
Int J Comput Vis (2016) 119:219–238
DOI 10.1007/s11263-015-0846-5

A Robust and Efficient Video Representation for Action
Recognition

Heng Wang1 · Dan Oneata2 · Jakob Verbeek2 · Cordelia Schmid2

Received: 15 June 2014 / Accepted: 4 July 2015 / Published online: 17 July 2015
© Springer Science+Business Media New York 2015

Abstract This paper introduces a state-of-the-art video rep-
resentation and applies it to efficient action recognition and
detection. We first propose to improve the popular dense
trajectory features by explicit camera motion estimation.
More specifically, we extract feature point matches between
frames using SURF descriptors and dense optical flow. The
matches are used to estimate a homography with RANSAC.
To improve the robustness of homography estimation, a
human detector is employed to remove outlier matches from
the human body as human motion is not constrained by
the camera. Trajectories consistent with the homography are
considered as due to camera motion, and thus removed. We
also use the homography to cancel out camera motion from
the optical flow. This results in significant improvement on
motion-based HOF and MBH descriptors. We further explore
the recent Fisher vector as an alternative feature encoding
approach to the standard bag-of-words (BOW) histogram,
and consider different ways to include spatial layout infor-
mation in these encodings. We present a large and varied set
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of evaluations, considering (i) classification of short basic
actions on six datasets, (ii) localization of such actions in
feature-length movies, and (iii) large-scale recognition of
complex events. We find that our improved trajectory fea-
tures significantly outperform previous dense trajectories,
and that Fisher vectors are superior to BOW encodings for
video recognition tasks. In all three tasks, we show substan-
tial improvements over the state-of-the-art results.

Keywords Action recognition · Action detection ·
Multimedia event detection

1 Introduction

Action and event recognition have been an active research
topic for over three decades due to their wide applications
in video surveillance, human computer interaction, video
retrieval, etc. Research in this area used to focus on simple
datasets collected from controlled experimental settings, eg,
the KTH (Schüldt et al. 2004) and Weizmann (Gorelick et al.
2007) datasets. Due to the increasing amount of video data
available from both internet repositories and personal collec-
tions, there is a strong demand for understanding the content
of real world complex video data. As a result, the attention of
the research community has shifted to more realistic datasets
such as the Hollywood2 dataset (Marszałek et al. 2009) or the
TRECVID multimedia event detection (MED) dataset (Over
et al. 2012).

The diversity of realistic video data has resulted in differ-
ent challenges for action and event recognition. First, there
is tremendous intra-class variation caused by factors such as
the style and duration of the performed action. In addition
to background clutter and occlusions that are also encoun-
tered in image-based recognition, we are confronted with
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Fig. 1 First column images of two consecutive frames overlaid; second column optical flow (Farnebäck 2003) between the two frames; third
column optical flow after removing camera motion; last column trajectories removed due to camera motion in white

variability due to camera motion, and motion clutter caused
by moving background objects. Challenges can also come
from the low quality of video data, such as noise due to
the sensor, camera jitter, various video decoding artifacts,
etc. Finally, recognition in video also poses computational
challenges due to the sheer amount of data that needs to be
processed, particularly so for large-scale datasets such as the
2014 edition of the TRECVID MED dataset which contains
over 8000 h of video.

Local space-time features (Dollár et al. 2005; Laptev
2005) have been shown to be advantageous in handling such
datasets, as they allow to directly build efficient video repre-
sentations without non-trivial pre-processing steps, such as
object tracking or motion segmentation. Once local features
are extracted, often methods similar to those used for object
recognition are employed. Typically, local features are quan-
tized, and their overall distribution in a video is represented
with bag-of-words (BOW) histograms, see, eg, (Kuehne et al.
2011; Wang et al. 2009) for recent evaluation studies.

The success of local space-time features leads to a trend
of generalizing classical descriptors from image to video, eg,
3D-SIFT (Scovanner et al. 2007), extended SURF (Willems
et al. 2008), HOG3D (Kläser et al. 2008), and local trinary
patterns (Yeffet and Wolf 2009). Among the local space-
time features, dense trajectories (Wang et al. 2013a) have
been shown to perform the best on a variety of datasets.
The main idea is to densely sample feature points in each
frame, and track them in the video based on optical flow.
Multiple descriptors are computed along the trajectories of
feature points to capture shape, appearance and motion infor-
mation. Interestingly, motion boundary histograms (MBH)
(Dalal et al. 2006) give the best results due to their robust-
ness to camera motion.

MBH is based on derivatives of optical flow, which is
a simple and efficient way to achieve robustness to cam-
era motion. However, MBH only suppresses certain camera
motions and, thus, we can benefit from explicit camera

motion estimation. Camera motion generates many irrele-
vant trajectories in the background in realistic videos. We
can prune them and only keep trajectories from humans and
objects of interest, if we know the camera motion, see Fig. 1.
Furthermore, given the camera motion, we can correct the
optical flow, so that the motion vectors from human body
are independent of camera motion. This improves the per-
formance of motion descriptors based on optical flow, i.e.,
histograms of optical flow (HOF) and MBH. We illustrate the
difference between the original and corrected optical flow in
the middle two columns of Fig. 1.

Besides improving low-level video descriptors, we also
employ Fisher vectors (Sánchez et al. 2013) to encode local
descriptors into a holistic representation. Fisher vectors have
been shown to give superior performance over BOW in image
classification (Chatfield et al. 2011; Sánchez et al. 2013).
Our experimental results prove that the same conclusion
also holds for a variety of recognition tasks in the video
domain.

We consider three challenging problems to demonstrate
the effectiveness of our proposed framework. First, we con-
sider the classification of basic action categories using six of
the most challenging datasets. Second, we consider the local-
ization of actions in feature length movies, including four
action classes: drinking, smoking, sit down, and open door
from (Duchenne et al. 2009; Laptev and Pérez 2007). Third,
we consider classification of more high-level complex event
categories using the TRECVID MED 2011 dataset (Over
et al. 2012).

On all three tasks we obtain state-of-the-art performance,
improving over earlier work that relies on combining more
feature channels, or using more complex models. For action
localization in full length movies, we also propose a modi-
fied non-maximum-suppression technique that avoids a bias
towards selecting short segments, and further improves the
detection performance. This paper integrates and extends
our previous results which have appeared in earlier papers
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(Oneata et al. 2013; Wang and Schmid 2013). The code to
compute improved trajectories and descriptors is available
online.1

The rest of the paper is organized as follows. Section 2
reviews related work. We detail our improved trajectory fea-
tures by explicit camera motion estimation in Sect. 3. Feature
encoding and non-maximum-suppression for action localiza-
tion are presented in Sects. 4 and 5. Datasets and evaluation
protocols are described in Sect. 6. Experimental results are
given in Sect. 7. Finally, we present our conclusions in
Sect. 8.

2 Related Work

Feature trajectories (Matikainen et al. 2009; Messing et al.
2009; Sun et al. 2009; Wang et al. 2013a) have been shown
to be a good way for capturing the intrinsic dynamics of
video data. Very few approaches consider camera motion
when extracting feature trajectories for action recognition.
Uemura et al. (2008) combine feature matching with image
segmentation to estimate the dominant camera motion, and
then separate feature tracks from the background. Wu et al.
(2011) apply a low-rank assumption to decompose feature
trajectories into camera-induced and object-induced com-
ponents. Gaidon et al. (2013) use efficient image-stitching
techniques to compute the approximate motion of the back-
ground plane and generate stabilized videos before extracting
dense trajectories (Wang et al. 2013a) for activity recogni-
tion.

Camera motion has also been considered in other types
of video representations. Ikizler-Cinbis and Sclaroff (2010)
use of a homography-based motion compensation approach
in order to estimate the foreground optical flow field. Li
et al. (2012) recognize different camera motion types such
as pan, zoom and tilt to separate foreground and background
motion for video retrieval and summarization. Recently, Park
et al. (2013) perform weak stabilization to remove both
camera and object-centric motion using coarse-scale opti-
cal flow for pedestrian detection and pose estimation in
video.

Due to the excellent performance of dense trajectories on
a wide range of action datasets (Wang et al. 2013a), there are
several approaches try to improve them from different per-
spectives. Vig et al. (2012) propose to use saliency-mapping
algorithms to prune background features. This results in a
more compact video representation, and improves action
recognition accuracy. Jiang et al. (2012) cluster dense trajec-
tories, and use the cluster centers as reference points so that
the relationship between them can be modeled. Jain et al.
(2013) decompose visual motion into dominant and resid-

1 http://lear.inrialpes.fr/~wang/improved_trajectories.

ual motions both for extracting trajectories and computing
descriptors.

Besides carefully engineering video features, some recent
work explores learning low-level features from video data
(Le et al. 2011; Yang and Shah 2012). For example, Cao et al.
(2012) consider feature pooling based on scene-types, where
video frames are assigned to scene types and their features
are aggregated in the corresponding scene-specific represen-
tation. Along similar lines, Ikizler-Cinbis and Sclaroff (2010)
combines local person and object-centric features, as well as
global scene features. Others not only include object detec-
tor responses, but also use speech recognition, and character
recognition systems to extract additional high-level features
(Natarajan et al. 2012).

A complementary line of work has focused on consider-
ing more sophisticated models for action recognition that go
beyond simple BOW representations, and aimed to explicitly
capture the spatial and temporal structure of actions, see eg,
(Gaidon et al. 2011; Matikainen et al. 2010). Other authors
have focused on explicitly modeling interactions between
people and objects, see eg, (Gupta et al. 2009; Prest et al.
2013), or used multiple instance learning to suppress irrele-
vant background features (Sapienza et al. 2012). Yet others
have used graphical model structures to explicitly model the
presence of sub-events (Izadinia and Shah 2012; Tang et al.
2012). Tang et al. (2012) use a variable-length discriminative
HMM model which infers latent sub-actions together with
a non-parametric duration distribution. Izadinia and Shah
(2012) use a tree-structured CRF to model co-occurrence
relations among sub-events and complex event categories,
but require additional labeling of the sub-events unlike Tang
et al. (2012).

Structured models for action recognition seem promis-
ing to model basic actions such as drinking, answer phone,
or get out of car, which could be decomposed into more
basic action units, eg, the “actom” model of Gaidon et al.
(2011). However, as the definition of the category becomes
more high-level, such as repairing a vehicle tire, or making
a sandwich, it becomes less clear to what degree it is pos-
sible to learn the structured models from limited amounts
of training data, given the much larger amount of intra-
class variability. Moreover, more complex structured models
are generally more computationally demanding, which lim-
its their usefulness in large-scale settings. To sidestep these
potential disadvantages of more complex models, we instead
explore the potential of recent advances in robust feature
pooling strategies developed in the object recognition litera-
ture.

In particular, in this paper we explore the potential of the
Fisher vector encoding (Sánchez et al. 2013) as a robust fea-
ture pooling technique that has been proven to be among the
most effective for object recognition (Chatfield et al. 2011).
While recently Fisher vectors (FVs) have been explored by
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others for action recognition (Sun and Nevatia 2013; Wang
et al. 2012), we are the first to use them in a large, diverse,
and comprehensive evaluation. In parallel to this paper,
Jain et al. (2013) complemented the dense trajectory descrip-
tors with new features computed from optical flow, and
encoded them using vectors of locally aggregated descrip-
tors (VLAD; Jégou et al. 2011), a simplified version of the
Fisher vector. We compare to these works in our experimental
evaluation.

3 Improving Dense Trajectories

In this section, we first briefly review the dense trajectory
features (Wang et al. 2013a). We, then, detail the major
steps of our improved trajectory features including cam-
era motion estimation, removing inconsistent matches using
human detection, and extracting improved trajectory fea-
tures, respectively.

3.1 Dense Trajectory Features

The dense trajectory features approach (Wang et al. 2013a)
densely samples feature points for several spatial scales.
Points in homogeneous areas are suppressed, as it is impos-
sible to track them reliably. Tracking points is achieved by
median filtering in a dense optical flow field (Farnebäck
2003). In order to avoid drifting, we only track the feature
points for 15 frames and sample new points to replace them.
We remove static feature trajectories as they do not contain
motion information, and also prune trajectories with sudden
large displacements.

For each trajectory, we compute HOG, HOF and MBH
descriptors with exactly the same parameters as in Wang et al.
(2013a). Note that we do not use the trajectory descriptor as
it does not improve the overall performance significantly.
All three descriptors are computed in the space-time volume
aligned with the trajectory. HOG (Dalal and Triggs 2005)
is based on the orientation of image gradients and captures
the static appearance information. Both HOF (Laptev et al.
2008) and MBH (Dalal et al. 2006) measure motion informa-
tion, and are based on optical flow. HOF directly quantizes
the orientation of flow vectors. MBH splits the optical flow
into horizontal and vertical components, and quantizes the
derivatives of each component. The final dimensions of the
descriptors are 96 for HOG, 108 for HOF and 2 × 96 for the
two MBH channels.

To normalize the histogram-based descriptors, i.e., HOG,
HOF and MBH, we apply the recent RootSIFT (Arand-
jelovic and Zisserman 2012) approach, i.e., square root
each dimension after �1 normalization. We do not perform
�2 normalization as in Wang et al. (2013a). This slightly

improves the results without introducing additional compu-
tational cost.

3.2 Camera Motion Estimation

To estimate the global background motion, we assume
that two consecutive frames are related by a homogra-
phy (Szeliski 2006). This assumption holds in most cases
as the global motion between two frames is usually small. It
excludes independently moving objects, such as humans and
vehicles.

To estimate the homography, the first step is to find
the correspondences between two frames. We combine two
approaches in order to generate sufficient and complementary
candidate matches. We extract speeded-up robust features
(SURF; Bay et al. 2006) and match them based on the nearest
neighbor rule. SURF features are obtained by first detecting
interest points based on an approximation of the Hessian
matrix and then describing them by a distribution of Haar-
wavelet responses. The reason for choosing SURF features
is their robustness to motion blur, as shown in a recent eval-
uation (Gauglitz et al. 2011).

We also sample motion vectors from the optical flow,
which provides us with dense matches between frames. Here,
we use an efficient optical flow algorithm based on polyno-
mial expansion (Farnebäck 2003). We select motion vectors
for salient feature points using the good-features-to-track
criterion (Shi and Tomasi 1994), i.e., thresholding the small-
est eigenvalue of the autocorrelation matrix. Salient feature
points are usually reproducible (stable under local and global
perturbations, such as illumination variations or geomet-
ric transformation) and distinctive (with rich local structure
information). Motion estimation on salient points is more
reliable.

The two approaches are complementary. SURF focuses
on blob-type structures, whereas (Shi and Tomasi 1994) fires
on corners and edges. Figure 2 visualizes the two types of
matches in different colors. Combining them results in a more

Fig. 2 Visualization of inlier matches of the estimated homography.
Green arrows correspond to SURF descriptor matches, and red ones
are from dense optical flow (Color figure online)
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balanced distribution of matched points, which is critical for
a good homography estimation.

We, then, estimate the homography using the random
sample consensus method (RANSAC; Fischler and Bolles
1981). RANSAC is a robust, non-deterministic algorithm
for estimating the parameters of a model. At each itera-
tion it randomly samples a subset of the data to estimate
the parameters of the model and computes the number of
inliers that fit the model. The final estimated parameters are
those with the greatest consensus. We then rectify the image
using the homography to remove the camera motion. Figure 1
(two columns in the middle) demonstrates the difference of
optical flow before and after rectification. Compared to the
original flow (the second column), the rectified version (the
third column) suppresses the background camera motion and
enhances the foreground moving objects.

For trajectory features, there are two major advantages
of canceling out camera motion from optical flow. First, the
motion descriptors can directly benefit from this. As shown
in Wang et al. (2013a), the performance of the HOF descriptor
degrades significantly in the presence of camera motion. Our
experimental results in Sect. 7.1 show that HOF can achieve
similar performance as MBH when we have corrected the
optical flow. The combination of HOF and MBH can further
improve the results as they represent zero-order (HOF) and
first-order (MBH) motion information.

Second, we can remove trajectories generated by camera
motion. This can be achieved by thresholding the displace-
ment vectors of the trajectories in the warped flow field. If
the displacement is very small, the trajectory is considered
to be too similar to camera motion, and thus removed. Fig-
ure 3 shows examples of removed background trajectories.
Our method works well under various camera motions (such
as pan, tilt and zoom) and only trajectories related to human
actions are kept (shown in green in Fig. 3). This gives us

similar effects as sampling features based on visual saliency
maps (Mathe and Sminchisescu 2012; Vig et al. 2012).

The last column of Fig. 3 shows two failure cases. The top
one is due to severe motion blur, which makes both SURF
descriptor matching and optical flow estimation unreliable.
Improving motion estimation in the presence of motion blur
is worth further attention, since blur often occurs in realistic
datasets. In the bottom example, humans dominate the frame,
which causes homography estimation to fail. We discuss a
solution for the latter case below.

3.3 Removing Inconsistent Matches Due to Humans

In action datasets, videos often focus on the humans perform-
ing the action. As a result, it is very common that humans
dominate the frame, which can be a problem for camera
motion estimation as human motion is in general not consis-
tent with it. We propose to use a human detector to remove
matches from human regions. In general, human detection in
action datasets is rather difficult, as humans appear in many
different poses when performing the action. Furthermore,
the person could be only partially visible due to occlusion or
being partially out of view.

Here, we apply a state-of-the-art human detector (Prest
et al. 2012), which adapts the general part-based human
detector (Felzenszwalb et al. 2010) to action datasets. The
detector combines several part detectors dedicated to dif-
ferent regions of the human body (including full person,
upper-body and face). It is trained using the PASCAL VOC07
training data for humans as well as near-frontal upper-bodies
from (Ferrari et al. 2008). We set the detection threshold
to 0.1. If the confidence of a detected window is higher
than that, we consider it to be a positive sample. This is a
high-recall operating point where few human detections are

Fig. 3 Examples of removed trajectories under various camera
motions, eg, pan, zoom, tilt. White trajectories are considered due to
camera motion. The red dots are the feature point positions in the cur-

rent frame. The last column shows two failure cases. The top one is
due to severe motion blur. The bottom one fits the homography to the
moving humans as they dominate the whole frame
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Fig. 4 Homography estimation without human detector (left) and with
human detector (right). We show inlier matches in the first and third
columns. The optical flow (second and fourth columns) is warped with

the corresponding homography. The first and second rows show a clear
improvement of the estimated homography when using a human detec-
tor. The last row presents a failure case. See the text for details

missed. Figure 4, third column, shows some examples of
human detection results.

We use the human detector as a mask to remove fea-
ture matches inside the bounding boxes when estimating the
homography. Without human detection (the left two columns
of Fig. 4), many features from the moving humans become
inlier matches and the homography is, thus, incorrect. As a
result, the corresponding optical flow is not correctly warped.
In contrast, camera motion is successfully compensated (the
right two columns of Fig. 4), when the human bounding boxes
are used to remove matches not corresponding to camera
motion. The last row of Fig. 4 shows a failure case. The
homography does not fit the background very well despite
detecting the humans correctly, as the background is rep-
resented by two planes, one of which is very close to the
camera. In our experiments we compare the performance
with and without human detection.

The human detector does not always work perfectly. In
Fig. 5, we show some failure cases, which are typically
due to complex human body poses, self occlusion, motion
blur etc. In order to compensate for missing detections, we
track all the bounding boxes obtained by the human detector.
Tracking is performed forward and backward for each frame
of the video. Our approach is simple: we take the average
motion vector (Farnebäck 2003) and propagate the detections
to the next frame. We track each bounding box for at most
15 frames and stop if there is a 50 % overlap with another
bounding box. All the human bounding boxes are available
online.2 In the following, we always use the human detector

2 http://lear.inrialpes.fr/~wang/improved_trajectories.

Fig. 5 Examples of human detection results. The first row is from
Hollywood2, whereas the last two rows are from HMDB51. Not all
humans are detected correctly as human detection on action datasets is
very challenging

to remove potentially inconsistent matches before computing
the homography, unless stated otherwise.

3.4 Improved Trajectory Features

To extract our improved trajectories, we sample and track fea-
ture points exactly the same way as in Wang et al. (2013a),
see Sect. 3.1. To compute the descriptors, we first estimate
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the homography with RANSAC using the feature matches
extracted between each pair of consecutive frames; matches
on detected humans are removed. We warp the second
frame with the estimated homography. Homography estima-
tion takes around 5 ms for each pair of frames. The optical
flow (Farnebäck 2003) is then re-computed between the first
and the warped second frame. Motion descriptors (HOF and
MBH) are computed on the warped optical flow. The HOG
descriptor remains unchanged. We estimate the homography
and warped optical flow for every two frames independently
to avoid error propagation. We use the same parameters and
the RootSIFT normalization as the baseline described in
Sect. 3.1. We further utilize these stabilized motion vectors
to remove background trajectories. For each trajectory, we
compute the maximal magnitude of the motion vectors dur-
ing its length of 15 frames. If the maximal magnitude is lower
than a threshold (set to one pixel, i.e., the motion displace-
ment is less than one pixel between each pair of frames), the
trajectory is considered to be consistent with camera motion,
and thus removed.

4 Feature Encoding

In this section, we present how we aggregate local descriptors
into a holistic representation, and augment this representation
with weak spatio–temporal location information.

4.1 Fisher Vector

The FV (Sánchez et al. 2013) was found to be the most
effective encoding technique in a recent evaluation study of
feature pooling techniques for object recognition (Chatfield
et al. 2011); this evaluation included also BOW, sparse coding
techniques, and several variants. The FV extends the BOW
representation as it encodes both first and second order statis-
tics between the video descriptors and a diagonal covariance
Gaussian mixture model (GMM). Given a video, let xn ∈ RD

denote the nth D-dimensional video descriptor, qnk the soft
assignment of xn to the kth Gaussian, and πk , μk and σk
are the weight, mean, and diagonal of the covariance matrix
of the kth Gaussian respectively. After normalization with
the inverse Fisher information matrix (which renders the FV
invariant to the parametrization), the D-dimensional gradi-
ents w.r.t.the mean and variance of the kth Gaussian are given
by:

Gμk =
N∑

n=1

qnk [xn − μk] /
√

σkπk, (1)

Gσk =
N∑

n=1

qnk
[
(xn − μk)

2 − σ 2
k

]
/

√
2σ 2

k πk . (2)

For each descriptor type xn , we can represent the video as
a 2DK dimensional Fisher vector. To compute FV, we first
reduce the descriptor dimensionality by a factor of two using
principal component analysis (PCA), as in Sánchez et al.
(2013). We then randomly sample a subset of 1000 × K
descriptors from the training set to estimate a GMM with K
Gaussians. After encoding the descriptors using Eqs. (1) and
(2), we apply power and �2 normalization to the final Fisher
vector representation as in Sánchez et al. (2013). A linear
SVM is used for classification.

Besides FV, we also consider BOW histograms as a base-
line for feature encoding. We use the soft assignments to the
same Gaussians as used for the FV instead of hard assign-
ment with k-means clustering (van Gemert et al. 2010). Soft
assignments have been reported to yield better performance,
and since the same GMM vocabulary is used as for the FV,
it also rules out any differences due to the vocabulary. For
BOW, we consider both linear and RBF-χ2 kernel for the
SVM classifier. In the case of linear kernel, we employ the
same power and �2 normalization as FV, whereas �1 normal-
ization is used for RBF-χ2 kernel.

To combine different descriptor types, we encode each
descriptor type separately and concatenate their normal-
ized BOW or FV representations together. In the case of
multi-class classification, we use a one-against-rest approach
and select the class with the highest score. For the SVM
hyperparameters, we set the class weight w to be inversely
proportional to the number of samples in each class so that
both positive and negative classes contribute equally in the
loss function. We set the regularization parameter C by cross
validation on the training set, by testing values in the range
C ∈ {3−2, 3−1, . . . , 37}. In all experiments, we use the same
settings.

4.2 Weak Spatio–Temporal Location Information

To go beyond a completely orderless representation of the
video content in a BOW histogram or FV, we consider includ-
ing a weak notion of spatio–temporal location information
of the local features. For this purpose, we use the spatio–
temporal pyramid (STP) representation (Laptev et al. 2008),
and compute separate BOW or FV over cells in spatio–
temporal grids. We also consider the spatial Fisher vector
(SFV) of Krapac et al. (2011), which computes per visual
word the mean and variance of the 3D spatio–temporal loca-
tion of the assigned features. This is similar to extending
the feature vectors (HOG, HOF or MBH) with the 3D loca-
tions, as done in McCann and Lowe (2013) and Sánchez et al.
(2012); the main difference being that the latter do cluster-
ing on the extended feature vectors while this is not the case
for the SFV. SFV is also computed in each cell of STP. To
combine SFV with BOW or FV, we simply concatenate them
together.
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5 Non-maximum-Suppression for Localization

For the action localization task we employ a temporal slid-
ing window approach. We score a large pool of candidate
detections that are obtained by sliding windows of various
lengths across the video. Non-maximum suppression (NMS)
is performed to delete windows that have an overlap greater
than 20 % with higher scoring windows. In practice, we use
candidate windows of length 30, 60, 90, and 120 frames, and
slide the windows in steps of 30 frames.

Preliminary experiments showed that there is a strong ten-
dency for the NMS to retain short windows, see Fig. 6. This
is due to the fact that if a relatively long action appears, it is
likely that there are short sub-sequences that just contain the
most characteristic features for the action. Longer windows
might better cover the action, but are likely to include less
characteristic features as well (even if they lead to positive
classification by themselves), and might include background
features due to imperfect temporal alignment.

To address this issue we consider re-scoring the segments
by multiplying their score with their duration, before apply-
ing NMS (referred to as RS-NMS). We also consider a variant
where the goal is to select a subset of candidate windows that
(i) covers the entire video, (ii) does not have overlapping win-
dows, and (iii) maximizes the sum of scores of the selected
windows. We formally express this method as an optimiza-
tion problem:

maximize
y

n∑

i=1

yi si

subject to
⋃

i :yi=1

li = T,

∀yi=y j=1 : li ∩ l j = ∅,

yi ∈ {0, 1}, i = 1, . . . , n. (3)
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Fig. 6 Histograms of the window sizes on the Coffee and Cigarettes
dataset after three variants of non-maxima suppression: classic non-
maximum suppression (NMS), dynamic programming non-maximum
suppression (DP-NMS), and re-scored non-maximum suppression (RS-
NMS). Two of the methods, NMS and DP-NMS, select mostly short
windows, 30-frames long, while the RS-NMS variant sets a bias towards
longer windows, 120-frames long. In practice we prefer longer windows
as they tend to cover better the action

where the boolean variables y1, . . . , yn represent the subset;
si and li denote the score and the interval of window i ; n is
the total number of windows; T is the interval that spans the
whole video.

The optimal subset is found efficiently by dynamic pro-
gramming as follows. We first divide the temporal domain
into discrete time steps. With each time step we associate a
latent state: the temporal window that contains that particular
time step. Each window is characterized by its starting point
and duration. A pairwise potential is used to enforce the first
two constraints (full duration coverage and non-overlapping
segments): if a segment is not terminated at the current time
step, the next time step should still be covered by the cur-
rent segment, otherwise a new segment should be started.
We maximize the score based on an unary potential that is
defined as the score of the associated time step. The dynamic
programming Viterbi algorithm is used to compute the opti-
mal solution for the optimization problem of Eq. (3) using a
forwards and backwards pass over the time steps. The run-
time is linear in the number of time steps. We refer to this
method as DP-NMS.

Figure 6 shows the histogram of durations of the win-
dows that pass the non-maximum suppression stage using
the different techniques, for the action smoking used in our
experiments in Sect. 7.2. The durations for the two pro-
posed methods, DP-NMS and RS-NMS, have a more uniform
distribution than that for the standard NMS method, with RS-
NMS favouring the longest windows. This behaviour is also
observed in Fig. 7, which gives an example of the different
windows retained for a specific video segment of the Coffee
& Cigarettes movie. DP-NMS selects longer windows than
NMS, but they do not align well with the action and the score
of the segments outside the action are high. For this example,
RS-NMS gives the best selection among the three methods,
as it retains few segments and covers the action accurately.

Fig. 7 Windows retained by NMS variants, green if they overlap more
than 20 % with the true positive, red otherwise. The green region denotes
the ground-truth action. For the NMS, the segments selected are too
short. The DP-NMS selects longer segments, but it does not align well
with the true action as it maximizes the total score over the whole video.
The RS-NMS strikes a good balance of the segment’s length and their
score, and it gives the best solution in this example
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(a) answer-phone (a) get-out-car (a) fight-person (b) push-up (b) cartwheel (b) sword-exercise

(c) high-jump (c) spring-board (c) vault (d) hand-shake (d) high-five (d) kiss

(e) horse-race (e) playing-guitar (e) ski-jet (f) haircut (f) archery (f) ice-dancing

(g) drinking (g) smoking (h) sit-down (h) open-door

(i) changing-vehicle-tire (i) unstuck-vehicle (i) making-a-sandwich (i) parkour (i) grooming-an-animal (i) flash-mob-gathering

Fig. 8 From top to bottom, example frames from a Hollywood2, b HMDB51, c Olympic Sports, d High Five, e UCF50, f UCF101, g Coffee and
Cigarettes, h DLSBP and i TRECVID MED 2011

6 Datasets Used for Experimental Evaluation

In this section, we briefly describe the datasets and their eval-
uation protocols for the three tasks. We use six challenging
datasets for action recognition (i.e., Hollywood2, HMDB51,
Olympic Sports, High Five, UCF50 and UCF101), Cof-
fee and Cigarettes and DLSBP for action detection, and
TRECVID MED 2011 for large scale event detection. In
Fig. 8, we show some sample frames from the datasets.

6.1 Action Recognition

The Hollywood2 dataset (Marszałek et al. 2009) has been
collected from 69 different Hollywood movies and includes
12 action classes. It contains 1707 videos split into a training
set (823 videos) and a test set (884 videos). Training and
test videos come from different movies. The performance is
measured by mean average precision (mAP) over all classes,
as in Marszałek et al. (2009).

The HMDB51 dataset (Kuehne et al. 2011) is collected
from a variety of sources ranging from digitized movies to
YouTube videos. In total, there are 51 action categories and
6766 video sequences. We follow the original protocol using
three train-test splits (Kuehne et al. 2011). For every class
and split, there are 70 videos for training and 30 videos for
testing. We report average accuracy over the three splits as
performance measure. Note that in all the experiments we
use the original videos, not the stabilized ones.

TheOlympic Sports dataset (Niebles et al. 2010) consists
of athletes practicing different sports, which are collected
from YouTube and annotated using Amazon Mechanical
Turk. There are 16 sports actions (such as high-jump, pole-
vault, basketball lay-up, discus), represented by a total of 783
video sequences. We use 649 sequences for training and 134
sequences for testing as recommended by the authors. We
report mAP over all classes, as in Niebles et al. (2010).

The High Five dataset (Patron-Perez et al. 2010) consists
of 300 video clips extracted from 23 different TV shows.
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Each of the clips contains one of four interactions: hand
shake, High Five, hug and kiss (50 videos for each class).
Negative examples (clips that don’t contain any of the interac-
tions) make up the remaining 100 videos. Though the dataset
is relatively small, it is challenging due to large intra-class
variation, and all the action classes are very similar to each
other (i.e., interactions between two persons). We follow the
original setting in Patron-Perez et al. (2010), and compute
average precision (AP) using a pre-defined two-fold cross-
validation.

The UCF50 dataset (Reddy and Shah 2012) has 50
action categories, consisting of real-world videos taken from
YouTube. The actions range from general sports to daily life
exercises. For all 50 categories, the videos are split into 25
groups. For each group, there are at least four action clips.
In total, there are 6618 video clips. The video clips in the
same group may share some common features, such as the
same person, similar background or viewpoint. We apply
the leave-one-group-out cross-validation as recommended
in Reddy and Shah (2012) and report average accuracy over
all classes.

The UCF101 dataset (Soomro et al. 2012) is extended
from UCF50 with additional 51 action categories. In total,
there are 13,320 video clips. We follow the evaluation guid-
line from the THUMOS’13 workshop (Jiang et al. 2013)
using three train-test splits. In each split, clips from seven
of the 25 groups are used as test samples, and the rest for
training. We report average accuracy over the three splits as
performance measure.

6.2 Action Localization

The first dataset for action localization is extracted from
the movie Coffee and Cigarettes, and contains annotations
for the actions drinking and smoking (Laptev and Pérez
2007). The training set contains 41 and 70 examples for each
class respectively. Additional training examples (32 and eight
respectively) come from the movie Sea of Love, and another
33 lab-recorded drinking examples are included. The test sets
consist of about 20 minutes from Coffee and Cigarettes for
drinking, with 38 positive examples; for smoking a sequence
of about 18 minutes is used that contains 42 positive exam-
ples.

The DLSBP dataset of Duchenne et al. (Duchenne et al.
2009) contains annotations for the actions sit down, and open
door. The training data comes from 15 movies, and contains
51 sit down examples, and 38 for open door. The test data
contains three full movies (Living in Oblivion, The Crying
Game, and The Graduate), which in total last for about 250
minutes, and contain 86 sit down, and 91 open door sam-
ples.

To measure performance we compute the AP score as in
(Duchenne et al. 2009; Gaidon et al. 2011; Kläser et al. 2010;

Laptev and Pérez 2007); considering a detection as correct
when it overlaps (as measured by intersection over union) by
at least 20 % with a ground truth annotation.

6.3 Event Recognition

The TRECVIDMED 2011 dataset (Over et al. 2012) is the
largest dataset we consider. It consists of consumer videos
from 15 categories that are more complex than the basic
actions considered in the other datasets, eg, changing a vehi-
cle tire, or birthday party. For each category between 100 and
300 training videos are available. In addition, 9600 videos are
available that do not contain any of the 15 categories; this data
is referred to as the null class. The test set consists of 32,000
videos, with a total length of over 1000 h, and includes 30,500
videos of the null class.

We follow two experimental setups in order to compare
our system to previous work. The first setup is the one
described above, which was also used in the TRECVID 2011
MED challenge. The performance is evaluated using AP
measure. The second setup is the one of Tang et al. (Tang et al.
2012). They split the data into three subsets: EVENTS, which
contains 2048 videos from the 15 categories, but doesn’t
include the null class; DEV-T, which contains 602 videos
from the first five categories and the 9,600 null videos; and
DEV-O, which is the standard test set of 32,000 videos.3

As in (Tang et al. 2012), we train on the EVENTS set and
report the performance in AP on the DEV-T set for the first
five categories and on the DEV-O set for the remaining ten
actions.

The videos in the TRECVID dataset vary strongly in size:
durations range from a few seconds to one hour, while the
resolution ranges from low quality 128 × 88 to full HD
1920 × 1080. We rescale the videos to a width of at most
480 pixels, preserving the aspect ratio, and temporally sub-
sample them by discarding every second frame in order
to make the dataset computationally more tractable. These
rescaling parameters were selected on a subset of the MED
dataset; we present an exhaustive evaluation of the impact of
the video resolution in Sect. 7.3. Finally, we also randomly
sample the generated features to reduce the computational
cost for feature encoding. This is done only for videos longer
than 2000 frames, i.e., the sampling ratio is set to 2000
divided by the total number of frames.

3 The number of videos in each subset varies slightly from the figures
reported in (Tang et al. 2012). The reason is that there are multiple
releases of the data. For our experiments, we used the labels from the
LDC2011E42 release.
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Table 1 Comparison of bag-of-words and Fisher vectors using the non-stabilized MBH descriptor under different parameter settings

K STP Hollywood2 HMDB51

Bag-of-words Fisher vector Bag-of-words Fisher vector

χ2 Kernel Linear kernel Linear kernel χ2 Kernel Linear kernel Linear kernel

BOW
(%)

BOW
(%)

BOW+SFV
(%)

FV
(%)

FV+SFV
(%)

BOW
(%)

BOW
(%)

BOW+SFV
(%)

FV
(%)

FV+SFV
(%)

64 – 44.4 39.8 40.3 55.0 56.5 30.5 28.3 28.0 45.8 47.9

64 H3 48.0 44.9 45.0 57.9 59.2 35.8 30.1 33.1 48.0 49.4

64 T2 48.3 43.4 46.8 57.1 58.5 34.9 30.9 32.5 48.3 49.5

64 T2 + H3 50.2 46.8 46.4 59.4 59.5 37.1 32.5 34.2 50.3 51.1

128 – 45.8 42.1 43.5 57.1 58.5 33.8 31.9 32.2 48.2 50.3

128 H3 51.3 46.2 48.1 58.8 60.0 38.0 32.3 37.5 49.9 51.1

128 T2 50.5 45.5 49.4 58.8 59.9 38.2 32.9 36.2 50.2 51.1

128 T2 + H3 52.4 48.4 48.2 61.0 60.7 40.5 35.8 37.9 51.9 52.6

256 – 49.4 44.9 45.9 57.9 59.6 36.6 33.1 35.0 50.0 51.9

256 H3 52.9 46.0 50.6 59.0 61.0 40.6 36.2 40.4 51.4 52.3

256 T2 52.0 47.0 51.3 59.3 60.3 41.3 35.7 39.7 51.5 52.0

256 T2 + H3 53.6 50.2 50.2 61.0 61.3 43.5 39.2 41.2 52.6 53.2

512 – 50.2 46.8 49.0 58.9 60.5 40.3 35.6 37.9 51.3 53.2

512 H3 53.1 49.5 51.2 59.5 61.5 43.4 38.4 41.5 51.4 52.3

512 T2 53.9 49.4 52.8 60.2 61.0 42.6 39.1 42.2 52.2 53.3

512 T2 + H3 55.5 51.6 51.3 61.7 61.9 45.2 42.1 43.5 52.7 53.7

1024 – 52.3 48.5 50.4 58.9 60.9 42.3 39.2 39.9 51.4 53.9

1024 H3 55.6 50.6 52.6 59.4 61.2 45.4 40.8 44.2 51.7 52.8

1024 T2 54.6 52.0 54.5 59.7 60.7 46.0 41.8 46.3 52.5 53.0

1024 T2 + H3 56.6 52.9 53.5 61.2 61.8 47.5 43.9 45.7 53.3 53.8

We use �1 normalization for the χ2 kernel, and power and �2 normalization for the linear kernel
The best results for each setting are shown in bold

7 Experimental Results

Below, we present our experimental evaluation results for
action recognition in Sect. 7.1, for action localization in
Sect. 7.2, and for event recognition in Sect. 7.3.

7.1 Action Recognition

We first compare BOW and FV for feature encoding, and
evaluate the performance gain due to different motion sta-
bilization steps. Then, we assess the impact of removing
inconsistent matches based on human detection, and finally
compare to the state of the art.

7.1.1 Feature encoding with BOW and FV

We begin our experiments with the original non-stabilized
MBH descriptor (Wang et al. 2013a) and compare its per-
formance using BOW and FV under different parameter
settings. For this initial set of experiments, we chose the Hol-
lywood2 and HMDB51 datasets as they are widely used and

are representative in difficulty and size for the task of action
recognition. We evaluate the effect of including weak geo-
metric information using the spatial Fisher vector (SFV) and
STP. We consider STP grids that divide the video in two tem-
poral parts (T2), and/or three spatial horizontal parts (H3).
When using STP, we always concatenate the representations
(i.e., BOW or FV) over the whole video. For the case of
T2 + H3, we concatenate all six BOW or FV representa-
tions (one for the whole video, two for T2, and three for H3).
Unlike STP, the SFV has only a limited effect for FV on the
representation size, as it just adds six dimensions (for the
spatio–temporal means and variances) for each visual word.
For the BOW representation, the situation is different, since
in that case there is only a single count per visual word, and
the additional six dimensions of the SFV multiply the signa-
ture size by a factor seven; similar to the factor six for STP.

Table 1 lists all the results using different settings on Hol-
lywood2 and HMDB51. It is obvious that increasing the
number of Gaussians K leads to significant performance gain
for both BOW and FV. However, the performance of FV tends
to saturate after K = 256, whereas BOW keeps improving up
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Fig. 9 Comparing BOW (RBF-χ2 kernel) using large vocabularies with FV (linear kernel). For both, we only use STP (T2 + H3) without SFV.
Left performance on Hollywood2 and HMDB51. Right runtime speed on a Hollywood2 video of resolution 720 × 480 pixels

to K = 1024. This is probably due to the high dimensionality
of FV which results in an earlier saturation. Both BOW and
FV benefit from including STP and SFV, which are comple-
mentary since the best performance is always obtained when
they are combined.

As expected, the RBF-χ2 kernel works better than the
linear kernel for BOW. Typically, the difference is around 4–
5 % on both Hollywood2 and HMDB51. When comparing
different feature encoding strategies, the FV usually outper-
forms BOW by 6–7 % when using the same number of visual
words. Note that FV of 64 visual words is even better than
BOW of 1024 visual words; confirming that for FV fewer
visual words are needed than for BOW.

We further explore the limits of BOW performance by
using very large vocabularies, i.e., with K up to 32, 768. The
results are shown in the left panel of Fig. 9. For BOW, we
use χ2 kernel and T2 + H3 which give the best results in
Table 1. For a fair comparison, we only use T2 + H3 for FV
without SFV. On both Hollywood2 and HMDB51, the per-
formance of BOW becomes saturated when K is larger than
8192. If we compare BOW and FV representations with sim-
ilar dimensions (i.e., K = 32, 768 for BOW and K between
64 and 128 for FV), FV still outperforms BOW by 2 % on
HMDB51 and both have comparable performance for Holly-
wood2. Moreover, feature encoding with large vocabularies
is very time-consuming as shown in the right panel of Fig. 9,
where K = 32, 768 for BOW is eight times slower than
K = 128 for FV. This can impose huge computational cost
for large datasets such as TRECVIDMED. FV is also advan-
tageous as it achieves excellent results with a linear SVM
which is more efficient than kernel SVMs. Note however,
that the classifier training time is negligible compared to the
feature extraction and encoding time, eg, it only takes around

200 s for FV with K = 256 to compute the Gram matrix and
to train the classifiers on the Hollywood2 dataset.

To sum up, we choose FV with both STP and SFV, and
set K = 256 for a good compromise between accuracy and
computational complexity. We use this setting in the rest of
experiments unless stated otherwise.

7.1.2 Evaluation of Improved Trajectory Features

We choose the dense trajectories (Wang et al. 2013a) as
our baseline, compute HOG, HOF and MBH descriptors as
described in Sect. 3.1, and report results on all the combina-
tions of them. In order to evaluate intermediate results, we
decouple our method into two parts, i.e., “WarpFlow” and
“RmTrack”, which stand for warping optical flow with the
homography and removing background trajectories consis-
tent with the homography. The combined setting uses both.
The results are presented in Table 2 for Hollywood2 and
HMDB51.

In the following, we discuss the results per descriptor.
The results of HOG are similar for different variants on both
datasets. Since HOG is designed to capture static appearance
information, we do not expect that compensating camera
motion significantly improves its performance.

HOF benefits the most from stabilizing optical flow.
Both “Combined” and “WarpFlow” are substantially bet-
ter than the other two. On Hollywood2, the improvements
are around 5 %. On HMDB51, the improvements are even
higher: around 10 %. After motion compensation, the per-
formance of HOF is comparable to that of MBH.

MBH is known for its robustness to camera motion (Wang
et al. 2013a). However, its performance still improves, as
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Table 2 Comparison of baseline to our method and intermediate

Hollywood2 HMDB51

Baseline
(%)

WarpFlow
(%)

RmTrack
(%)

Combined
(%)

Baseline
(%)

WarpFlow
(%)

RmTrack
(%)

Combined
(%)

HOG 51.3 52.1 52.6 53.0 42.0 43.1 44.7 44.4

HOF 56.4 61.5 57.6 62.4 43.3 51.7 45.3 52.3

MBH 61.3 63.1 63.1 63.6 53.2 55.3 55.9 56.9

HOG + HOF 61.9 64.3 63.2 65.3 51.9 56.5 54.2 57.5

HOG + MBH 63.0 64.2 63.6 64.7 56.3 57.8 57.7 58.7

HOF + MBH 62.0 65.3 62.7 65.2 53.2 57.1 54.8 58.3

HOG + HOF + MBH 63.6 65.7 65.0 66.8 55.9 59.6 57.8 60.1

WarpFlow: computing HOF and MBH using warped optical flow, while keeping all the trajectories. RmTrack: removing background trajectories,
but compute descriptors using the original flow. Combined: removing background trajectories, and descriptors on warped flow. All the results use
SFV + STP, K = 256, and human detection to remove outlier matches
The best results for each setting are shown in bold

Table 3 Impact of human detection on a subset of Hollywood2 and High Five datasets

Hollywood2-sub High Five

Baseline
(%)

Non
(%)

Automatic
(%)

Manual
(%)

Baseline
(%)

Non
(%)

Automatic
(%)

Manual
(%)

HOG 39.9 40.0 39.7 40.4 48.2 49.7 49.3 50.2

HOF 40.7 49.6 51.5 52.1 53.4 66.8 67.4 68.1

MBH 49.6 52.5 53.1 54.2 61.5 67.3 68.5 68.8

HOG + HOF 46.3 49.9 51.3 52.8 57.5 66.3 67.5 67.5

HOG + MBH 49.8 51.5 52.3 53.4 61.8 66.9 67.2 67.8

HOF + MBH 49.6 53.8 54.4 55.3 61.4 69.1 70.5 71.2

HOG + HOF + MBH 50.8 54.3 55.5 56.3 62.5 68.1 69.4 69.8

Baseline without motion stabilization, Non without human detection, Automatic automatic human detection, Manual manually annotation. As
before, we use SFV + STP, and set K = 256
The best results for each setting are shown in bold

motion boundaries are much clearer, see Figs. 1 and 4. We
have over 2 % improvement on both datasets.

Combining HOF and MBH further improves the results as
they are complementary to each other. HOF represents zero-
order motion information, whereas MBH focuses on first-
order derivatives. Combining all three descriptors achieve
the best performance, as shown in the last row of Table 2.

7.1.3 Removing Inconsistent Matches Due to Humans

We investigate the impact of removing inconsistent matches
due to humans when estimating the homography, see Fig. 4
for an illustration. We compare four cases: (i) the baseline
without stabilization, (ii) estimating the homography without
human detection, (iii) with automatic human detection, and
(iv) with manual labeling of humans. This allows us to mea-
sure the impact of removing matches from human regions
as well as to determine an upper bound in case of a per-
fect human detector. We consider two datasets: Hollywood2
and High Five. To limit the labeling effort on Hollywood2,

we annotated humans in 20 training and 20 testing videos
for each action class. On High Five, we use the annotations
provided by the authors of Patron-Perez et al. (2010).

As shown in Table 3, human detection helps to improve
motion descriptors (i.e., HOF and MBH), since removing
inconsistent matches on humans improves the homography
estimation. Typically, the improvements are over 1 % when
using an automatic human detector or manual labeling. The
last two rows of Table 4 show the impact of automatic
human detection on all six datasets. Human detection always
improves the performance slightly.

7.1.4 Comparison to the State of the Art

Table 4 compares our method with the most recent results
reported in the literature. On Hollywood2, all presented
results (Jain et al. 2013; Jiang et al. 2012; Mathe and Smin-
chisescu 2012; Zhu et al. 2013) improve dense trajectories in
different ways. Mathe and Sminchisescu (2012) prune back-
ground features based on visual saliency. Zhu et al. (2013)
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Table 4 Comparison of our results (HOG + HOF + MBH) to the state of art

Hollywood2 (%) HMDB51 (%) Olympic Sports (%)

Jiang et al. (2012) 59.5 Jiang et al. (2012) 40.7 Jain et al. (2013) 83.2

Mathe and Sminchisescu (2012) 61.0 Ballas et al. (2013) 51.8 Li et al. (2013) 84.5

Zhu et al. (2013) 61.4 Jain et al. (2013) 52.1 Wang et al. (2013b) 84.9

Jain et al. (2013) 62.5 Zhu et al. (2013) 54.0 Gaidon et al. (2013) 85.0

Baseline 63.6 Baseline 55.9 Baseline 85.8

Without HD 66.1 Without HD 59.3 Without HD 89.6

With HD 66.8 With HD 60.1 With HD 90.4

High Five (%) UCF50 (%) UCF101 (%)

Ma et al. (2013) 53.3 Shi et al. (2013) 83.3 Peng et al. (2013) 84.2

Yu et al. (2012) 56.0 Wang et al. (2013b) 85.7 Murthy and Goecke (2013a) 85.4

Gaidon et al. (2013) 62.4 Ballas et al. (2013) 92.8 Karaman et al. (2013) 85.7

Baseline 62.5 Baseline 89.1 Baseline 83.5

Without HD 68.1 Without HD 91.3 Without HD 85.7

With HD 69.4 With HD 91.7 With HD 86.0

We present our results for FV encoding (K = 256) using SFV + STP both with and without automatic human detection (HD). Best result for each
dataset is marked in bold
The best result for each dataset shown in bold

apply multiple instance learning on top of dense trajectory
features in order to learn mid-level “acton” to better repre-
sent human actions. Recently, Jain et al. (2013) report 62.5 %
by decomposing visual motion to stabilize dense trajectories.
We further improve their results by over 4 %.

HMDB51 (Kuehne et al. 2011) is a relatively new dataset.
Jiang et al. (2012) achieve 40.7 % by modeling the relation-
ship between dense trajectory clusters. Ballas et al. (2013)
report 51.8 % by pooling dense trajectory features from
regions of interest using video structural cues estimated by
different saliency functions. The best previous result is from
(Zhu et al. 2013). We improve it further by over 5 %, and
obtain 60.1 % accuracy.

Olympic Sports (Niebles et al. 2010) contains significant
camera motion, which results in a large number of trajec-
tories in the background. Li et al. (2013) report 84.5 % by
dynamically pooling feature from the most informative seg-
ments of the video. Wang et al. (2013b) propose motion atom
and phrase as a mid-level temporal part for representing and
classifying complex action, and achieve 84.9 %. Gaidon et al.
(2013) model the motion hierarchies of dense trajectories
(Wang et al. 2013a) with tree structures and report 85.0 %.
Our improved trajectory features outperform them by over
5 %.

High Five (Patron-Perez et al. 2010) focuses on human
interactions and serves as a good testbed for various struc-
ture model applied for action recognition. Ma et al. (2013)
propose hierarchical space-time segments as a new represen-
tation for simultaneously action recognition and localization.
They only extract the MBH descriptor from each segment and

report 53.3 % as the final performance. Yu et al. (2012) prop-
agate Hough voting of STIP (Laptev et al. 2008) features in
order to overcome their sparseness, and achieve 56.0 %. With
our framework we achieve 69.4 % on this challenging dataset.

UCF50 (Reddy and Shah 2012) can be considered as an
extension of the widely used YouTube dataset (Liu et al.
2009). Recently, Shi et al. (2013) report 83.3 % using ran-
domly sampled HOG, HOF, HOG3D and MBH descriptors.
Wang et al. (2013b) achieve 85.7 %. The best result so far is
92.8 % from Ballas et al. (2013). We obtain a similar accuracy
of 91.7 %.

UCF101 (Soomro et al. 2012) is used in the recent THU-
MOS’13 Action Recognition Challenge (Jiang et al. 2013).
All the top results are built on different variants of dense tra-
jectory features (Wang et al. 2013a). Karaman et al. (2013)
extract many features (such as HOG, HOF, MBH, STIP, SIFT,
etc.) and do late fusion with logistic regression to combine the
output of each feature channel. Murthy and Goecke (2013a)
combine ordered trajectories (Murthy and Goecke 2013b)
and improved trajectories (Wang and Schmid 2013), and
apply Fisher vector to encode them. With our framework we
obtained 86.0 %, and ranked first among all 16 participants.

7.2 Action Localization

In our second set of experiments we consider the localiza-
tion of four actions (i.e., drinking, smoking, open door and
sit down) in feature length movies. We set the encoding para-
meters the same as action recognition: K = 256 for Fisher
vector with SFV + STP. We first consider the effect of dif-
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Table 5 Evaluation of the
non-maximum suppression
variants: classic non-maximum
suppression (NMS), dynamic
programming non-maximum
suppression (DP-NMS), and
re-scored non-maximum
suppression (RS-NMS)

Overlap Drinking (%) Smoking (%) Open door (%) Sit down (%)

NMS 20 73.2 32.3 23.3 28.6

RS-NMS 20 76.5 38.0 23.2 26.6

DP-NMS 0 71.4 36.7 21.0 23.6

NMS 0 74.1 32.4 24.2 28.9

RS-NMS 0 80.2 40.9 26.0 27.1

The overlap parameter (second column) indicates the maximum overlap (intersection over union) allowed
between any two windows after non-maximum suppression. We use HOG + HOF + MBH from improved
trajectory features (without human detector) with FV (K = 256) augmented by SFV + STP
The best results for each class are shown in bold

Table 6 Comparison of improved trajectory features (with and without human detection) to the baseline for the action localization task

Drinking Smoking

Baseline (%) Without HD (%) With HD (%) Baseline (%) Without HD (%) With HD (%)

HOG 44.3 52.7 51.5 31.0 32.9 33.9

HOF 82.5 79.2 79.1 28.9 34.7 33.9

MBH 78.7 73.0 70.4 47.7 48.7 43.2

HOG + HOF 80.8 81.1 79.9 35.5 33.5 33.0

HOG + MBH 78.2 74.3 75.0 40.5 42.7 42.3

HOF + MBH 85.0 79.0 78.3 46.8 45.7 45.0

HOG + HOF + MBH 81.6 80.2 79.0 38.5 40.9 39.4

Open door Sit down

Baseline (%) Without HD (%) With HD (%) Baseline (%) Without HD (%) With HD (%)

HOG 21.6 23.8 21.4 14.9 14.3 14.3

HOF 21.4 19.8 23.9 25.5 25.5 23.8

MBH 29.5 23.4 22.9 26.1 25.8 25.6

HOG + HOF 20.9 27.5 26.9 24.1 21.9 22.6

HOG + MBH 29.6 30.2 29.2 28.3 25.0 25.2

HOF + MBH 28.8 23.4 23.8 30.6 27.2 27.1

HOG + HOF + MBH 28.8 26.0 26.4 29.6 27.1 27.6

We use Fisher vector (K = 256) with SFV + STP to encode local descriptors, and apply RS-NMS-0 for non-maxima suppression. We show results
on two datasets: the Coffee & Cigarettes dataset (Laptev and Pérez 2007) (drinking and smoking) and the DLSBP dataset (Duchenne et al. 2009)
(open door and sit down)
The best results for each setting are shown in bold

ferent NMS variants using our improved trajectory features
without human detection. We then compare with the baseline
dense trajectory features and discuss the impact of human
detection. Finally we present a comparison to the state-of-
the-art methods.

7.2.1 Evalution of NMS Variants

We report all the results by combining HOF, HOF and MBH
together, and present them in Table 5. We see that simple
rescoring (RS-NMS) significantly improves over standard
NMS on two out of four classes, while the dynamic program-
ming version (DP-NMS) is slightly inferior when compared
with RS-NMS. To test whether this is due to the fact that

DP-NMS does not allow any overlap, we also test NMS and
RS-NMS with zero overlap. The results show that for stan-
dard NMS zero or 20 % overlap does not significantly change
the results on all four action classes, while for RS-NMS zero
overlap is beneficial on all classes. Since RS-NMS zero over-
lap performs the best among all five different variants, we use
it in the remainder of the experiments.

7.2.2 Evaluation of Improved Trajectory Features

We present detailed experimental results in Table 6. We ana-
lyze all the combinations of the three descriptors and compare
our improved trajectory features (with and without human
detection) with the baseline dense trajectory features.

123



234 Int J Comput Vis (2016) 119:219–238

Table 7 Improved trajectory
features without human
detection compared to the state
of the art for localization

Drinking (%) Smoking (%) Open door (%) Sit down (%)

Laptev and Pérez (2007) 49.0 – – –

Duchenne et al. (2009) 40.0 – 14.4 13.9

Kläser et al. (2010) 54.1 24.5 – –

Gaidon et al. (2011) 57.0 31.0 16.4 19.8

RS-NMS zero overlap 80.2 40.9 26.0 27.1

We use HOG + HOF + MBH descriptors encoded with FV (K = 256) and SFV + STP, and apply RS-NMS
zero overlap for non-maxima suppression
The best results for each class are shown in bold

We observe that combining all descriptors usually gives
better performance than individual descriptors. The improved
trajectory features are outperformed by the baseline on three
out of four classes for the case of HOG + HOF + MBH.
Note that the results of different descriptors and settings are
less consistent than they are on action recognition datasets,
eg, Table 2, as here we report the results for each class sepa-
rately. Furthermore, since the action localization datasets are
much smaller than action recognition ones, the number of
positive examples per category is limited, which renders the
experimental results less stable. In randomised experiments,
where we leave one random positive test sample out from the
test set, we observe standard deviations of the same order as
the differences between the various settings (not shown for
sake of brevity).

As for the impact of human detection, surprisingly leaving
it out performs better for drinking and smoking. Since Coffee
&Cigarettes essentially consists of scenes with static camera,
this result might be due to inaccuracies in the homography
estimation.

7.2.3 Comparison to the State of the Art

In Table 7, we compare our RS-NMS zero overlap method
with previously reported state-of-the-art results. As features
we use HOG + HOF + MBH of the improved trajectory
features, but without human detection. We obtain substantial
improvements on all four action classes, despite the fact that
previous work used more elaborate techniques. For example,
Kläser et al. (2010) relied on human detection and tracking,
while Gaidon et al. (2011) requires finer annotations that
indicate the position of characteristic moments of the actions
(actoms). The biggest difference comes from the drinking
class, where our result is over 23 % better than that of Gaidon
et al. (2011).

7.3 Event Recognition

In our last set of experiments we consider the large-scale
TRECVID MED 2011 event recognition dataset. For this set
of experiments, we do not use the human detector during

homography estimation. We took this decision for practi-
cal reasons: running the human detector on 1000 h of video
would have taken more than two weeks on 500 cores; the
speed is about 10–15 s/frame on a single core. We also leave
out the T2 split of STP, because of both performance and com-
putational reasons. We have found on a subset of TRECVID
2011 train data that the T2 of STP does not improve the
results. This happens because the events do not have a tem-
poral structure that can be easily captured by the rigid STP,
as opposed to the actions that are temporally well cropped.

7.3.1 Evaluation of Improved Trajectory Features

Table 8 shows results on the TRECVID MED 2011 dataset.
We contrast the different descriptors and their combinations
for all the ten event categories. We observe that the MBH
descriptors are best performing among the individual chan-
nels. The fact that HOG outperforms HOF demonstrates that
there is rich contextual appearance information in the scene
as TRECVID MED contains complex event videos.

Between the two-channel combinations, the best one is
HOG + MBH, followed by HOG + HOF and HOF + MBH.
This order is given by the complementarity of the features:
both HOF and MBH encode motion information, while HOG
captures texture information. Combining all three channels
performs similarly to the best two-channel variant.

If we remove all spatio–temporal information (H3 and
SFV), performance drops from 45.9 to 43.8. This underlines
the importance of weak geometric information, even for the
highly unstructured videos found in TRECVID MED.

We consider the effect of re-scaling the videos to different
resolutions in Table 9 for both baseline DTF and our ITF.
From the results we see that ITF always improves over DTF:
even on low resolutions there are enough feature matches in
order to estimate the homography reliably. The performance
of both DTF and ITF does not improve much when using
higher resolutions than 320.

The results in Table 9 also show that the gain from ITF on
TRECVID MED is less pronounced than the gain observed
for action recognition. This is possibly due to the generally
poorer quality of the videos in this dataset, eg due to motion
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Table 9 Comparison of our improved trajectory features (ITF) with the
baseline dense trajectory features (DTF) for different resolutions on the
TRECVID MED dataset

AP 160 px (%) 320 px (%) 480 px (%) 640 px (%)

DTF 40.6 44.9 43.0 44.3

ITF 41.0 45.6 45.9 45.4

For both ITF and DTF, we combine HOG, HOF and MBH, and use FV
(K = 256) augmented with SFV and STP, but only use H3 and not T2
for STP
The best result is shown in bold

Table 10 The speed (frames/s) of computing our proposed video rep-
resentation using different resolutions on the TRECVID MED dataset;
left: the speed of computing raw features (i.e., DTF or ITF); right: the
speed of encoding the features into a high dimensional Fisher vector
(K = 256)

FPS 160 px 320 px 480 px 640 px

DTF 40.8 83.4 10.4 22.1 4.5 9.2 2.1 5.2

ITF 18.5 91.7 5.1 23.8 2.2 10.2 1.2 5.9

blur in videos recorded by hand-held cameras. In addition,
a major challenge in this data set is that for many videos
the information characteristic for the category is limited to
a relatively short sub-sequence of the video. As a result the
video representations are affected by background clutter from
irrelevant portions of the video. This difficulty might limit the
beneficial effects of our improved features.

Table 10 provides the speed of computing our video repre-
sentations when using the settings from Table 9. Computing
ITF instead of DTF features increases the runtime by around
of a factor of two. For our final setting (videos resized to 480
px width, improved dense trajectories, HOG, HOF, MBH,
stabilized without the human detector and encoded with FV
and H3 SPM and SFV), the slowdown factor with respect
to the real video time is around 10× on a single core. This
translates in less than a day of computation for the 1000 h of
TRECVID test data on a 500-core cluster.

7.3.2 Comparison to the State of the Art

We compare to the state-of-the-art in Table 11. We con-
sider the EVENTS/DEV-O split of theTRECVIDMED 2011
dataset, since most results are reported using this setup.

The top three results were reported by the following
authors. Li et al. (2013) attained 12.3 % by automatically
segmenting videos into coherent sub-sequences over which
the features are pooled. Vahdat et al. (2013) achieved 15.7 %
by using multiple kernel learning to combine different fea-
tures, and latent variables to infer the relevant portions of the
videos. Tang et al. (2013) obtained the best reported result
so far of 21.8 %, using a method based on AND-OR graphs
to combine a large set of features in different subsets.
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Table 11 Performance in terms
of AP on the TRECVID MED
2011 dataset using the
EVENTS/DEV-O split

Paper Features mAP

Tang et al. (2012) HOG3D 4.8%

Vahdat and Mori (2013) HOG3D, textual information 8.4%

Kim et al. (2013) HOG3D, MFCC 9.7%

Li et al. (2013) STIP 12.3%

Vahdat et al. (2013) HOG3D, SSIM, color, sparse and dense SIFT 15.7%

Tang et al. (2013) HOG3D, ISA, GIST, HOG, SIFT, LBP, texture, color 21.8%

ITF HOG, HOF, MBH 31.6%

The feature settings are the same as Table 8: improved trajectory features (HOG + HOF + MBH), encoded
with FV (K = 256) and SFV + H3
The bold value indicates the best performing method

We observe a dramatic improvement when comparing our
result of 31.6 % to the state of the art. In contrast to these
other approaches, our work focuses on good local features
and their encoding, and then learns a linear SVM classifier
over concatenated Fisher vectors computed from the HOG,
HOF and MBH descriptors.

8 Conclusions

This paper improves dense trajectories by explicitly estimat-
ing camera motion. We show that the performance can be
significantly improved by removing background trajectories
and warping optical flow with a robustly estimated homog-
raphy approximating the camera motion. Using a state-of-
the-art human detector, possible inconsistent matches can be
removed during camera motion estimation, which makes it
more robust. We also explore Fisher vector as an alternative
feature encoding approach to BOW histograms, and consider
the effect of STP and SFVs to encode weak geometric lay-
outs.

An extensive evaluation on three challenging tasks—
action recognition, action localization in movies, and com-
plex event recognition—demonstrates the effectiveness and
flexibility of our new framework. We also found that action
localization results can be substantially improved by using
a simple re-scoring technique before applying NMS, to sup-
press a bias for too short windows. Our proposed pipeline
significantly outperform the state of the art on all three tasks.
Our approach can serve as a general pipeline for various video
recognition problems.
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