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Abstract What is the story of an image? What is the rela-
tionship between pictures, language, and information we can
extract using state of the art computational recognition sys-
tems? In an attempt to address both of these questions, we
explore methods for retrieving and generating natural lan-
guage descriptions for images. Ideally, we would like our
generated textual descriptions (captions) to both sound like
a person wrote them, and also remain true to the image con-
tent. To do this we develop data-driven approaches for image
description generation, using retrieval-based techniques to
gather either: (a) whole captions associated with a visually
similar image, or (b) relevant bits of text (phrases) from a
large collection of image + description pairs. In the case
of (b), we develop optimization algorithms to merge the
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retrieved phrases into valid natural language sentences. The
end result is two simple, but effective, methods for harness-
ing the power of big data to produce image captions that
are altogether more general, relevant, and human-like than
previous attempts.

Keywords Retrieval · Image description · Data driven ·
Big data · Natural language processing

1 Introduction

Our overarching goal is to better understand the complex
relationship between images, computer vision, and the nat-
ural language people write to describe imagery. Successful
mapping from photographs to natural language descriptions
could have significant impacts on information retrieval, and
failures can point toward future goals for computer vision.
Studying collections of existing natural language descrip-
tions of images and how to compose descriptions for novel
queries will also help advance progress toward more com-
plex visual recognition recognition goals, such as how to tell
the story behind an image. These goals include determining
the relative importance of content elements within an image
and what factors people use to construct natural language to
describe imagery (Stratos et al. 2012), as well as tasks related
to how people name content in images (Ordonez et al. 2013).
For example, in Fig. 1, 2nd photo from left, the user describes
the girl, the dog, and their location, but selectively chooses
not to describe the surrounding foliage and hut.

Producing a relevant and accurate caption for an arbitrary
image is an extremely challenging problem because a system
needs to not only estimate what image content is depicted, but
also predict what a person would describe about the image.
However, there are already many images with relevant asso-
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Man sits in a rusted car buried in the 
sand on Waitarere beach 

Interior design of modern white and 
brown living room furniture against white 
wall with a lamp hanging.

Emma in her hat looking super cute Little girl and her dog in northern 
Thailand. They both seemed 
interested in what we were doing 

Fig. 1 SBUCaptioned Photo Dataset Photographs with user-associated captions from our web-scale captioned photo collection. We collect a large
number of photos from Flickr and filter them to produce a data collection containing over 1 million well captioned pictures

ciated descriptive text available in the noisy vastness of the
web. The key is to find the right images and make use of them
in the right way! In this paper, we present two techniques to
effectively skim the top of the image understanding problem
to caption photographs by taking a data driven approach.
To enable data driven approaches to image captioning we
have collected a large pool of images with associated visu-
ally descriptive text. We develop retrieval algorithms to find
good strings of text to describe an image, ultimately allow-
ing us to produce natural-sounding and relevant captions for
query images. These data-driven techniques follow in the
footsteps of past work on internet-vision demonstrating that
big data can often make challenging problems, see exam-
ples in image localization (Hays and Efros 2008), retrieving
photos with specific content (Torralba et al. 2008), or image
parsing (Tighe and Lazebnik 2010), amenable to simple non-
parametric matching methods.

A key potential advantage to making use of existing
human-written image descriptions is that these captions may
be more natural than those constructed directly from com-
puter vision outputs using hand written rules. Furthermore
we posit that many aspects of natural human-written image
descriptions are difficult to produce directly from the output
of computer vision systems, leading to unnatural sound-
ing captions (see e.g. Kulkarni et al. 2013). This is one of
our main motivations for seeking to sample from existing
descriptions of similar visual content. Humans make subtle
choices about what to describe in an image, as well as how
to form descriptions, based on image information that is not
captured in, for instance, a set of object detectors or scene
classifiers. In order to mimic some of these human choices,
we carefully sample from descriptions people have written
for images with some similar visual content, be it the pose of
a human figure, the appearance of the sky, the scene layout,
etc. In this way, we implicitly make use of human judgments
of content importance and of some aspects of human com-
position during description generation. Another advantage of
this type of method is that we can produce subtle and varied
natural language for images without having to build models
for every word in a vast visual vocabulary—by borrowing
language based on visual similarity.

This paper develops and evaluates two methods to auto-
matically map photographs to natural language descriptions.
The first uses global image feature representations to retrieve
and transfer whole captions from database images to a
query image (Ordonez et al. 2011). The second retrieves
textual phrases from multiple visually similar database
images, providing the building blocks, phrases, from which
to construct novel and content-specific captions for a query
image.

For the second method, finding descriptive phrases
requires us to break the image down into constituent content
elements, e.g. object detections (e.g., person, car, horse, etc.)
and coarse regions from image parsing (e.g., grass, build-
ings, sky, etc.). We then retrieve visually similar instances
of these objects and regions as well as similar scenes and
whole images from a very large database of images with
descriptions. Depending on what aspect of the image is being
compared, we sample appropriate phrases from the descrip-
tions. For example, a visual match to a similar sky might
allow us to sample the prepositional phrase, “on a cloudless
day.” Once candidate phrases are retrieved based on match-
ing similar image content, we evaluate several collective
selection methods to examine and rerank the set of retrieved
phrases. This reranking step promotes consistent content in
the matching results up while pushing down outliers both in
the image and language domain. In addition to intrinsic eval-
uation, the final set of reranked phrases are then evaluated
in two applications. One tests the utility of the phrases for
generating novel descriptive sentences. The second uses the
phrases as features for text based image search.

Data-driven approaches to generation require a set of cap-
tioned photographs. Some small collections of captioned
images have been created by hand in the past. The UIUC
sentence data sets contain 1k (Rashtchian et al. 2010) and
30k (Young et al. 2014) images respectively each of which
is associated with five human generated descriptions. The
ImageClef1 image retrieval challenge contains 20k images
with associated human descriptions. Most of these collec-
tions are relatively small for retrieval based methods, as

1 http://www.imageclef.org/2011.
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demonstrated by our experiments on captioning with vary-
ing collection size (Sect. 4). Therefore, we have collected and
released the SBU Captioned Photo Dataset (Ordonez et al.
2011) containing 1,000,000 Flickr images with natural lan-
guage descriptions. This dataset was collected by performing
a very large number of search queries to Flickr, and then
heuristically filtered to find visually descriptive captions for
images. The resulting dataset is large and varied, enabling
effective matching of whole or local image content. The very
large dataset also facilitates automatic tuning methods and
evaluation that would not be possible on a dataset of only a
few thousand captioned images. In addition this is the first—
to our knowledge—attempt to mine the internet for general
captioned images.

We perform extensive evaluation of our proposed meth-
ods, including evaluation of the sentences produced by our
baseline and phrase-based composition methods as well as
evaluation of collective phrase selection and its application
to text based image search. As these are relatively new and
potentially subjective tasks, careful evaluation is important.
We use a variety of techniques, from direct evaluation by peo-
ple (using Amazon’s Mechanical Turk) to indirect automatic
measures like BLEU (Papineni et al. 2002) and ROUGE
(Lin 2004) scores for similarity to ground truth phrases and
descriptions. Note that none of these evaluation metrics are
perfect for this task (Kulkarni et al. 2013; Hodosh et al.
2013). Hopefully future research will develop better auto-
matic methods for image description evaluation, as well as
explore how descriptions should change as a function of task,
e.g. to compose a description for image search vs image cap-
tioning for the visually impaired.

The reminder of the paper describes:

– A large data set containing images from the web with
associated captions written by people, filtered so that the
descriptions are likely to refer to visual content (Sect. 3).
This was previously published as part of (Ordonez et al.
2011).

– A description generation method that utilizes global
image representations to retrieve and transfer captions
from our data set to a query image (Sect. 4). This
was previously published as part of (Ordonez et al.
2011).

– New methods to utilize local image representations and
collective selection to retrieve and rerank relevant phrases
for images (Sect. 5).

– New applications of phrase-based retrieval and reranking
to: description generation (Sect. 6.1), and complex query
image search (Sect. 6.2).

– New evaluations of our proposed image description
methods, collective phrase selection algorithms, and
image search prototype (Sect. 7).

2 Related Work

Associating natural language with images is an emerging
endeavor in computer vision. Some seminal work has looked
at the task of mapping from images to text as a transla-
tion problem (similar to translating between two languages)
(Duygulu et al. 2002). Other work has tried to estimate corre-
spondences between keywords and image regions (Barnard
et al. 2003), or faces and names (Berg et al. 2004a, b). In
a parallel research goal, recent work has started to move
beyond recognition of leaf-level object category terms toward
mid-level elements such as attributes (Berg et al. 2010;
Farhadi et al. 2009; Ferrari and Zisserman 2007; Kumar et al.
2009; Lampert et al. 2009), or hierarchical representations of
objects (Deng et al. 2011a, b; Deng et al. 2012).

Image description generation in particular has been stud-
ied in recent papers (Farhadi et al. 2010; Feng and Lapata
2010; Hodosh et al. 2013; Kulkarni et al. 2013; Kuznetsova
et al. 2012; Li et al. 2011; Mitchell et al. 2012; Ordonez et al.
2011; Yao et al. 2010; Mason and Charniak 2014; Guadar-
rama et al. 2013). Some approaches (Kulkarni et al. 2013; Li
et al. 2011; Yang et al. 2011), generate descriptive text from
scratch based on detected elements such as objects, attributes,
and prepositional relationships. This results in descriptions
for images that are sometimes closely related to image con-
tent, but that are also often quite verbose, non-human-like, or
lacking in creativity. Other techniques for producing descrip-
tive image text, e.g. (Yao et al. 2010), require a human in the
loop for image parsing (except in specialized circumstances)
and various hierarchical knowledge ontologies. The recent
work of Hodosh et al (2013) argues in favor of posing the
image-level sentence annotation task as a sentence ranking
problem, where performance is measured by the rank of the
ground truth caption, but does not allow for composing new
language for images.

Other attempts to generate natural language descriptions
for images have made use of pre-associated text or other
meta-data. For example, Feng and Lapata (2010) generate
captions for images using extractive and abstractive genera-
tion methods, but assume relevant documents are provided
as input. Aker et al. (2010) rely on GPS meta data to access
relevant text documents.

The approaches most relevant to this paper make use
of existing text for caption generation. In Farhadi et al.
(2010), the authors produce image descriptions via a retrieval
method, by translating both images and text descriptions
to a shared meaning space represented by a single <

object, action, scene > tuple. A description for a query
image is produced by retrieving whole image descriptions
via this meaning space from a set of image descriptions
[(the UIUC Pascal Sentence data set Rashtchian et al.
(2010)]. This results in descriptions that sound very human—
since they were written by people—but which may not be
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relevant to the specific image content. This limited rele-
vancy often occurs because of problems of sparsity, both
in the data collection—1000 images is too few to guaran-
tee similar image matches—and in the representation—only
a few categories for three types of image content are
considered.

In contrast, we attack the caption generation problem for
more general images (images found via thousands of paired-
word Flickr queries) and a larger set of object categories
(89 vs. 20). In addition to extending the object category list
considered, we also include a wider variety of image content
aspects in our search terms, including: non-part-based region
categorization, attributes of objects, activities of people, and
a larger number of common scene classes. We also generate
our descriptions via an extractive method with access to a
much larger and more general set of captioned photographs
from the web (1 million vs. 1 thousand).

Compared to past retrieval based generation approaches
such as Farhadi et al. (2010) and our work Ordonez et al.
(2011), which retrieve whole existing captions to describe a
query image, here we develop algorithms to associated bits
of text (phrases) with parts of an image (e.g. objects, regions,
or scenes). As a product of our phrase retrieval process, we
also show how to use our retrieved phrases (retrieved from
multiple images) to compose novel captions, and to per-
form complex query retrieval. Since images are varied, the
likelihood of being able to retrieve a complete yet relevant
caption is low. Utilizing bits of text (e.g., phrases) allows us
to directly associate text with part of an image. This results
in better, more relevant and more specific captions if we
apply our phrases to caption generation. A key subroutine
in the process is reranking the retrieved phrases in order to
produce a shortlist for the more computationally expensive
optimization for description generation, or for use in complex
query retrieval. In this paper we explore two techniques for
performing this reranking collectively—taking into account
the set of retrieved phrases. Our reranking approaches have
close ties to work in information retrieval including PageR-
ank (Jing and Baluja 2008) and TFIDF (Roelleke and Wang
2008).

Producing a relevant and human-like caption for an image
is a decidedly subtle task. As previously mentioned, people
make distinctive choices about what aspects of an image’s
content to include or not include in their description. This
link between visual importance and descriptions, studied in
(Stratos et al. 2012), leads naturally to the problem of text
summarization in natural language processing. In text sum-
marization, the goal is to produce a summary for a document
that describes the most important content contained in the
text. Some of the most common and effective methods pro-
posed for summarization rely on extractive summarization
(Li et al. 2006; Mihalcea 2005; Nenkova et al. 2006; Radev
and Allison 2004; Wong et al. 2008) where the most impor-

tant or relevant text is selected from a document to serve as
the document’s summary. Often a variety of features related
to document content (Nenkova et al. 2006), surface (Radev
and Allison 2004), events (Li et al. 2006) or feature combina-
tions (Wong et al. 2008) are used in the selection process to
compose sentences that reflect the most significant concepts
in the document. Our retrieval based description generation
methods can be seen as instances of extractive summariza-
tion because we make use of existing text associated with
(visually similar) images.

3 Web-Scale Captioned Image Collection

One key requirement of this work is a web-scale database
of photographs with associated descriptive text. To enable
effective captioning of novel images, this database must sat-
isfy two general requirements: (1) It must be large so that
visual matches to the query are reasonably similar, (2) The
captions associated with the database photographs must be
visually relevant so that transferring captions between pic-
tures driven by visual similarity is useful. To achieve the
first requirement we queried Flickr using a huge number of
pairs of query terms (objects, attributes, actions, stuff, and
scenes). This produced a very large, but noisy initial set of
photographs with associated text (hundreds of millions of
images). To achieve our second requirement we filtered this
set so that the descriptions attached to a picture are likely
to be relevant and visually descriptive. To encourage visual
descriptiveness, we select only those images with descrip-
tions of satisfactory length, based on observed lengths in
visual descriptions. We also enforce that retained descrip-
tions contain at least two words belonging to our term lists
and at least one prepositional word, e.g. “on”, “under” which
often indicate visible spatial relationships.

This resulted in a final collection of over 1 million images
with associated text descriptions—the SBUCaptioned Photo
Dataset. These text descriptions generally function in a sim-
ilar manner to image captions, and usually directly refer to
some aspects of the visual image content (see Fig. 1 for exam-
ples).

To evaluate whether the captions produced by our auto-
matic filtering are indeed relevant to their associated images,
we performed a forced-choice evaluation task, where a user
is presented with two photographs and one caption. The user
must assign the caption to the most relevant image (care is
taken to remove biases due to temporal or left-right place-
ment in the task). In this case we present the user with
the original image associated with the caption and a ran-
dom image. We perform this evaluation on 100 images from
our web-collection using Amazon’s Mechanical Turk ser-
vice, and find that users are able to select the ground truth
image 96 % of the time. This demonstrates that the task is
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reasonable and that descriptions from our collection tend to
be fairly visually specific and relevant. One possible addi-
tional pre-processing step for our dataset would be to use
sentence compression by eliminating overly specific infor-
mation as described in our previous work (Kuznetsova et al.
2013).

4 Global Generation of Image Descriptions

Past work has demonstrated that if your data set is large
enough, some very challenging problems can be attacked
with simple matching methods (Hays and Efros 2008; Tor-
ralba et al. 2008; Tighe and Lazebnik 2010). In this spirit,
we harness the power of web photo collections in a non-
parametric approach. Given a query image, Iq , our goal is to
generate a relevant description. In our first baseline approach,
we achieve this by computing the global similarity of a query
image to our large web-collection of captioned images. We
find the closest matching image (or images) and simply trans-
fer over the description from the matching image to the query
image.

For measuring visual similarity we utilize two image
descriptors. The first is the well known gist feature, a global
image descriptor related to perceptual dimensions – natu-
ralness, roughness, ruggedness etc – of scenes (Oliva and
Torralba 2001). The second descriptor is also a global image
descriptor, computed by resizing the image into a “tiny
image”, essentially a thumbnail of size 32 × 32. This helps
us match not only scene structure, but also the overall color
of images. To find visually relevant images we compute the
similarity of the query image to images in the captioned photo
dataset using a sum of gist similarity and tiny image color
similarity (equally weighted).

5 Retrieving and Reranking Phrases Describing
Local Image Content

In this section we present methods to retrieve natural lan-
guage phrases describing local and global image content from
our large database of captioned photographs. Because we
want to retrieve phrases referring to specific objects, rela-
tionships between objects and their background, or to the
general scene, a large amount of image and text process-
ing is first performed on the collected database (Sect. 5.1).
This allows us to extract useful and accurate estimates of
local image content as well as the phrases that refer to that
content. For a novel query image, we can then use visual sim-
ilarity measures to retrieve sets of relevant phrases describing
image content (Sect. 5.2). Finally, we use collective rerank-
ing methods to select the most relevant phrases for the query
image (Sect. 5.3).

5.1 Dataset Processing

We perform four types of dataset processing: object detec-
tion, rough image parsing to obtain background elements,
scene classification, and caption parsing. This provides tex-
tual phrases describing both local (e.g. objects and local
object context) and global (e.g. general scene context) image
content.

5.1.1 Object Detection

We extract object category detections using deformable part
models (Felzenszwalb et al. 2011) for 89 common object
categories (Li et al. 2010; Ordonez et al. 2011). Of course,
running tens or hundreds of object detectors on an image
would produce extremely noisy results (e.g., Fig. 2). Instead,

Ecuador, amazon basin, near coca, rain forest, passion fruit flower 

airplane attire bicycle bird

boat bottle bus car

cat chair dog flower

fruit person tower train

Fig. 2 Left Blindly running many object detectors on an image pro-
duces very noisy results. Running object detectors mentioned in a
caption can produce much cleaner results. Right Improvement in
detection is measured with precision-recall (red shows raw detector

performance, blue shows caption triggered). For some categories (e.g.,
airplane, dog) performance is greatly improved, for others not as much
(e.g., cat, chair) (Color figure online)
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we place priors on image content—by only running detectors
for objects (or their synonyms and hyponyms, e.g., Chi-
huahua for dog) mentioned in the caption associated with
a database image. This produces much cleaner results than
blindly running all object detectors. Though captions can pro-
vide a semi-weak annotation signal (e.g. an image captioned
“A horse outside my car window” probably does not depict
a car), we are able to obtain a fairly accurate pool of object
localizations with associated text phrases without requiring
a fully annotated dataset. Figure 2 shows precision-recall
curves for raw detectors in red and caption triggered detec-
tors in blue for 1000 images from the SBU Dataset covering
a balanced number of categories with hand labeled bound-
ing box annotations for evaluation. Detection performance
is greatly improved for some categories (e.g., bus, airplane,
dog), and less improved for others (e.g. cat, person). From
the million photo database we obtain a large pool of (up to
20k) high scoring object detections for each object category.

5.1.2 Image Parsing

Image parsing is used to estimate regions of background ele-
ments in each database image. Six categories are considered:
sky, water, grass, road, tree, and building, using detectors
(Ordonez et al. 2011) which compute color, texton, HoG
(Dalal and Triggs 2005) and Geometric Context (Hoiem et al.
2005) as input features to a sliding window based SVM clas-
sifier. These detectors are run on all database images.

5.1.3 Scene Classification

The scene descriptor for each image consists of the outputs
of classifiers for 26 common scene categories. The features,
classification method, and training data are from the SUN
dataset (Xiao et al. 2010). This descriptor is useful for cap-
turing and matching overall global scene appearance for a
wide range of scene types. Scene descriptors are computed
on 700,000 images from the database to obtain a large pool
of scene descriptors for retrieval.

5.1.4 Caption Parsing

The Berkeley PCFG parser (Petrov et al. 2006; Petrov and
Klein 2007) is used to obtain a hierarchical parse tree for
each caption. From this tree we gather constituent phrases,
(e.g., noun phrases, verb phrases, and prepositional phrases)
referring to each of the above kinds of image content in the
database.

5.2 Retrieving Phrases

For a query image, we retrieve several types of rele-
vant phrases: noun-phrases (NPs), verb-phrases (VPs), and

prepositional-phrases (PPs). Five different features are used
to measure visual similarity: Color—LAB histogram,
Texture—histogram of vector quantized responses to a filter
bank (Leung and Malik 1999), SIFT Shape—histogram of
vector quantized dense SIFT descriptors (Lowe 2004), HoG
Shape—histogram of vector quantized densely computed
HoG descriptors (Dalal and Triggs 2005), Scene—vector of
classification scores for 26 common scene categories. The
first 4 features are computed locally within an (object or stuff)
region of interest and the last feature is computed globally.

5.2.1 Retrieving Noun-Phrases (NPs)

For each proposed object detection in a query image, we
retrieve a set of relevant noun-phrases from the database.
For example, if “fruit” is detected in the query, then we
retrieve NPs from database image captions with visually sim-
ilar “fruit” detections (including synonyms or holonyms, e.g.
“apples” or “oranges”). This process is illustrated in Fig. 3,
left, where a query fruit detection is matched to visually simi-
lar database fruit detections (and their referring NPs in green).
Visual similarity is computed as an unweighted combination
of color, texture, SIFT, and HoG similarity, and produces
visually similar and conceptually relevant NPs for a query
object.

5.2.2 Retrieving Verb-Phrases (VPs)

For each proposed object detection in a query image, we
retrieve a set of relevant verb-phrases from the database. Here
we associate VPs in database captions to object detections in
their corresponding database images if the detection category
(or a synonym or holonym) is the head word in an NP from
the same sentence (e.g. in Fig. 3 bottom right dog picture,
“sleeping under my desk” is associated with the dog detection
in that picture). Our measure of visual similarity is again
based on equally weighted combination of color, texton, SIFT
and HoG feature similarities. As demonstrated in Fig. 3 (left),
this measure often captures similarity in pose.

5.2.3 Retrieving Image Parsing-Based
Prepositional-Phrases (PPStuff)

For each proposed object detection and for each background
element detection in a query image (e.g. sky or road), we
retrieve relevant PPs according to visual and spatial rela-
tionship similarity (illustrated on the left in Fig. 4 for car
plus tree and grass detections). Visual similarity between a
background query region and background database regions
is computed based on color, texton, and SIFT co-sine sim-
ilarity. Spatial relationship similarity is computed based
on the similarity in geometric configuration between the
query object-background pair and object-background pairs
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Fig. 3 Left For a query “fruit” detection, we retrieve similar looking
“fruit” detections (including synonyms or holonyms) from the data-
base and transfer the referring noun-phrase (NP). Right For a query

“dog” detection, we retrieve similar looking “dog” detections (includ-
ing synonyms or holonyms) from the database and transfer the referring
verb-phrase (VP) (Color figure online)

View from our B&B in this 
photo 

Extract scene descriptor 

Find matching 
images by scene 
similarity 

I'm about to blow the building 
across the street. 

Only in Paris will you find a 
bo�le of wine on a table 
outside a bookstore 

Pedestrian street in the Old 
Lyon with stairs to climb up 
the hill of Fourviere 

Fig. 4 Left For query object-stuff detection pairs, e.g.,“car” and “tree,”
we retrieve relevant object-stuff detections from the database using
visual and geometric configuration similarity (where the database match

can be e.g., “any object” and “tree” pair) and transfer the referring
prepositional-phrase (PP). Right We use whole image scene classifica-
tion descriptors to transfer contextual scene prepositional-phrases (PPs)

observed in the database (where the object in the database
pairs need not be the same object category as the query). This
spatial relationship is measured in terms of the normalized
distance between the foreground object and the background
region, the normalized overlap area between the foreground
object and the background region, and the absolute verti-
cal position of the foreground object. Visual similarity and
geometric similarity measures are given equal weights and
produce appealing results (Fig. 4).

5.2.4 Retrieving Scene-Based Prepositional-Phrases
(PPScene)

For a query image, we retrieve PPs referring to the overall
setting or scene by finding the most similar global scene

descriptors from the database. Here we retrieve the last PP
in a sentence since it is most likely to describe the scene
content. As shown on the right in Fig. 4, useful matched
phrases often correspond to places (e.g., “in Paris”) or general
scene context (e.g., “at the beach”) (Fig. 5).

5.3 Reranking Phrases

Given a set of retrieved phrases for a query image, we would
like to rerank these phrases using collective measures com-
puted on the entire set of retrieved results. Related reranking
strategies have been used for other retrieval systems. Sivic
and Zisserman (2003) retrieve images using visual words and
then rerank them based on a measure of geometry and spa-
tial consistency. Torralba et al. (2008) retrieve a set of images
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the sheep meandered along a 
desolate road in the highlands of 
Scotland through frozen grass

NP: the sheep 

VP: meandered along a 
desolate road 

PP: in the highlands of 
Scotland

PP: through frozen 
grass

object match

object match

scene match

region match

Fig. 5 For a query image, we take a data-driven approach to retrieve
(and optionally rerank) a set of visually relevant phrases based on local
and global image content estimates. We can then construct an image cap-
tion for the query using phrasal description generation. Our optimization
approach to generation maximizes both visual similarity and language-
model estimates of sentence coherence. This produces captions that are
more relevant, and human-sounding than previous approaches

using a reduced representation of their feature space and then
perform a second refined reranking phase on top matching
images to produce exact neighbors.

In our case, instead of reranking images, our goal is
to rerank retrieved phrases such that the relevance of the
top retrieved phrases is increased. Because each phrase is
retrieved independently in the phrase retrieval step, the results
tend to be quite noisy. Spurious image matches can easily
produce irrelevant phrases. The wide variety of Flickr users
and contexts under which they capture their photos can also
produce unusual or irrelevant phrases.

As an intuitive example, if one retrieved phrase describes a
dog as “the brown dog” then the dogmay be brown. However,
if several retrieved phrases describe the dog in similar ways,
e.g., “the little brown dog”, “my brownish pup”, “a brown and
white mutt”, then it is much more likely that the query dog
is brown and the predicted relevance for phrases describing
brown attributes should be increased.

In particular, for each type of retrieved phrase (see
Sect. 5.2), we gather the top 100 best matches based on visual
similarity. Then, we perform phrase reranking to select the
best and most relevant phrases for an image (or part of an
image in the case of objects or regions). We evaluate two
possible methods for reranking: (1) PageRank based rerank-
ing using visual and/or text similarity, (2) Phrase-level TFIDF
based reranking.

5.3.1 PageRank Reranking

PageRank (Brin and Page 1998) computes a measure for
the relative importance of items within a set based on the
random walk probability of visiting each item. The algo-
rithm was originally proposed as a measure of importance for
web pages using hyperlinks as connections between pages
(Brin and Page 1998), but has also been applied to other

tasks such as reranking images for product search (Jing and
Baluja 2008). For our task, we use PageRank to compute
the relative importance of phrases within a retrieved set on
the premise that phrases displaying strong similarity to other
phrases within the retrieved set are more likely to be relevant
to the query image.

We construct four graphs, one for each type of retrieved
phrase (NP, VP, PPStuff, or PPScene), from the set of
retrieved phrases for that type. Nodes in these graphs cor-
respond to retrieved phrases (and the corresponding object,
region, or image each phrase described in the SBU database).
Edges between nodes are weighted using visual similar-
ity, textual similarity, or an unweighted combination of the
two—denoted as Visual PageRank, Text PageRank, or Visual
+ Text PageRank respectively. Text similarity is computed
as the cosine similarity between phrases, where phrases
are represented as a bag of words with a vocabulary size
of approximately 100k words, weighted by term-frequency
inverse-document frequency (TFIDF) score (Roelleke and
Wang 2008). Here IDF measures are computed for each
phrase type independently rather than over the entire cor-
pus of phrases to produce IDF measures that are more type
specific. Visual similarity is computed as cosine similarity of
the visual representations used for retrieval (Sect. 5.2).

For generating complete image descriptions (Sect. 6.1),
the PageRank score can be directly used as a unary potential
for phrase confidence.

5.3.2 Phrase-level TFIDF Reranking

We would like to produce phrases for an image that are not
only relevant, but specific to the particular depicted image
content. For example, if we have a picture of a cow a phrase
like “the cow” is always going to be relevant to any picture of
a cow. However, if the cow is mottled with black and white
patches then “the spotted cow” is a much better description
for this specific example. If both of these phrases are retrieved
for the image, then we would prefer to select the latter over
the former.

To produce phrases with high description specificity,
we define a phrase-level measure of TFIDF. This mea-
sure rewards phrases containing words that occur frequently
within the retrieved phrase set, but infrequently within a
larger set of phrases—therefore giving higher weight to
phrases that are specific to the query image content (e.g.,
“spotted”). For object and stuff region related phrases (NPs,
VPs, PPStuff), IDF is computed over phrases referring to that
object or stuff category (e.g., the frequency of words occur-
ring in a noun phrase with “cow” in the example above).
For whole image related phrases (PPScene), IDF is com-
puted over all prepositional phrases. To compute TFIDF for
a phrase, the TFIDF for each word in the phrase is calcu-
lated (after removing stop words) and then averaged. Other
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work that has used TFIDF for image features (we use it for
text associated with an image) include Sivic and Zisserman
(2003), Chum et al. (2008), and Ordonez et al. (2011).

For composing image descriptions (Sect. 6.1), we use
phrase-level TFIDF to rerank phrases and select the top 10
phrases. The original visual retrieval score (Sect. 5.2) is used
as the phrase confidence score, effectively merging ideas of
visual relevance with phrase specificity (denoted as Visual +
TFIDF).

6 Applications of Phrases

Once we have retrieved (and reranked) phrases related to
an image we can use the associated phrases in a number
of applications. Here we demonstrate two potential applica-
tions: phrasal generation of image descriptions (Sect. 6.1),
and complex query image search (Sect. 6.2).

6.1 Phrasal Generation of Image Descriptions

We model caption generation as an optimization problem in
order to incorporate two different types of information: the
confidence score of each retrieved phrase provided by the
original retrieval algorithm (Sect. 5.2) or by our reranking
techniques (Sect. 5.3), and additional pairwise compatibil-
ity scores across phrases computed using observed language
statistics. Our objective is to select a set of phrases that are
visually relevant to the image and that together form a rea-
sonable sentence, which we measure by compatibility across
phrase boundaries.

Let X = {xobj, xverb, xstuff, xscene} be a candidate set
of phrases selected for caption generation. We maximize the
following objective over possibilities for X:

E(X) = Φ(X) + Ψ (X) (1)

where Φ(X) aggregates the unary potentials measuring qual-
ity of the individual phrases:

Φ(X) = φ(xobj) + φ(xverb) + φ(xstuff) + φ(xscene) (2)

And Ψ (X) aggregates binary potentials measuring pairwise
compatibility between phrases:

Ψ (X) = ψ(xobj, xverb) + ψ(xverb, xstuff) + ψ(xstuff, xscene)

(3)

6.1.1 Unary Potentials

φ(x), are computed as the confidence score of phrase x
determined by the retrieval and reranking techniques dis-
cussed in Sect. 5.3. To make scores across different types

of phrases comparable, we normalize them using Z-score
(subtract mean and divide by standard deviation). We further
transform the scores so that they fall in the [0,1] range.

6.1.2 Binary Potentials

N-gram statistics are used to compute language naturalness—
a frequent n-gram denotes a commonly used, “natural”,
sequence of words. In particular, we use n-gram frequencies
provided by the Google Web 1-T dataset (Brants and Franz
2006), which includes frequences up to 5-g with counts com-
puted from text on the web. We use these counts in the form
of normalized point-wise mutual information scores to incor-
porate language-driven compatibility scores across different
types of retrieved phrases. The compatibility score ψ(xi , x j )
between a pair of adjacent phrases xi and x j is defined as
follows:

ψ(xi , x j ) = α · ψL
i j + (1 − α) · ψG

i j ,

whereψ L
i j andψG

i j are the local and the global cohesion scores

defined below.2

Local Cohesion Score Let Li j be the set of all possible
n-grams (2 ≤ n ≤ 5) across the boundary of xi and x j . Then
we define the n-gram local cohesion score as:

ψL
i j =

∑

l∈Li j

NPMI(l)

‖Li j‖ (4)

where NPMI(v) = (PMI(v) − a)/(b − a) is a normalized
point-wise mutual information (PMI) score where a and b are
normalizing constants computed across n-grams so that the
range of NPMI(v) is between 0 and 1. This term encourages
smooth transitions between consecutive phrases. For instance
the phrase “The kid on the chair” will fit better preceding
“sits waiting for his meal” than “sleeps comfortably”. This
is because the words at the end of the first phrase including
“chair” are more compatible with the word“sit” at the begin-
ning of the second phrase than with the word “sleep” at the
beginning of the third phrase.

Global Cohesion Score These local scores alone are not
sufficient to capture semantic cohesion across very long
phrases, because Google n-gram statistics are limited to five
word sequences. Therefore, we also consider compatibility
scores between the head word of each phrase, where the head
word corresponds semantically to the most important word
in a given phrase (last word or main verb of the phrase). For
instance the phrase “The phone in the hall” is more compat-
ible with the phrase “rings loudly all the time” than with the

2 The coefficient α can be tuned via grid search, and scores are normal-
ized ∈ [0, 1].
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phrase “thinks about philosophy everyday” because the head
word “phone” is more compatible with the head word “rings”
than with the head word “thinks”. Let hi and h j be the head
words of phrases xi and xi respectively, and let f�(hi , h j )

be the total frequency of all n-grams that start with hi and
end with h j . Then the global cohesion is computed as:

ψG
i j = f�(hi , h j ) − min( f�)

max( f�) − min( f�)
(5)

6.1.3 Inference by Viterbi Decoding

Notice that the potential functions in the objective function
(Eqs. 1 and 3) have a linear chain structure. Therefore, we can
find the argmax, X = {xobj, xverb, xstuff, xscene}, efficiently
using Viterbi decoding.3

6.2 Complex Query Image Search

Image retrieval is beginning to work well. Commercial com-
panies like Google and Bing produce quite reasonable results
now for simple image search queries, like “dog” or “red car”.
Where image search still has much room for improvement is
for complex search queries involving appearance attributes,
actions, multiple objects with spatial relationships, or inter-
actions. This is especially true for more unusual situations
that cannot be mined directly by looking at the meta-data
and text surrounding an image, e.g., “little boy eating his
brussels sprouts”.

We demonstrate a prototype application, showing that our
approach for finding descriptive phrases for an image can be
used to form features that are useful for complex query image
retrieval. We use 1000 test images (described in Sect. 7) as a
dataset. For each image, we pick the top selected phrases from
the vision + Text PageRank algorithm to use as a complex
text descriptor for that image—note that the actual human-
written caption for the image is not seen by the system. For
evaluation we then use the original human caption for an
image as a complex query string. We compare it to each of
the automatically derived phrases for images in the dataset
and score the matches using normalized correlation. For each
matching image we average those scores for each retrieved
phrase. We then sort the scores and record the rank of the cor-
rect image—the one for which the query caption was written.
If the retrieved phrases matched the actual human captions
well, then we expect the query image to be returned first in the
retrieved images. Otherwise, it will be returned later in the
ranking. Note that this is only a demo application performed
on a very small dataset of images. A real image retrieval
application would have access to billions of images.

3 An interesting but non-trivial extension to this generation technique
is allowing re-ordering or omission of phrases (Kuznetsova et al. 2012).

7 Evaluation

We perform experimental evaluations on each aspect of
the proposed approaches: global description generation
(Sect. 7.1), phrase retrieval and reranking (Sect. 7.2), phrase
based description generation (Sect. 7.3), and phrase based
complex query image search (Sect. 7.4).

To evaluate global generation, we randomly sample 500
images from our collection. As is usually the case with web
photos, the photos in this set display a wide range of diffi-
culty for visual recognition algorithms and captioning, from
images that depict scenes (e.g. beaches), to images with rela-
tively simple depictions (e.g. a horse in a field), to images
with much more complex depictions (e.g. a boy handing
out food to a group of people). For all phrase based eval-
uations (except where explicitly noted) we use a test set of
1000 query images, selected to have high detector confidence
scores. Random test images could also be sampled, but for
images with poor detector performance we expect the results
to be much the same as for our baseline global generation
methods. Therefore, we focus on evaluating performance for
images where detection is more likely to have produced rea-
sonable estimates of local image content.

7.1 Global Generation Evaluation

Results-Size Matters! Our global caption generation method
often performs surprisingly well. As reflected in past work
(Hays and Efros 2008; Torralba et al. 2008) image retrieval
from small collections often produces spurious matches. This
can be seen in Fig. 8 where increasing data set size has a sig-
nificant effect on the quality of retrieved global matches and
their corresponding transferred caption relevance. Quantita-
tive results also reflect this observation. As shown in Table 1
data set size has a significant effect on automatic measures
of caption quality, specifically on BLEU score; more data
provides more similar and relevant matched images (and cap-
tions). BLEU scores are a measure of precision on the number
of n-grams matched of a given candidate text against a set
of reference ground truth texts. For our task we use BLEU
at 1, meausuring uni-gram performance. This measure also
incorporates a penalty on the length of the candidate text.

Table 1 Global matching performance with respect to data set size
(BLEU score measured at 1)

Method BLEU

Global description generation (1k) 0.0774 ± 0.0059

Global description generation (10k) 0.0909 ± 0.0070

Global description generation (100k) 0.0917 ± 0.0101

Global description generation (1million) 0.1177 ± 0.0099
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7.2 Phrase Retrieval and Ranking Evaluation

We calculate BLEU scores (without length penalty) for
evaluating the retrieved phrases against the original human
associated captions from the SBU Dataset (Ordonez et al.
2011). Scores are evaluated for the top K phrases for K =
1, 5, 10 for each phrase type in Table 2. We can see that except
for Visual PageRank all other reranking strategies yield better
BLEU scores than the original (unranked) retrieved phrases.
Overall, Text PageRank and TFIDF Reranking provide the
best scores.

One possible weakness in this initial evaluation is that
we use a single caption as reference—the captions provided
by the owners of the photos—which often include contex-
tual information unrelated to visual content. To alleviate
this effect we collect four additional human written descrip-
tions using Amazon Mechanical Turk for a subset of 200
images from our test set (care was taken to ensure work-
ers were located in the US and filtered for quality control).
In this way we obtain good quality sentences referring to the
image content, but we also notice some biases like rich noun-
phrases while very few verb-phrases within those sentences.

Results are provided in Table 3, further supporting our previ-
ous observations. TFIDF and Text PageRank demonstrate the
most increase in BLEU score performance over the original
retrieved ranking.

7.3 Application 1: Description Generation Evaluation

We can also evaluate the quality of our retrieved set of
phrases indirectly by using them in an application to com-
pose novel full image descriptions (Sect. 6.1). Automatic
evaluation is computed using BLEU score (Papineni et al.
2002) (including length penalty), and we additionally com-
pute ROUGE scores (Lin 2004) (analogous to BLEU scores,
ROUGE scores are a measure of recall often used in machine
translation and text summarization). The original associated
captions from Flickr are used as reference descriptions. Table
4 shows results. For BLEU, all of our reranking strategies
except visual PageRank outperform the original image based
retrieval on the generation task and the best method is Visual
+ TFIDF reranking. For ROUGE, the best reranking strategy
is Visual + Text PageRank.

Table 2 Average BLEU@1 score for the top K retrieved phrases against Flickr captions

Method Noun phrases
K = 1, 5, 10

Verb phrases
K = 1, 5, 10

Prepositional phrases
(stuff) K = 1, 5, 10

Prepositional phrases
(scenes) K = 1, 5, 10

No reranking 0.24, 0.24, 0.23 0.15, 0.14, 0.14 0.30, 0.29, 0.27 0.28, 0.26, 0.25

Visual PageRank 0.23, 0.23, 0.23 0.13, 0.14, 0.14 0.28, 0.28, 0.27 0.26, 0.25, 0.25

Text PageRank 0.30, 0.29, 0.28 0.20, 0.19, 0.17 0.38, 0.37, 0.36 0.34, 0.30, 0.27

Visual + Text PageRank 0.28, 0.27, 0.26 0.17, 0.17, 0.16 0.32, 0.30, 0.28 0.27, 0.28, 0.27

TFIDF reranking 0.29, 0.28, 0.27 0.19, 0.19, 0.18 0.38, 0.37, 0.36 0.40, 0.36, 0.32

Table 3 Average BLEU@1
score evaluation K=10 against
MTurk written descriptions

Method Noun phrases Verb phrases Prepositional
phrases (stuff)

Prepositional
phrases (scenes)

No reranking 0.2633 0.0759 0.1458 0.1275

Visual PageRank 0.2644 0.0754 0.1432 0.1214

Text PageRank 0.3286 0.1027 0.1862 0.1642

Visual + Text PageRank 0.2262 0.0938 0.1536 0.1631

TFIDF reranking 0.3143 0.1040 0.2096 0.1912

Table 4 BLEU and ROUGE score evaluation of full image captions generated using HMM decoding with our strategies for phrase retrieval and
reranking

Method No reranking Visual PageRank Text PageRank Visual + Text
PageRank

Visual + TFIDF
rerank

BLEU (Papineni et al.
2002)

0.1192 0.1133 0.1257 0.1224 0.1260

ROUGE (Lin 2004) 0.2300 0.2236 0.2248 0.2470 0.2175

Maximum values in bold
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We also evaluate our results by collecting human judg-
ments using two-alternative forced choice tasks collected
using Amazon’s Mechanical Turk. Here, users are presented
with an image and two captions (each generated by a differ-
ent method) and they must select the caption which better
describes the image. Presentation order is randomized to
remove user bias for choosing the first or second option.
Table 5 shows results. The top 3 rows show our methods
are preferred over unranked phrases. Row 4 shows our top
2 methods are comparable. Finally, row 5 shows one of our

Table 5 Human forced-choice evaluation between various methods

Method Percentage

Text PageRank versus no reranking 54 %/46 %

Visual + Text PageRank versus no
reranking

57 %/43 %

Visual + TFIDF Reranking versus
no reranking

61 %/39 %

Text + Visual PageRank versus
Visual + TFIDF reranking

49 %/51 %

Text + Visual PageRank versus
Global description generation

71 %/29 %

methods is strongly preferred over the whole sentence base-
line provided with the SBU dataset (Ordonez et al. 2011).
We also show some qualitative results in Fig. 6 showing suc-
cessful cases of generated captions and different failure cases
(due to incorrect objects, missing objects, incorrect grammar
or semantic inconsistencies) for our top performing method.

7.4 Application 2: Complex Query Image Retrieval
Evaluation

We test complex query image retrieval using 200 captions
from the dataset described in Sect. 6.2 as queries. For three
queries, the corresponding image was ranked first by our
retrieval system. For these images the automatically selected
phrases described the images so well that they matched the
ground truth captions better than the phrases selected for any
of the other 999 images. Overall 20 % of queries had the
corresponding image in the top 1 % of the ranked results (top
10 ranked images), 30 % had the corresponding image in the
top 2 and 43 % had the corresponding image in the top 5 % of
ranked retrievals. In addition to being able to find the image
described out of a set of 1000, the retrieval system produced
reasonable matches for the captions as shown in Figs. 7, 8.

Some black head 
bird feeding on 
Salthouse beach in 
Norfolk under a 
pine tree against 
blue sky.

Old street light 
looked good against 
the blue sky below 
a dramatic sky. The 
tower built with the 
same face on each 
side in the sky.

Good genera�on results

This adorable cat 
posed in the window 
of the Nathaniel of 
Colorado hat shop in 
downtown Mancos 
this morning Nov in 
the street in the 
house living room.

A boat 
moored by 
the lake.

The balcony 
building in the Latin 
quarter in Paris with 
the ancient Tourist 
Information building
under the sky.

This truck 
parked at a 
house near my 
home on the 
road near the 
river.

A cross propped 
up against the 
church wall 
underneath my
big sky over roof 
gap midland 
beach.

This cow come into 
field at the end of 
the garden with the 
ancient Tourist 
Information building 
near 188th street.

Cows grazing in a 
pasture on a farm 
in pomfret in the 
spring of a 
building in a pine 
tree.

My cat sitting on a 
chair in a food 
center in the bright 
sunny autumn sky 
at spruce tree 
house.

The window in the 
door under orange 
tree in a window.

A train crosses a bridge 
over the Potomac River 
in Washington DC of 
the empire state 
building in the 
background

Not so good genera�on results (incorrect objects, missing objects, just wrong)

Duck 
swimming in
a lake in
water in the 
water.

That ball is 8
inch in diameter 
in the sky

A cat sitting in
the window of a 
jewelry store at 
the muchmusic
building in this 
box.

The sheep 
spotted in a field 
near Usk in this 
tree to the water 
park.

Fig. 6 Using our retrieved, reranked phrases for description generation (Sect. 6.1). Reasonably good results are shown on top and less good results
(with incorrect objects, missing objects, or just plain wrong descriptions) are shown at the bottom
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Fig. 7 Complex query image retrieval. For a complex natural language text query (left), we retrieve images displaying relevant content (right).
The image originally associated with the complex text query is highlighted in green (Color figure online)

Fig. 8 Size Matters Example matches to a query image for varying data set sizes

8 Conclusion

We have described explorations into retrieval based methods
for gathering visually relevant natural language for images.
Our methods rely on collecting and filtering a large data set
of images from the internet to produce a web-scale captioned
photo collection. We present two variations on text retrieval
from our captioned collection. The first retrieves whole exist-
ing image descriptions and the second retrieves bits of text
(phrases) based on visual and geometric similarity of objects,
stuff, and scenes. We have also evaluated several methods for
collective reranking of sets of phrases and demonstrated the
results in two applications, phrase based generation of image
descriptions and complex query image retrieval. Finally, we
have presented a thorough evaluation of each of our presented
methods through both automatic and human-judgment based
measures.

In future work we hope to extend these methods to a real
time system for image description and incorporate state of
the art methods for large-scale category recognition (Deng
et al. 2010, 2012). We also plan to extend our prototype
complex query retrieval algorithm to web-scale. Producing
human-like and relevant descriptions will be a key factor for
enabling accurate and satisfying image retrieval results.
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