I 2L (p) FI 1R,Δ·I 3L (p)
FI 2R,Δ·I 1L (p) FI 2R,Δ·I 2L (p) FI 2R,Δ·I 3L (p)
FI 3R,Δ·I 1L (p) FI 3R,Δ·I 2L (p) FI 3R,Δ·I 3L (p)
FI 1L

(p) FI 2L
(p) FI 3L

(p)

⎞
⎟⎟⎟⎟⎠

, (22)

and the matching cost at pixel p is

3∑
c1=1

∑
q∈IL

W(p, q) · (I c1L (q)

−
3∑

c2=1

ac1c2p I c2R,Δ(q) − bc1p )2 =
3∑

c1=1

FI c1L ·I c1L (p)

+
3∑

c3=1

3∑
c2=1

(

3∑
c1=1

ac1c2p · ac1c3p )FI c2R,Δ·I c3R,Δ
(p)

+
3∑

c1=1

(bc1p )2 − 2
3∑

c1=1

bc1p FI c1L
(p)
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Fig. 1 Numerical comparison of different approximations of filter
F on stereo correspondence estimation under different radiometric
variations. a Presents the average errors under different exposure com-
binations and b presents the average errors under different illumination

combinations. The edge preserving bilateral and nonlocal tree filters
perform better than the others under both exposure and illumination
changes

− 2
3∑

c1=1

3∑
c2=1

ac1c2p FI c1L ·I c2R,Δ
(p)

+ 2
3∑

c2=1

(
(

3∑
c1=1

ac1c2p · bc1p ) · FI c2R,Δ
(p)

)
(23)

The detailed derivation of Eq. (22) and (23) is presented in
Appendix 2 and 3.

2.4 Discussion of Filter F

Sections 2.2 and 2.3 reformulate the correspondence esti-
mation problem as an image filtering problem with the
assumption of a perfect filter F defined in Eq. 8. However,
this filter does not exist in practice. This section presents a
discussion of the potential approximations of the perfect F
using existing image filters.

An optimal F filter can perfectly determine whether two
pixels have undergone the same illumination changes or not
by giving out a binary response, where “0” means different
illumination changes and “1” means the same illumination
changes. The first class of approximations of F are popular
low pass filters including Box filter and Gaussian filter. The
basic assumption is that when two pixels are spatially close
to each other, then they are likely to have the same illumi-
nation changes. The detailed numerical comparison of the
performance of the two spatial filters is presented as the blue
and green curves in Fig. 1. The parameters for each filter
(e.g., filter kernel size) are all trained using the Aloe data
set (Scharstein and Szeliski 2002a) with no illumination or
exposure changes. The trained parameters are used for all
the other data sets and other illumination/exposure settings.
Note that although the box filter also gives a binary response
by giving all neighboring pixels all equal weights and rejects

all pixels outside the filter, its performance is indeed lower
than the Gaussian filter that weights contribution of neigh-
borhood pixels according to their closeness to the center. In
the Gaussian filter, pixels further away from the center will
be weighted less as they are more likely to undergo different
illumination changes, and this is a better approximation of
F in Eq. 8.

Besides spatial distance, the color distance can also be
used to measure the similarity between two pixels. If two
pixels have different colors, they are also likely to have differ-
ent illumination changes. Figure 2 presents the illumination
change maps with the ground-truth disparity maps of the
Aloe and Art data sets under different lighting and exposure
changes between left and right images. This shows that two
pixels are likely to have similar illumination variance if they
are close to each other and have similar color. Low pass fil-
ters that take into account both spatial and color distance are
normally edge-preserving filters, and the bilateral filter is the
most popular one. A bilateral filter is similar to the Gaussian
filter but has an additional filter kernel named range filter
kernel that respond with respect to the color similarity, and
a joint bilateral filter uses an additional image as the guid-
ance to compute the range filter kernel. The joint bilateral
filter outperforms the Gaussian filter on average as shown in
Fig. 1 when the reference camera image is used as the guid-
ance image to compute the range filter kernel. Note that the
cyan curves (corresponding to the joint bilateral filter) are
normally below the green curves.

The main limitation of the use of the (joint) bilateral filter
is that the computational complexity of its brute-force imple-
mentation is high. The recent tree filter proposed by Yang
(2015) is indeed also a special type of bilateral filter. Unlike
the standard bilateral filter, it performs by filtering along a
minimum spanning tree (MST) and thus the computational
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Ground truth(illum3/exp1)(illum1/exp1)(illum2/exp2)(illum2/exp0)

Ground truth(illum2/exp1)(illum1/exp1)(illum2/exp1)(illum2/exp0)
(a) (b) (c) (d) (e) (f) (g)

Fig. 2 Illumination change maps on Aloe and Art data sets under dif-
ferent illumination and exposure combinations. a, b Input left and right
images under exposure changes and d, e input left and right images
under illumination changes. c, f Corresponding illumination change
maps computed from a, b and d, e, respectively. g Ground-truth dis-

parity maps. c, f demonstrate that the illumination change between two
pixels is closely related to their spatial distance and color differences: if
two pixels are spatially close to each other and have similar color, they
are likely to have similar illumination change

Fig. 3 Visual comparison of different approximations of filter F on
stereo correspondence estimation under different illumination combi-
nations. a, b Input right image (with illum1/exp1) and left image (with
illum3/exp1) of Dolls data set. c Ground-truth disparity map of b. d–
h are disparity maps obtained from the proposed similarity measure
with filter F being d Gaussian filter, e bilateral filter, f nonlocal tree
filter, g local tree filter, and h combined tree filter, respectively. Note

that the Gaussian filter outperforms standard edge-preserving filters
(e.g., the bilateral filter and nonlocal tree filter) around textured regions.
The numbers presented under each disparity map are the corresponding
percentage of error pixels, which demonstrate that the proposed com-
bination of the local and nonlocal tree filter is the best approximation
of filter F

complexity is extremely low—it is independent of the filter
kernel size. The performance of this nonlocal tree filter is
close to the joint bilateral filter as can be seen in Fig. 1.

Nevertheless, the performance of most edge-preserving
filters are low around highly-textured regions as shown in
Fig. 3e, f. Figure 3d, f present visual comparisons of dis-
parity maps obtained from the proposed similarity measure
method by approximating filter F with Gaussian, bilateral,
and nonlocal tree filters, respectively. The disparity maps
obtained from the joint bilateral filter and nonlocal tree fil-
ter (Fig. 3e, f) appear be more noisy than the disparity map
obtained from the Gaussian filter (Fig. 3d) around textured
regions. A simple combination of an edge-preserving filter
and a Gaussian filter seems to be more reliable. However, it
will definitely decrease the reconstruction accuracy around
depth edges. As a result, a combined filtering framework that
is more robust to textures is presented in Sect. 2.5.

2.5 Combination of Local and Nonlocal Tree Filter

As discussed in Sect. 2.4, the nonlocal tree filter (Yang 2015)
is very suitable for the proposed correspondence estima-
tion framework except around highly-textured regions. The
nonlocal tree filter performs on an MST derived from the
reference camera image. The similarity between any two
pixels is decided by their shortest distance on the MST,
and the distance between every two neighboring pixels (on
MST) was originally defined in Yang (2015) as their color
difference, and thus the distance between any two pixels
on MST will be the sum of the color differences on MST.
As a result, the distance of two pixels inside a flat region
will be always zero. However, the distance between two
pixels inside a highly-textured region is likely to always
be very large and thus the original spatial information is
ignored.
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Fig. 4 Limitation of the local tree filter. a Input left (with illum2/exp0)
and right (with illum2/exp2) images of Bowling2 data set, respectively.
bGround-truth disparity map of a. c–f are disparity maps obtained from
the proposed method with F being the nonlocal tree filter Yang (2015),
local tree filters, and the combined tree filter, respectively. Note that the
local tree filter cannot handle low texture regions (where the nonlocal

filter performs well) when the filter kernel is relatively small. On the
other hand, it cannot preserve all the edgeswhen the filter kernel is large.
The combination of the local and nonlocal tree filters is more reliable.
The numbers presented under each disparity map are the corresponding
percentage of error pixels

To be effective around textured regions, a low-pass filter
can be performed on the same MST by defining the dis-
tance between two neighboring pixels (on MST) to be a
constant value (e.g., “1”). In this case, the behavior of the
resulting filter will be similar to the Gaussian filter around
textured regions. Meanwhile, it still preserves the dominant
color edges because MST has already automatically dragged
away two dissimilar pixels that are close to each other in
the spatial domain but indeed belong to two homogeneous
regions. This filter is referred to as the local tree filter in this
paper. It performs aggregation in two sequential steps. Let
I denote the input image and I A↑ and I A denote the aggre-
gated values after the first and second steps, respectively. I A↑
is computed via recursive aggregation from the leaf nodes to
the root node on the original image I while I A is aggregated
from the root node to the leaf nodes on I A↑:

I A↑(v) = I (v) +
∑

P(vc)=v

exp(−0.5

σ 2 ) · I A↑(vc), (24)

I A(v) = (1 − exp(− 1

σ 2 )) · I A↑(v)

+exp(−0.5

σ 2 ) · I A(P(v)), (25)

where σ = 2.3 is a constant used to control the filter kernel
size and P(v) is the parent of a node v. If node v is a leaf
node (that has no child), then I A↑(v) = I (v). I A(v) = I A↑(v)

if v is the root node.
The disparitymap obtained from the local tree filter is pre-

sented in Fig. 3g. Note that the noise in Fig. 3e, f is removed
from (g).

As a local filter, its performance is low around large tex-
tureless regions (when the filter kernel is small) as can be
seen in Fig. 4d. The nonlocal tree filter on the other hand is
robust to the lack of textures as can be seen in Fig. 4c. We
thus synergistically combine thematching cost obtained from
the local and nonlocal tree filters with a simple summation
operation:

C(p) = Clocal(p) + Cnonlocal(p), (26)

where Clocal(p) and Cnonlocal(p) are the matching costs
computed from Eq. (23) with F being the local tree filter
and nonlocal tree filter, respectively.

The corresponding disparity map is presented in Fig. 4f.
Figure 5 quantitatively compares the performance of the local
treefilter, nonlocal treefilter, and their combination.Note that
the performance of the combined similarity measure always
outperforms the local and nonlocal tree filters (Yang 2015).
This is the main reason why the proposed similarity measure
outperforms other bilateral filter-based similarity measures
like ANCC (Heo et al. 2011). On the other hand, a direct
combination of the nonlocal tree filter and the Gaussian filter
will be more robust to textured regions and can potentially
improve the performance under illumination changes as can
be seen from Fig. 5b. However, as discussed in Sect. 2.4, it
will blur the depth edges and thus degrade the reconstruc-
tion accuracy near discontinuities. The local tree filter can
better preserve edges and thus can obtain higher reconstruc-
tion accuracy near discontinuities when integrated with the
original nonlocal tree filter.
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Fig. 5 Comparison of proposed similarity measure with different
F : nonlocal, local, nonlocal+Gaussian, and combined tree filters.
Notice that nine stereo images (Aloe, Art, Bowling2, Cloth4, Dolls,
Lampshade1, Laundry, Moebius, and Rocks1) are used with different

radiometric variations. a, b Present the average errors under differ-
ent exposure combination and different lighting source combination,
respectively. As can be seen, the combined tree filter can improve the
performance on radiometric variations

3 Experimental Results

We evaluated the proposed method using Middlebury test
data sets (Scharstein and Szeliski 2002a). Similar to
Hirschmuller and Scharstein (2009) and Heo et al. (2011),
a total of nine data sets were used (including Aloe, Art,
Bowling2, Cloth4, Dolls, Lampshade1, Laundry, Moebius
and Rocks1 data sets). These various data sets can provide
different texture conditions. Each of them consists of three
different illuminations (indexed by “illum 1”, “illum 2”, and
“illum 3”) and three different exposures (indexed by “exp
0”, “exp 1”, and “exp 2”), as well as the ground-truth dispar-
ity maps. In our experiments, the exposure was set to “exp
1” when testing on illumination changes, and the illumina-
tion was set to “illum 2” when testing different exposure
changes. As a result, we had a total of nine experiment set-
tings for both illumination and exposure changes. The same
as Hirschmuller and Scharstein (2009) and Heo et al. (2011),
the downsampled versions of all data sets (obtained using
a downsampling factor of 3) were used and the parameters
were all trained using theAloe data setwith no illumination or
exposure changes. The trained parameters were used for all
the other data sets and other illumination/exposure settings.

We quantitatively compared our similarity measure with
the state-of-the-art measures including NCC, Census (Zabih
and Woodfill 1994), ANCC (Heo et al. 2011), and MI+SIFT
(Heo et al. (2013)) on stereo correspondence estimation. The
source codes provided by the authors of ANCC (Heo et al.
2011) and MI+SIFT (Heo et al. 2013) were used to compute
the corresponding disparity maps and measure the computa-
tional cost. MI+SIFT (Heo et al. (2013)) used the boosting
strategy between depth estimation with color consistency. To
make sure that the conducted experiments evaluated only the
performanceon theproposed similaritymeasures, cost aggre-
gation, disparity optimization, and refinement steps that are

normally required in a stereo algorithm were excluded. This
means that a winner-takes-all disparity selection scheme was
directly applied to the matching cost volume obtained from
different similarity measures to compute the corresponding
disparity maps. The errors presented in this paper were only
measured in unoccluded areas as percentages of error pix-
els. The same as the Middlebury benchmark (Scharstein and
Szeliski 2002a), the disparity error threshold was set to one
pixel throughout the experiments. To evaluate only the per-
formance of the similarity measure presented in Heo et al.
(2013), we used the disparity map computed directly from
the initial matching costs (obtained from MI combined with
the SIFT operator) and denoted it MI+SIFT. However, this
matching cost is not the major contribution of Heo et al.
(2013). As a result, we also compared with the complete
solution published by Heo et al. (2013) (using the default
parameters) but explicitly excluded the MRF optimization
step (which is not included in the other similarity measures).
We denoted this methodMI+SIFT(+). It normally converges
in 3–4 iterations and thus we fixed the number of iterations
to four. Unlike MI+SIFT, MI+SIFT(+) includes the SCHE
stereo images generation, plane-fitting, and occlusion han-
dling strategies.

3.1 Exposure Changes

Figure 6a quantitatively evaluates the performance of differ-
ent similarity measures under different exposure combina-
tions. As the exposure variations are more likely to change
the image intensity/color globally, the performance of all
the evaluated methods is relatively high. Census transform
(blue curve) uses the ordering relationship between a pixel
of interest and the other pixels in a neighborhood, and thus
is robust to both linear and nonlinear illumination changes.
However, it is not robust to noise. NCC (cyan curve) is more
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Fig. 6 Quantitative evaluation of different similarity measures under
different exposure and illumination combinations on nine Middlebury
data sets. The average percentages of error pixels are presented. The

red curves demonstrate that the proposedmethod outperforms the state-
of-the-art under exposure/illumination changes in both binocular and
multiview stereo matching (Color figure online)

(17.53%)(26.37%)(35.06%)(32.44%))(38.79%(44.93%)Right

Illuminationchange mapsLeft

(21.60%)(31.93%)(29.76%)(29.45%)(33.84%)(43.42%)Right

Illumination change mapsLeft

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7 Visual evaluation using Laundry and Art data sets under expo-
sure changes. a Left image (with illum2/exp2) and right image (with
illum2/exp0). b is the ground-truth disparity map and the correspond-
ing illumination change map between left and right images. c–h are
the disparity maps (top) and the corresponding illumination change

maps (bottom) obtained fromMI+SIFT, MI+SIFT(+) (Heo et al. 2013),
Census, NCC, ANCC (Heo et al. 2011), and the proposed measure,
respectively. The numbers presented under the disparity maps are the
corresponding percentages of error pixels

robust to noise but suffers from the fattening effect (which
blurs depth edges). As a result, it does not have higher per-
formance (comparing to Census) under global illumination
changes. By introducing the bilateral weights, ANCC Heo
et al. (2011) can significantly reduce the reconstruction errors
around depth edges under relatively small or no exposure
changes. However, its performance is relatively low under
severe exposure differences (e.g., “exp 0/2” or “exp 2/0” in
Fig. 6a). MI+SIFT (Heo et al. 2013) is also robust to global

radiometric changes, but the disparity maps obtained from
this measure are noisy especially around low texture regions
as shown in Fig. 7d. This is due to the use of SIFT which is
vulnerable to the lack of textures. As a result, the reconstruc-
tion error is relatively high on average as shown in the black
curve in Fig. 6a. Unlike MI+SIFT, MI+SIFT(+) includes the
SCHE stereo images generation, plane-fitting, and occlusion
handling strategies which are effective to noise. As a result,
MI+SIFT(+) clearly outperformed MI+SIFT. The proposed
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Fig. 8 Visual evaluation using Moebius and Rocks1 data sets under
lighting source changes. a Left image (with illum3/exp1) and right
image (with illum1/exp1). b Ground-truth disparity map and the cor-
responding illumination change map between left and right images.
c–h Disparity maps (top) and the corresponding illumination change

maps (bottom) obtained fromMI+SIFT, MI+SIFT(+) (Heo et al. 2013),
Census, NCC, ANCC (Heo et al. 2011), and the proposed measure,
respectively. The numbers presented under the disparity maps are the
corresponding percentages of error pixels

similarity measure outperformed the others under all expo-
sure combinations as can be seen in Fig. 6a. Unlike the other
measures, the proposed similarity measure maintains its per-
formance with the increase of the exposure difference, and
thus is clearlymore robust than the others. The corresponding
disparity maps (of the Laundry and Art data sets) obtained
from different similarity measures are presented in Fig. 7 for
visual evaluation.

3.2 Light Source Changes

Figure 6b quantitatively evaluates the performance of differ-
ent similarity measures under different illumination combi-
nations. As can be seen, the errors of all similarity measures
increased rapidly with increasing illumination difference.
This is because existing similarity measures are invariant
to only some specific illumination changes. These illumina-
tion assumptions are normally valid under small illumination
changes but are likely to be violated under severe illumina-
tion changes.

MI is only effective for global radiometric differences.
The combination of MI and SIFT (Heo et al. 2013) increased
the robustness to local radiometric differences, but the recon-
struction error was still high because SIFT is vulnerable to

the lack of textures. Meanwhile, the local order of intensi-
ties is likely to be distorted under local radiometric changes;
and thus the performance of Census decreased rapidly under
severe illumination changes. NCC and ANCC (Heo et al.
2011) had relatively larger errors under severe local radio-
metric differences as well. The performance of the proposed
method was again the highest under different illumination
combinations as can be seen in Fig. 6b. It clearly out-
performed the others especially under severe illumination
changes. Figure 8 presents the disparity maps (of Moebius
andRocks1 data sets) obtained from different similarity mea-
sures for visual evaluation.

3.3 Comparison of Runtime

Table 1 presents the runtime of stereo algorithms using dif-
ferent similarity measures. The experiments were conducted
on a 3.2 GHz Intel Core i7 CPU. As can be seen, the pro-
posed similaritymeasure is the fastest.Also note thatCensus1

and ANCC all are based on local image patches; and thus
the computational complexity is linear in patch size and
increases with respect to the image resolution. On the other

1 The trained patch size for Census transform is 19 × 19.
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Table 1 The exact runtime (in s) on the Aloe data set

Resolution Census MI+SIFT
(Heo et al.
2013)

ANCC
(Heo et al.
2011)

Proposed

Runtime ThirdSize 10.1 18.8 161 2.94

Full 2504 89.7

The runtime of ANCC and MI+SIFT was computed using the source
codes published by the authors. The memory cost of ANCC and
MI+SIFT is not affordable on a standard PC (and is estimated to be
around27GB)when the full-resolutionAloe images (1282×1110×210,
where 210 is the disparity search range) are used. As a result, the cor-
responding runtime is unknown and is not presented in the table

hand, the computational complexity of the proposed mea-
sure is independent of the filter kernel size. Given the trend
towardhigher-resolution images,whichwill correspondingly
require higher filter kernel sizes, the O(1) computational
complexity makes the described similarity measure future-
proof.

3.4 Quantitative Evaluation of Multiview Stereo

The same nine Middlebury test data sets (Scharstein and
Szeliski 2002a) were used to evaluate the performance
of the proposed measure for multi-view stereo matching.

.spamytirapsiDthgiR

.segamitfeldezisehtnyStfeL

.spamytirapsiDthgiR

.segamitfeldezisehtnyStfeL

.spamytirapsiDthgiRdetatoR

.segamitfeldezisehtnyStfeLdetatoR

(a) (b) (c) (d) (e) (f) (g)

Fig. 9 Visual evaluation using two stereo pairs downloaded from the
Flickr website. a Rectified input stereo image pairs. b–g are the dispar-
ity maps and the corresponding synthesized left images obtained from

MI+SIFT, MI+SIFT(+) ( Heo et al. 2013), Census, NCC, ANCC (Heo
et al. 2011), and the proposed measure, respectively
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Fig. 10 Visual evaluation using images captured with and without
flash. a Left and right images. The left images were captured with flash
and the right images were without flash. b–g are the disparity maps

and the corresponding synthesized left images obtained fromMI+SIFT,
MI+SIFT(+) (Heo et al. 2013), Census, NCC, ANCC (Heo et al. 2011),
and the proposed measure, respectively

The same as the binocular stereo evaluation, the “view1”
image was used as the reference/left image, and “view2” -
“view6” were mapped to “view1” to compute the match-
ing cost. The sum of the matching cost computed from
every image pair was used to compute the final disparity
map. The same lighting/exposure conditions were used for
“view2”–“view6”. Similarly, the exposure was set to “exp 1”
when testing illumination changes, and the illumination was
set to “illum 2” when testing different exposure changes.
Due to memory issues, the comparison with MI+SIFT
(Heo et al. 2013) in multiview stereo was ignored. The
quantitative comparison of different similarity measures is
presented in Fig. 6. It demonstrates that the multiview stereo
consistently outperformed the binocular stereo and the pro-
posedmeasure had the highest performance with radiometric
changes.

3.5 Evaluation of Community Photo Collections

Community photo collections have emerged as a powerful
new type of image dataset in recent years (Snavely et al.
2006; Goesele et al. 2007). The images were collected from
Internet photo sharing websites (e.g., Flickr and Google) and

captured by many photographers from a variety of differ-
ent cameras, under varying / uncontrollable illumination and
weather conditions. Normally, the lighting conditions and
camera parameters of these corresponding images are much
more disparate than Middlebury images.

The proposed measure was evaluated on two stereo pairs
obtained from community photo collections, and the visual
comparisons are presented in Fig. 9. The images in Fig. 9a
were downloaded from Flickr. Each pair of images was rec-
tified in advance before stereo matching.

The disparity maps obtained from different similarity
measures are presented in Fig. 9b–f. State-of-the-art sim-
ilarity measures are less robust to the tremendous local
radiometric variations in these outdoor community collected
photos; and thus there are large amounts of visible bad pix-
els in the corresponding disparity maps in Fig. 9b–e. The
proposed measure can significantly reduce these errors as
shown in Fig. 9f. The ground-truth disparities are not avail-
able, and thus the synthesized images were presented below
the corresponding disparity maps for visual evaluation. They
were computed from the right image based on the left dispar-
ity maps obtained from different similarity measures. Visual
comparison with the rectified left image shows that most of
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Fig. 11 Visual evaluation using stereo pairs captured under different
times during the day. a Rectified input stereo image pairs. b–g are the
disparity maps and the corresponding synthesized left images obtained

from MI+SIFT, MI+SIFT(+) (Heo et al. 2013), Census, NCC, ANCC
(Heo et al. 2011), and the proposed measure, respectively

the disparity values obtained from the proposed measure are
accurate.

Figure 10 presents the experimental results of real outdoor
scenes captured with and without flash. The left images were
captured with additional flash conditions, while the right
images were without flash. The foreground objects are rela-
tively far away from the background; and thus the flash only
affects the foregrounds (e.g., leaves in Plant dataset). The
disparity maps and synthesized left images generated from
different measures are presented in Fig. 10b–f. Note that the
proposedmetric is more robust to these LOCAL illumination
changes.

The left and right images in Fig. 11 were captured at
different times of day when the sunlight is different. Sim-
ilar to the previous observations, the proposed measure was
more robust to the radiometric variations in these compli-

cated scenes and had the ability to reduce the errors caused
by large local illumination changes.

4 Conclusion

A similarity measure for stereo correspondence estimation is
proposed. It is invariant to both global and local affine illu-
mination changes. It outperforms the state of the art in terms
of both accuracy and speed on the Middlebury benchmark.
The proposed similarity measure can be further extended
for illumination changes undergoing more complex trans-
forms. A simple extension is changing the affine transform
in Eq. (3) to polynomial transform. We leave this problem
for future research. We are also planning to combine the
similarity measures computed from both the original image
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and its logarithm in a way like ANCC (Heo et al. 2011) to
obtain a more robust similarity measure in the near future.
Preprocessing techniques like dynamic histogram warping
(Cox et al. 1995) are likely to improve the quality of our
method and will be analyzed as well.
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Appendix

Appendix 1: Derivation of Eq. 12

The matching cost measured from two corresponding pixels
p and p′ in two grayscale images IL and IR is:

∑
q∈IL

W(p, q) · (IL(q) − ap · IR,Δ(q) − bp)
2

=
∑
q∈IL

W(p, q)(a2p IR,Δ(q)2 + 2apbp IR,Δ(q)

−2ap IL(q)IR,Δ(q) − 2bp IL(q) + b2p + IL(q)2)

= a2p
∑
q∈IL

W(p, q)IR,Δ(q)2+2apbp
∑
q∈IL

W(p, q)IR,Δ(q)

− 2ap
∑
q∈IL

W(p, q)IL (q)IR,Δ(q)

− 2bp
∑
q∈IL

W(p, q)IL (q) + b2p +
∑
q∈IL

W(p, q)IL (q)2

= a2p · FIR,Δ·IR,Δ
(p) + 2apbp · FIR,Δ

(p)

−2ap · FIL ·IR,Δ
(p) − 2bp · FIL (p) + b2p + FIL ·IL (p).

(27)

Appendix 2: Derivation of Eq. 22

Similar to Eq. 4, we can extend Eq. 20 for color images as
follows:

Ã · X̃ = B̃. (28)

X̃ is defined in Eq. 21, and

Ã =

⎛
⎜⎜⎝

· · · W(p, q) · I 1R,Δ(q) · · ·
· · · W(p, q) · I 2R,Δ(q) · · ·
· · · W(p, q) · I 3R,Δ(q) · · ·
· · · W(p, q) · 1 · · ·

⎞
⎟⎟⎠

T

, (29)

and

B̃ =
⎛
⎝

· · · W(p, q) · I 1L(q) · · ·
· · · W(p, q) · I 2L(q) · · ·
· · · W(p, q) · I 3L(q) · · ·

⎞
⎠

T

. (30)

The linear system presented in Eq. 28 can be rewritten as:

ÃT Ã · X̃ = ÃT B̃, (31)

where

ÃT Ã

=

⎛
⎜⎜⎜⎜⎝

FI 1R,Δ·I 1R,Δ
(p) FI 1R,Δ·I 2R,Δ

(p) FI 1R,Δ·I 3R,Δ
(p) FI 1R,Δ

(p)

FI 2R,Δ·I 1R,Δ
(p) FI 2R,Δ·I 2R,Δ

(p) FI 2R,Δ·I 3R,Δ
(p) FI 2R,Δ

(p)

FI 3R,Δ·I 1R,Δ
(p) FI 3R,Δ·I 2R,Δ

(p) FI 3R,Δ·I 3R,Δ
(p) FI 3R,Δ

(p)

FI 1R,Δ
(p) FI 2R,Δ

(p) FI 3R,Δ
(p) 1

⎞
⎟⎟⎟⎟⎠

(32)

and

ÃT B̃ =

⎛
⎜⎜⎜⎜⎝

FI 1R,Δ·I 1L (p) FI 1R,Δ·I 2L (p) FI 1R,Δ·I 3L (p)
FI 2R,Δ·I 1L (p) FI 2R,Δ·I 2L (p) FI 2R,Δ·I 3L (p)
FI 3R,Δ·I 1L (p) FI 3R,Δ·I 2L (p) FI 3R,Δ·I 3L (p)
FI 1L

(p) FI 2L
(p) FI 3L

(p)

⎞
⎟⎟⎟⎟⎠

. (33)

Appendix 3: Derivation of Eq. 23

The matching cost for color images is:

3∑
c1=1

∑
q∈IL

W(p, q) · (I c1L (q) −
3∑

c2=1

ac1c2p I c2R,Δ(q) − bc1p )2

=
3∑

c1=1

∑
q∈IL

W(p, q) · ((I c1L (q))2 + (

3∑
c2=1

ac1c2p I c2R,Δ(q))2

+ (bc1p )2 − 2bc1p I c1L (q) − 2
3∑

c2=1

ac1c2p I c2R,Δ(q)I c1L (q)

+ 2
3∑

c2=1

ac1c2p bc1p I c2R,Δ(q))

=
3∑

c1=1

(
∑
q∈IL

W(p, q) · I c1L (p)I c1L (p))

+
3∑

c3=1

3∑
c2=1

(

3∑
c1=1

ac1c2p · ac1c3p )(
∑
q∈IL

W(p, q)

·I c2R,Δ(p)I c3R,Δ(p))

+
3∑

c1=1

(bc1p )2 − 2
3∑

c1=1

bc1p (
∑
q∈IL

W(p, q) · I c1L (p))
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−2
3∑

c1=1

3∑
c2=1

ac1c2p (
∑
q∈IL

W(p, q) · I c1L (p)I c2R,Δ(p))

+2
3∑

c2=1

⎛
⎝(

3∑
c1=1

ac1c2p · bc1p ) · (
∑
q∈IL

W(p, q) · I c2R,Δ(p))

⎞
⎠

=
3∑

c1=1

FI c1L ·I c1L (p)+
3∑

c3=1

3∑
c2=1

(

3∑
c1=1

ac1c2p · ac1c3p )FI c2R,Δ·I c3R,Δ
(p)

+
3∑

c1=1

(bc1p )2 − 2
3∑

c1=1

bc1p FI c1L
(p)

− 2
3∑

c1=1

3∑
c2=1

ac1c2p FI c1L ·I c2R,Δ
(p)

+ 2
3∑

c2=1

(
(

3∑
c1=1

ac1c2p · bc1p ) · FI c2R,Δ
(p)

)
(34)
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