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Abstract We propose a novel mode of feedback for image
search, where a user describes which properties of exemplar
images should be adjusted in order to more closely match
his/her mental model of the image sought. For example,
perusing image results for a query “black shoes”, the user
might state, “Show me shoe images like these, but sportier.”
Offline, our approach first learns a set of ranking functions,
each of which predicts the relative strength of a nameable
attribute in an image (e.g., sportiness). At query time, the
system presents the user with a set of exemplar images, and
the user relates them to his/her target imagewith comparative
statements. Using a series of such constraints in the multi-
dimensional attribute space, our method iteratively updates
its relevance function and re-ranks the database of images. To
determine which exemplar images receive feedback from the
user, we present two variants of the approach: one where the
feedback is user-initiated and another where the feedback is
actively system-initiated. In either case, our approach allows
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a user to efficiently “whittle away” irrelevant portions of the
visual feature space, using semantic language to precisely
communicate her preferences to the system.We demonstrate
our technique for refining image search for people, products,
and scenes, andwe show that it outperforms traditional binary
relevance feedback in terms of search speed and accuracy. In
addition, the ordinal nature of relative attributes helps make
our active approach efficient—both computationally for the
machine when selecting the reference images, and for the
user by requiring less user interaction than conventional pas-
sive and active methods.

Keywords Content-based image search · Interactive
image search · Active selection · Relative attributes

1 Introduction

In image search, the user often has a mental picture of his
or her desired content. For example, a shopper wants to
retrieve those catalog pages that match his envisioned style
of clothing; a witness wants to help law enforcement locate
a suspect in a database based on his memory of the face; a
web page designer wants to find a stock photo suitable for
her customer’s brand image. Therefore, a central challenge
is how to allow the user to convey that mental picture to
the system. Due to the well known “semantic gap”—which
separates the system’s low-level image representation from
the user’s high-level concept—retrieval through a single user
interaction, i.e., a one-shot query, is generally insufficient.
Keywords alone are clearly not enough; even if all existing
images were tagged to enable keyword search, it is infeasi-
ble to pre-assign tags sufficient to satisfy any future query
a user may dream up. Indeed, vision algorithms are neces-
sary to further parse the content of images for many search
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Fig. 1 Main idea: Allow users to give relative attribute feedback on
reference images to refine their image search

tasks. Advances in image descriptors, learning algorithms,
and large-scale indexing have all had impact in recent years.

The key to overcoming the gap appears to be interactive
search techniques that allow a user to iteratively refine the
results retrieved by the system (Cox et al. 2000; Kurita and
Kato 1993; Rui et al. 1998; Zhou and Huang 2003; Fere-
catu and Geman 2007; Zavesky and Chang 2008). The basic
idea is to show the user candidate results, obtain feedback,
and adapt the system’s relevance ranking function accord-
ingly. However, existing image search methods provide only
a narrow channel of feedback to the system. Typically, a user
refines the retrieved images via binary feedback on exemplars
deemed “relevant” or “irrelevant” (Kurita and Kato 1993;
Cox et al. 2000; Rui et al. 1998; Zhou and Huang 2003;
Ferecatu and Geman 2007), or else attempts to tune system
parameters such as weights on a small set of low-level fea-
tures (e.g., texture, color, edges) (Flickner et al. 1995; Ma
and Manjunath 1997; Iqbal and Aggarwal 2002). The latter
is clearly a burden for a user who likely cannot understand
the inner workings of the algorithm. The former feedback is
more natural to supply, yet it leaves the system to infer what
about those images the user found relevant or irrelevant, and
therefore can be slow to converge on the user’s target in prac-
tice. The semantic gap between low-level visual cues and the
high-level intent of a user remains, making it difficult for
people to predict the behavior of content-based search sys-
tems.

In light of these shortcomings, we propose a novel mode
of feedback where a user directly describes how high-level
properties of exemplar images should be adjusted in order
to more closely match his/her envisioned target images. For
example,when conducting a query on a shoppingwebsite, the
user might state: “I want shoes like these, but more formal.”
When browsing images of mug shots of suspects, a witness
to a crime could say: “He looked like this, but with longer
hair and a broader noise.” When searching for stock photos
to fit an ad, he might say: “I need a scene similarly bright as
this one and more urban than that one.” See Fig. 1. In this
way, rather than simply state which images are (ir)relevant,
the user employs semantic terms to say how they are so. Such
feedback enables the system tomore closely match the user’s

mental model of the desired content, with less total interac-
tion effort compared to conventional click-based relevance
feedback.We call the approachWhittleSearch, since it allows
users to “whittle away” irrelevant portions of the visual fea-
ture space via precise, intuitive statements of their attribute
preferences.

Briefly, our relative attribute feedback approach works as
follows. Offline, we first learn a set of ranking functions, each
of which predicts the relative strength of a nameable attribute
in an image (e.g., the degree of shininess, furriness, etc.). At
query time, the system presents some reference exemplar
image(s), and the user provides relative attribute feedback
on one or more of those images. Using the resulting con-
straints in the multi-dimensional attribute space, we update
the system’s relevance function, re-rank the pool of images,
and display to the user the next exemplar image(s). This pro-
cedure iterates using the accumulated constraints until the
top ranked images are acceptably close to the user’s target.

In this pipeline, a key question is which exemplar images
should be shown to the user for feedback. To address this
question, we explore two variants of the proposed Whittle-
Search approach: one where the user decides which images
require relative attribute feedback, and one where the sys-
tem decides for which images it would most like the user’s
feedback.

In standard search interfaces, the user is shown a page of
image results, i.e., those images the system currently esti-
mates to be most relevant, and is free to react to any of them.
Similarly, in the first of the two WhittleSearch variants, we
present the user with reference images consisting of the top-
ranked most relevant images and allow him/her to generate
feedback that pairs any of those images with any attribute in
our vocabulary. This setup gives the user the freedom to com-
ment on exactly what he/she finds important for achieving
good image results. See Fig. 2a. Since the presented refer-
ence images are those currently ranked best by the system,
this formulation has the additional advantage that the user is
shown only those results that are increasingly similar to the
target image.

However, the images believed to bemost relevant need not
be most informative for reducing the system’s uncertainty.
Therefore, in the second WhittleSearch variant, we develop
an active approach for selecting the reference images for
feedback. Intuitively, we want to solicit feedback on those
exemplars that would most improve the system’s notion of
relevance. Existing methods for actively guiding user feed-
back typically exploit classifier uncertainty to find useful
exemplars (e.g., Tong and Chang 2001; Li et al. 2001; Cox
et al. 2000; Zhou and Huang 2003), or use clustering to
distribute feedback among representative exemplars (Fere-
catu andGeman 2007). Such traditional approaches have two
main limitations. First, the imprecision of binary relevance
feedback (“Image X is relevant; image Y is not.”) clouds the
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(a) (b)

Fig. 2 We consider two ways to elicit feedback for WhittleSearch: a
a user-initiated approach, and b a system-initiated approach. In a, the
user browses the current top-ranked images and decides what to com-

ment on. In b, the system actively requests feedback on a specific image
and attribute that is expected to most reduce its uncertainty about the
relevance of the database images for this particular user query

active selection criterion because extrapolation of the feed-
back to other images is unreliable. Second, existing active
selection techniques add substantial computational overhead
to the interactive search loop, since ideally they must scan
all database images to find the most informative exemplars.

Taking these shortcomings into account, in our Active
WhittleSearch formulation, we propose to guide the user
through a coarse-to-fine search using relative attributes. At
each iteration of feedback, the user provides a visual com-
parison between the attribute in his envisioned target and a
“pivot” exemplar, where a pivot separates all remaining rele-
vant images into two balanced sets. We show how to actively
determine along which of multiple such attributes the user’s
comparison should next be requested, based on the expected
information gain that would result. The resulting algorithm
is reminiscent of the popular 20-questions game—except the
questions generated by the system are comparative in nature.
See Fig. 2b.

The active variant of ourmethodworks as follows.Given a
database of images, we first construct a binary search tree for
each relative attribute of interest (e.g., pointiness, shininess,
etc.). Initially, the pivot exemplar for each attribute is the data-
base image with the median relative attribute value. Starting
at the roots of these trees, we predict the information gain that
would result from asking the user how his target image com-
pares to each of the current pivots. To compute the expected
gain, we devise methods to estimate the likelihood of the
user’s response given the feedback history. Then, among the
pivots, the most informative comparison is requested, gen-
erating a question to the user such as, “Is your target image
more or less (or equally) pointy than this image?” Following
the user’s response, the system updates its relevance predic-
tions on all images and moves the current pivot down one
level within the selected attribute’s tree, unless the response
is “equally”, in which case we no longer need to explore this
attribute tree.

Notably, whereas prior information-gain methods would
require a naive scan through all database images for each
iteration, the proposed attribute search trees allow us to limit
the scan to just one image per attribute. Thus, our method is

efficient both for the system (which analyzes a small number
of candidates per iteration) and the user (who locates his
content via a small number of well-chosen interactions).

Our main contribution is to widen human-machine com-
munication for interactive image search by allowing users
to communicate their preferences precisely and efficiently
through visual comparisons. We demonstrate the two ver-
sions of WhittleSearch applied to several realistic search
tasks for shoes, people, and scenes. We compare our relative
attribute feedback against traditional binary relevance feed-
back, and we show that it refines search results more effec-
tively, often with less total user interaction. We also present
an approach which unifies the complementary strengths of
relative attribute and binary feedback, allowing feedback of
both types. We quantify the advantages of the active selec-
tion of reference images over conventional active methods
and a simpler binary search tree baseline that lacks our infor-
mation gain prediction model. The results strongly support
our pivot-based approach as an efficient means to guide user
feedback.

2 Related Work

2.1 Interactive Feedback in Image Search

Relevance feedback has long been used to improve interac-
tive image search (Kurita and Kato 1993; Cox et al. 2000;
Rui et al. 1998; Tieu and Viola 2000; Ferecatu and Geman
2007; Zhou and Huang 2003). The main idea is to tailor
the system’s ranking function to the current user, based on
his (usually iterative) feedback on the relevance of selected
exemplar images. This injects subjectivity into the model,
implicitly guiding the search engine to pay attention to cer-
tain low-level visual cues more than others.

In a binary relevance feedback model, the user identifies a
set of relevant images and a set of irrelevant images among the
current reference set. The user can also identifywhich images
are more relevant than others (Ferecatu and Geman 2007).
While this is a relative comparison, just like in other binary
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relevance feedback methods, the system is not told in what
way image X is more relevant than image Y. Image search
results are produced by ranking all database images using
a classifier (or some other statistical model), and the binary
feedback supplies additional positive and negative training
examples to enhance that classifier.

Like existing interactive methods, our approach aims to
elicit a specific user’s target visual concept. However, while
prior work restricts input to the form “A is relevant, B is
not” or, as suggested by Ferecatu and Geman (2007), “C is
more relevant than D”, our approach allows users to com-
ment precisely on what is missing from the current set of
results. We show that this richer form of feedback can lead
to more effective refinement. Being able to pinpoint how one
image is more relevant than another (via attributes) is the key
contribution of our approach.

In practice, the images displayed to the user for feedback
are usually those ranked best by the system’s current rel-
evance model. However, if a user is cooperative, it can be
more valuable to present a mix of probable relevant and irrel-
evant examples for feedback. If feedback is binary, with the
user labeling examples as relevant (positive) or irrelevant
(negative), the selection can naturally be cast as an active
learning problem: the best examples to show are those that
the relevance classifier is most uncertain about (MacArthur
et al. 2000; Tong and Chang 2001; Li et al. 2001; Zhou and
Huang 2003). Since focusing only on uncertain examples
may ignore parts of the feature space, an alternative strategy
is to display images representative of clusters in the database
(Ferecatu and Geman 2007).

Notably, prior efforts to display the exemplar image set
that minimizes uncertainty were forced to resort to sampling
or clustering heuristics due to the combinatorial optimization
problem inherentwhen categorical feedback is assumed, e.g.,
(Cox et al. 2000; Ferecatu and Geman 2007). In contrast, we
show that eliciting comparative feedback on ordinal visual
attributes naturally leads to an efficient sequential selection
strategy, where each comparison is guaranteed to decrease
the predicted relevance of half of the unexplored database
images.

2.2 Active Testing and “20 Questions” Labeling

Whereas we are interested in actively eliciting user feed-
back during search, active methods are also relevant for
choosing a series of useful “tests” (e.g., features to extract)
or label requests (“does the bird have a yellow beak?”)
for recognition tasks (Geman and Jedynak 1998; Sznitman
and Jedynak 2010; Vijayanarasimhan and Kapoor 2010;
Branson et al. 2010). In the case where a human answers
the tests, attributes are well-suited to query for interme-
diate labels that will lead to the right high-level label, as
demonstrated for bird labeling tasks (Branson et al. 2010).

Under certain scenarios, a globally optimal classification
tree can be devised, so that an image is efficiently clas-
sified via a series of binary tests (Geman and Jedynak
1998). Object localization problems also permit sequential
search strategies that intelligently gather evidence within
the image (Sznitman and Jedynak 2010; Vijayanarasimhan
and Kapoor 2010). A recent approach to categorization
uses a human in the loop to provide responses to actively
chosen similarity comparisons (Wah et al. 2014). While
this work employs relative comparisons, the problem set-
ting is different than the one considered here. That work
performs categorization of an image provided to the sys-
tem, not retrieval of images that match a user’s mental
model.

Our Active WhittleSearch idea shares the spirit of rapidly
reducing uncertainty through a sequence of useful questions.
However, our aim is distinct. Active testing entails selecting
queries to classify a single novel image efficiently, i.e., reduce
uncertainty over class labels for that image,whereaswe select
queries to efficiently find a target in a collection of images,
i.e., reduce relevance uncertainty for all database images.
Moreover, our approach solicits visual comparisons—key to
eliminating irrelevant content in search—whereas prior work
solicits traditional image labels.

2.3 Attributes for Image Search

Visual attributes are semantic properties of objects (e.g.,
fuzzy, plastic) that serve as a middle ground between low-
level features (e.g., color, texture) and high-level categories.
When used in image search, the idea is to learn classi-
fiers to predict the presence of various high-level semantic
concepts from a lexicon—such as objects, locations, activ-
ity types, or properties—and then perform retrieval in the
space of those predicted concepts. Human-nameable seman-
tic concepts or attributes are often used in the multimedia
community to build intermediate representations for image
retrieval (Smith et al. 2003; Rasiwasia et al. 2007; Naphade
et al. 2006; Zavesky and Chang 2008; Douze et al. 2011;
Wang et al. 2011; Scheirer et al. 2012). They are especially
valuable since they permit content-based keyword queries
(Kumar et al. 2008; Siddiquie et al. 2011; Scheirer et al.
2012; Rastegari et al. 2013). While originally treated as cate-
gorical (“is smiling” vs. “is not smiling”), attributes canmore
generally bemodeled as continuous or relative properties (“is
smiling more than X”) (Parikh and Grauman 2011b). While
prior work demonstrates that attributes can provide a richer
representation than raw low-level image features for image
search, no previous work considers attributes as a handle
for user feedback, as we propose. In addition, we general-
ize the class-based training procedure used in Parikh and
Grauman (2011b) to learn relative attributes, instead exploit-
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ing human-generated relative comparisons between image
exemplars.

This manuscript unifies and expands the work we ini-
tially presented in Kovashka et al. (2012) and Kovashka and
Grauman (2013b), where we first proposed to use relative
attributes as a feedback mechanism for image search. In this
manuscript, we bring together the core approach of those
two papers. We analyze and discuss the advantages and dis-
advantages of the two forms of feedback, i.e., user-initiated
free-form feedback and system-initiated active selection. We
perform new experimental comparisons of the two versions
of our method and examine when one is better than the other.
Finally, we introduce several new qualitative results.

2.4 Attributes for Recognition

Apart from image search, attributes have also gathered inter-
est in the object recognition community (Lampert et al. 2009;
Farhadi et al. 2009; Kumar et al. 2009; Wang and Mori
2010; Branson et al. 2010; Patterson et al. 2014; Wah and
Belongie 2013; Saleh et al. 2013; Kulkarni et al. 2014). Since
attributes are often shared among object categories (e.g.,
made of wood, plastic, has wheels), they are amenable to a
number of interesting tasks, such as zero-shot learning from
category descriptions (Lampert et al. 2009; Parikh and Grau-
man 2011b; Patterson et al. 2014; Jayaraman et al. 2014),
describing unfamiliar or anomalous objects (Farhadi et al.
2009; Saleh et al. 2013), or categorizing with a 20-questions
game (Branson et al. 2010). We explore relative attributes in
the distinct context of feedback for image search.

Other work investigates training object recognition clas-
sifiers with actively selected attribute labels. By modeling
object-attribute (Kovashka et al. 2011; Parkash and Parikh
2012; Biswas and Parikh 2013) or attribute-attribute rela-
tionships (Zavesky and Chang 2002; Mensink et al. 2011),
one can request the most useful labels to refine the classi-
fiers or propagate labels. Our goal is quite different: we do
active exemplar selection for image search, not classification,
and our approach requests visual comparisons, not attribute
labels.

3 Approach

Our approach allows a user to iteratively refine the search
using feedback on attributes. The user has some target image
inmind—the imagined visual content the userwants to locate
in the database. The target could be a literal image he/she
has seen before, or simply a coarse mental model of the con-
tent of interest. The user initializes the search with some
keywords—either the name of the general class of interest
(“shoes”) or some multi-attribute query (“black high-heeled
shoes”)—and our system’s job is to help refine from there.

If no such initialization is possible, we simply begin with a
random set of images for feedback. The top-ranked images
are then displayed to the user, and the feedback-refinement
loop begins.

Each iteration of the loop consists of the following: (a) a
choice on the part of the system regarding which reference
image(s) to the display to the user for feedback; (b) a choice
on the part of the user regarding which reference image(s) to
comment on and/or a decision about the relationship between
the user’s target and the reference image(s); and (c) an update
of the system’s notion of relevance, and thus the ranking of
all images in the database.

Throughout, let D = {I1, . . . , IN } refer to the pool of
N database images that are ranked by the system using its
current scoring function St : I → R, where t denotes
the iteration of refinement. The scoring function is trained
using all accumulated feedback from iterations 1, . . . , t − 1,
and it supplies an ordering (possibly partial) on the images
in D. At each iteration, the top K < N ranked images
Tt = {It1, . . . , ItK } ⊆ D are displayed to the user, where
St (It1) ≥ St (It2) ≥ · · · ≥ St (ItK ). A user then gives feed-
back of his choosing on any or all of the K refined results
in Tt (in the user-initiated WhittleSearch variant), or else
he gives feedback specifically requested by the system on a
particular image not necessarily among those in Tt (in the
system-initiated WhittleSearch variant).

In the following, we first discuss how to learn the rela-
tive strength of an attribute in an image (Sect. 3.1). Then
we introduce the proposed new mode of relative attribute
feedback and explain how the image search system uses this
feedback to update its notion of relevance (Sect. 3.2). We
then extend the idea to accommodate both our new relative
attribute feedback and traditional binary feedback in a hybrid
approach (Sect. 3.3). Finally, we propose an approach to rel-
egate to the system the choice of the reference images for
feedback, and explain how to select the optimal reference
image in each round of interaction (Sect. 3.4).

3.1 Learning to Predict Relative Attributes

Suppose we have a vocabulary of M attributes {am}Mm=1,
which may be generic or domain-specific for the image
search problem of interest. For example, a domain-specific
vocabulary for shoe shopping could contain attributes such as
shininess, heel height, colorfulness, etc., whereas for scene
descriptions it could contain attributes like openness, nat-
uralness, depth. While we assume this vocabulary is given,
recent work suggests it may also be discovered automatically
or semi-automatically (Berg et al. 2010; Parikh andGrauman
2011a; Maji 2012; Patterson et al. 2014).

Typically semantic visual attributes are learned as cate-
gories: a given image either exhibits the concept or it does
not, and so a classification approach to predict attribute pres-
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Fig. 3 Interface for image-level relative attribute annotations

ence is sufficient (Rasiwasia et al. 2007; Naphade et al. 2006;
Zavesky and Chang 2008; Lampert et al. 2009; Farhadi et al.
2009; Kumar et al. 2009; Wang and Mori 2010; Douze et al.
2011). In contrast, to express feedback in the form sketched
above, we require relative attribute models that can predict
the degree to which an attribute is present. Therefore, we first
learn a ranking function for each attribute in the given vocab-
ulary. Note that one might informally treat classifier outputs
as “strengths”, yet doing so is inconsistentwith a training pro-
cedure that actually targets hard categorical labels. Results
in Parikh and Grauman (2011b) confirm that simply treating
a binary classifier output value as the strength of presence is
inferior in practice compared to training ranking functions.

For each attribute am , we obtain supervision on a set
of image pairs (i, j) in a training set I. We ask human
annotators to judge whether that attribute has stronger pres-
ence in image i or j , or if it is equally strong in both.
Such judgments can be subtle, so on each pair we collect
up to five redundant responses from multiple annotators on
Amazon Mechanical Turk (MTurk); see Fig. 3. To distill
reliable relative constraints for training, we use only those
for which most labelers agree. This yields a set of ordered
image pairs Om = {(i, j)} and a set of un-ordered pairs
Em = {(i, j)} such that (i, j) ∈ Om �⇒ i � j , i.e.
image i has stronger presence of attribute am than image j ,
and (i, j) ∈ Em �⇒ i ∼ j , i.e. i and j have equivalent
strengths of am .

We would like to emphasize the design for constraint col-
lection: rather than ask annotators to give an absolute score
reflecting howmuch the attributem is present, we instead ask
them to make comparative judgements on two exemplars at
a time. This is both more natural for an individual annotator,
and it also permits seamless integration of the supervision
from many annotators, each of whom may have a different
internal “calibration” for the attribute strengths.

Next, to learn an attribute’s ranking function, we employ
the large-margin formulation of Joachims (2002), which was
originally shown for ranking web pages based on click-
through data, and used for relative attribute learning (Parikh
and Grauman 2011b). Suppose each image Ii is represented
in R

d by a feature vector xi (we use color and GIST; more
details below). We aim to learn M ranking functions, one per
attribute:

am(Ii ) = wT
mxi , (1)

for m = 1, . . . , M , such that the maximum number of the
following constraints is satisfied:

∀(i, j) ∈ Om : wT
mxi > wT

mx j . (2)

Joachims’ algorithm approximates this NP-hard problem
by introducing (1) a regularization term that prefers a wide
margin between the ranks assigned to the closest pair of train-
ing instances, and (2) slack variables ξi j on the constraints,
yielding the following objective (Joachims 2002):

minimize

(
1

2
||wT

m||22 + C
∑

ξi j

)

s.t. wT
mxi ≥ wT

mx j + 1 − ξi j ; ∀(i, j) ∈ Om

ξi j ≥ 0, (3)

whereC is a constant penalty. The objective is reminiscent of
standard SVM training (and is solvable using similar decom-
position algorithms), except the linear constraints enforce
relative orderings rather than labels. While shown here in
the linear form, the method is also kernelizable. We use
Joachims’ SVMRank code (Joachims 2006).1

Having trained M such functions, we are then equipped
to predict the extent to which each attribute is present in any
novel image, by applying the learned functions a1, . . . , aM
to its image descriptor x. This training is a one-time process
done before any search query or feedback is issued. Further-
more, the data I used for training attribute rankers is not to be
confused with our database pool D; the two may be disjoint
sets of images.

Whereas Parikh and Grauman (2011b) propose generat-
ing supervision for relative attributes from top-downcategory
comparisons (“person X is (always)more smiley than person
Y”), our approach extends the learning process to incorporate
image-level relative comparisons (“image A exhibits more
smiling than image B”). While training from category-level
comparisons is clearly more expedient, we find that image-
level supervision is important in order to reliably capture
those attributes that do not closely follow category bound-
aries. The smiling attribute is a good example of this contrast,
since a given person (the category) need not be smiling to an
equal degree in each of his/her photos. In fact, our user stud-
ies on MTurk show that category-level relationships violate
23% of the image-level relationships specified by human
subjects for the smiling attribute. In the results section, we

1 Note that one can also use the equality constraints in Em for training
these ranking functions, as in Parikh and Grauman (2011b). In our
approach, we use these constraints to compute parameters for scoring
relevance, in Sect. 3.2.
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detail related human studies analyzing the benefits of image-
level comparisons.

3.2 Relative Attribute Feedback

Next we define the basicWhittleSearch framework. With the
ranking functions learned above, we can nowmap any image
from the database D into an M-dimensional space, where
each dimension corresponds to the relative rank prediction
for one attribute. It is in this feature space we propose to
handle query refinement from a user’s feedback.

A user of the system has a mental model of the target
visual content he seeks. To refine the current search results,
he surveys the K top-ranked images in Tt , and uses some of
them as reference images with which to better express his
envisioned optimal result. These constraints are of the form
“What I want ismore/less/similarly A than image It f ”, where
A is an attribute name, and It f is an image in Tt (the subscript
t f denotes it is a reference image for f eedback at iteration
t). For now, suppose these relative constraints are given for
some combination of image(s) and attribute(s) of the user’s
choosing. Later, in Sect. 3.4, we will consider how instead
the system can guide the choice of the image and attribute for
feedback so as to most quickly reduce its uncertainty about
what the user wants.

The WhittleSearch system accumulates this feedback
from the user during each round of interaction, each time
updating the relevance it associates with each database
image. Intuitively, the user’s statements about relative pref-
erences serve to carve out a relevant region of the M-
dimensional attribute feature space, whittling away images
not meeting the user’s requirements. See Fig. 4. Accordingly,
we next define a relevance function that predicts the extent
to which a database image matches the user’s target. It is a
probabilistic model of relevance to account for the fact that

Fig. 4 Sketch ofWhittleSearch relevance computation. This toy exam-
ple illustrates the intersection of relative constraints with M = 2
attributes. The images are plotted on the axes for both attributes. The
space of images that satisfy each constraint are marked in a different
color. The region satisfying all constraints ismarkedwith ablack dashed
line. In this case, there is only one image in it (outlined in black). Best
viewed in color

predicted attribute values can deviate from true perceived
attribute strengths to some extent.2

Let yi ∈ {1, 0} denote the binary label for image Ii ,
which reflects whether it is relevant to the user (matches
his target), or not. Let F = {It f ,m, r}Tt=1 denote the set
of comparative constraints accumulated in the T rounds of
feedback so far. The t-th item in F , Ft , consists of a ref-
erence image It f for attribute m, and a user response r ∈
{“more”, “less”, “equally”}. The final output of our search
system will be a sorting of the database images inD accord-
ing to their probability of relevance, given the image content
and all user feedback: P(yi = 1|Ii ,F), for i = 1, . . . , N .

Let St,i ∈ {0, 1} be a binary random variable representing
whether image Ii satisfies the t-th feedback constraint. For
example, if the user’s t-th comparison on attribute m yields
response r = “more”, then St,i = 1 if the database image Ii
has attributem more than the corresponding reference image
It f . We assume that the probability of an image satisfying a
given constraint is independent of it satisfying another given
constraint. The probability that database image Ii is relevant
is the probability that it satisfies all T feedback comparisons
in F :

P
(
yi = 1|Ii ,F

) =
T∏
t=1

P
(
St,i = 1|Ii ,Ft

)
. (4)

For numerical stability, we replace the product above with a
sum of log probabilities:

log P
(
yi = 1|Ii ,F

) =
T∑
t=1

log P
(
St,i = 1|Ii ,Ft

)
. (5)

The probability that an individual constraint is satisfied
given that the user’s response was r for reference It f is:

P(St,i = 1|Ii ,Ft )

=

⎧⎪⎨
⎪⎩
P(Am(Ii ) > Am(It f )) if r = “more”

P(Am(Ii ) < Am(It f )) if r = “less”

P(Am(Ii ) = Am(It f )) if r = “equally”,

where Am(I ) denotes the true strength of attributem in image
I . Note that we do not observe these true attribute values
directly; rather, what we observe are the system’s predicted
attribute values am(Ii ), which are necessarily imperfect.
While the predicted attribute ranks are a function of the true
latent attribute strengths Am(Ii ), they need not agree exactly.
Therefore, we estimate the probabilities required above by

2 Wedo, however, assume that all userswould agree on the true attribute
strength in a given image. See Kovashka and Grauman (2013a) for an
approach to model the user-specific perception of an attribute.
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mapping the attribute predictions am(·) to probabilistic out-
puts. We adapt Platt’s method (Platt 1999) to the paired
classification problem implicit in the large-margin ranking
objective from Eq. (3). Specifically, this yields:

P
(
Am(Ii ) > Am(It f )

) = 1

1 + exp(αm(am(Ii ) − am(It f )) + βm)
,

P
(
Am(Ii ) < Am(It f )

) = 1 − P(Am(Ii ) > Am(It f )), and

P
(
Am(Ii ) = Am(It f )

) = 1

1 + exp(γm |am(Ii ) − am(It f )| + δm)
.

(6)

The sigmoid parameters are learned using the sets Om and
Em from above. In particular, to learn αm and βm , we use
pairs with “more” judgments from Om as positive paired-
instances, and “less” judgments as negative instances. For γm
and δm , we use “equally” pairs from Em as positive labels,
and both “more” and “less” responses from Om as negative
instances. We normalize these values so the three probabili-
ties (“more”/“less”/“equally”) sum to 1.

The relevance functiondefined above takes the user’s input
at face value. Namely, if the user does not comment on an
attribute within the image, we assume we have no informa-
tion about that attribute. In other work, we explore how this
assumption can be relaxed to learn the implicit cues a user
reveals in his/her attribute feedback (Parikh and Grauman
2013). For example, if a user elects to tell the system that his
target is less shiny than some reference reference X , and the
reference image set the user saw contained another image Y
that is less shiny than X , then the system could infer that the
target is not less shiny than Y—otherwise, he would have
provided that tighter constraint (Parikh and Grauman 2013).

We stress that the proposed form of relative attribute
feedback refines the search in ways that a straightforward
multi-attribute query (e.g., as developed by Kumar et al.
2008; Siddiquie et al. 2011; Scheirer et al. 2012) cannot.
That is, if a user were to simply state the attribute labels
of interest (“show me black shoes that are shiny and high-
heeled”), one can easily retrieve the images whose attribute
predictions meet those criteria. However, since the user’s
description is in absolute terms, it cannot evolve based on the
retrieved images. In contrast, with access to relative attributes
as a mode of communication, for every new set of refer-
ence images returned by the system, a WhittleSearch user
can further refine his description. In addition, when a user
states that a reference image has the attribute “equally” to
his target, he reveals more precise information than tradi-
tional binary relevance feedback. In the former, we learn
about the reference image’s quality in the context of an
individual attribute; in the latter, one learns only the coarse
information that the image seems good or bad, across all
attributes.

3.3 Hybrid Feedback Approach

So far, we have considered relative attribute feedback in iso-
lation and discussed its advantages over traditional binary
relevance feedback. However, binary relevance feedback
and relative attribute feedback can have complementary
strengths: when reference images are nearly on target (or
completely wrong in all aspects), the user may be best served
by providing a simple binary relevance label. Meanwhile,
when a reference image is lacking only in certain describable
properties, he may be better served by the relative attribute
feedback. Thus, it is natural to combine the two modalities,
allowing a mix of feedback types at any iteration.

In a binary relevance feedback model, the user identifies
a set of relevant images R and a set of irrelevant images
R̄ among the current reference set Tt . In this case, the rele-
vance scoring function is a classifier (or some other statistical
model), and the binary feedback essentially supplies addi-
tional positive and negative training examples to enhance
that classifier. That is, the scoring function at iteration t + 1
is trained with the data that trained the model at iteration t
plus the images in R labeled as positive instances and the
images in R̄ labeled as negative instances.

We can augment the WhittleSearch system with binary
feedback to define a learned hybrid scoring function. The
basic idea is to learn a ranking function that unifies both
relative attribute and binary feedback. Let Ck ⊂ D denote
the subset of database images satisfying k of the relative
attribute feedback constraints, for k = 0, . . . , F . We define
a set of ordered image pairs

Os = {{R × R̄} ∪ {CF × CF−1} ∪ · · · ∪ {C1 × C0}
}
, (7)

where × denotes the Cartesian product. This set Os reflects
all the desired ranking preferences—that relevant images be
ranked higher than irrelevant ones, and that images satisfy-
ing more relative attribute preferences be ranked higher than
those satisfying fewer. Note that the subscript s in Os distin-
guishes the set from those indexed by m above, which were
used to train relative attribute ranking functions in Sect. 3.1.

Using training constraints Os we learn a function that pre-
dicts relative image relevance for the current user with the
large-margin objective in Eq. 3. The result is a parameter
vector ws that serves as the hybrid scoring function. Since
there are many more pairs in Os that come from relative
attribute feedback than from binary relevance feedback, we
set the penalty on the binary feedback pairs to be inversely
proportional to the fraction of such pairs in the set Os .

3.4 Active WhittleSearch with Attribute Pivots

Thus far, we have assumed that the user will freely select
the feedback statements he wishes to give the system from
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among the top-ranked images. This is the first user-initiated
variant of WhittleSearch, and it is most suited when a user
wishes to browse at the same time he refines his own mental
model of the target. However, as argued above, when a user
has a precise target in mind, it can be more beneficial to leave
the choice of reference images for feedback to the image
search system. Thus, we next present an active variant of
WhittleSearch.

In Active WhittleSearch, the interaction mode involves
a series of multiple-choice questions that the human user
needs to answer, of the type: “Is the image you are look-
ing for more, less, (or equally) A than image I?”, where A
is a semantic attribute and I is an exemplar from the data-
base being searched. Our goal is to generate the series of
such questions that will most efficiently narrow down the
relevant images in the database, so that the user finds his tar-
get in few iterations. To this end, at each iteration we will
actively select a comparison for the user to provide, that is,
the (A, I ) pair that yields the expected maximal information
gain. Rather than exhaustively search all database images as
potential exemplars, however, we consider only a small num-
ber of pivot exemplars—the internal nodes of binary search
trees constructed for each attribute. The output of the sys-
tem is the list of database images, sorted by their predicted
relevance.

As above, Active WhittleSearch also relies on predicted
attribute values (Sect. 3.1) and a manner of updating the sys-
tem’s notion of relevance after each feedback statement it
receives from the user (Sect. 3.2). It also relies on binary
search trees, whose construction we explain next (Sect.
3.4.1). Then, we introduce our active selection approach
to determine which comparison should be requested next
(Sect. 3.4.2) using the probabilisticmodel of image relevance
defined in Sect. 3.2 above.

3.4.1 Attribute Binary Search Trees

For each attribute m = 1, . . . , M , we construct a binary
search tree. The tree recursively partitions all the database
images into two balanced sets, where the key at a given node
is the median relative attribute value occurring within the set
of images passed to that node. To build them-th attribute tree,
we start at the rootwith all database images, sort themby their
attribute values am(I1), . . . , am(IN ), and identify themedian
value. Let Ip denote the “pivot” image—the one that has
the median attribute strength. Those images exhibiting the
attribute less than Ip, i.e., all Ii such that am(Ii ) ≤ am(Ip),
are passed to the left child,while those exhibiting the attribute
more, i.e., am(Ii ) > am(Ip), are passed to the right child.
Then the splitting repeats recursively, each time storing the
next pivot image and its relative attribute value at the appro-
priate node.

Note that both the relative attribute ranker training and
the search tree construction are offline procedures; they are
performed once, before handling any user queries.

Already, one could imagine a search procedure that walks
a user through one such attribute tree, at each successively
deeper level requesting a comparison to the pivot, and then
eliminating the appropriate portion of the database depend-
ing onwhether the user says “more” or “less”.However, there
are two problems with such a simple approach. First, we can-
not assume that the attribute predictions are identical to the
attribute strengths a userwill perceive; thus, a hard pruning of
a full sub-tree is error-prone. Second, it fails to account for the
variable information gain that could be achieved depending
on which attribute is explored at any given round of feed-
back. Therefore, we use the probabilistic representation of
whether images satisfy the comparison constraints, as defined
in Sect. 3.2, and we use the pivots to limit the pool of candi-
date images that are evaluated for their expected information
gain, as we will explain next.

3.4.2 Actively Selecting an Informative Comparison

Our system maintains a set of M current pivot images (one
per attribute tree) at each iteration, which we denote by P =
{Ip1 , . . . , IpM }, where P ⊂ D. The pivots are initially the
root pivot images from each tree. During active selection, our
goal is to identify the pivot in this set that, once compared
by the user to his target, will most reduce the entropy of the
relevance predictions on all database images in D. Note that
selecting a pivot corresponds to selecting both an image as
well as an attribute along which we want it to be compared.
That is, Ipm refers to the pivot for attribute m.

Entropy Reduction Objective Given the feedback historyF ,
we want to predict the information gain across all N database
images for each pivot in P . We will request a comparison
for the pivot that most reduces the total relevance entropy
over all images—or equivalently, the pivot that minimizes
the expected entropy when used to augment the current set
of feedback constraints.

The entropy based on the feedback thus far is:

H(F) = −
N∑
i=1

∑
�

P
(
yi = �|Ii ,F

)
log P

(
yi = �|Ii ,F

)
,

(8)

where � ∈ {0, 1}. Let R be a random variable denoting the
user’s response, R ∈ {“more”, “less”, “equally”}. We select
the next pivot for comparison as:

I ∗
p = argmin

Ipm∈P

∑
r

P
(
R = r |Ipm ,F

)
H

(
F ∪ (Ipm , r)

)
, (9)
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where H(F ∪ (Ipm , r)) denotes the entropy computed on
the accumulated feedback when it is further augmented with
the hypothetical response r on pivot image Ipm , and P(R =
r |Ipm ,F) is the likelihood of the user giving the response r .
In other words, the most informative pivot—the one the user
should next compare his target image to—is the pivot that
most reduces the expected entropy.

User Response Likelihood Optimizing Eq. 9 requires esti-
mating the likelihood of each of the three possible user
responses to a question we have not issued yet. We develop
three possible strategies to estimate it. In each case, we use
cues from the available feedback history to form a “proxy”
for the user, essentially borrowing the probability that a new
constraint is satisfied from previously seen feedback.

For the first strategy, which we call All Relevant, we
use all relevant database images as the proxy. The assump-
tion is that the images that are relevant to the user thus far are
(on the whole) more likely to satisfy the user’s next feedback
than those that are irrelevant. This is reminiscent of standard
practice in active classifier training, where posteriors esti-
mated with the current classifier are used as weights in the
expected entropy reduction of acquiring a new label. Ideally
we would average the P(Sc,i = 1|Ii ,Fc) values among only
the relevant images Ii , where c indexes the candidate new
feedback for a (yet unknown) user response R. Of course,
we can only predict relevance, so we compute the weighted
probability of each possible response R:

Pall
(
R = r |Ipm ,F

) = 1

N

N∑
i=1

P
(
yi = 1|Ii ,F

)

P
(
Sc,i = 1|Ii ,Fc

)
, (10)

where the all subscript stands for All Relevant.
The second strategy, which we call Most Relevant, is

similar, but uses only our current best guess for the target
image as the proxy:

Pmost
(
R = r |Ipm ,F

) = P
(
Sc,b = 1|Ib,Fc

)
, (11)

where Ib is the database image that maximizes P(yi =
1|Ii ,F), for i = 1, . . . , N .

The third strategy, which we call Similar Question,
examines all previously answered feedback requests, and
copies the answer from the question that ismost similar to the
newone.We define question similarity in terms of the Euclid-
ean distance between the pivot images’ descriptors plus the
similarity of the two attributes involved in either question.We
quantify the latter by the Kendall’s τ correlation between the
ranks they assign to a set of validation images. For example,
this reflects that feminine and heel height are more aligned
than feminine and grayness. Let r∗

k denote the response to the

Fig. 5 The Active WhittleSearch variant requests feedback on images
that elicit the most information, using binary search trees to focus the
active selection. In this sketch, M = 2 attribute trees are shown. Images
with the same color outline are the pairs considered at each round,
and the number in this color marks the image chosen at this round.
Red arrows denote the user’s responses. Here, first the user is asked to
compare his target to the boot pivot (1) in terms of pointiness; then he
is asked to compare it to (2) in terms of shininess, followed by (3) in
terms of pointiness, and so on. Best viewed in color

most similar question k found in the history F for the new
pivot Ipm under consideration. Then we have:

Pquestion
(
R = r |Ipm ,F

) =
{
1 if r = r∗

k

0 otherwise.
(12)

We evaluate all three likelihood strategies in the results.

Recap of ActiveWhittleSearch InteractionLoop At each iter-
ation, we present the user with the pivot selected with Eq. 9
and request the specified attribute comparison. Then, we (1)
use his response to update F with that additional image-
attribute-response constraint, and (2) either replace the pivot
inP for that attribute with its appropriate child pivot (i.e., the
left or right child in the binary search tree if the response is
“less” or “more”, respectively) or terminate the exploration
of this tree (if the response is “equally”). Note that this means
that the set of pivots consists of pointers into the binary trees
at varying levels. See Fig. 5. This is because our active selec-
tion criterion considerswhich attributewillmost benefit from
more refined feedback at any point in time. In contrast, a
simpler solution that alternates between the attribute trees in
sequence need not reduce uncertainty as efficiently, as we
will show in the results.
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Finally, the approach iterates until the user is satisfiedwith
the top-ranked results, or until all of the attribute trees have
bottomedout to an “equally” response from theuser (inwhich
case, our method can gain no further knowledge about the
target given the available attribute vocabulary).

The cost of our selection method per round of feedback
is O(MN ), where M is the size of the attribute vocabulary,
N is the database size, and M � N . For each of O(M) piv-
ots which can be used to complement the feedback set, we
need to evaluate expected entropy for all N images. In con-
trast, a traditional information gain approach would scan all
database items paired with all attributes, requiring O(MN 2)

time. The proposed binary search trees exploit the ordinal
values of relative attributes to make this complexity reduc-
tion possible.

3.5 Discussion

Having described both WhittleSearch variants, we can now
compare and contrast them in detail. Recall that feedback
is user-initiated in the first variant: the system presents the
user with the top-ranked current results, and the user freely
chooses those on which he wishes to provide compara-
tive feedback. The second variant, Active WhittleSearch, is
system-initiated: the system asks the user for a visual com-
parison between the envisioned target image and an actively
selected reference image along a specific attribute. Both
variants have potential advantages that are revealed under
different scenarios.

Active WhittleSearch makes a choice that is optimal with
respect to the knowledge that the image search system pos-
sesses. This can be likened to a situation where we rely on
a student’s own understanding of what he knows in order to
improve his knowledge. However, unlike WhittleSearch, the
set of images that is shown to the user for feedback is often
disjoint from those that are ranked highest by the system.
Therefore, the user must separately examine the images for
feedback and the image results.

In contrast, WhittleSearch gives the human user several
options about the reference images and attributes onwhich to
comment. Therefore, the performance of the system depends
both on the choices that the usermakes, aswell as the correct-
ness of the response that the user gives on the chosen pairing
of image and attribute. In this case, we rely on the human
“teacher” to know what additional information to give to
the system “learner”. WhittleSearch also requires more time
for the completion of one feedback statement compared to
Active WhittleSearch, since it requires the user to examine a
set of options and choose among them.

In cases when the user does not wish to spend much
time considering which image and attribute to comment on,
we expect that Active WhittleSearch will be preferred. For
example, the user might choose to comment on those com-

parisons which are most obvious, which might not be very
informative to the system. However, if the user is careful
and experienced enough with the system to pick informative
comparisons, WhittleSearch can perform better. For exam-
ple, the user might see a unique attribute which is important
for discriminating between relevant and irrelevant images,
which the system has not asked about yet. This will be par-
ticularly important if there is a large discrepancy between the
human perception of an attribute and the system ranking for
this attribute, in which case the entropy reduction estimates
might be inaccurate.

Another factor which affects how well the two versions of
WhittleSearch perform is the number of feedback statements
that the system has received so far. As we will show in our
results (Sect. 4.3), the entropy-based selection criterion is
most crucial early on in the iterative cycle. Thus, we expect
the advantage of Active WhittleSearch over WhittleSearch
to be stronger in the first few iterations.

Finally, the level of specificity of the user’s target might
affect WhittleSearch and Active WhittleSearch’s compara-
tive performance as well. If the user is simply browsing,
WhittleSearch might be preferable as it gives him more free-
dom to explore the current results and refine or terminate the
search, depending on the precise qualities of the desired tar-
get. For example, a user shopping for a product with only a
vague preconception of what is desired may be best suited by
WhittleSearch. However, if the user has a very specific target
in mind, Active WhittleSearch might be more helpful, as the
use of binary search trees helps narrow down the search to
the exact range of the attribute value distribution thatmatches
the “signature” of the target image. The feasibility of brows-
ing can be affected by the size of the search interface. For
example, it might be harder to browse reference images on a
small mobile phone screen, which speaks in favor of elimi-
nating user choice for the feedback statements, and trying to
pinpoint the exact object that the user has in mind.

Figures 6 and 7 show two qualitative comparisons of the
two WhittleSearch variants, which illustrate some of the
tradeoffs discussed. The first figure shows user-chosen feed-
back that does not point out the most distinctive features of
the target image, while the second shows particularly valu-
able user-chosen feedback.

4 Experimental Results

We first explain our experimental setup in Sect. 4.1. In
Sect. 4.2 we analyze how the proposed relative attribute feed-
back can enhance image search compared to classic binary
feedback, and study which factors influence their behavior.
Then, in Sect. 4.3 we compare our active selection method
in the Active WhittleSearch variant to alternative selection
strategies to demonstrate its benefits. Finally, in Sect. 4.4, we
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Fig. 6 An example where Active WhittleSearch outperforms Whit-
tleSearch. Observe how the active selection focuses on the two most
distinctive features of this shoe, namely its color and ornaments, which
the human user fails to do. The user gives feedback that is obvious yet
not very discriminative; most shoes are less long-on-the-leg than a boot,
andmany shoes in this dataset are higher at the heel than a running shoe.
See Sect. 4 for all implementation details leading to this result

experimentally compare WhittleSearch and Active Whittle-
Search.

4.1 Experimental Design

Datasets We use three datasets in order to validate our
approach in diverse domains of interest: finding products,
people, and scenes. The datasets are:

– The Shoes dataset from the Attribute Discovery Dataset
(Berg et al. 2010), which contains 14,658 shoe images
belonging to 10 shoe categories collected from the web-
site like.com. We augment the data with 10 relative
attributes—pointy at the front, open, bright in color, cov-
ered with ornaments, shiny, high at the heel, long on the
leg, formal, sporty, and feminine.

– The Public Figures dataset of human faces (Kumar
et al. 2009) (Faces). We use the subset from Parikh
and Grauman (2011b), which contains 772 images from
8 people and 11 attributes—masculine-looking, white,

Fig. 7 An example where WhittleSearch outperforms Active Whittle-
Search. While Active WhittleSearch does a fair job, this particular user
of WhittleSearch gave very useful feedback, which allowed the system
to rank the target image nearly at the top of the results page. See Sect.
4 for all implementation details leading to this result

young, smiling, chubby, visible forehead, bushy eye-
brows, narrow eyes, pointy nose, big lips, and round face.

– TheOutdoor Scene Recognition dataset of natural scenes
(Oliva and Torralba 2001) (Scenes), which consists of
2,688 images from8categories and6 attributes—natural,
open, perspective, large objects, diagonal plane, and
close depth (Parikh and Grauman 2011b).

Features For image features x, we use GIST (Oliva and Tor-
ralba 2001) and LAB color histograms for Shoes and Faces,
andGIST alone for Scenes.We omit color for Scenes because
we expect that the majority of scene attributes cannot be
captured with color features. The GIST descriptor captures
the overall texture of the image, summarizing gradient ori-
entations in a grid of spatially localized cells. The color
histogram summarizes the color distribution in the image,
offering complementary information to the GIST descriptor.
For Shoes, we concatenate a 960-dimensional GIST feature
vector (4 blocks and 8-8-4 orientations per scale) and a 30-
dimensional color feature vector (10 bins). For Scenes, we
use a 512-dimensional GIST vector. For Faces, we concate-
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nate a 512-dimensional GIST vector and a 30-dimensional
color vector.

Methodology For each query we select a random target
image and score how well the search results match that tar-
get after feedback. This target stands in for a user’s mental
model; it allows us to prompt multiple subjects for feed-
back on a well-defined visual concept, and to precisely
judge how accurate results are. This part of our methodol-
ogy is key to ensure consistent data collection and formal
evaluation.

We use two evaluation metrics (1) the ultimate per-
centile rank assigned to the user’s target image, which
measures the fraction of database images ranked below the
true target, and (2) the correlation between the full rank-
ing computed by the method’s relevance scoring function
and a ground truth ranking that reflects the perceived rele-
vance of all images inD. For both metrics, higher scores are
better.

The correlation metric captures not only where the tar-
get itself ranks, but also how similar to the target the other
top-ranked images are. We form the ground truth relevance
ranking by sorting all images in D by their distance to
the given target. To ensure this distance reflects perceived
relevance, we learn a metric based on human judgments.
Specifically, we show 750 triplets of images (i, j, k) from
each dataset to seven Mechanical Turk human subjects, and
ask whether images i and j are more similar, or images i
and k. Using their responses, we learn a linear combination
of the image and attribute feature spaces that respects these
constraints via (Joachims 2002). Our ground truth rankings
thus mimic human perception of image similarity. To score
correlation, we useNormalizedDiscountedCumulativeGain
at top K (NDCG@K) (Kekalainen and Jarvelin 2002). This is
a standard information retrieval metric that scores how well
the predicted ranking and the ground truth ranking agree,
while emphasizing items ranked higher. We use K = 50,
based on the number of images visible on a page of image
search results.

Baseline The key baseline against which we compare Whit-
tleSearch is traditional binary relevance feedback. This
baseline is intended to represent existing approaches such
as Cox et al. (2000), Ferecatu and Geman (2007), Rui
et al. (1998), Tieu and Viola (2000). While a variety of
classifiers have been explored in such previous systems,
we employ a support vector machine (SVM) classifier for
the binary feedback model due to its strong performance
in practice. Thus, the relevance scoring function for the
binary feedback baseline is the magnitude of the SVM
output. (We defer the definition of the additional base-
lines against which we test Active WhittleSearch until
Sect. 4.3.)

4.2 WhittleSearch Results

We use Mechanical Turk to gather human feedback for our
relative attribute method and the binary feedback baseline.
We pair each target image with 16 reference images. For our
method we ask, “Is the target image more or less 〈attribute
name〉 than the reference image?” (for each 〈attribute name〉),
while for the baselinewe ask, “Is the target image similar to or
dissimilar from the reference image?”We also request a con-
fidence level for each answer, as shown above in Fig. 3. We
get each pair labeled by up to five workers and use majority
voting to reduce noise.When sampling from these constraints
to impose feedback, we take those that have the highest aver-
age confidence levels, assuming that a user will select that
response of which he is most confident.

Since the human annotations are costly, for certain stud-
ies below we generate feedback automatically. For relative
constraints, we randomly sample constraints based on the
predicted relative attribute values, checking how the target
image relates to the reference images. In other words, the
simulated user randomly chooses an attribute and one of the
n top-ranked images at that round, and compares his target
image to the chosen reference image along the given attribute
dimension. For example, if the target’s predicted “shininess”
is 0.5 and the reference image’s “shininess” is 0.6, then a
valid constraint is that the target is “less shiny” than that ref-
erence image. For binary feedback, we analogously sample
positive/negative reference examples based on their image
feature distance to the true target. In particular, we sort the n
currently top-ranked in terms of their Euclidean distance in
raw feature space to the target image. We then generate con-
straints that say the top quartile of these images are “similar
to” the target image, while the bottom quartile are “dissimilar
from” the target.

When scoring rank,we addGaussian noise to the predicted
attributes (for our method) and the SVM outputs (for the
baseline), to coarsely mimic human uncertainty in constraint
generation. The automatically generated feedback is a good
proxy for human feedback since the relative predictions are
explicitly trained to represent human judgments. It allows us
to test performance on a larger scale.

First we evaluate the coreWhittleSearch systemwith user-
initiated feedback. These results aim to establish the value
of relative attribute feedback compared to traditional binary
relevance feedback. Since there is no active selection and we
do not need to estimate entropy reduction in these results,
we simplify the probabilistic relevance function in Eq. 5 to
use binary values for the probabilities P(St,i = 1|Ii ,Ft ),
such that the relevance function simply counts the number
of constraints satisfied by a database image Ii . Specifically,
this corresponds to defining:

P
(
Am(Ii ) > Am(It f )

) = [
am(Ii ) > am(It f )

]
, and
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Fig. 8 Iterative search with WhittleSearch versus traditional binary relevance feedback on three datasets. We show accuracy (percentile rank of
the target image) as a function of the number of iterations of feedback. Our method often converges on the target image more rapidly

Fig. 9 Ranking accuracy as a function of amount of feedback. While more feedback enhances both our method and the traditional binary relevance
feedback approach, the proposed attribute feedback yields faster gains per unit of feedback

P
(
Am(Ii ) < Am(It f )

) = [
am(Ii ) < am(It f )

]
, (13)

where the brackets denote Iverson bracket notation.

Impact of Iterative Feedback First we examine how the rank
of the target image improves as the methods iterate. Both
methods start with the same random set of 16 reference
images, and then iteratively obtain eight automatically gen-
erated feedback constraints, each time re-scoring the data
to revise the top reference images. To ensure new feedback
accumulates per iteration, we do not allow either method to
reuse a reference image.

Figure 8 shows the results, for 50 suchqueries.Ourmethod
outperforms the binary feedback baseline for all datasets,
more rapidly converging on a top rank for the target image.
On Faces our advantage is slight, however. We suspect this
is due to the strong category-based nature of the Faces data,
which makes it more amenable to binary feedback; adding
positive labels on exemplars of the same person as the target
image is quite effective. In contrast, on Scenes and Shoes,
where images have more fluid category boundaries, our
advantage is much stronger. The searches tend to stabilize
after 2–10 rounds of feedback. The run-times for our method
and the baseline are similar.

Impact of Amount of Feedback Next we analyze the impact
of the amount of feedback, using automatically generated

constraints. Figure 9 shows the rank correlation results for
100 queries. These curves show the quality of all top-ranked
results as a function of the amount of feedback given in a
single iteration. Recall that a round of feedback consists of
a relative attribute constraint or a binary label on one image,
for our method or the baseline, respectively. For all datasets,
both methods clearly improve with more feedback. How-
ever, the precision enabled by our attribute feedback yields
a greater “bang for the buck”—higher accuracy for fewer
feedback constraints. The result is intuitive, since with our
method users can better express what about the reference
image is (ir)relevant to them, whereas with binary feedback
they cannot.

A multi-attribute query baseline that ranks images by
how many binary attributes they share with the target image
achieves NDCG scores 40% weaker on average than our
method when using 40 feedback constraints. This result
supports our claim that binary attribute search lacks the
expressiveness of iterative relative attribute feedback.

Impact of Reference Images The results thus far assume that
the initial reference images are randomly selected, which is
appropriate when the search cannot be initialized with key-
word search.We are interested in understanding the impact of
the types of reference images available for feedback. Thus,
we next control the pool of reference images to consist of
one of four types: “near”, meaning images close to the target
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Table 1 Ranking accuracy (NDCG@50 scores) as we vary the type of
reference images available for feedback

Dataset-Method Near Far Near+Far Mid

Shoes-Attributes 0.39 0.29 0.40 0.38

Shoes-Binary 0.12 0.05 0.27 0.06

Faces-Attributes 0.60 0.41 0.58 0.52

Faces-Binary 0.39 0.21 0.64 0.15

Scenes-Attributes 0.53 0.27 0.52 0.40

Scenes-Binary 0.18 0.18 0.32 0.11

Bold values indicate the best performance in a row

image, “far”, meaning images far from the target, “near+far”,
meaning a 50–50 mix of both, and “mid”, meaning nei-
ther near nor far from the target. Nearness is judged in the
GIST/color feature space.

Table 1 shows the resulting accuracies, for all types and
all datasets using 100 queries and automatic feedback. Both
methods generally dowell with “near+far” reference images,
whichmakes sense. For attributes, we expect useful feedback
to entail statements about images that are similar to the target
overall, but lack some attribute. Meanwhile, for binary feed-
back, we expect useful feedback to contain a mix of good
positives and negatives to train the classifier. We further see
that attribute feedback also does fairly well with only “near”
reference images; intuitively, it may be difficult to mean-
ingfully constrain precise attribute differences on an image
much too dissimilar from the target.

Ranking Accuracy with Human-Given Feedback Having
analyzed in detail the key performance aspects with auto-
matically generated feedback, now we report results using
human-generated feedback. Figure 11 shows the type of
interface we used for these experiments. At the top, we show
users images from the bottom and top of our attribute rankers,
in order to guide their answers and ameliorate the effect of
the discrepancy between machine and user understanding
of an attribute. Figure 10 (first three plots) shows the rank-
ing correlation for both methods on 16 queries per dataset
after one round of 8 feedback statements. Attribute feed-
back largely outperforms binary feedback, and does similarly

well on Scenes. One possible reason for the scenes being
less amenable to attribute feedback is that humans seem to
havemore confusion interpreting the attributemeanings (e.g.,
amount of perspective on a scene is less intuitive than shini-
ness on shoes).

Next, we consider initialization with keyword search. The
Shoes dataset provides a good testbed, since an online shop-
per is likely to kick off his search with descriptive keywords.
Figure 10 (fourth plot) shows the ranking accuracy results
for 16 queries when we restrict the reference images to
those matching a keyword query composed of three attribute
terms. Bothmethods get four feedback statements (we expect
less total feedback to be sufficient for this setting, since the
keywords already narrow the reference images to good exem-
plars). Our method maintains its clear advantage over the
binary baseline. This result shows (1) there is indeed room
for refinement even after keyword search, and (2) the preci-
sion of attribute statements is beneficial.

Figure 12a shows a real example search using relative
feedback in WhittleSearch. Note how the user’s mental con-
cept is quickly met by the returned images. Furthermore, the
user can comment very specifically on the heel height, by
referring to both a very high-heeled shoe (in Round 1) and
a shorter-heeled shoe (in Round 2). This example highlights
the value of relative feedback: the user can precisely bound
the range of acceptable strengths for each particular attribute.
In some cases, however, binary relevance feedback might
be sufficient. In Fig. 13, our method retrieves the correct
images according to the user’s descriptions. But if the goal
is to retrieve images of the person in the query, our method
fails, while the binary relevance feedback method succeeds
(not shown). To combine the strengths of both approaches,
we proposed a hybrid feedback approach in Sect. 3.3. Fig-
ure 12b shows a real example using a hybrid of both binary
and attribute feedback, as described in Sect. 3.3. This sug-
gests how a user can specify a mix of both forms of input,
which are often complementary.

In Fig. 12c, d, we present two real examples of search
results for human-generated feedback with WhittleSearch,
to compare our method qualitatively alongside the tradi-
tional binary relevance feedback approach. Each exam-
ple shows one search iteration, where the 20 reference

Fig. 10 Ranking accuracy with human-generated feedback with randomly chosen (first three plots) and keyword-initialized reference images
(fourth plot)
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Fig. 11 The interface we use for the live user experiments for Whit-
tleSearch. The top rows illustrate the attribute meaning visually with
examples. Then the user is shown a series of eight reference images,

and asked to compare a target image to a reference image of his choos-
ing according to an attribute of his choosing using the drop-down boxes.
Finally, he must state his confidence in the response

images are randomly selected (rather than ones that match
a keyword search as the examples above) and annotated
with constraints by users on MTurk. For each result,
the upper figure shows our method and the lower fig-
ure shows the binary feedback result for the correspond-
ing target image. This figure shows the clear advantage
of our relative attribute feedback approach over tradi-
tional binary feedback. The user can retrieve more accu-
rate results if he is allowed to compare the retrieved
results to his target image for some particular visual prop-
erty.

Consistency of Relative Supervision Types Next we examine
the impact of how human judgments about relative attributes
are collected to train the relative attribute models.

For all results above, we train the relative attribute rankers
using image-level judgments. How well could we do if sim-
ply training with class-based supervision, i.e., “coasts are
more open than forests”? To find out, we use the relative
ordering of classes given in Parikh and Grauman (2011b)
for Faces and Scenes, and define them ourselves for Shoes
(see Appendix). We train ranking functions for each attribute
using both modes of supervision.

Table 2 shows the percentage of ∼200 test image pair
orderings that are violated by either approach. Intuitively,
instance-level supervision outperforms class-level supervi-
sion for Shoes and Scenes, where categories are more fluid.
In additional experiments with 20MTurk annotators, we find
that the MTurkers’ inter-subject disagreement on instance-
level responses was only 6%, versus 13% on category-level
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Fig. 12 a Example iterative search result with attribute feedback. b
Example search result with hybrid feedback. (c, d) Example results
for WhittleSearch (top) versus binary relevance feedback (bottom) on
Shoes (c) and Scenes (d). For the Shoes example, while both methods
retrieve high-heeled shoes, only our method retrieves images that are
precisely as open as the target image. This is because using the proposed
approach, the user was able to comment explicitly on the desired open-

ness property. For the Scenes example, we show an interesting example
of a target image that is hard to describe in words and likely has few very
similar images in the database. However, through our relative attribute
constraints, we are able to retrieve better matches than the binary feed-
back baseline produces. A main issue for the baseline in this case is the
lack of similar images among the reference images that the user can use
to define positives

responses. Both results support the proposed design for rel-
ative attribute training.

In Fig. 14, we show some examples where the instance-
level ordering of two images with respect to some attribute
differs from the ordering defined at the class-level. We show
annotations where users had high confidence of these labels,
and there was high inter-user agreement.

4.3 Active WhittleSearch Results

We next test howwell the active variant of our method guides
the search process using attribute pivots, by comparing it
to several alternative methods for interactive search. Unless
otherwise noted, we report results over 200 randomly chosen
target images.
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Fig. 13 Afailure of ourmethod.While the images ourmethod retrieves
do match the descriptions given by the user, in this case we fail to
retrieve an image of the correct person. This failure may be due to the
insufficiently rich description that the user provided

Table 2 Errors for class-level versus image-level training

Class (%) Instance (%)

Shoes 26.10 22.89

Scenes 38.92 33.41

Faces 28.38 30.16

Baselines We compare our Active WhittleSearch method,
denoted Active attribute pivots, against the following
six baselines:

– Attribute pivots is a simplified version of our method
that uses the attribute trees to select candidate images, but
chooses randomly among the attributes in a round-robin
fashion.

– Active attribute exhaustive uses entropy to select
questions like our method, but it evaluates all possible
MxN candidate questions, where M is the number of
attributes and N is the number of database images.

– Top selects the image that has the current highest prob-
ability of relevance and pairs it with a random attribute.
This method represents traditional interactive methods
that assume an “impatient” user for whom feedback
exemplars and search results must be one and the same.
It is like the non-active version of WhittleSearch, except
that it presents only one reference image and allows only
one statement to be given at each time. Unlike Whittle-
Search, the user of the system cannot introduce variety
in the feedback statements that are given, as he cannot
exercise choice.

– Passive simply selects a random image paired with a
random attribute for its question.

– Active binary feedback does not use statements
about the relative attribute strength of images, but rather
asks the user whether the exemplar is similar to the tar-
get. This method uses a binary SVM to rank images, and
treats similar images as positives and dissimilar images as

Fig. 14 Examples of dramatic disagreement between class-level and
image-level annotations. For example, pumps are normally high at the
heel and clogs are flatter, but the pump in the third row is lower at the
heel than this particular clog. Inside-city images usually show a whole
scene photographed down the street, but the inside-city scene in the top-
right is the side of a building, and thus less in-perspective than the coast
image. Jared Leto is usually not smiling, but in this particular picture
(bottom-right) he is more smiling than Alex Rodriguez

negatives. It actively chooses the image whose decision
value is closest to 0, as in Tong and Chang (2001).

– Passive binary feedback works as above, but ran-
domly selects the images for feedback.

Note that the relative feedback methods all use the same
relevance prediction function and only differ in the feedback
they gather. The tree-based methods stop asking questions
about attributem once its leaf is reached or the user has given
an “equally” response for m. All methods keep an image in
consideration for feedback until all possible questions have
been asked about it.

To thoroughly test the methods, we conduct both live
experiments with real users as well as experiments where
we simulate the user responses. We generate the response
for a question, “Is the target image more, equally, or less
m than Ipm ?” using the difference in the predicted attribute
values for the target It and the pivot Ipm . For a response of
“equally”, we use a threshold derived from the training pairs
of images labeled as similar with respect to m. Note that this
protocol is in linewith standard validation for active learning,
where the algorithm receives the labels for those examples
it queries, even if a human is not answering “live” in the
loop. The predicted attribute values are an extrapolation of
the ground-truth labels we have obtained from users. We ini-
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tialize all attribute search methods with the same feedback
constraint.

For binary relevance feedback, we respond with “similar”
if the target and exemplar images are within one standard
deviation of the learned distances used for the ground truth
ranking. We initialize the baseline with one positive and one
negative image by peeking at the distances between the tar-
get image and a pool of 40 images, and selecting the closest
image as a positive and the furthest as a negative. This sim-
ulates a user starting the search with feedback on a page
of random images. If anything, it is generous to the baseline,
since our method gets only one “bit” of feedback at the onset,
while the binary feedback baselines get two.

We again add Gaussian noise to both the relative attribute
feedback and binary feedbackmethods in order to account for
the discrepancy between perceived and predicted attributes
and appearance.

Comparison of Likelihood Models Figure 15 compares the
three proposed methods of predicting the user response.
Most Relevant consistently performs well on all datasets,
and outperforms the other twomethods on all but the Scenes.
This suggests that our best guess at the target tends to be a suf-
ficient proxy, having a fairly similar attribute signature. All
Relevant performs similarly but is slightly weaker, indicat-
ing that isolating the most relevant instance gives a “cleaner”
likelihood than attempting to refine it with our uncertainty
about each relevant instance. Similar Question performs
the best for a fraction of the iterations on Scenes, but does
poorly on Faces. This is likely because we cannot estimate
attribute similarity reliably due to the distinct face attributes
(e.g., face chubbiness has no strongly correlated attributes,
whereas scene openness does). In all remaining results, we
use the Most Relevant method.

Comparison to Existing Methods Figure 16 compares our
method to the six baselines on all three datasets. Overall, our
methodfinds the target imagemost efficiently.We see that our
full active approach outperforms the round-robin variant of
our method (Attribute pivots), with an average percentile
rank 7.6% better after only 3 iterations. This shows actively
interleaving the trees allows us to focus on attributes that
better distinguish the relevant images.

Fig. 15 Comparison of the proposed models for the likelihood of a
user’s response. Best viewed in color

Fig. 16 Comparison of ActiveWhittleSearch to alternative interactive
search methods on the three datasets. For both metrics, higher curves
are better. Best viewed in color

Ourmethod is alsomore effective thanActive attribute
exhaustive.3 This shows that the binary tree structures serve
as a formof regularization, helpingourmethod focus on those
questions that a priori may be most informative to ask. Intu-
itively, if a user has ruled out a subtree (“The target image
is bluer than the reference image with blueness X.”), it is
likely redundant (low information gain) to ask how the tar-
get compares to more data on that path (“Is the target image
bluer than this other reference imagewith bluenessX−Y?”),
i.e., to ask the user to comment on something even less blue
than the previous exemplar. The exhaustive method might be
more prone to selecting outliers which are not actually infor-
mative, due to potential noise in the active selection which
arises out of the need to estimate the likelihood of different
user responses. In contrast, our method picks pivots which,
even if there are small errors in the entropy estimation, will
be informative as they split the search space in half. Further-
more, our method is orders of magnitude faster (see Table 3).

The results in Fig. 16 also show the striking advantage
of relative attribute feedback compared to binary relevance
feedback, as we also demonstrated in the previous section.
Binary feedback has an advantage in the first few iterations,
likely because we generously initialize it with two feedback

3 The exhaustive baseline was too expensive to run on all 14K Shoes.
On a 1000-image subset, it does similarly as on other datasets.
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Table 3 Selection time for one iteration of our method versus the
exhaustive active baseline, in seconds

Method/Dataset Shoes Scenes Faces

Active attribute pivots (Ours) 0.05 0.01 0.01

Active attribute exhaustive 656.27 28.20 3.42

statements. However, the relative attribute methods quickly
surpass binary feedback. We find that both feedback modes
require similar user time: 6.4 s for relative, and 5.5 s for
binary, and so the trends remain if we plot rank as a func-
tion of user time. Interestingly, we find that Passive binary
feedback is actually stronger than its active counterpart for
this data. This is likely because images near the decision
boundary are often similar (and negative), whereas the pas-
sive approach samples more diverse instances (and hence
gets more positives).

Finally,weoutperformTop, showing that relative attribute
feedback alone need not offer the most efficient search.
Rather, it is important to give comparative constraints on
well-chosen images.

In practical terms,we are interested in howmany iterations
it takes to get the target in the top 40 most relevant images,
since that is how many images fit on a typical search page
(e.g., on Google). On average our method uses 12, 10, and 4
iterations to place the target in the top 40 for Shoes, Scenes,

and Faces, versus 21, 21, and 9 iterations for Top. Thus, our
method saves a user up to 70 s per query.

We also tested amethod that does a hard pruning of images
on the irrelevant branches of an attribute tree, as dictated by
user feedback. It incorrectly eliminates the true target for
about 93% of the queries, clearly supporting the proposed
probabilistic formulation.

Results with Live Users Next, we test our method “live” in
real time with Mechanical Turk workers, using an interface
similar to the one shown in Fig. 17. We compare its per-
formance against the two strongest baselines, Attribute
pivots and Top. The workers answer a series of five ques-
tions that each of the three methods pose about the same
target image. We issue 50 queries for Shoes-1k (a random
1000-image subset of Shoes), Scenes, and Faces-Unique (a
set of one image for each of 200 individuals from the original
PubFig dataset (Kumar et al. 2009), using the six most reli-
ably predictable attributes). We eliminate any queries where
one or more methods did not receive five complete feedback
iterations. All methods share one simulated feedback state-
ment at iteration 0, which we do not plot. We stop updating
the probabilities of relevance for a method once this method
places the target image in the top 40 images.

In order to get richer feedback from users, we allow users
to express their confidence in their responses, and give twice

Fig. 17 The interface we use for the live user experiments for Active
WhittleSearch. The top row illustrates the meaning of the system-
selected attribute for this round of feedback. Then the user is asked

to compare the displayed target image to the selected reference image
according to that attribute, by selecting “more”, “less”, or “equally”.
Finally, he must state his confidence in the response
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the weight to constraints for which the user says “a lot more
(less)” when computing the relevance probabilities.

Note that this live experiment is only possible because our
method canmake decisions in real time, unlike the exhaustive
active learning method.

Figure 18 shows the results. Consistent with our simulated
user results above, we see that typically our method ranks
the target image better than the baselines do. We find this a

Fig. 18 Our Active WhittleSearch method makes quick and reliable
choices, allowing the MTurk users to more efficiently find the target

very encouraging result, given the noise inherent in MTurk
responses (in spite of our best efforts at qualification tests)
and the difficulty of predicting all attributes reliably. Our
informativeness predictions on Faces-Unique are imprecise
since the facial attributes are difficult for both the system and
humans to compare reliably (e.g., it is hard to saywho among
two white people is whiter). This difficulty seems to hurt all
methods, judging by their flatter curves. Since the rank met-
ric does not give any credit for finding an image very close
to the target, we also asked a separate set of workers to judge
whether any of the top 10 ranked images were “very simi-
lar” to the target. For Shoes-1k, our method takes only 1.9
iterations on average to find one that is very similar, whereas
Attribute pivots requires 2.4 and Top requires 3.15.

Figure 19 presents examples of real live searches done by
workers on Mechanical Turk with the Active WhittleSearch
system. We show how our method and Top rank images
(shown on the right-hand side) based on the supplied user
feedback (shown on the left-hand side). In each figure, our

(a)

Fig. 19 Example live user search results comparing our method (top) to the Top baseline (bottom) on Shoes-1k (a) and Scenes (b). Using the
user’s feedback on the left, we retrieve the images on the right at the top of the results list. See text for details
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method is shown on top, followed by Top underneath. For
simplicity, we show “a lot more/less” responses as simply
“more/less”. In Fig. 19a,we see howourmethod quickly con-
verges on shoes that look like the target (bright high-heeled
pointy shoes). Our method asks questions that are crucial in
describing the shoe precisely (it is a high-heeled but not a for-
mal shoe, and it is more open than other high-heeled shoes).
In contrast, Top gets stuck asking questions about the same
shoe, and moreover, asking questions whose answers might
be redundant (i.e., about sportiness and its near-opposite fem-
ininity). In Fig. 19b, our method asks about properties that
are important for distinguishing the target image from other
images, namely open-air. Only our method is able to provide
acceptable top results.

4.4 Comparing WhittleSearch and Active
WhittleSearch

So far, we have demonstrated the advantages of relative
attribute feedback, as well as the benefit of actively selecting
the images shown for such relative attribute feedback. We
have also discussed the conceptual advantages of the user-
guided version ofWhittleSearch and its system-guided active
selection version, in Sect. 3.5.

Next, we compare the two versions of our method exper-
imentally, using the Shoes dataset. We conduct experiments
where users provide one feedback statement at each of five
iterations, whether that is chosen by the user from among
those that are ranked highest at the previous iteration (for
WhittleSearch), or actively chosen by the system (for Active
WhittleSearch). Each of 20 queries is submitted to five work-
ers, and eachworker completes the task for the samequery for
both methods. We time the user responses at each iteration.
We manually remove outliers in terms of time, and queries
for which the users provided obviously incorrect responses,
for both methods.

In Fig. 20a, we demonstrate that Active WhittleSearch
does indeed reduce the overall entropy of the system bet-

ter than WhittleSearch, which is the objective that Active
WhittleSearch uses when selecting comparisons for feed-
back. We plot how entropy decreases as the system receives
more feedback over five iterations. The entropy estimates in
the first few iterations are inaccurate due to the system having
received too little feedback to estimate relevance accurately.
This likely explains why Active WhittleSearch is initially
weaker at reducing entropy, but after two iterations, it starts
to reduce entropy faster than WhittleSearch, thus achieving
its main objective.

Next, we examine how entropy reduction affects the actual
user experience, as measured by the success of search results
as a function of the amount of feedback effort. In Fig. 20b,
we plot the median final percentile rank of the target image
per query, and the median total time it took to provide all
feedback statements for that method. The time for feedback
captures the time that users spend to examine the reference
images and attribute vocabulary and consider the possible
combinations thereof they can use for a feedback statement,
aswell as the time they spend actually submitting the selected
feedback. If no options are given and the system simply
presents the human user with a single question, then the time
for feedback simply involves deciding on the answer to that
question (i.e., “more”, “less”, or “equally”). Since Whittle-
Search gives the user more freedom and the user needs to
examine options and select among them, that version requires
more time for feedback than the active version, which could
potentially be a disadvantage to an impatient user. That said,
WhittleSearch often achieves high accuracy rates as a payoff
for the user time invested.

To better depict how the user effort and quality of results
are tied together, we next devise a unified metric for evalua-
tion; seeFig. 20c. Thismetricmeasures both how long it takes
to provide a specific form of feedback, and how effectively
this feedback enables the system to retrieve results, captured
by the rank of the target image. In particular, we sum the time
for providing the feedback and the time required to examine
the results. The latter term corresponds to the rank of the
target image converted to time, using a varying number of

Fig. 20 Comparison ofWhittleSearch (WS) andActiveWhittleSearch
(AWS). a System entropy for WhittleSearch (WS) and Active Whittle-
Search (AWS) (lower is better). b Percentile rank of target versus time

required for feedback (higher rank and lower time are better). c Total
time, with rank converted to time (see text). d Confidence of human
responses for WhittleSearch (WS) and Active WhittleSearch (AWS)
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seconds that are required to examine a page of 40 images. In
other words, if the target image is shown at rank 70, it will be
on page two of the search results, and if it takes 4 s to exam-
ine a page, the total time to examine the results will be 8 s.
We plot results as a function of the time to examine a page
because examining a page of results can take a short amount
of time—if the target image has very prominent and easy to
spot distinctive features or if all of the results are obviously
very different than the target image—or more time—if some
of the results are similar to the target and the user needs to
look more carefully to determine if there is an actual match.
We find that perusing a page of 40 image results takes 5.7 s
on average, hence the choice of range we use on the x-axis
of Fig. 20c.

In Fig. 20b, we see that ActiveWhittleSearch is cheaper in
terms of user time, but achieves slightly worse ranks for the
target image. Because WhittleSearch achieves better ranks
than Active WhittleSearch on average but is slower to use,
the user-guided version outperforms the system-guided one
when the cost of examining a page of results starts to domi-
nate the cost of providing feedback, as seen in Fig. 20c. This
result illustrates how different versions of the WhittleSearch
system might be preferable in different contexts and for dif-
ferent tasks.

To examine possible reasons for the performance of the
two versions of the system, in Fig. 20d we show a histogram
of the confidences that users reported for their responses.
We plot the average certainty that the user provided over
the five iterations, with 3 being most certain and 1 being
uncertain. We see that human responses on WhittleSearch
are muchmore certain than those for its system-guided coun-
terpart, likely because users often comment on the most
obvious relationships of target and reference images when
they are given a choice. This explains ActiveWhittleSearch’s
inferior performance in terms of rank, in Fig. 20b. How-
ever, we observe that when all five MTurkers agree on all
of the Active WhittleSearch responses, which occurred for
one query, Active WhittleSearch is better. Figure 21 shows
this example for one of the five users. This is encouraging
because it indicates that if we can pick feedback requests
that are informative and also likely to be answered with
confidence, our active approach can produce even more
accurate search results. Thus, a natural direction for future
work is to incorporate a user-confidence model into the
system.

5 Conclusion

We proposed an effective new form of feedback for image
search using relative attributes. In contrast to traditional
binary feedback, our approach allows the user to precisely
indicate how the results compare with his mental model.

Fig. 21 A case where Active WhittleSearch is most useful. Observe
the discriminative questions selected by the active system—not only in
terms of attributes like bright-in-color and long-on-the-leg, but also in
terms of the images involved in the comparison along those attribute
dimensions. For example, the user of WhittleSearch chooses to com-
ment on the relevant long-on-the-leg property, but there are a lot more
images that are less long-on-the-leg than a boot (bottom), compared to
those that are less long-on-the-leg than a pump (top)

Building on this idea, we develop a system-guided version
of the method which actively engages the user in a relative
20-questions-like game, where the answers are visual com-
parisons. Compared to existing active and passive methods,
our pivot-based formulation is both more efficient (by orders
of magnitude) and more accurate in practice.

In-depth experiments with three diverse datasets show
relative attribute feedback’s clear promise, and suggest inter-
esting new directions for integrating multiple forms of
feedback for image search. Results demonstrate that our
system-guided approach can rapidly pinpoint the visual tar-
get using a series of well-chosen comparative queries.

In future work, we plan to explore ways to more fully
model uncertainty in the search system. This can include, for
example, representing the user’s confidencewhen computing
our active selection criteria, or accounting for the confidence
of the attribute models themselves. Furthermore, we would
like to encourage diversity in the questions we ask the user,
incorporate strategies for ensuring that the questions we ask
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are not too difficult, and develop an approach where control
can be adaptively transferred between the user and the sys-
tem. We will study ways to efficiently learn a new attribute
on the fly, to allow the user to define new attributes when
the current vocabulary is no longer useful. We are also inter-
ested in developingways to allow formore explorationduring
search, and for assignment of different weights to feedback
on different attributes.
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Appendix

See Table 4.

Table 4 Ordering of classes for the attributes in the Shoes dataset. A score of 10 denotes that this class has the attribute the most, and 1 denotes
the class has it the least

Attribute/Class Athletic Boots Clogs Flats Heels Pumps Rain Boots Sneakers Stiletto Wedding

Pointy at the front 2 6 3 5 10 9 4 1 8 7

Open 3 2 8 5 7 6 1 4 9 10

Bright in color 6 1 2 8 4 3 10 7 9 5

Covered w/ ornaments 4 9 6 5 8 7 1 3 10 2

Shiny 2 9 4 3 6 5 8 1 10 7

High at the heel 4 6 5 1 9 8 3 2 10 7

Long on the leg 7 9 2 3 6 5 10 8 4 1

Formal 3 6 4 7 9 8 1 2 5 10

Sporty 10 5 6 7 4 3 8 9 1 2

Feminine 1 6 4 5 10 9 3 2 8 7
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