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Abstract Given a picture taken somewhere in the world,
automatic geo-localization of such an image is an extremely
useful task especially for historical and forensic sciences,
documentation purposes, organization of the world’s pho-
tographs and intelligence applications. While tremendous
progress has been made over the last years in visual loca-
tion recognition within a single city, localization in natural
environments is much more difficult, since vegetation, illumi-
nation, seasonal changes make appearance-only approaches
impractical. In this work, we target mountainous terrain and
use digital elevation models to extract representations for fast
visual database lookup. We propose an automated approach
for very large scale visual localization that can efficiently
exploit visual information (contours) and geometric con-
straints (consistent orientation) at the same time. We validate
the system at the scale of Switzerland (40,000 km2) using
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over 1000 landscape query images with ground truth GPS
position.
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1 Introduction and Previous Work

In intelligence and forensic scenarios as well as for searching
archives and organising photo collections, automatic image-
based location recognition is a challenging task that would
be extremely useful when solved. In such applications GPS
tags are typically not available in the images requiring a fully
image-based approach for geo-localization. Over the last
years progress has been made in urban scenarios, in particular
with stable man-made structures that persist over time. How-
ever, recognizing the camera location in natural environments
is substantially more challenging, since vegetation changes
rapidly during seasons, and lighting and weather conditions
(e.g. snow lines) make the use of appearance-based tech-
niques (e.g., patch-based local image features Schindler et al.
2007; Chen et al. 2011) very difficult. Additionally, dense
street-level imagery is limited to cities and major roads,
and for mountains or for the countryside only aerial footage
exists, which is much harder to relate with terrestrial imagery.

In this work we give a more in depth discussion on camera
geo-localization in natural environments. In particular we
focus on recognizing the skyline in a query image, given a
digital elevation model (DEM) of a country—or ultimately,
the world. In contrast to previous work of matching e.g. a
peak in the image to a set of mountains known to be nearby,
we aggregate shape information across the whole skyline
(not only the peaks) and search for a similar configuration
of basic shapes in a large scale database that is organized

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-015-0830-0&domain=pdf


214 Int J Comput Vis (2016) 116:213–225

to allow for query images of largely different fields of view.
The method is based on sky segmentation, either automatic
or easily supported by an operator for challenging pictures
such as those with reflection, occlusion or taken from inside
a cable car.

Contributions

A preliminary version of this system was presented in Baatz
et al. (2012). This work provides a more detailed analysis
and evaluation of the system and improves upon the skyline
segmentation. The main contributions are a novel method
for robust contour encoding as well as two different voting
schemes to solve the large scale camera pose recognition
from contours. The first scheme operates only in descriptor
space (it verifies where in the model a panoramic skyline is
most likely to contain the current query picture) while the sec-
ond one is a combined vote in descriptor and rotation space.
We validate the whole approach using a public digital eleva-
tion model of Switzerland that covers more than 40,000 km2

and a set of over 1000 images with ground truth GPS position.
In particular we show the improvements of all novel contri-
butions compared to a baseline implementation motivated
by classical bag-of-words (Sivic and Zisserman 2003) based
techniques like Chen et al. (2011). In addition we proposed
a semi-automatic skyline segmentation technique, based on
a dynamic programming approach. Furthermore, we demon-
strate that the skyline is highly informative and can be used
effectively for localization.

Previous Work

To the best of our knowledge this is the first attempt to localize
photographs of natural environments at large scale based on a
digital elevation model. The closest works to ours are smaller
scale navigation and localization in robotics ( Woo et al. 2007;
Stein and Medioni 1995), and building/location recognition
in cities (Schindler et al. 2007; Baatz et al. 2011; Chen et al.
2011; Ramalingam et al. 2011; Taneja et al. 2012; Bansal
and Daniilidis 2014) or with respect to community photo
collections of popular landmarks (Li et al. 2010). These, how-
ever, do not apply to landscape scenes of changing weather,
vegetation, snowlines, or lighting conditions. The robotics
community has considered the problem of robot navigation
and robot localization using digital elevation models for quite
some time. Talluri and Aggarwal (1992) reason about inter-
section of known viewing ray directions (north, east, south,
west) with the skyline and relies thus on the availability of
360◦ panoramic query contours and the knowledge of vehicle
orientation (i.e. north direction). Thompson et al. (1993) sug-
gest general concepts of how to estimate pose and propose
a hypothesize and verification scheme. They also rely on
known view orientation and match viewpoint-independent

features (peaks, saddle points, etc.) of a DEM to features
found in the query image, ignoring most of the signal encoded
in the skyline. In Cozman and Krotkov (1996), computer
vision techniques are used to extract mountain peaks which
are matched to a database of nearby mountains to support a
remote operator in navigation. However, we believe that their
approach of considering relative positions of absolute peaks
detected in a DEM is too restrictive and would not scale to our
orders of magnitude larger problem, in particular with respect
to less discriminative locations. Naval et al. (1997) proposes
to first match three features of a contour to a DEM and
estimate an initial pose from that before doing a non-linear
refinement. Also here the initial step of finding three correct
correspondences is a challenging task in a larger scale data-
base. Stein and Medioni (1995) assumes panoramic query
data with known heading, and computes super-segments on
a polygon fit, however descriptiveness/robustness is not eval-
uated on a bigger scale, while (Cozman 1997) introduces
a probabilistic formulation for a similar setting. The key
point is that going from tens of potential locations to mil-
lions of locations requires a conceptually different approach,
since exhaustive image comparison or trying all possible
“mountain peaks” simply does not scale up to a large-scale
geo-localization problems. Similarly, for urban localization,
in Ramalingam et al. (2010) an upward looking 180◦ field-of-
view fisheye is used for navigation in urban canyons. They
render untextured city models near the predicted pose and
extract contours for comparison with the query image. A sim-
ilar approach was recently proposed by Taneja et al. (2012),
where panoramic images are aligned to a cadastral 3D model
by maximizing the overlap between the panoramic image and
the rendered model. In Ramalingam et al. (2011) propose a
general framework to solve for the camera pose using 3D-to-
2D point and line correspondences between the 3D model and
the query image. The approach requires an initial correspon-
dence match, which is propagated to the next image using
appearance based matching techniques. These approaches
are meant as local methods for navigation or pose refine-
ment. Also recently, in Baboud et al. (2011) optimize the
camera orientation given the exact position, i.e. they estimate
the viewing direction given a good GPS tag. In Bansal and
Daniilidis (2014) propose a novel correspondence-free geo-
localization approach in urban environments. They match
corners and roof-line edges of buildings to a database of
3D corners and direction vectors previously extracted from
a DEM. None of the above mentioned systems considered
recognition and localization in natural environments at large
scale.

On the earth scale, Hays and Efros (2008) source photo
collections and aim at learning location probability based on
color, texture, and other image-based statistics. Conceptually,
this is not meant to find an exact pose based on geometric
considerations but rather discriminates landscapes or cities
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Fig. 1 Different stages in the proposed pipeline: a Query image somewhere in Switzerland, b sky segmentation, c sample set of extracted 10◦
contourlets, d recognized geo-location in digital elevation model, e overlaid skyline at retrieved position

with different (appearance) characteristics on a global scale.
In Lalonde et al. (2010) exploit the position of the sun (given
the time) for geo-localization. In the same work it is also
shown that identifying a large piece of clear sky without
haze provides information about the camera pose (although
impressive given the data, over 100km mean localization
error is reported). Both approaches are appealing for exclud-
ing large parts of the earth from further search but do not aim
at exactly localizing the camera within a few hundred meters.

Besides attacking the DEM-based, large scale geo-localiz-
ation problem we propose new techniques that might also be
transferred to bag-of-words approaches based on local image
patches (e.g. Sivic and Zisserman 2003; Schindler et al. 2007;
Chen et al. 2011). Those approaches typically rely on pure
occurrence-based statistics (visual word histogram) to gen-
erate a first list of hypotheses and only for the top candidates
geometric consistency of matches is verified. Such a strategy
fails in cases where pure feature coocurrence is not discrim-
inative but where the relative locations of the features are
important. Here, we propose to do a (weak) geometric verifi-
cation already in the histogram distance phase. Furthermore,
we show also a representation that tolerates largely differ-
ent document sizes (allowing to compare a panorama in the
database to an image with an order of magnitude smaller
field-of-view).

2 Mountain Recognition Approach

The location recognition problem in its general form is a
six-dimensional problem, since three position and three ori-
entation parameters need to be estimated. We make the
assumption that the photographs are taken not too far off the
ground and use the fact that people rarely twist the camera
relative to the horizon (Brown and Lowe 2007) (e.g. small
roll). We propose a method to solve that problem using the
outlines of mountains against the sky (i.e. the skyline), see
Fig. 1. For the visual database we seek a representation that
is robust with respect to tilt of the camera which means
that we are effectively left with estimating the 2D posi-
tion (latitude and longitude) on the digital elevation model
and the viewing direction of the camera. The visible sky-
line of the DEM is extracted offline at regular grid positions

(360◦ at each position) and represented by a collection of
vector-quantized local contourlets (contour words, similar in
spirit to visual words obtained from quantized image patch
descriptors Sivic and Zisserman 2003). In contrast to visual
word based approaches, additionally an individual viewing
angle αd (αd ∈ [0; 2π ]) relative to north direction is stored.
At query time, a skyline segmentation technique is applied
that copes with the often present haze and also allows for
user interaction in case of incorrect segmentation. Subse-
quently the extracted contour is robustly described by a set
of local contourlets plus their relative angular distance αq

with respect to the optical axis of the camera. The contour
words are represented as an inverted file system, which is
used to query the most promising location. At the same time
the inverted file also votes for the viewing direction, which
is a geometric verification integrated in the bag-of-words
search.

2.1 Processing the Query Image

2.1.1 Sky Segmentation

The estimation of the visible skyline can be cast as a
foreground-background segmentation problem. As we ass-
ume almost no camera roll and since overhanging structures
are not modelled by the 2.5D DEM, finding the highest fore-
ground pixel (foreground height) for each image column
provides an good approximation and allows for a dynamic
programming solution, as proposed in Lie et al. (2005) and
Bazin et al. (2009). To obtain the data term for a candidate
height in a column we sum all foreground costs below the
candidate contour and all sky costs above the contour. The
assumption is, when traversing the skyline, there should be a
local evidence in terms of an orthogonal gradient [similar in
spirit to flux maximization (Vasilevskiy and Siddiqi 2002) or
contrast sensitive smoothness assumptions (Blake et al. 2004;
Kolmogorov and Boykov 2005) in general 2D segmentation].

We express the segmentation problem in terms of an
energy:

E =
width∑

x=1

Ed(x) + λ

width−1∑

x=1

Es(x, x + 1), (1)
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Fig. 2 Superpixel based segmentation: a Input image. b MeanShift filtered image. c MeanShift region boundaries. d Final segmentation

where Ed represents the data term, Es the smoothness term
and λ is a weighting factor. The data term Ed(x) in one col-
umn x evaluates the cost of all pixel below it to be assigned
a foreground label while all pixels above it are assigned a
background (sky) label. The cost is incorporated into the opti-
mization framework as a standard negative-log-likelihood:

Ed =
k−1∑

i=1

− log h(F |zi ) +
height∑

i=k

− log h(B|zi ), (2)

where h(F |zi ) denotes the probability of pixel zi being
assigned to the foreground F model and h(B|zi ) the prob-
ability of a pixel being assigned to the background B
model. The likelihoods h(z|F ) and h(z|B) are computed
by the pixel-wise classifier, jointly trained using contextual
and superpixel based feature representations (Ladicky et al.
2014).

The contextual part of the feature vector (Shotton et al.
2006; Ladicky et al. 2014) consists of a concatenation of
bag-of-words representations over a fixed random set of 200
rectangles, placed relative to the corresponding pixel. These
bag-of-words representations are built using 4 dense features
- textons (Malik et al. 2001), local ternary patterns (Hus-
sain and Triggs 2012), self-similarity (Shechtman and Irani
2007) and dense SIFT (Lowe 2004), each one quantized to
512 clusters using standard K-means clustering. For each
pixel the superpixel part of the feature vector is the concate-
nation of a bag-of-words representations of a corresponding
superpixel (Ladicky et al. 2014) from each unsupervised seg-
mentation. Four superpixel segmentations are obtained by
varying the parameters of the MeanShift algorithm (Comani-
ciu et al. 2002), see Fig. 2. Pixels, belonging to the same
segment, share a large part of the feature vector, and thus
tend to have the same labels, leading to segmentations, that
follow semantic boundaries.

The most discriminative weak features are found using
AdaBoost (Friedman et al. 2000). The contextual fea-
ture representations are evaluated on the fly using integral
images (Shotton et al. 2006), the superpixel part is evaluated
once and kept in memory. The classifier is trained indepen-
dently for five colour spaces - Lab, Luv, Grey, Opponent and

Rgb. The final likelihood is calculated as an average of these
five classfiers.

The pairwise smoothness term is formulated as:

Es(x, x + 1) =
∑

i∈C

exp
(−d�Rgi

λ||d||
)
, (3)

where C is the set of pixels connecting pixel zn in column
x and zm in column x + 1 along the Manhattan path (path
along the horizontal and vertical direction), d is the direct
connection vector between zn and zm , gi is the image gradient
at pixel i , R represents a 90 degree rotation matrix and λ is
set to the mean of d�Rgi for each image. The intuition is, that
all pixels on the contour should have a gradient orthogonal
to the skyline.

Given the energy terms defined in Eqs. (2) and (3),
the segmentation is obtained by minimizing Eq. (1) using
dynamic programming. Our framework also allows for user
interaction, where simple strokes can mark foreground or
background (sky) in the query image. In case of a foreground
labelling this forces all pixel below the stroke to be labels as
foreground and in case of a backround stroke, the stroke pixel
and all pixels above it are marked as background (sky). This
provides a simple and effective means to correct for very
challenging situations, where buildings and trees partially
occlude the skyline.

2.1.2 Contourlet Extraction

In the field of shape recognition, there are many shape
description techniques that deal with closed contours, e.g.
Manay et al. (2006). However, recognition based on partial
contours is still a largely unsolved problem, because it is dif-
ficult to find representations invariant to viewpoint. For the
sake of robustness to occlusion, to noise and systematic errors
(inaccurate focal length estimate or tilt angle), we decided to
use local representations of the skyline (see Yang et al. 2008
for an overview on shape features).

To describe the contour, we consider overlapping curvelets
of width w (imagine a sliding window, see Fig. 1). These
curvelets are then sampled at n equally spaced points,
yielding each an n-dimensional vector ỹ1, . . . , ỹn (before
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Fig. 3 Contour word
computation: a raw contour, b
smoothed contour with n
sampled points, c sampled
points after normalization, d
contourlet as numeric vector, e
each dimension quantized to 3
bits, f contour word as 24-bit
integer
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sampling, we low-pass filter the skyline to avoid aliasing).
The final descriptor is obtained by subtracting the mean and
dividing by the feature width (see Fig. 3a–d):

yi = ỹi − ȳ

w
for i = 1, . . . , n where ȳ = 1

n

n∑

j=1

ỹ j

(4)

Mean subtraction makes the descriptor invariant w.r.t. verti-
cal image location (and therefore robust against camera tilt).
Scaling ensures that the yi ’s have roughly the same magni-
tude, independently of the feature width w.

In a next step, each dimension of a contourlet is quantized
(Fig. 3e–f). Since the features are very low-dimensional com-
pared to traditional patch-based feature descriptors like SIFT
Lowe (2004), we choose not to use a vocabulary tree. Instead,
we directly quantize each dimension of the descriptor sep-
arately, which is both faster and more memory-efficient
compared to a traditional vocabulary tree. In addition the best
bin is guaranteed to be found. Each yi falls into one bin and
the n associated bin numbers are concatenated into a single
integer, which we refer to as contour word. For each descrip-
tor, the viewing direction αq , relative to the camera’s optical
axis is computed using the camera’s intrinsics parameters
and is stored together with the visual word. We have veri-
fied that an approximate focal length estimate is sufficient.
In case of an unknown focal length, it is possible to sample
several tentative focal length values, which we evaluate in
Sect. 3.

2.2 Visual Database Creation

The digital elevation model we use for validation is available
from the Swiss Federal Office of Topography, and similar
datasets exist also for the US and other countries. There is
one sample point per 2 square meters and the height quality
varies from 0.5m (flat regions) to 3m-8m (above 2000m ele-
vation) average error1. This data is converted to a triangulated
surface model with level-of-detail support in a scene graph
representation2. At each position on a regular grid on the

1 http://www.swisstopo.admin.ch/internet/swisstopo/en/home.
2 http://openscenegraph.org.

surface (every 0.001◦ in N–S direction and 0.0015◦ in E–W
direction, i.e. 111m and 115m respectively) and from 1.80 m
above the ground3, we render a cube-map of the textureless
DEM (face resolution 1024×1024) and extract the visible
skyline by checking for the rendered sky color. Overall, we
generate 3.5 million cubemaps. Similar to the query image,
we extract contourlets, but this time with absolute viewing
direction. We organize the contourlets in an index to allow for
fast retrieval. In image search, inverted files have been used
very successfully for this task (Sivic and Zisserman 2003).
We extend this idea by also taking into account the viewing
direction, so that we can perform rough geometric verifica-
tion on-the-fly. For each word we maintain a list that stores
for every occurrence the panorama ID and the azimuth αd of
the contourlet.

2.3 Recognition and Verification

2.3.1 Baseline

The baseline for comparison is an approach borrowed
from patch based systems (e.g. Nistér and Stewénius 2006;
Schindler et al. 2007; Chen et al. 2011) based on the (poten-
tially weighted) L1-norm between normalized visual word
frequency vectors:

DE (q̃, d̃) =‖q̃ − d̃‖1 =
∑

i

|q̃i − d̃i | or

DEw(q̃, d̃) =
∑

i

wi |q̃i − d̃i | (5)

with q̃ = q
‖q‖1

and d̃ = d
‖d‖1

(6)

Where qi and di is the number of times visual word i appears
in the query or database image respectively, and q̃i , d̃i are
their normalized counterparts. wi is the weight of visual word
i (e.g. as obtained by the term frequency - inverse document
frequency (tf-idf) scheme). This gives an ideal score of 0

3 Synthetic experiments verified that taking the photo from ten or fifty
meters above the ground does not degrade recognition besides very
special cases like standing very close to a small wall.
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Table 1 Overview of tested
recognition pipelines

Voting scheme Descriptor
width

Dir. bin size Geo. ver. CH1 (top 1 corr.) (%) CH2 (top 1 corr.) (%)

(A) random N/A N/A no 0.008 0.008

(B) “equals” 10◦ N/A no 9 1

(C) “contains” 10◦ N/A no 31 21

(D) loc.&dir. 10◦ 2◦ no 45 30

(E) loc.&dir. 10◦ 3◦ no 43 31

(F) loc.&dir. 10◦ 5◦ no 46 31

(G) loc.&dir. 10◦ 10◦ no 42 30

(H) loc.&dir. 10◦ 20◦ no 38 28

(I) loc.&dir. 2.5◦ 3◦ no 28 14

(J) loc.&dir. 10◦&2.5◦ 3◦ no 62 44

(K) loc.&dir. 10◦&2.5◦ 3◦ yes 88 76

when both images contain the same visual words at the same
proportions, which means that the L1-norm favors images
that are equal to the query.

Nistér and Stewénius (2006) suggested transforming the
weighted L1-norm like this

DEw(q̃, d̃) =
∑

i

wi q̃i +
∑

i

wi d̃i − 2
∑

i∈Q

wi min(q̃i , d̃i )

(7)

in order to enable an efficient method for evaluating it by iter-
ating only over the visual words present in the query image
and updating only the scores of database images containing
the given visual word.

2.3.2 “Contains”-Semantics

In our setting, we are comparing 10◦–70◦ views to 360◦
panoramas, which means that we are facing a 5× to 36×
difference of magnitude. Therefore, it seems ill-advised to
implement an “equals”-semantics, but rather one should use
a “contains”-semantics. We modify the weighted L1-norm
as follows:

DC (q, d) =
∑

i

wi max(qi − di , 0). (8)

The difference is that we are using the raw contour word
frequencies, qi and di without scaling and we replace the
absolute value | · | by max(·, 0). Therefore, one only penal-
izes contour words that occur in the query image, but not in
the database image (or more often in the query image than
in the database image). An ideal score of 0 is obtained by a
database image that contains every contour word at least as
often as the query image, plus any number of other contour
words. If the proposed score is transformed as follows, it can
be evaluated just as efficiently as the baseline:

DC (q, d) =
∑

i∈Q

wi qi −
∑

i∈Q

wi min(qi , di ). (9)

This subtle change makes a huge difference, see Fig. 6a
and Table 1: (B) versus (C). Note that this might also be
applicable to other cases where a “contains”-semantics is
desirable.

2.3.3 Location and Direction

We further refine retrieval by taking geometric information
into account already during the voting stage. Earlier bag-of-
words approaches accumulate evidence purely based on the
frequency of visual words. Voting usually returns a short-list
of the top n candidates, which are reranked using geometric
verification (typically using the number of geometric inliers).
For performance reasons, n has to be chosen relatively small
(e.g. n = 50). If the correct answer already fails to be in this
short-list, then no amount of reordering can bring it back.
Instead, we check for geometric consistency already at the
voting stage, so that fewer good candidates get lost prema-
turely. Not only does this increase the quality of the short-list,
it also provides an estimated viewing direction, which can
be used as an initial guess for the full geometric verification.
Since this enables a significant speedup, we can afford to use
a longer short-list, which further reduces the risk of missing
the correct answer.

If the same contour word appears in the database image at
angle αd (relative to north) and in the query image at angle αq

(relative to the camera’s optical axis), the camera’s azimuth
can be calculated as α = αd − αq . Weighted votes are accu-
mulated using soft binning and the most promising viewing
direction(s) are passed on to full geometric verification. This
way, panoramas containing the contour words in the right
order get many votes for a single direction, ensuring a high
score. For panoramas containing only the right mix of con-
tour words, but in random order, the votes are divided among
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(a) (b) (c) (d) (e)

Fig. 4 Voting for a direction is illustrated using a simple example: We
have a query image a with contour words wi and associated angles βi
relative to the optical axis. We consider a panorama b with contour
words in the same relative orientation αi as the query image. Since
the contour words appear in the same order, they all vote for the same

viewing direction α c. In contrast, we consider a second panorama d
with contour words in a different order. Even though the contour words
occur in close proximity they each vote for a different direction αi , so
that none of the directions gets a high score e

Fig. 5 Oblique view of
Switzerland, spanning a total
40,000 km2. Spheres indicate
the query images’ of the CH1
(red) and CH2 (blue) dataset at
ground truth coordinates (size
reflects 1 km tolerance radius).
Source of DEM: Bundesamt für
Landestopografie swisstopo
(Art. 30 GeoIV): 5704 000 000
(Color figure online)

many different directions, so that none of them gets a good
score (see Fig. 4). Note that this is different from merely
dividing the panoramas into smaller sections and voting for
these sections: Our approach effectively requires that the
order of contour words in the panorama matches the order
in the query image. As an additional benefit, we do not need
to build the inverted file for any specific field-of-view of the
query image.

2.3.4 Geometric Verification

After retrieval we geometrically verify the top 1000 can-
didates. The verification consists in computing an optimal
alignment of the two visible skylines using iterative closest
points (ICP). While we consider in the voting stage only one
angle (azimuth), ICP determines a full 3D rotation. First, we
sample all possible values for azimuth and keep the two other
angles at zero. The most promising one is used as initializa-
tion for ICP. In the variants that already vote for a direction,
we try only a few values around the highest ranked ones. The
average alignment error is used as a score for re-ranking the
candidates.

3 Evaluation

In this section we evaluate the proposed algorithm on two
real datasets consisting of a total of 1151 images. We further

give a detailed evaluation of the algorithm under varying tilt
and roll angles, and show that in cases where the focal length
parameter is unknown it can effectively be sampled.

Query Set

In order to evaluate the approaches we assembled two
datasets, which we refer to as CH1 and CH2. The CH1 dataset
consists of 203 photographs obtained from different sources
such as online photo collections and on site image capturing.
The CH2 dataset consists of 948 images which were solely
captured on site. For all of the photographs, we verified the
GPS tag or location estimate by comparing the skyline to the
surface model. For the majority of the images the information
was consistent. For a few of them the position did not match
the digital elevation model’s view. This can be explained by
a wrong cell phone GPS tag, due to bad/no GPS reception
at the time the image was captured. For those cases, we use
dense geometric verification (on each 111 m × 115m grid
position up to a 10 km radius around the tagged position) to
generate hypotheses for the correct GPS tag. We verify this
by visual inspection and removed images in case of disagree-
ment. The complete set of query images used is available at
the project website4. The distribution of the CH1 and CH2
dataset is drawn on to the DEM in Fig. 5. For all of the query

4 http://cvg.ethz.ch/research/mountain-localization.
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Fig. 6 Retrieval performance
for different: a voting schemes,
b bin sizes in direction voting.
Evaluated on the CH1 (top) and
CH2 (bottom) dataset
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images FoV information is available (e.g. from EXIF tag).
However, we have verified experimentally that also in case
of fully unknown focal length the system can be applied by
sampling over this parameter, see Fig. 10 as example and
subsection 3.

Query Image Segmentation

We used the CH1 query images which were already seg-
mented in Baatz et al. (2012) as training set and apply our
segmentation pipeline to the CH2 dataset. Out of the 948
image 60% of the images were segmented fully automati-
cally, while 30% required little user interaction, mainly to
correct for occluders such as trees or buildings. 10 % of the
images required a more elaborate user interaction, to correct
for snow fields, (often confused as sky), clouds hiding small
parts of the mountain or for reflections appearing when tak-
ing pictures from inside a car, cable-car or train. Our new
segmentation pipeline improved by 18 %, compared to the
previous method proposed in Baatz et al. (2012).

Parameter Selection

The features need to be clearly smaller than the images’ field-
of-view, but wide enough to capture the geometry rather than
just discretization noise. We consider descriptors of width
w = 10◦ and w = 2.5◦. The number of sample points n
should not be so small that it is uninformative (e.g. n = 3
would only distinguish concave/convex), but not much bigger
than that otherwise it risks being overly specific, so we choose

n = 8. The curve is smoothed by a Gaussian with σ =
w
2n , i.e. half the distance between consecutive sample points.
Descriptors are extracted every σ degrees.

Each dimension of the descriptor is quantized into k bins
of width 0.375, the first and last bin extending to infinity.
We chose k as a power of 2 that results in roughly 1 mil-
lion contour words, i.e. k = 8. This maps each yi to 3 bits,
producing contour words that are 24 bit integers. Out of the
224 potential contour words, only 300k–500k (depending on
w) remain after discarding words that occur too often (more
than a million) or not at all.

Recognition Performance

The recognition pipeline using different voting schemes and
varying descriptor sizes is evaluated on both datasets, see
Table 1. All of the tested recognition pipelines return a ranked
list of candidates. We evaluate them as follows: For every
n = 1, . . . , 100, we count the fraction of query images that
have at least one correct answer among the top n candidates.
We consider an answer correct if it is within 1km of the
ground truth position (see Fig. 6).

In Fig. 6a, we compare different voting schemes: (B) vot-
ing for location only, using the traditional approach with
normalized visual word vectors and L1-norm (“equals”-
semantics); (C) voting for location only, with our proposed
metric (“contains”-semantics); (E) voting for location and
direction simultaneously (i.e. taking order into account). All
variants use 10◦ descriptors. For comparison, we also show
(A) the probability of hitting a correct panorama by ran-
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Fig. 7 Retrieval performance for CH1 (top) and CH2 (bottom) dataset:
a Different descriptor sizes. b Retrieval performance before and after
geometric verification. c Fraction of queries having at most a given dis-

tance to the ground truth position. Not shown: 21 images (9.9 %) from
the CH1 dataset with an error between 7 and 217 km and 177 images
(18.6 %) from the CH2 dataset with an error between 13 and 245 km

dom guessing (the probability of a correct guess is extremely
small, which shows that the tolerance of 1km is not overly
generous). Our proposed “contains”-semantics alone already
outperforms the baseline (“equals”-semantics) by far, but
voting for a direction is even better.

In Fig. 6b, we analyse how different bin sizes for direc-
tion voting affects results. (D)–(H) correspond to bin sizes
of 2◦, 3◦, 5◦, 10◦, 20◦ respectively. While there are small
differences, none of the settings outperforms all others con-
sistently: Our method is quite insensitive over a large range
of this parameter.

In Fig. 7a, we study the impact of different descriptor
sizes: (E) only 10◦ descriptors; (I) only 2.5◦ descriptors; (J)
both 10◦ and 2.5◦ descriptors combined. All variants vote for
location and direction simultaneously. While 10◦ descriptors
outperforms 2.5◦ descriptors, the combination of both is bet-
ter than either descriptor size alone. This demonstrates that
different scales capture different information, which comple-
ment each other.

In Fig. 7b, we show the effect of geometric verification
by aligning the full countours using ICP: (J) 10◦ and 2.5◦
descriptors voting for location and direction, without verifi-
cation; (K) same as (J) but with geometric verification. We
see that ICP based reranking is quite effective at moving
the best candidate(s) to the beginning of the short list: On
the CH1 dataset the top ranked candidate is within a radius
of 1km with a probability of 88%. On the CH2 dataset we

achieve a recognition rate of 76% for a maximum radius of
1km. See Fig. 7(c) for other radii. In computer assisted search
scenarios, an operator would choose an image from a small
list which would further increase the percentage of correctly
recovered pictures. Besides that, from geometric verification
we not only obtain an estimate for the viewing direction but
the full camera orientation which can be used for augmented
reality. Figs. 8 and 9 show images of successful and unsuc-
cessful localization.

Field-of-View

In Fig. 10 we illustrate the effect of inaccurate or unknown
field-of-view (FoV). For one query image, we run the local-
ization pipeline (K) assuming that the FoV is 11◦ and record
the results. Then we run it again assuming that the FoV is
12◦ etc., up to 70◦. Fig. 10 shows how the alignment error
and estimated position depend on the assumed FoV.

In principle, it is possible to compensate a wrong FoV by
moving forward or backward. This holds only approximately
if the scene is not perfectly planar. In addition, the effect has
hard limits because moving too far will cause objects to move
in or out of view, changing the visible skyline. Between these
limits, changing the FoV causes both the alignment error and
the position to change smoothly. Outside of this stable range,
the error is higher, fluctuates more and the position jumps
around wildly.
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Fig. 8 Sample Results: First
and fourth column are input
images. Second and fifth column
show the segmentations and
third and sixth column show the
query images augmented with
the skyline, retrieved from the
database. The images in the last
five rows were segmented with
help of user interaction
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Fig. 9 Some incorrectly localized images. This usually happens to images with a relatively smooth skyline and only few distinctive features. The
pipeline finds a contour that fits somewhat well, even if the location is completely off
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Fig. 10 a Query image. b Alignment error of the best position for a
given FoV. Dashed lines indicate the limits of the stable region and the
FoV from the image’s EXIF tag. c Alignment error of the best FoV for
a given position. d Shaded terrain model. The overlaid curve in c and d

starts from the best location assuming 11◦ FoV and continues to the best
location assuming 12◦, 13◦, etc. Numbers next to the markers indicate
corresponding FoV. Note: For an animated version, see http://cvg.ethz.
ch/research/mountain-localization

This has two consequences: First, if the FoV obtained
from the image’s metadata is inaccurate it is usually not a
disaster, the retrieved position will simply be slightly inaccu-
rate as well, but not completely wrong. Second, if the FoV is
completely unknown, one can get a rough estimate by choos-
ing the minimum error and/or looking for a range where the
retrieved position is most stable.

The field-of-view (FoV) extracted from the EXIF data may
not always be 100 % accurate. This experiment studies the
effects of a slight inaccuracy. We modify the FoV obtained
from the EXIF by ±5% and plot it against the recognition
rate obtained over the entire query set CH1. We observe in
Fig. 11a that even if the values are off by ±5 %, we still obtain
a recognition rate of 70–80 %.

Tilt Angle

Our algorithm assumes that landscape images usually are not
subject to extreme tilt angles. In the final experiment evalu-
ated in Fig. 11b, we virtually rotate the extracted skyline of
the query images by various angles in order to simulate cam-
era tilt and observe how recognition performance is affected.
As shown in Fig. 11b with 30◦ tilt we still obtain a recogni-
tion rate of 60 % on the CH1 dataset. This is a large tilt angle,
considering that the skyline is usually straight in front of the
camera and not above or below it.

Roll Angle

Our algorithm makes a zero roll assumption, meaning that
the camera is held upright. To evaluate the robustness of
the algorithm we virtually perturb the roll angle by rotating
the extracted skyline of the query image by various angles.
Fig. 11c shows the achieved recognition rate. For 5◦ roll angle
the recognition rate drops by 26 %. This drop does not come
as a surprise since the binning of the skyline makes a strong
assumption on a upright image. In general this assumption
can be relaxed by extending the database with differently
rotated skylines, or by using IMU data (often present in
today’s mobile phones) to correct for the roll angle in the
query image. In general we found that landscape images cap-
tured with a hand held camera are subject to very little roll
rotation, which is also confirmed by both datasets.

Runtime

We implemented the algorithm partly in C/C++ and partly in
Matlab. The segmentation runs at interactive frame rate and
gives direct visual feedback to the operator, given the unary
potential of our segmentation framework. Given the skyline
it takes 10 s to find the camera’s position and rotation in an
area of 40,000 km2 per image. Exhaustively computing an
optimal alignment between the query image and each of the
3.5M panoramas would take on the order of several days.
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Fig. 11 Robustness evaluation under: a varying FoV, b varying tilt angle, c varying roll angle. Top row CH1 and bottom row CH2 dataset

For comparison, the authors of Baboud et al. (2011) use a
GPU implementation and report 2 min computation time to
determine the rotation only, assuming the camera position is
already known.

4 Conclusion and Future Work

We have presented a system for large scale location recogni-
tion based on digital elevation models. This is very valuable
for geo-localization of pictures when no GPS information is
available (for virtually all video or DSLR cameras, archive
pictures, in intelligence and military scenarios). We extract
the sky and represent the visible skyline by a set of contour
words, where each contour word is represented together with
its offset angle from the optical axis. This way, we can do a
bag-of-words like approach with integrated geometric veri-
fication, i.e. we are looking for the panorama (portion) that
has a similar frequency of contour words with a consistent
direction. We show that our representation is very discrim-
inative and the full system allows for excellent recognition
rates on the two challenging dataset. On the CH1 dataset we
achieve a recognition rate of 88 and 76 % on the CH2 dataset.
Both datasets include different seasons, landscapes and alti-
tudes. We believe that this is a step towards the ultimate goal
of being able to geo-localize images taken anywhere on the
planet, but for this also other additional cues of natural envi-
ronments have to be combined with the given approach. This
will be the subject of future research.
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