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Abstract Recent advances in 3D shape analysis and recog-
nition have shown that heat diffusion theory can be effec-
tively used to describe local features of deforming and scal-
ing surfaces. In this paper, we show how this description
can be used to characterize 2D image patches, and introduce
DaLI, a novel feature point descriptor with high resilience to
non-rigid image transformations and illumination changes.
In order to build the descriptor, 2D image patches are ini-
tially treated as 3D surfaces. Patches are then described in
terms of a heat kernel signature, which captures both local
andglobal information, and showsahighdegreeof invariance
to non-linear image warps. In addition, by further applying
a logarithmic sampling and a Fourier transform, invariance
to photometric changes is achieved. Finally, the descriptor is
compacted by mapping it onto a low dimensional subspace
computed using Principal Component Analysis, allowing for
an efficient matching. A thorough experimental validation
demonstrates that DaLI is significantly more discriminative
and robust to illuminations changes and image transforma-
tions than state of the art descriptors, even those specifically
designed to describe non-rigid deformations.
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1 Introduction

Building invariant feature point descriptors is a central
topic in computer vision with a wide range of applica-
tions such as object recognition, image retrieval and 3D
reconstruction. Over the last decade, great success has been
achieved in designing descriptors invariant to certain types
of geometric and photometric transformations. For instance,
the SIFT descriptor (Lowe 2004) and many of its vari-
ants (Bay et al. 2006; Ke and Sukthankar 2004; Mikola-
jczyk and Schmid 2005; Morel and Yu 2009; Tola et al.
2010) have been proven to be robust to affine deforma-
tions of both spatial and intensity domains. In addition,
affine deformations can effectively approximate, at least on a
local scale, other image transformations including perspec-
tive and viewpoint changes. However, as shown in Fig. 1,
this approximation is no longer valid for arbitrary deforma-
tions occurring when viewing an object that deforms non-
rigidly.

In order to match points of interest under non-rigid image
transformations, recent approaches propose optimizing com-
plex objective functions that enforce global consistency in the
spatial layout of all matches (Cheng et al. 2008; Cho et al.
2009; Leordeanu and Hebert 2005; Sanchez et al. 2010; Ser-
radell et al. 2012; Torresani et al. 2008). Yet, none of these
approaches explicitly builds a descriptor that goes beyond
invariance to affine transformations. An interesting excep-
tion is Ling and Jacobs (2005), that proposes embedding the
image in a 3D surface and using a Geodesic Intensity His-
togram (GIH) as a feature point descriptor. However, while
this approach is robust to non-rigid deformations, its per-
formance drops under light changes. This is because a GIH
considers deformations as one-to-one imagemappingswhere
image pixels only change their position but not themagnitude
of their intensities.
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Fig. 1 ComparingDaLI against SIFT (Lowe 2004), DAISY (Tola et al.
2010), LIOP (Wang et al. 2011) and GIH (Ling and Jacobs 2005). Input
images correspond to different appearances of the object shown in the
reference images, under the effect of non-rigid deformations and severe
changes of illumination. Colored circles indicate the match has been

correctly found among the first n top candidates, where n ≤ 10 is para-
meterized by the legend on the right. A feature is considered as mis-
matched when n > 10 and we indicate this with a cross. Note that the
DaLI descriptor yields a significantly larger number of correct matches

To overcome the inherent limitation of using geodesic dis-
tances, we propose a novel descriptor based on the Heat Ker-
nel Signature (HKS) recently introduced for non-rigid 3D
shape recognition (Gębal et al. 2009; Rustamov 2007; Sun
et al. 2009), andwhich besides invariance to deformation, has
been demonstrated to be robust to global isotropic (Bronstein
and Kokkinos 2010) and even affine scalings (Raviv et al.
2011). In general, the HKS is particularly interesting in our
context of images embedded on 3D surfaces, because illumi-
nation changes produce variations on the intensity dimension
that can be seen as local anisotropic scalings, for whichBron-
stein and Kokkinos (2010) still shows a good resilience.

Our main contribution is thus using the tools of diffu-
sion geometry to build a descriptor for 2D image patches
that is invariant to non-rigid deformations and photometric
changes. To construct our descriptor we consider an image
patch P surrounding a point of interest, as a surface in the
(x, y, β I (x)) space, where (x, y) are the spatial coordinates,
I (x) is the intensity value at (x, y), and β is a parameter
which is set to a large value to favor anisotropic diffusion and
retain the gradient magnitude information. Drawing inspira-
tion from the HKS (Gębal et al. 2009; Sun et al. 2009), we
then describe each patch in terms of the heat it dissipates onto
its neighborhood over time. To increase robustness against
2D and intensity noise, we use multiple such descriptors in
the neighborhood of a point, and weigh them by a Gaussian
kernel. As shown in Fig. 1, the resulting descriptor (which
we call DaLI, for Deformation and Light Invariant) outper-
forms state-of-the-art descriptors in matching points of inter-
est between images that have undergone non-rigid deforma-
tions and photometric changes.

A preliminary version of this paper was already published
in Moreno-Noguer (2011). In the current work, we propose
alternatives to both alleviate the high cost of the heat kernel
computation and to reduce the dimensionality of the descrip-

tor. More specifically, while in Moreno-Noguer (2011) the
3D embedding was performed considering a mesh with a
uniform distribution of vertices in the (x, y) domain, here
we investigate topologies with varying vertex densities. This
allows reducing the effective size of the underlying mesh,
and hence to speed up the DaLI computation time by a fac-
tor of over 4. In addition, we have also compacted the size
of the final descriptor by a factor of 50× using a Principal
Component Analysis (PCA) for dimensionality reduction.
As a result, the descriptor we propose here can be computed
andmatchedmuch faster when compared toMoreno-Noguer
(2011), while preserving the discriminative power. For eval-
uation, we acquired a challenging dataset that contains 192
pairs of real images,manually annotated, of diversematerials
under different degrees of deformation and being illuminated
by very different illumination conditions. Fig. 1-left shows
two samples of our dataset. We believe this is the first defor-
mation and illumination dataset for evaluating image descrip-
tors using real-world objects, andhavemade the dataset along
with the code of the DaLI descriptor publicly available1.

2 Related Work

The SIFT descriptor (Lowe 2004) has become the main ref-
erence among feature point descriptors, showing great suc-
cess in capturing local affine deformations including scal-
ing, rotation, viewpoint change and certain lighting changes.
Since it is relatively slow to compute, most of the subsequent
works have focused on developing faster descriptors (Bay
et al. 2006; Calonder et al. 2012; Ke and Sukthankar 2004;
Mikolajczyk and Schmid 2005; Tola et al. 2010). Scale and
rotation invariance has also been demonstrated in Kokkinos

1 http://www.iri.upc.edu/people/esimo/research/dali/
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et al. (2012) using a combination of logarithmic sampling and
multi-scale signal processing, although that requires large
image patches whichmake the resulting descriptor more sen-
sitive to other deformations. Indeed, as discussed in Vedaldi
and Soatto (2005), little effort has been devoted to building
descriptors robust to more general deformations.

The limitations of the affine-invariant descriptors when
solving correspondences between images of objects that
have undergone non-rigid deformations are compensated by
enforcing global consistency, both spatial and photometric,
among all features (Belongie et al. 2002; Berg et al. 2005;
Cheng et al. 2008; Cho et al. 2009; Leordeanu and Hebert
2005; Sanchez et al. 2010; Serradell et al. 2012; Torresani
et al. 2008), or introducing segmentation information within
the descriptor itself (Trulls et al. 2013, 2014). In any event,
none of these methods specifically handles the non-rigid
nature of the problem, and they rely on solving complex
optimization functions for establishing matches.

An alternative approach is to directly build a deformation
invariant descriptor. With that purpose, recent approaches
in two-dimensional shape analysis have proposed using dif-
ferent types of intrinsic geometry. For example, Bronstein
et al. (2007), Ling and Jacobs (2007) define metrics based
on the inner-distance, and Ling et al. (2010) proposes using
geodesic distances. However, all these methods require the
shapes to be segmented out from the background and repre-
sented by binary images, which is difficult to do in practice.
In Ling and Jacobs (2005), it was shown that geodesic dis-
tances, in combination with an appropriate 3D embedding
of the image, were adequate to achieve deformation invari-
ance in intensity images. Nonetheless, this method assumes
that pixels only change their image locations and not their
intensities and, as shown in Fig. 1, is prone to failure under
illumination changes.

There have also been efforts to build illumination invari-
ant descriptors. Such works consider strategies based on
intensity ordering and spatial sub-division (Fan et al. 2012;
Gupta and Mittal 2007, 2008; Gupta et al. 2010; Heikkilä
et al. 2009; Tang et al. 2009; Wang et al. 2011). While
these approaches are invariant to monotonically increas-
ing intensity changes, their success rapidly falls when deal-
ing with photometric artifacts produced by complex surface
reflectances or strong shadows.

The DaLI descriptor we propose can simultaneously han-
dle such relatively complex photometric and spatial warps.
Following Ling and Jacobs (2005), we represent the images
as 2D surfaces embedded in the 3D space. This is in fact a
common practice, although it has been mostly employed for
low level vision tasks such as image denoising (Sochen et al.
1998;Yezzi 1998) or segmentation (Yanowitz andBruckstein
1989). The fundamental difference between our approach
and Ling and Jacobs (2005) is that we then describe each fea-
ture point on the embedded surface considering the heat diffu-

sion over time (Gębal et al. 2009; Lévy 2006; Sun et al. 2009)
instead of using a Geodesic Intensity Histogram. As we will
show in the results section this yields substantially improved
robustness, especially to illumination changes. Heat diffu-
sion theory has beenusedby several approaches for the analy-
sis of 3D textured (Kovnatsky et al. 2011) and non-textured
shapes (Goes et al. 2008; Lévy 2006; Reuter et al. 2006; Rus-
tamov 2007), but to the best of our knowledge, it has not been
used before to describe patches in intensity images.

One of the main limitations of the methods based on the
heat diffusion theory is the high complexity cost they require.
The bottleneck of their computation lies on an eigendecom-
position of a nv × nv Laplacian matrix (see Fig. 3), where
nv is the number of vertices of the underlying mesh. This
has been addressed by propagating the eigenvectors across
different mesh resolutions (Shi et al. 2006; Wesseling 2004)
or using matrix exponential approximations (Vaxman et al.
2010). In this paper, an annular multiresolution grid will
be used to improve the efficiency of the DaLI computation.
Additionally, PCA will be used to reduce the dimensional-
ity of the original DaLI descriptor (Moreno-Noguer 2011),
hence speeding up the matching process as well.

3 Deformation and Light Invariant Descriptor

Our approach is inspired by current methods (Gębal et al.
2009; Sun et al. 2009) that suggest using diffusion geome-
try for 3D shape recognition. In this section we show how
this theory can be adapted to describe 2D local patches of
images that undergo non-rigid deformations and photomet-
ric changes. A general overview of the different steps needed
to compute the DaLI and DaLI-PCA descriptors can be seen
in Fig. 2 and are explained more in detail below.

3.1 Invariance to Non-Rigid Deformations

Let us assume we want to describe a 2D image patch P , of
size SP × SP and centered on a point of interest p. In order
to apply the diffusion geometry theory to intensity patches
we regard them as 2D surfaces embedded in 3D space (Fig. 3
bottom-left). More formally, let f : P → M be the mapping
of the patch P to a 3DRiemannianmanifold M .We explicitly
define this mapping by:

f : x → (x, y, β I (x)) ∀x ∈ P , (1)

where I (x) is the pixel intensity at x = (x, y)�, and β is a
parameter that, as we will discuss later, controls the amount
of gradient magnitude preserved in the descriptor.

Several recent methods (Gębal et al. 2009; Lévy 2006;
Reuter et al. 2006;Rustamov2007; Sun et al. 2009) have used
the heat diffusion geometry for capturing the local properties
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Fig. 2 Flowchart of the algorithmused to calculate theDaLI andDaLI-
PCA descriptors. The percentages below each of the steps indicate the
total amount of the contribution of that step to the computation time.

Observe that 99% of the computation time corresponds to the Heat Ker-
nel Signature calculation and specifically almost entirely to the eigen-
decomposition of the Laplace–Beltrami operator

of 3D surfaces and performing shape recognition. Similarly,
wedescribe eachpatch P basedon the heat diffusion equation
over the manifold M :
(

�M + ∂

∂t

)
u(x, t) = 0 ,

where �M is the Laplace–Beltrami operator, a generaliza-
tion of the Laplacian to non-Euclidean spaces, and u(x, t) is
the amount of heat on the surface point x at time t .

The solution k(x, y, t) of the heat equation with an initial
heat distribution uo(x, t) = δ(x−y) is called the heat kernel,
and represents the amount of heat that is diffused between
points x and y at time t , considering a unit heat source at x at
time t = 0. For a compact manifold M , the heat kernel can
be expressed by following spectral expansion (Chavel 1984;
Reuter et al. 2006):

k(x, y, t) =
∞∑

i=0

e−λi tφi (x)φi (y) , (2)

where {λi } and {φi } are the eigenvalues and eigenfunctions
of �M , and φi (x) is the value of the eigenfunction φi at the
point x. Based on this expansion, Sun et al. (2009) proposes
describing a point p on M using the Heat Kernel Signature

HKS(p, t) = k(p,p, t) =
∞∑

i=0

e−λi tφ2
i (p) , (3)

which is shown to be isometrically-invariant, and adequate
for capturing both the local properties of the shape around p
(when t → 0) and the global structure of M (when t → ∞).

However, while on smooth surfaces the HKS of neighbor-
ing points are expected to be very similar, when dealing with
the wrinkled shapes that may result from embedding image
patches, the heat kernel turns to be highly unstable along the
spatial domain (Fig. 3 bottom-right). This makes the HKS
particularly sensitive to noise in the 2D location of the key-
points. To handle this situation, we build the descriptor of a
point p by concatenating the HKS of all points x within the

patch P , properly weighted by a Gaussian function of the
distance to the center of the patch. We therefore define the
following Deformation Invariant (DI) descriptor:

DI(p, t) = [
HKS(x, t) · G(x;p, σ )

]
∀x∈P , (4)

where G(x;p, σ ) is a 2D Gaussian function centered on p
having a standard deviation σ , evaluated at x. Note that for
a specific time instance t , DI(p, t) is a SP × SP array.

The price we pay for achieving robustness to 2D noise is
an increase of the descriptor size. That is, if HKS(p, t) is a
function defined on the temporal domainR+ discretized into
nt equidistant intervals, the complete DI descriptor DI(p)=
[DI(p, t1), . . . ,DI(p, tnt )] will be defined on SP × SP × nt ,
the product of the spatial and temporal domains. However,
note that for our purposes this is still feasible, because we do
not need to compute a descriptor for every pixel of the image,
but just for a few hundreds of points of interest. Furthermore,
as we will next discuss, the descriptor may be highly com-
pacted if we represent it in frequency domain instead of time
domain and even further compacted by using dimensionality
reduction techniques such as principal component analysis
(PCA).

3.2 Invariance to Illumination Changes

An inherent limitation of the descriptor introduced in Eq. (4)
is that it is not illumination invariant. This is because light
changes scale the manifold M along the intensity axis, and
the HKS is sensitive to scaling. It can be shown that an
isotropic scaling of the manifold M by a factor α, scales
the eigenvectors and eigenvalues of Eq. (2) by factors 1/α
and 1/α2, respectively (Reuter et al. 2006). The HKS of a
point αp ∈ αM can then be written as

HKS(αp, t)=
∞∑

i=0

e
− λi

α2
t φ

2
i (p)

α2 = 1

α2 HKS(p,
t

α2 ) , (5)

which is an amplitude and time scaled version of the original
HKS.
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Fig. 3 DaLI descriptor. Our central idea is to embed image patches in
3D surfaces and describe them based on heat diffusion processes. We
represent the heat diffusion as a stack of images in the frequencydomain.
The top images show various slices of our descriptor for two different
patches. The bottom-right graph depicts the value of the descriptor for
the pixels marked by color circles in the upper images. Note that cor-
responding pixels have very similar signatures. However, the signature
may significantly change from one pixel to its immediate neighbor. For
instance, z2 is at one pixel distance from x2, but their signatures are
rather different. As a consequence, using the signature of a single point
as a descriptor is very sensitive to 2D noise in the feature detection
process. We address this by simultaneously considering the signature
of all the pixels within the patch, weighted by a Gaussian function of
the distance to the center of the patch

Nonetheless, under isotropic scalings, several alterna-
tives have been proposed to remove the dependence of the
HKS on the scale parameter α. For instance, Reuter et al.
(2006) suggests normalizing the eigenvalues in Eq. (2). In
this paper we followed Bronstein and Kokkinos (2010),
that applies three consecutive transformations on the HKS.
First, the time-dimension is logarithmically sampled, which
turns the time scaling into a time-shift, that is, the right-
hand side of Eq. (5) begets α−2HKS(p,−2 logα + log t).
Second, the amplitude scaling factor is removed by tak-
ing logarithm and derivative w.r.t. log t . The Heat Kernel
then becomes ∂

∂ log t logHKS(p,−2 logα + log t). The time-
shift term −2 logα is finally removed using the magni-
tude of the Fourier transform, which yields SI-HKS(p, w), a
scale invariant version of the original HKS in the frequency
domain. In addition, since most of the signal information
is concentrated in the low-frequency components, the size
of the descriptor can be highly reduced compared to that
of HKS(p, t) by eliminating the high-frequency components
past a certain frequency threshold wmax .

As we will show in the results section, another advantage
of the SI-HKS signature is that although it is specifically

Fig. 4 Invariance of the DaLI and DI descriptors to non-rigid defor-
mations and illumination changes. Top row and left column images:
Different degrees of deformation and light changes applied on the top
left reference patch P0.Deformations are applied according to a function
Def(·)∈{Def0, . . . ,Def11}, where Def11 corresponds to the maximal
deformation. Light changes are produced by scaling the intensity of P0
by a gain g ∈ [0, 1]. Bottom Graph: Given a deformation Def(·) and a
gain factor g, we compute the percentage of change of the DI descriptor
by ‖DI(P0)−DI(Def(g P0))‖/‖DI(P0)‖. The percentage of change for
DaLI is computed in a similar way. Observe that DaLI is much less
sensitive than DI, particularly to illumination changes

designed to remove the dependence of the HKS on isotropic
scalings, it is quite resilient to anisotropic transformations,
such as those produced by photometric changes that only
affect the intensity dimension of the manifold M . Thus, we
will use this signature to define our Deformation and Light
Invariant (DaLI) descriptor:

DaLI(p, w) = [
SI-HKS(x, w) · G(x;p, σ )

]
∀x∈P .

Again, the full DaLI(p) descriptor is defined as a concate-
nation of wmax slices in the frequency domain, each of size
SP × SP .

Figure 3-top shows several DaLI slices at different fre-
quencies for a patch and a deformed version of it. As said
above, observe that most of the signal is concentrated in the
low frequency components. In Fig. 4 we compare the sen-
sitivity of the DI and DaLI descriptors to deformation and
light changes, simulated here by a uniform scaling of the
intensity channel. Note that DaLI, in contrast to DI, remains
almost invariant to light changes, and it also shows a bet-
ter performance under deformations. In the results section,
we will show that this invariance is also accompanied by a
high discriminability, yielding significantly better results in
keypoint matching than existing approaches.

In order to get deeper insight about the properties of the
DaLI descriptor, we have further evaluated the HKS and SI-
HKS descriptor variants on a synthetic experiment, in which
we have rendered various sequences of images of a tex-
tured 3D wave-like mesh under different degrees of defor-
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Fig. 5 Evaluation of the descriptor robustness on synthetic sequences.
In the top-left we show two sample images (the reference image and
one specific frame) from all four different scenarios we consider. In
the top-right we show an 3D view of the rendering process, with the

light position placed near the mesh and producing patterns of different
brightness on top of the surface. The bottom row depicts the descriptor
distance between every input frame and the reference image for different
descriptor variants

mation and varying illumination conditions. The surface’s
reflectance is assumed to be Lambertian and the light source
is moved near the surface, producing lighting patterns that
combine both shading and the effects of the inverse-square
falloff law.

We have analyzed four particular situations: Def.+Ill.,
varying both deformation and the light source position; Def.,
varying deformation and keeping the light source at infin-
ity; Ill. (Def.), starting with a largely deformed state which is
kept constant along the sequence and varying the light source
position; and Ill. (No Def.), varying the light source posi-
tion while keeping the surface flat. The mesh deformation in
the first two sequences, corresponds to a sinusoidal warp, in
which the amplitude of the deformation increases with the
frame number. The varying lighting conditions in all experi-
ments except the second, are produced by smoothly moving
the light source on a hemisphere very close to the surface.
Two frames from each of these sequences are shown in the
top-left of Fig. 5.

For the evaluation, we computed the L2-norm distance
between pairs of descriptors at the center of the first and
n-th frames of the sequence. The results are depicted in
Fig. 5-bottom. When computing the distances, we con-
sider two situations: normalizing the intensity of the input
images so that the pixels follow a distribution N (0, 1),
and directly using the input image intensities. The most

interesting outcome of this experiment is to observe how
the non-normalized SI-HKS descriptor has comparable dis-
tances for all the scenarios. On the other hand, the nor-
malized versions (SI-HKS and HKS) seem to distinguish
largely whether there is or there is not deformation. It
is also worth noting that this normalization creates some
instability at the earlier frames while the non-normalized
SI-HKS descriptor starts at nearly 0 error and increases
smoothly for all scenarios. Note also the low performance
of the non-normalized HKS descriptor under illumination
changes as seen by the exponential curves for the illu-
mination scenarios Ill. (Def) and Ill. (No Def), and the
large fluctuations for both the deformation Def and the
illumination changing scenario Def. + Ill . This indicates
the importance of the logarithmic sampling and Fourier
transform process we apply to make HKS illumination
invariant.

3.3 Handling In-Plane Rotation

AlthoughDaLI tolerates certain amounts of in-plane rotation,
it is not designed for this purpose.This is becausewith the aim
of increasing robustness to 2D noise, we built the descriptor
using all the pixelswithin the patch, and their spatial relations
have been retained. Thus, if the patch is rotated, the descriptor
will also be rotated.
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Fig. 6 Left: Patch representation. (a) Image patch. (b) Representation
of the patch as a triangular mesh. For clarity of presentation we only
depict the (x, y) dimension of the mesh. Note that besides the vertices
placed on the center of the pixels (filled circles) we have introduced
additional intra-pixel vertices (empty circles), that provide finer heat
diffusion results and higher tolerance to in-plane rotations. (c) Def-
inition of the angles used to compute the discrete Laplace–Beltrami
operator. Right: Several mesh triangulations. Upper half of three dif-
ferent triangulations of a 11 × 11 image patch. The shading on the left

half of the mesh indicates the density of the meshing. Dark red shad-
ing indicates high density and lighter red shading corresponds to low
density. (d) Dense Square Mesh, with the same topology as in (b). By
using circular meshes (e, f), we reduce the number of vertices and thus,
the computation time of the heat kernel. In the case of the annular mesh
(f), a further reduction of the number of nodes is achieved by having
a variable resolution of the mesh that is more dense at the center. The
edges of the annular mesh preserve symmetry around the central point
in order to favor uniform heat diffusion

In order to handle this situation, during the matching
processwewill consider several rotated copies of the descrip-
tors. Therefore, given DaLI(p1) and DaLI(p2) we will com-
pare them based on the following metric

d(p1,p2) = arg min
θi

‖Rθi (DaLI(p1)) − DaLI(p2)‖

where ‖ · ‖ denotes the L2 norm and Rθi (DaLI(p)) rotates
DaLI(p) by an angle θi . This parameter is chosen among a
discrete set of values θ .

This rotation handling will not be necessary when using
Principal Component Analysis to compress the descriptor
size as we describe in Sect. 5.2.

3.4 Implementation Details

We next describe a number of important details to be consid-
ered for the implementation of the DaLI descriptor.

3.4.1 Geometry of the embedding

For the numerical computation of the heat diffusion, it is nec-
essary to discretize the surface. We therefore represent the
manifold M on which the image patch is embedded using
a triangulated mesh. Figure 6b shows the underlying struc-
tured8-neighbour representationweuse.Although it requires
introducing additional virtual vertices between the pixels, its
symmetry with respect to the x and y directions provides
robustness to small amounts of rotation, and more uniform
diffusions than other configurations.

As seen in Fig. 2, nearly all the computation time of the
DaLI descriptor is spent calculating the Laplace–Beltrami
eigenfunctions of the triangulated mesh. In the following
subsection we will show that this computation turns to have
a cubic cost on the number of vertices of the mesh, hence,

Table 1 DaLI computation time and mesh complexity for different
triangulations of a circular patch with outer radius S = 20, and inner
radius So = 10 (for the Annular mesh)

Mesh type # Pixels # Vertices (nv) # Faces (n f ) Time (s)

Dense square 1681 3281 6400 1.988

Dense circular 1345 2653 5144 1.509

Annular 1345 1661 3204 0.460

important speed gains can be achieved by lowering this num-
ber. For this purpose we further considered a circular mesh
(Fig. 6e), and a mesh with a variable density, like the one
depicted in Fig. 6f, where a lower resolution annulus is used
for the pixels further away from the center.

By using an annular mesh with an inner radius So = S/2,
where S is the size of the outer radius, we were able to speed
up the computation of the DaLI descriptor by a factor of four
compared to the Dense Squared configuration (see Table 1).
Most importantly, this increase in speed did not result in
poorer recognition rates.

Another important variable of our design is the magnitude
of the parameter β in Eq. (1), that controls the importance
of the intensity coordinate with respect to the (x, y) coor-
dinates. In particular, as shown in Fig. 7, large values of β

allow our descriptor to preserve edge information. This is a
remarkable feature of the DaLI descriptor, because besides
being deformation and illumination invariant, edge informa-
tion is useful to discriminate among different patches.

3.4.2 Discretization of the Laplace–Beltrami operator

In order to approximate the Laplace–Beltrami eigenfunc-
tions on the triangular mesh we use the cotangent scheme
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Fig. 7 Preserving edge information. Larger values of the parameter β

in Eq. (1) allow the descriptor to retain edge information. Each row
depicts the DaLI descriptor at frequencies w = {0, 2, 4, 6, 8} for a
different value of β computed on the car image from Fig. 3. Observe
that for low values of β there is blurring on the higher frequencies of
the descriptor

described in Pinkall and Polthier (1993). We next detail the
main steps.

Let {p1, . . . ,pnv } be the vertices of a triangular mesh,
associated to an image patch embedded on a 3D manifold.
We approximate the discrete Laplacian by a nv × nv matrix
L = A−1M where A is a diagonal matrix in which Ai i is
proportional to the area of all triangles sharing the vertex pi .
M is a nv × nv sparse matrix computed by:

Mi j =
⎧⎨
⎩

∑
k mik if i = j

−mi j if pi and p j are adjacent
0 otherwise

where mi j = cot γ +
i j + cot γ −

i j , and γ +
i j and γ −

i j are the two
opposite angles depicted in Fig. 6 c, and the subscript ‘k’
refers to all neighboring vertices of pi .

The eigenvectors and eigenvalues of the discrete La-place-
Beltrami operator can then be computed from the solution of
the generalized eigenproblem MΦ = �AΦ, where � is a
diagonal matrix with the eigenvalues {λi } and the columns
of Φ correspond to the eigenvectors {φi } in Eq. (2).

Note that the computational cost of the eigendecomposi-
tion is cubic in the size of M, i.e., O(n3

v). As discussed in
the previous subsection, we mitigate this cost by choosing
mesh topologies where the number of vertices is reduced. In
addition, since the eigenvectors φi with smallest eigenvalues
have the most importance when calculating the HKS from
Eq. (3), we can approximate the actual value by only using
a subset formed by the nλ eigenvectors with smallest eigen-
values. Both these strategies allow the HKS calculation to be
tractable in terms of memory and computation time.

Finally, Table 2 summarizes all the parameters that control
the shape and size of the DaLI descriptor. The way we set
their default values, shown between the parentheses, will be
discussed in Sect. 5.1.

Table 2 DaLI parameters

Symbol Parameter description (default value)

S Outer radius of the annulus. (20)

So Inner radius of the annulus. (10)

β Magnitude of the embedding. (500)

σ Standard deviation of Gaussian weighting. ( S
2 )

nλ # of eigenvectors of the Laplace–Beltrami operator. (100)

nt # of intervals in the temporal domain. (100)

wmax # of frequency components used. (10)

θi Rotation angles for descriptor comparison. ({−5, 0,+5})
nv # of mesh vertices.(1661)

n f # of triangular faces in the mesh. (3204)

n pca # of PCA components for the DaLI-PCA. (256)

4 Deformation and Varying Illumination Dataset

In order to properly evaluate the deformation and illumina-
tion invariant properties of the DaLI descriptor and compare
it against other state-of-the-art descriptors, we have collected
and manually annotated a new dataset of deformable objects
under varying illumination conditions. The dataset consists
of twelve objects of differentmaterials with four deformation
levels and four illumination conditions each, for a total of 192
unique images. All images have a resolution of 640 × 480
pixels and are grayscale.

The types of objects in the dataset are four shirts, four
newspapers, two bags, one pillowcase and one backpack.
They were chosen in order to evaluate all methods against as
many different types of deformation as possible. The objects
can be seen in the top of Fig. 8.

4.1 Deformation and Illumination Conditions

The pipeline to acquire the images of each object consisted
of, while keeping the deformation constant, changing the
illumination before proceeding to the next deformation level.
All images were taken in laboratory conditions in order to
fully control the settings for a suitable evaluation.

The reference image was acquired from an initial con-
figuration where the object was straightened out as much
as possible. While deformations are fairly subjective, as they
were done incrementally over the previous deformation level,
they are representative of increasing levels of deformation.
Different deformation levels of an object with the same illu-
mination conditions are shown in the middle-left of Fig. 8.

The illumination changes were produced by using two
high power focus lamps. The first one was placed vertically
over the object, at a sufficient distance to guarantee a uniform
global illumination of the object’s surface. The second lamp
was placed at a small elevation angle and close to the object,
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Fig. 8 Deformable and varying illumination dataset. Top: Reference
images of the 12 objects in the dataset. Each object has four deformation
levels and four illumination levels yielding a total of 16 unique images
per object. Middle-left: Sample series of images with increasing defor-
mation levels, and constant illumination. Bottom-left: Sample images
of the different illumination conditions taken for a deformation level of
each object. The illumination conditions #0, #1, #2 and #3 correspond

to no illumination, global illumination, global+local illumination, and
local illumination, respectively. Middle-right and bottom-right: Exam-
ples of feature points matched across image pairs. The first column
corresponds to the reference image for the object. These feature points
are detected using Differences of Gaussians (DoG) and are matched by
manual annotation. Each feature point consists of image coordinates,
scale coordinates and orientation

in order to produce harsh shadows and local illumination
artifacts. By alternating the states of these lamps, four differ-
ent illumination levels are achieved: no illumination, global

illumination, global with local illumination, and local illu-
mination. The different illumination conditions for constant
deformation levels can be seen in the bottom-left of Fig. 8.
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Note that even with moderate deformations, the presence of
the local illumination causes severe appearance changes.

4.2 Manual Annotations

To build the ground truth annotations, we initially detected
interest points in all images using a multi-scale Difference
of Gaussians filter (Lowe 2004). This yielded approximately
between 500 and 600 feature points per image, each consist-
ing of a 2D image coordinate and its associated scale.

These feature points were thenmanuallymatched for each
deformation level against the undeformed reference image,
resulting in three pairs ofmatched feature points. Allmatches
were done with top-light illumination conditions (Ill. Condi-
tions #1, Fig. 8) to facilitate the annotation task andmaximize
the number of repeated features between each pair of images.
The matching process yielded between 100 and 200 point
correspondences for each pair of reference and deformed
images. The same feature points are used for all illumina-
tion conditions for each deformation level. The middle-right
images of Fig. 8 show a few samples of our annotation. Note
that the matched points are generally not near the borders
of the image to avoid having to clip when extracting image
patches.

As we will discuss in the experimental section, in this
paper we seek to compare the robustness of the DaLI and
other descriptors to only deformation and light changes. Yet,
although the objects in the dataset are not globally rotated,
the deformations do produce local rotations. In order to com-
pensate for thiswe use the SIFT descriptor as done inMikola-
jczyk and Schmid (2005) to compute the orientation of each
feature point, and align all corresponding features. When
a feature point has more than one dominant orientation, we
consider each of them to augment the set of correspondences.

4.3 Evaluation Criteria

In order to perform fair comparisons, we have developed
a framework to evaluate local image descriptors on even
grounds. This is done by converting each feature point into a
small image patch which is then used to compute descriptors.
This allows the evaluation of the exact same set of patches
for different descriptors.

For each feature point we initially extract a square patch
around it, with a size proportional to the feature point’s scale.
In the Experimental Sect. 5.3 we discuss the value of the
proportionality constant we use. The patch is then rotated by
the feature point’s orientation using bilinear interpolation,
and scaled to a constant size, which we have set to 41 × 41
pixels, following Mikolajczyk and Schmid (2005). Finally,
the patch is cropped to a circular shape. This results in a scale
and rotation invariant circular image patch with a diameter
of 41 pixels. The steps for extracting the patches are outlined

Fig. 9 Top: Outline of the process used to obtain patches for evaluating
image descriptors. For each feature point, we initially extract a square
patch centered on the feature, and whose size is proportional to the scale
factor of the interest point. The patch is then rotated according to the
orientation of the feature point, and finally scaled to a constant size and
cropped to be in a circular shape. Bottom: Sample patches from the
dataset, already rotated and scaled to a constant size in order to make
them rotation and scale invariant

in the top of Fig. 9, and the bottom of the figure shows a few
examples of patches from the dataset.

Given these “normalized patches” we then assess the per-
formance of the descriptors as follows. For each pair of ref-
erence/deformed images, we extract the descriptors of all
feature points in both images. We then compute the L2 dis-
tance between all descriptors from the reference and the
deformed image. This gives a distance matrix, which is rec-
tangular instead of square due to the creation of additional
feature points when there aremultiple dominant orientations.
Patches that have different orientations but share the same
location are treated as a unique patch. As evaluation met-
ric we use a descriptor-independent detection rate, which is
defined for the n top matches as:

Detection Rate(n) = 100 · Nc(n)

N
, (6)

where Nc(n) is the number of feature points from the ref-
erence image that have the correct match among the top n
candidates in the deformed image, and N is the total number
of feature points in the reference image.

For the experimental results we will discuss in the follow-
ing section, we consider three different evaluation scenarios:
deformation and illumination, only deformation, and only
illumination. In the first case we compare all combinations
of deformation and illumination with respect to the reference
image which has no additional illumination (ill. conditions
#0) and no deformation (deform. level #0). This represents a
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Fig. 10 DaLI performance for different values of the parameters So, β,
σ andwmax . We compute and average the matching rate for the Shirt #1
and theNewspaper #1objects in the dataset using So ∈ {0, 5, 10, 15, 20}
pixels, β ∈ {125, 250, 500, 1000, 2000}, σ ∈ { S

2 , S, 2S} and wmax ∈
{5, 10, 15, 20} for three scenarios: both deformation and illumination
changes, only deformation changes, and only illumination changes. The
graphs depict the results of this 4D parameter exploration, where the
color of each square represents the percentage of correctly matched

points for a specific combination of the parameters. In order to visu-
alize the differences, we scale the values separately for each scenario.
The best parameters for each scenario are marked in red and can be seen
to vary greatly amongst themselves. We use a compromise, and for all
the experiments in this section we set these parameters (highlighted in
green) to β = 500, So = 10, σ = S

2 and wmax = 10 (Color figure
online)

total of 15 comparisons for each object. In the second casewe
consider only varying levels of deformation for each illumi-
nation condition, which yields 12 different comparisons per
object (three comparisons per illumination level).When only
considering illumination, eachdeformation level is compared
to all illumination conditions. Again, this gives rise to 12
comparisons per object (three comparisons per deformation
level).

5 Experimental Results

Wenext present the experimental results, inwhichwe discuss
the following main issues: an optimization of the descrip-
tor parameters, a PCA-based strategy for compressing the
descriptor representation, and the actual comparison of DaLI
against other state-of-the-art descriptors, for matching points
of interest in the proposed dataset. Finally, we analyze spe-
cific aspects such as the performance of all descriptors in
terms of their size, the benefits of normalizing the intensity
of input images, and a real application in which the descrip-
tors are compared when matching points of interest in real
sequences of a deforming cloth and a bending paper.

5.1 Choosing Descriptor’s Parameters

We next study the influence and set the values of the DaLI
parameters of Table 2. As the size SP of the patch is fixed,
causing the descriptor radius S to be also fixed, we will look
at finding the appropriate value of other parameters, namely
the magnitude β of the embedding, the degree σ of smooth-
ing within the patch, the inner radius of the annulus So and
the dimensionality wmax of the descriptor in the frequency
domain. In order to find their optimal values, we used two
objects in the dataset (Shirt #1 and Newspaper #1), and com-

puted matching rates of their feature points for a wide range
of values for each of these parameters.

It is worth to point out that the number of eigenvectors
nλ of the Laplace–Beltrami operator was set to 100 in all
cases. Note that this value represents a very small portion
of all potential eigenvectors, in the order of two thousands
(equal to the number of vertices nv). Using a lesser number
of them would eventually deteriorate the results, while not
providing a significant gain in efficiency, and using more of
them, almost did not improve the performance. Similarly,
the number nt of intervals in which the temporal domain
is split is set to 100. Again, this parameter had almost no
influence, neither in the performance of the descriptor nor in
its computation time.

Figure 10 depicts the results of the parameter sweeping
experiment. We display the rates for three scenarios: when
considering both deformation and illumination changes, only
deformation changes, and only illumination changes. The
most influential parameters are the weighting factor σ and
to a lesser extent the magnitude of the embedding β. We see
that for a wide range of parameters, the results obtained are
very similar when considering both illumination and defor-
mation, however, there is a balance to be struck between
both deformation and illumination invariance. By increasing
deformation invariance, illumination invariance is reduced
and vice-versa. Finally we use a compromise, and the para-
meters we choose for all the rest of experiments are β = 500,
So = 10, σ = S

2 and wmax = 10, besides the nλ = 100 and
nt = 100 we mentioned earlier.

5.2 Compression with PCA

The DaLI descriptor has the downside of having a very high
dimensionality, as its size is proportional to the product of
the number of vertices nv used to represent the patch and
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Fig. 11 The first 7 frequencies of the first 20 components of the PCA
basis computed from images of two objects from the dataset (Shirt #1
and Newspaper #1). Each vector is normalized for visualization pur-
poses. Positive values are displayed in green while negative values are

displayed in blue. Most of the components do not contain much infor-
mation at frequencies w > 6 and thus they are not displayed, although
they are considered in the DaLI-PCA descriptor (Color figure online)

the number of frequency components wmax . For instance,
using patches with a diameter of 41 pixels and considering
the first 10 frequency slices, results in a 13450-dimensional
descriptor (1,345 pixels by 10 frequency slices), requiring
thus large amounts of memory and yielding slow compar-
isons. However, since the descriptor is largely redundant, it
can be compacted using dimensionality reduction techniques
such as Strecha et al. (2012), Cai et al. (2011), Philbin et al.
(2010).

In this paper, as a simple proof of concept, we have used
Principal Component Analysis for performing such com-
pression. The PCA covariance matrix is estimated on 10436
DaLI descriptors extracted from images of the Shirt #1 and
Newspaper #1. The n pca 	 nv · wmax largest eigenvectors
are then used for compressing an incoming full-size DaLI
descriptor. The resulting compacted descriptor,whichwe call
DaLI-PCA, can be efficiently compared with other descrip-
tors using the Euclidean distance. Figure 11 shows the first
7 frequencies of the first 20 vectors of the PCA-basis. It is
interesting to note that most of the information can be seen
to be in the lower frequencies. This can be considered an
experimental justification for the frequency cut off applied
with the wmax parameter, which we have previously set to
10.

In order to choose the appropriate dimension n pca of the
PCA-basis, we have used our dataset to evaluate the match-
ing rate of DaLI-PCA descriptors for different compression
levels. The results are summarized in Fig. 12-top, and show
that using fewer dimensions favors deformation invariance
(actually, PCA can be understood as a smoothing that undoes
some of the harm of deformations) while using more dimen-
sions favors illumination invariance. The response to joint
deformation and illumination changes does not improve after

100 200 300 400 500 600 700 800 900 1000
0.65

0.7

0.75

0.8

0.85

Dimension

P
re

ci
si

on
Def.+Ill.

Illumination

Deformation

Mean

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5 w = 6

Fig. 12 Top: DaLI-PCA performance for different compression levels.
Note that the overall mean precision does not varymuch for n pca > 256
components. Bottom: Comparison of an original DaLI descriptor with
its compressed DaLI-PCA version obtained using 256 PCA compo-
nents. For visualization purposes the values are normalized and the
difference shown in the third row is scaled by 5×

using between 200 and 300 components, and this has been
the criterion we used to set n pca = 256 for the rest of the
experiments in this section. In Fig. 12-bottom we compare
the frequency slices for an arbitrary DaLI descriptor and its
approximation with 256 PCA-modes. Observe that the dif-
ferences are almost negligible.
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5.3 Comparison with Other Approaches

We compare the performance of our descriptors (both DaLI
and DaLI-PCA) to that of SIFT (Lowe 2004), DAISY (Tola
et al. 2010), LIOP (Wang et al. 2011), GIH (Ling and
Jacobs 2005), Normalized Cross Correlation (NCC) and
Gaussian-weighted Pixel Difference. SIFT and DAISY are
both descriptors based on Differences of Gaussians (DoG)
and spatial binning which have been shown to be robust to
affine deformations and to certain amount of illumination
changes. LIOP is a recently proposed descriptor based on
intensity orderingmaking it fully invariant tomonotonic illu-
mination changes. GIH is a descriptor specifically designed
to handle non-rigid image deformations, but as pointed out
previously, it assumes these deformations are the result of
changing the position of the pixels within the image and not
their intensity. NCC is a standard region-based metric known
to possess illumination-invariant properties. Finally,we com-
pare against a Gaussian-weighted pixel difference using the
same convolution scheme as used for the DaLI descriptor.
Standard parameters suggested in the original papers are
used for all descriptors except for the LIOP descriptor in
which using a larger number of neighboring sample points
(8 instead of 4 neighbors) results in a higher performance at
the cost of a larger descriptor (241,920 instead of 144 dimen-
sions). The LIOP and SIFT implementations are provided by
VLfeat (Vedaldi and Fulkerson 2008). We use the authors’
implementation of DAISY and GIH.

The evaluation is done on the dataset presented in Sect. 4.
All the descriptors are therefore tested on exactly the same
image patches in order to exclusively judge the capacity of
local feature representation. Yet, as mentioned in Sect. 4.3,
the dataset still requires setting the scale factor to use for the
points of interest. This value corresponds to the relative size
of each image patch with respect to the scale value obtained
from the DoG feature point detector. For this purpose, we
evaluated the response of all descriptors for scale factors
of 3×, 5×, 7× and 9×. The results are shown in Fig. 13.
Although the SIFT implementation uses a default value of
3×, we have observed that the performance of all descriptors
improves by increasing the patch size. Note that this does not
result in a higher computational cost, as the final size of the
patch is normalized to a circular shape with a diameter of 41
pixels. The maximum global response for all descriptors is
achieved when using a 7× scale factor, which is the value we
use for all the experiments reported below.

The results for concurrent deformation and illumination
are summarized in Fig. 14. DaLI consistently outperforms
all other descriptors, although the more favorable results are
obtained under large illumination changes. The performance
of DAISY is very similar to that of DaLI when images are
not affected by illumination artifacts. In this situation, the
detection rates of DAISY are approximately between 2 and
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Fig. 13 Mean detection rates obtained by scaling regions of interest
with different factors. While a 3× scale factor does lower the overall
performance, the difference between a 5×, 7× or 9× scale factor is
minimum for descriptors other than weighted pixel differences (Pix.
Diff.) or normalized cross covariance (NCC), which do improve as
interest regions increase in size. The results of the graph correspond to
the average of the mean detection rates with Deformation+Illumination
changes, Illumination-only changes and Deformation-only changes

5 % below to those obtained by DaLI. However, when illu-
mination artifacts become more severe, the performance of
DAISY rapidly drops, yielding detection rates which are
more than 20 % below DaLI. SIFT, LIOP, and Pixel Dif-
ference yield similar results, with SIFT being better at weak
illumination changes and LIOP better at handling strong illu-
mination changes. Yet, these three methods are one step
behind DaLI and DAISY. NCC generally performs worse
except in situations with large illumination changes, where it
even outperforms DAISY. On the other hand, GIH performs
quite poorly even when no light changes are considered. This
reveals another limitation of this approach, in that it assumes
the effect of deformations is to locally change the position
of image pixels, while in real deformations some of the pix-
els may disappear due to occlusions. Although our approach
does not explicitly address occlusions, we can partially han-
dle them by weighing the contribution of the pixels within
each patch, by a function decreasing with the distance to the
center. Thus, most of the information of our descriptor is con-
centrated in a small region surrounding the point of interest,
hence making it less sensitive to occlusions. The results also
show that the compressed DaLI-PCA follows a similar pat-
tern as DaLI, and specially outperforms DAISY under severe
illumination conditions.

In Fig. 15 we give stronger support to our arguments
by independently evaluating deformations and illumination
changes. These graphs confirm that under deformation-only
changes, DaLI outperforms DaLI-PCA and DAISY by a
small margin of roughly 3 %. Next, SIFT, LIOP, and Pixel
Difference yield similar results, roughly 20 % below DaLI
in absolute terms. GIH and NCC yield also similar results,
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Fig. 14 Detection ratewhen simultaneously varying deformation level
and illumination conditions. Each graph represents the average of the
mean detection rate between the reference image (ill. conditions #0 and

deform. level #0) and all images in the dataset under specific light and
deformation conditions

although their performance is generally very poor.Whenonly
illumination changes are considered, both DaLI and DaLI-
PCA significantly outperform other descriptors, by a margin
larger than 20 % when dealing with complex illumination
artifacts. The only notable difference in this scenario is that
the NCC descriptor outperforms SIFT and Pixel Difference.
As GIH is not invariant to illumination changes, it obtains

poor results. Similarly, since LIOP is designed to be invari-
ant to monotonic lighting changes, it does not perform that
well in real images that undergo complex illumination arti-
facts.

In summary, the experiments have shown that DaLI glob-
ally obtains the best performance. Its best relative response
when compared with other descriptors is obtained when the
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Fig. 15 Top: Results when varying only the deformation while keep-
ing the illumination conditions constant. It can be seen that both DaLI
and DAISY largely outperform the rest of descriptors. Bottom: Results
of varying only the illumination conditions while keeping the deforma-

tion level constant. Note that only DaLI remains robust to illumination
changes. The performance of DAISY falls roughly a 20 % compared to
DaLI

deformations are mild and the light changes drastic. Some
sample results on particular images taken from the dataset
can be seen in Fig. 16. Additionally, numeric results for the
best candidate (n = 1 in Eq. 6) under different conditions
for all descriptors are shown in Table 3.

Finally, examples of particular patchmatches are depicted
in Fig. 17. The true positives pairs can be seen to be matched
despite large changes. On the other hand, the false nega-
tives seem largely generated by differences in orientations of
the feature points: they correspond to the same patch, only
rotated. The false positives share some similarity, although
they are mainly from heavily deformed images.

5.4 Descriptor Size Performance

Since larger descriptors may a priori have an unfair advan-
tage, we next provide results of an additional experiment
in which we compare descriptors having similar sizes. The
LIOP we calculate in this case uses 4 neighbours instead of
the 8 neighbours we considered before, which results in a

smaller size, although also in a lower performance. GIH is
originally 176-dimensional, thus the results are the same as
in Table 3. NCC and Pixel Diff, are not considered for this
experiment as their size is 41 × 41 = 1681.

Results are shown in Table 4. We can see that the 128-
dimensional DaLI-PCA outperforms all other descriptors
except the 256-dimensional DaLI-PCA. It is worth noting
the large performance gain obtained over the standard SIFT
descriptor.

5.5 Benefits of Intensity Normalization

We next extend the analysis we introduced in Sect. 3.2 in
which we evaluated SI-HKS and HKS with and without pre-
normalizing the intensity of input images. We will also con-
sider SIFT and DAISY, which have been the most competi-
tive descriptors in previous experiments. Since SIFT/DAISY
implementations require the pixels to be in a [0, 1] range, we
have normalized each image patch so that the pixels follow
the distribution N (0.5, (2 · 1.956)−1). This makes it so that
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Fig. 16 Sample results from the dataset. As in Fig. 1, the color of the circles indicates the position n of the correct match among the top candidates.
If n > 10 we consider the point as unmatched and mark it with a cross

Table 3 Evaluation results on the dataset for all descriptors. Results are
obtained by averaging the first match percentage values over all images
being tested under all different conditions

Descriptor Deformation Illumination Deformation
+Illumination

DaLI-PCA 67.425 85.122 68.368

DaLI 70.577 89.895 72.912

DAISY 67.373 75.402 66.197

SIFT 55.822 60.760 53.431

LIOP 58.763 60.014 52.176

Pixel diff. 54.714 65.610 54.382

NCC 38.643 62.042 41.998

GIH 37.459 28.556 31.230

The best performing descriptors are highlighted in bold

on average 95% of the pixels will fall in [0, 1]. Pixels outside
of this range are set to either 0 or 1.

We compare the DaLI descriptor (both its SI-HKS and
HKS variants), DAISY and SIFT, with and without normal-
ization. Results are shown in Table 5. We can see that for
DAISY and SIFT, since they perform a final normalization
stage, the results do not have any significant change. In the
case of the DaLI descriptor, though, we see that there is a

Fig. 17 Some of the true positive, false positive, false negative and true
negative image patch pairs obtained using the DaLI descriptor on the
dataset. Note that most of the false negatives are due to large orientation
changes across feature points

Table 4 Comparison of performance and descriptor size

Descriptor Size Deform. Illum. Deformation
+Illumination

DaLI-PCA 128 67.45 82.34 67.71

SIFT 128 55.82 60.76 53.43

LIOP 144 54.01 44.89 44.45

DAISY 200 67.37 75.40 66.20

GIH 176 37.46 28.56 31.23

DaLI-PCA 256 67.43 85.12 68.37

The best performing descriptors are highlighted in bold
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Fig. 18 Mean detection accuracy on two real world videos
from Moreno-Noguer and Fua (2013). In the top row we show three
example frames from each video. In the bottom rowwe plot the accuracy

for each frame for three descriptors: DaLI, DAISY and SIFT. Addition-
ally the mean for each descriptor is displayed as a dashed line

Table 5 Effect of normalizing
image patches for various
descriptors

The best performing descriptors
are highlighted in bold

Descriptor Normalization? Deformation Illumination Deformation +
Illumination

DaLI (SI-HKS) No 70.58 89.90 72.91

DaLI (SI-HKS) Yes 70.38 88.60 72.28

DaLI (HKS) No 66.27 84.21 67.83

DaLI (HKS) Yes 67.20 84.62 69.42

DAISY No 67.37 75.40 66.20

DAISY Yes 67.08 75.59 66.27

SIFT No 55.82 60.76 53.43

SIFT Yes 55.05 61.83 53.21

rather significant performance increase when using the SI-
HKS variant over the HKS one, even with patch normal-
ization. This demonstrates again that the role of the Fourier
Transforms applied in HKS to make it illumination invariant
go far beyond a simple normalization. In addition, SI-HKS
compresses the descriptor in the frequency domain and is one
order of magnitude smaller than the HKS variant.

5.6 Evaluation on Real World Sequences

This section describes additional experiments on two real
world sequences of deforming objects, taken from Moreno-
Noguer and Fua (2013). One consists of a T-Shirt being
waved in front of a camera (Deforming Cloth) and the other
consists of a piece of paper being bended in front of a cam-
era (Paper Bending).We use points of interest computedwith
the Differences of Gaussians detector (DoG) and follow the
same patch extraction approach as in the rest of the paper.
The points of interest are calculated for the first frame in
each sequence and then propagated using the provided 3D
ground truth to the other frames. We use the same descrip-

tor parameters as in the rest of the experiments, and seek to
independently match the points of interest in the first frame
to those of all the other frames.

As we can observe in Fig. 18, DaLI outperforms both
DAISY and SIFT2 . We obtain a 5.5 % improvement over
DAISY on the Deforming Cloth sequence and a 4.1 %
improvement on the Paper Bending sequence. Note that these
sequences do not have as complicated illumination artifacts
as our dataset, an unfavorable situation for our descriptor.Yet,
DaLI still consistently outperforms other approaches along
the whole sequence.

6 Discussion and Conclusions

Heat diffusion theory has been recently shown effective for
3D shape recognition tasks. In this paper, we have proposed
using these tools to build DaLI, a feature point descriptor

2 Again, we only compare against DAISY and SIFT, as these are the
descriptors which have been more competitive in the experiments with
the full dataset.
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for 2D image patches, that is very robust to both non-rigid
deformations and illumination changes. The advantages of
our method with respect to the state-of-the-art have been
demonstrated by extensively testing them on a new deforma-
tion and varying illumination evaluation dataset3.

We have also shown that simple dimensionality reduction
techniques such as PCA can be effectively used to reduce
dimensionality while maintaining similar performance. This
seems to give the intuition that further improvements can be
obtained by using more advanced and powerful techniques
such as LDAHash (Strecha et al. 2012). Work has also been
done in optimizing the calculation speed by means of more
complex meshing to reduce the cost of computing the eigen-
vectors of the Laplace–Beltrami operator.

As part of future work we will investigate recent and
promising alternatives to the heat kernel signatures (HKS),
such as the wave kernel signature (WKS) (Aubry et al.
2011), and strategies to directly learn spectral descriptors in
a supervised manner (Aflalo et al. 2011; Litman and Bron-
stein 2014). Using labeled training data would likely further
increase the performance of our descriptor.

Additionally we will intend to make DaLI invariant to
scale and rotations without the need to explore a wide range
of discrete values. We will investigate two alternatives for
this purpose: (1) incorporating prior information of the ori-
entation and scale within each frequency slice, as it is done
for the SIFT descriptor; (2) using a logarithmic sampling
and Fourier transform modulus (FTM) as in Kokkinos et al.
(2012).

Finally, we also plan to look into the function toweight the
pixels within each patch. We are currently using a Gaussian
distribution centered on the patch. However, there have been
recent alternatives that compute similar functions based on
segmentation information, which have shown to significantly
improve the performance of standard descriptors (Trulls et al.
2013, 2014).
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