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Abstract This paper presents a generalized version of the
classic projective reconstruction theorem which helps to
choose or assess depth constraints for projective depth esti-
mation algorithms. The theorem shows that projective recon-
struction is possible under a much weaker constraint than
requiring all estimated projective depths to be nonzero. This
result enables us to present classes of depth constraints under
which any reconstruction of cameras and points projecting
into given image points is projectively equivalent to the true
camera-point configuration. It also completely specifies the
possible wrong configurations allowed by other constraints.
We demonstrate the application of the theorem by analysing
several constraints used in the literature, as well as presenting
new constraints with desirable properties. We mention some
of the implications of our results on iterative depth estimation
algorithms and projective reconstruction via rank minimiza-
tion. Our theory is verified by running experiments on both
synthetic and real data.
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1 Introduction

This paper generalizes the classic theorem of projective
reconstruction. The main purpose is to provide a theoretical
basis for the choice and verification of constraints on projec-
tive depths for factorization-based projective reconstruction
algorithms. The basic idea behind factorization-based pro-
jective reconstruction is to find an estimation �̂ = [λ̂i j ] of
the projective depth matrix such that when the image data
matrix [xi j ] is weighted by the elements of �̂, it can be fac-
tored as a product of a 3m×4matrix P̂, representing the stack
of m camera matrices, and a 4× n matrix X̂, representing the
horizontal arrangement of n points. In other words, given the
projected image data {xi j } one tries to solve the following
equation

�̂ � [xi j ] = P̂ X̂, (1)

where the operator � multiplies each element λ̂i j of the
depth matrix �̂ by its corresponding image point xi j , that
is �̂�[xi j ] = [λ̂i jxi j ]. While the true depths, camera matri-
ces and points provide a solution to (1), not every solution to
(1) gives a configuration projectively equivalent to the true
camera-point setup. Therefore, without putting extra con-
straints on the depth matrix the above problem can lead to
false solutions.

The main source of the false solutions in the factorization-
based methods is the possibility of having zero elements in
�̂. One can simply see that setting �̂, P̂ and X̂ all equal to
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zero provides a solution to (1). Another trivial solution, as
noted by Oliensis and Hartley (2007), occurs when �̂ has all
but four zero columns. In general, it has been noticed that
false solutions to (1) can happen when some rows or some
columns of the depth matrix are zero. There has been no
research, however, specifying all possible false solutions to
the factorization equation (1) and the constraints which can
prevent them from happening. In this paper, in addition to the
caseswhere the estimated depthmatrix �̂ has some zero rows
or some zero columns, we present a less trivial class of false
solutions where the depth matrix has a cross-shaped form
(see Figs. 1 and 2).We shall further show that all the possible
false solutions to factorization based projective reconstruc-
tion are confined to the above cases. Therefore, with a depth
constraint which allows at least one correct solution, prevents
zero rows and zero columns in the depth matrix and avoids
cross-shaped configurations, any solution to the factorization
problem (1) will lead to a correct projective reconstruction.

The main concern of this paper is the classification of the
false solutions of (1), and the constraints which can avoid
them. Therefore, we do not thoroughly deal with the ques-
tion of how to solve (1). However, we have to be realistic
in choosing proper constraints. The constraints have to pos-

Fig. 1 Examples of 4×6 cross-shapedmatrices. In cross-shapedmatri-
ces all elements of the matrix are zero, except those belonging to a
special row r or a special column c of the matrix. The elements of the
r th row and the cth column are all nonzero, except possibly the central
element located at position (r, c). In the above examples, the blank parts
of the matrices are zero. The elements a, b, . . . , h are all nonzero, while
x can have any value (zero or nonzero)

Fig. 2 An example of a degenerate solution with a cross-shaped depth
matrix �̂. Here, ({Pi }, {Xi j }, {λi j }) is the configuration of true camera
matrices, 3D points and projective depths. Given this true configuration,
a solution ({P̂i }, {X̂i j }, {λ̂i j }) has been constructed as shown in the
figure, where C̄1 is the normalized camera centre of P1 (a unit vector
in the null space of P1). One can easily check that P̂i X̂ j = λ̂i jxi j

where xi j = 1
λi j

PiX j . Therefore, this degenerate solution satisfies the

projective equation �̂ � [xi j ] = P̂ X̂. See Sect. 5 for more details

sess some desirable properties to make possible the design of
efficient and effective algorithms for solving (1). As a trivial
example it is essential for many iterative algorithms that the
constraint space is closed. As nearly all factorization-based
algorithms are solved iteratively, this can guarantee that the
algorithm does not converge to something that violates the
constraints.

A major class of desirable constraints for projective fac-
torization problems are linear equality constraints. The cor-
responding affine constraint space is both closed and convex,
and usually leads to less complex factorization-based algo-
rithms.We shall show that the linear equality constraints that
are used so far in factorization-based reconstruction allow for
cross-shaped depth matrices and hence cannot completely
rule out false solutions. We shall further introduce step-like
constraints, a class of linear equality constraints in the form
of fixing certain elements of the depthmatrix,which provably
avoid all the degenerate cases in the factorization problem
(see Fig. 3). The element-wise nature of these constraints
makes the implementation of the associated factorization-
based algorithms very simple.

Another desirable property for the constraint space, which
is mutually exclusive with being an affine subspace, is com-
pactness. The importance of a compact constraint space is
that certain convergence properties can be proved for a large
class of iterative descent algorithms when the sequence of
solutions lie inside a compact set. One can think of many
compact constraints, however, the important issue is that the
constraint needs to be efficiently implementable with a fac-
torization algorithm. Two examples of such constraints are
presented inHeyden et al. (1999) andMahamud et al. (2001),
in which, respectively, all rows and all columns of the depth
matrix are forced to have a fixed (weighted) l2-norm. In each
case, every iteration of the factorization algorithm requires
solving a number of eigenvalue problems. Mahamud et al.
(2001) prove the convergence of their algorithm to local

(a) (b) (c)

Fig. 3 Examples of 4 × 6 step-like mask matrices. Blank parts of the
matrices indicate zero values. A step-like matrix contains a chain of
ones, starting from its upper left corner and ending at its lower right cor-
ner, made by making rightward and downward moves only. An exclu-
sive step-like mask is one which is not cross-shaped. In the above, a and
b are samples of an exclusive step-like mask while c is a nonexclusive
one. Associated with anm×n step-likemaskM, one can put a constraint
on an m ×n depth matrix �̂ in the form of fixing the elements of �̂ to 1
(or some nonzero values) at the sites where M has ones. For an exclusive
step-like mask, this type of constraint rules out all the wrong solutions
to the factorization-based problems
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Examples of tiling a 4 × 6 depth matrix with row and column
vectors. The associated constraint is to force every tile of the depth
matrix to have a unit (or a fixed) norm. This gives a compact constraint
space. If the tiling is done according to (a), every row of the constrained
depth matrix has unit norm. Similarly, tiling according to (b) requires
columns with unit norms. Constraints associated with a and b, respec-
tively, allow zero columns and zero rows in the depth matrix, along with
cross-shaped configurations. The associated constraints for c–f do not
allow any zero rows or zero columns, however, they all allow cross-
shaped structures. For each of the cases a–f, the dots indicate possible
locations where the cross-shaped structures can be centred. Clearly, for
a and b the cross can be centred anywhere, whereas for c–f they can
only be centred at 1 × 1 tiles

minima using the General Convergence Theorem (Zangwill
1969; Luenberger 1984). However, these constraints allow
zero columns or zero rows in the depth matrix, as well as
cross-shaped structures. In this paper, we combine the con-
straints used in Heyden et al. (1999) and Mahamud et al.
(2001), in the sense of tiling the matrix with row and column
vectors and requiring each tile to have a unit (or fixed) norm
(see Fig. 4). With a proper tiling, convergence to configu-
rations with zero rows and zero columns is ruled out. Such
tilings still allow for cross-shaped structures, however, as
shown in Fig. 4, the number of possible cross-shaped struc-
tures is limited.

1.1 Previous Attempts

It is clear from what has been mentioned above that this
paper focuses on those algorithms that try to estimate the
camera matrices and points directly, as opposed to the so-
called tensor-based approaches in which the camera para-
meters are estimated from the fundamental matrices, trifocal
tensors, or quadrifocal tensors, estimated, respectively, from
image data of pairs, triples or quadruples of views (Hartley
and Zisserman 2004). The advantage of the former class of
algorithms is that they make uniform use of all image data to
build a reconstruction, and thus do not give a solution that is
biased towards particular views. It is also evident that we are
only dealing with the cases where the estimation of projec-
tive depths is involved at some stage of the algorithm. This
excludes approaches like Bundle Adjustment (Triggs et al.
2000). Here, we list some of the attempts made to solve the
factorization problem.

1.1.1 Sturm–Triggs Factorization

The link between projective depth estimation and projective
reconstruction of cameras and points was noted by Sturm and
Triggs (1996), whereby it is shown that given the true projec-
tive depths, camera matrices and points can be found from
the factorization of the data matrix weighted by the depths.
However, to estimate the projective depths Sturm and Triggs
make use of fundamental matrices estimated from pairwise
image correspondences. Several papers have proposed that
the Sturm–Triggs method can be extended to iteratively esti-
mate the depth matrix �̂ and camera-point configurations
P̂ and X̂ (Triggs 1996; Ueshiba and Tomita 1998; Heyden
et al. 1999; Mahamud et al. 2001; Hartley and Zisserman
2004). It has been noted that without constraining or nor-
malizing the depths, such algorithms can converge to false
solutions. Especially, Oliensis and Hartley (2007) show that
the basic iterative generalization of the Sturm–Triggs fac-
torization algorithm can converge to trivial false solutions,
and that in the presence of the slightest amount of noise, it
generally does not converge to a correct solution.

1.1.2 Unit Row Norm Constraint

Heyden et al. (1999) estimate the camera-point configuration
and the projective depths alternatingly, under the constraint
that every row of the depthmatrix has unit l2-norm. They also
suggest a normalization stepwhich scales each column of the
depth matrix to make the first row of the matrix have all unit
elements. However, they do not use this normalization step in
their experiments, reporting better convergence properties in
its absence. It is clear that by just requiring rows to have unit
norm, we allow zero columns in the depth matrix as well as
cross-shaped configurations. If all rows except the first are
required to have unit norm, and at the same time (and not
in a separate normalization step) the first row is constrained
to have all unit elements, then having zero columns is not
possible, but still a cross-shaped depth matrix is allowed. We
refer the reader to Sect. 9 for experiments on this constraint.

1.1.3 Unit Column Norm Constraint

Mahamud et al. (2001) propose an algorithms which is in
some ways similar to that of Heyden et al. (1999). Again,
the depths and camera-point configuration are alternatingly
estimated, but under the constraint that each column of the
weighted data matrix has a unit l2-norm. The convergence to
a local minimum is proved, while no theoretical guarantee
is given for not converging to a wrong solution. In fact, the
above constraint can allow zero rows in the depth matrix in
addition to cross-shaped depth matrices.
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1.1.4 Fixed Row and Column Norms

Triggs (1996) suggests that the process of estimating depths
and camera-point structure in the Sturm–Triggs algorithm
can be done in an alternating and iterative fashion. He also
suggests a depth balancing stage after the depth estimation
phase, in which it is sought to rescale rows and columns of
the depth matrix such that all rows have the same Euclidean
length and similarly all columns have a common length. The
same balancing scheme has been suggested by Hartley and
Zisserman (2004). The normalization step is in the form of
rescaling the rows to have similar norm and then doing the
same to the columns. At each iteration, this can either be
done once each, or in a repeated iterative fashion. If an l p-
norm is used for this procedure, alternatingly balancing rows
and columns is the same as applying Sinkhorn’s algorithm
Sinkhorn (1964, 1967) to a matrix whose elements are |λ̂i j |p

and thereby forcing all rows of the depth matrix to eventu-
ally have the same norm, and similarly all columns to have
the same norm. We will show that forcing the matrix to have
equal nonzero column norms and equal nonzero row norms
will prevent false solutions to the factorization-based algo-
rithm. However, the direct implementation of this constraint
is difficult. Implementing it as a balancing stage after every
iteration can destroy the property of having descent moves
in the algorithm. Oliensis and Hartley (2007) report that the
normalization step can lead to bad convergence properties.

1.1.5 CIESTA

Oliensis and Hartley (2007) prove that if the basic iterative
factorization is done without putting any constraint on the
depth matrix (except possibly retaining a global scale), it can
converge to trivial false solutions. More interestingly, they
show that in the presence of noise it generally always con-
verges to a wrong solution. They also argue that many vari-
ants of the algorithm, including (Mahamud et al. 2001) and
(Hartley and Zisserman 2004) either are likely to converge to
false solutions or can exhibit undesirable convergence behav-
ior. They propose a new algorithm, called CIESTA, which
minimizes a regularized target function. Although some con-
vergence properties have been proved for CIESTA, the solu-
tion is biased as it favors projective depths that are close to
1. For this choice, even when there is no noise present, the
correct solution does not generally coincide with the global
minimumof the CIESTA target function.We do not deal with
such approaches in this paper.

1.1.6 Fixing Elements of a Row and a Column

Ueshiba and Tomita (1998) suggest estimating the projective
depths through a conjugate gradient optimization process
seeking to make the final singular values of the weighted

image data matrix small, thus making it close to a rank-four
matrix. To avoid having multiple solutions due to the ambi-
guity associated with the projective depths, the algorithm
constrains the depth matrix to have all elements of the r -th
row and the c-th column equal to one for some choice of r and
c, that is λ̂i j = 1 when i = r or j = c. This constraint can
lead to cross-shaped configurations, although there is only
one possible location for the centre of cross, namely (r, c).

1.1.7 Transportation Polytope Constraint

Dai et al. (2010, 2013) seek to estimate the depths by putting
a rank constraint on the data matrix weighted by the depth
matrix. The weighted data matrix is restricted to have rank
four or less. In addition, the depth matrix is constrained to
have fixed row and column sums. In addition, this approach
also enforces the constraint λ̂i j ≥ 0, that is the projective
depths are all nonnegative.1 In Angst et al. (2011) it has
been noted that the corresponding constraint space is known
as the Transportation Polytope. In Dai et al. (2010, 2013)
the problem is formulated as a rank minimization problem
and is solved by using the trace norm as a convex surrogate
of the rank function. The relaxed optimization problem can
be recast as a semi-definite program. One drawback of this
approach is the use of inequality constraints, preventing it
from taking advantage of the fast rank minimization tech-
niques for large scale data such as Lin et al. (2010); Yang
and Yuan (2013). The same idea as Dai et al. (2010) is used
in Angst et al. (2011), however, a generalized trace norm tar-
get function is exploited to approximate the rank. While the
authorsmention the transportation polytope constraint space,
for implementation just a single constraint is used that fixes
the total scale of the whole depth matrix. As this constraint is
prone to giving degenerate trivial solutions, the authors add
inequality constraints whenever necessary. We shall show
that the transportation polytope constraint avoids false solu-
tions to the factorization methods if the marginal values to
which rows and columns must sum up are chosen properly.

1.1.8 Fixed Row and Column Sums

As noted before, the inequality constraint used in (Dai et al.
2010, 2013) can prevent the design of fast algorithms. This
might be the reason why, when it comes to introducing scal-
able algorithms in (Dai et al. 2013), the inequality constraint
has been neglected.Wewill show that neglecting the inequal-
ity constraint and just constraining row and columns to have
specified sums always allows for cross-shaped structures and

1 Actually, in Dai et al. (2010, 2013) the constraint is given as imposing
strictly positive depths: λ̂i j > 0, giving a non-closed constraint space.
However, what can be implemented in practice using semi-definite pro-
gramming or other iterative methods is non-strict inequalities λ̂i j ≥ 0.
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thus for false solutions. However, as argued in Sect. 6.2.1, it
is difficult to converge to such structures under these con-
straints starting from a sensible initial solution (see Fig. 8).
This belief is supported by our experiments in Sect. 9.

In what comes next, we first define the problem in pre-
cise mathematical terms and discuss in more detail why it
is not fully solved by the previous results in multiple view
geometry (Sects. 2 and 3). Then, we present a more gen-
eral version of the Theorem of Projective Reconstruction
working under a much weaker set of assumptions than the
depths being all nonzero (Sect. 4). By giving a counterexam-
ple we then demonstrate that the assumptions made for the
proof of our theorem are minimal in a certain sense (Sect.
5). Afterwards, in Sect. 6, we present a class of constraints,
called reconstruction friendly constraints, under which false
solutions to the projective factorization problem are avoided.
Then we show how the results developed here can be used
for the assessment of depth constraints by analysing some
of the constraints used in the literature. We also give exam-
ples demonstrating how our results can be exploited for the
design of new constraints with desirable properties. Espe-
cially, we present the step-like mask constraints as examples
of reconstruction friendly constraints in the form of linear
equations. In Sect. 7 we study the implications of our results
to the rank minimization approach to projective reconstruc-
tion. Then, in Sect. 8, we consider the case where the output
of the algorithm is in the form of a convergent sequence of
solutions. The paper is finished by running experimental tests
on synthetic and real data (Sect. 9).

2 Motivation

Consider a set of projection matrices P1,P2, . . . ,Pm ∈
R
3×4, a set of pointsX1,X2, . . . ,Xn ∈ R

4. Each pointX j is
projected through each camera matrix Pi to produce the set
of image points xi j ∈ R

3 according to

λi jxi j = PiX j

where λi j �= 0 are nonzero scalars known as projective
depths. The projective depths λi j , i = 1, . . . , m, j =
1, . . . , n, can be arranged as an m × n array to form the
depth matrix � = [λi j ]. Similarly, the image data {xi j } can
be arranged as a 3m × n matrix [xi j ] called here the data
matrix. The above equation can be written in the matrix form

� � [xi j ] = PX, (2)

where P = stack(P1,P2, · · · ,Pm) is the vertical concate-
nation of the camera matrices, X = [X1X2 · · ·Xn] and
� � [xi j ] = [λi jxi j ], that is the operator � multiplies each
element λi j of � by the corresponding 3× 1 block xi j of the
data matrix [xi j ]. We stress that in this paper the projection

matrices and points are not considered as projective quanti-
ties, unless explicitly stated. No equation, therefore, implies
equality up to scale. From (2) it is obvious that having the true
depthmatrix�, theweighted datamatrix��[xi j ] = [λi jxi j ]
can be factored as the product of a 3m × 4 matrix P and a
4 × n matrix X. Equivalently, the matrix � � [xi j ] has rank
4 or less. This is where the underlying idea of factorization-
based algorithms comes from. These algorithms try to find
the camera-matrix configuration from the given image data
{xi j } by finding a depth matrix �̂ for which �̂ � [xi j ] has
rank 4 (or less), and thus, can be factored as the product of
3m × 4 and 4 × n matrices P̂ and X̂:

�̂ � [xi j ] = P̂ X̂. (3)

One hopes that by solving the above problem, dividing P̂ into
blocks P̂i ∈ R

3×4 as P̂ = stack(P̂1, P̂2, · · · , P̂m) and letting
X̂ j be the j-th column of X̂, the camera-point configuration
({P̂i }, {X̂ j }) is equal to the true configuration ({Pi }, {X j }) up
to a projective ambiguity.2 However, it is obvious that given
the data matrix [xi j ] not every solution to (3) gives the true
configuration up to projectivity. A simple reason is the exis-
tence of trivial solutions, such as �̂ = 0, P̂ = 0, X̂ = 0, or
when �̂ has all but four of its columns equal to zero. In the
latter case it is obvious that �̂ � [xi j ] can be factored as (3)
as it has at most rank 4. This is why we see that in almost
all projective depth estimation algorithms the depth matrix is
restricted to some constraint space. This can be done either
by optimizing some target function subject to an explicit con-
straint, or as a normalization or balancing stage after every
iteration.While the constraints are sometimes said to guaran-
tee the uniqueness of the solution to (3), their main purpose
is to prevent the depth estimation procedure from collaps-
ing to the so-called trivial solutions where some columns (or
rows) of the depth matrix converge to zero (see Oliensis and
Hartley 2007 for more detail). It is not obvious, however,
(and we shall prove it false) if possible false solutions to (3)
are restricted to these trivial cases. Therefore, factorization-
based algorithms lack a proper theoretical basis for finding
possible false solutions allowed by given constraints or to
determine what constraints on the depth matrix make every
solution to (3) projectively equivalent to the ground truth.

The main theoretical basis for the analysis of projec-
tive reconstruction is the Projective Reconstruction Theo-
rem (Hartley and Zisserman 2004). It says that, under certain
generic conditions, all configurations of cameramatrices and
3Dpoints yielding a common set of 2D imagepoints are equal
up to a projective ambiguity. This theorem is derived from a
geometric perspective and therefore presumes assumptions

2 Throughout the paper we follow the convention that estimated depths,
camera matrices and points are denoted using the hatted quantities such
as λ̂i j , P̂i and X̂ j , while the ground truth is shown using unhatted sym-
bols like λi j , Pi and X j .
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like the estimated camera matrices P̂i having full row rank
and all the estimated projective depths λ̂i j being nonzero.
While these are useful enough for the so-called tensor-based
reconstruction approaches, they are not a good fit for the
analysis of algebraic algorithms, especially factorization-
based depth estimation algorithms. Obviously, these geo-
metric assumptions can be reasonably assumed for the true
set of depths {λi j } and the true camera-point configuration
({Pi }, {X j }). However, for most of the factorization-based
algorithms, at least in the case of large-scale problems, it
is hard to impose these constraints on the estimated depths
{λ̂i j } and camera-point configuration ({P̂i }, {X̂ j }) a priori.

Actually, the basic assumption for the proof of the classic
Projective Reconstruction Theorem (Hartley and Zisserman
2004) is that the estimated depths λ̂i j are all nonzero. Other
geometric assumptions like full-row-rank estimated camera
matrices P̂i follow from this assumption under reasonable
conditions. Therefore, one might like to enforce λ̂i j �= 0
as a constraint for any algorithm for solving (3), and make
use of this theorem to show that the algorithm avoids false
solutions. However, this type of constraint space cannot be
easily applied in most of the iterative algorithms. Since this
constraint space is not closed, it is possible that the procedure
may converge to a solution outside the constraint space, even
if in all iterations the solution lies inside the constraint space.
In this case, some of the projective depths can converge to
zero, resulting in a degenerate solution. Making use of the
scale ambiguity of the projective depths, the constraint space
can be made closed by using |λ̂i j | ≥ δ for some positive
number δ rather than λ̂i j �= 0. However, this non-connected
constraint space again cannot be easily handled by many of
the iteration based algorithms. Actually, in practice, when
there is no missing data, it is usually the case that all true
depths λi j are positive, as all the 3D points are in front of
the cameras. In this case, we can have a convex constraint
space by forcing all depths to be positive, that is λ̂i j > 0.
Obviously, due to the scale ambiguity, the constraint space
can bemade closed by using λ̂i j ≥ δ instead, for some δ > 0.
This gives a set of linear inequalities.

One problem with the inequality constraints is that they
are hard to implement for fast and efficient factorization-
based algorithms, especially for large-scale problems. Thus,
we seek even simpler constraints making the optimization-
based techniquesmore efficient and easier to solve. For exam-
ple, linear equality constraints, which are easier to handle and
for which usually much faster algorithms exist compared to
inequality constraints. This can be seen, for example, in state-
of-the-art algorithms designed for the convex relaxation of
large scale rank minimization problems which work with
linear equality constraints (Lin et al. 2010; Yang and Yuan
2013). We observed the use of linear equality constraints in
papers like Ueshiba and Tomita (1998) (by fixing special ele-

ments of the depth matrix �̂) and also Dai et al. (2010, 2013)
(by fixing the row and column sums of �̂) when it comes to
large scale problems. We also observed other examples of
constraints like requiring rows of �̂ (Heyden et al. 1999),
or columns of �̂ � [xi j ] (Mahamud et al. 2001) to have a
unit l2-norm, which allowed for efficient factorization-based
algorithms. However, as these constraints, per se, are unable
to guarantee all depths to be nonzero or strictly positive, we
cannot take advantage of the classic theorem of projective
reconstruction to analyse their effectiveness. This shows the
need to finding weaker conditions under which projective
reconstruction succeeds. The new conditions must allow the
verification of the constraints that fit the factorization-based
algorithms.Wewill introduce such a theorem in Sect. 4, after
providing the required background in the next section.

3 Background

3.1 Notations

We denote matrices by typewriter letters (X), vectors by bold
letters (x orX), sets by upper-case normal letters (X ), scalars
by lower-case normal letters x , and mappings (functions) by
calligraphic letters (X ). Mappings C ,R andN are respec-
tively used to represent the column space, row space and
null space of a matrix. For matrices A1,A2, . . . ,Am sharing
the same number of columns, stack(A1,A2, . . . ,Am) denotes
their vertical concatenation. The reader must keep in mind
that all expressions here are in algebraic affine geometry
sense. The equality sign “=”, here,means algebraically equal
and not equal up to scale.

3.2 Projective Equivalence and the Depth Matrix

For a set of 3×4 projection matrices P1,P2, . . . ,Pm , a set of
pointsX1,X2, . . . ,Xn inR4, and a set of image data xi j ∈ R

3

formed according to the projection relation

λi jxi j = PiX j

with nonzero projective depths λi j �= 0, the problem of pro-
jective reconstruction is to find the projectionmatricesPi and
the points X j up to a projective ambiguity given the image
points xi j . The next definitions make clear what is meant
by projective ambiguity and projective equivalence. Readers
can refer to Hartley and Zisserman (2004) for more details.

Definition 1 Two sets of projection matrices {Pi } and {P̂i },
with Pi , P̂i ∈ R

3×4 for i = 1, 2, . . . , m are projectively
equivalent if there exist nonzero scalars τ1, τ2, . . . , τm and a
4 × 4 invertible matrix H such that

P̂i = τi Pi H, i = 1, 2, . . . , m. (4)
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Definition 2 Two configurations of m projections and n
points, namely ({Pi }, {X j }) and ({P̂i }, {X̂ j }) where Pi , P̂i ∈
R
3×4 for i = 1, 2, . . . , m and X j , X̂ j ∈ R

4 for j =
1, 2, . . . , n, are projectively equivalent if there exist an invert-
ible 4 × 4 matrix H and nonzero scalars τ1, τ2, . . . , τm and
ν1, ν2, . . . , νn such that

P̂i = τi Pi H, i = 1, 2, . . . , m, (5)

X̂ j = ν j H−1 X j , j = 1, 2, . . . , n. (6)

We need to see the implications of projective equivalence
of ({Pi }, {X j }) and ({P̂i }, {X̂ j }) on the depth matrices � =
[λi j ] and �̂ = [λ̂i j ]. First, we define the concept of diagonal
equivalence3 for matrices:

Definition 3 Two m × n matrices � and �̂ are diagonally
equivalent if there exist nonzero scalars τ1, τ2, . . . , τm and
ν1, ν2, . . . , νn such that

�̂ = diag(τ )� diag(ν) (7)

where τ = [τ1, τ2, . . . , τm]T , ν = [ν1, ν2, . . . , νn]T and
diag(·) arranges the entries of a vector on the diagonal of a
diagonal matrix.

The concepts of projective equivalence of projections and
points and diagonal equivalence of depth matrices are related
by the following lemma whose proof is given in Appendix 1.

Lemma 1 Consider two configurations of m ≥ 2 projection
matrices and n ≥ 4 points ({Pi }, {X j }) and ({P̂i }, {X̂ j }),
with Pi , P̂i ∈ R

3×4 and X j , X̂ j ∈ R
4, such that

(i) PiX j �= 0 for all i, j ,
(ii) span(X1,X2, . . . ,Xn) = R

4, and
(iii) P = stack(P1,P2, . . . ,Pm) has full column rank.

Also, consider two m ×n matrices � = [λi j ] and �̂ = [λ̂i j ].
If the relations

λi jxi j = PiX j

λ̂i jxi j = P̂i X̂ j

hold for all i = 1, . . . , m and j = 1, . . . , n, then ({Pi }, {X j })
and ({P̂i }, {X̂ j }) are projectively equivalent if and only if the
matrices � and �̂ are diagonally equivalent.

3.3 The Fundamental Matrix

Another important entity used in this paper is the fundamen-
tal matrix. For two cameras, the fundamental matrix gives
a bilinear relation between pairs of corresponding image

3 This term has been borrowed from Sinkhorn (1967).

points. There are many different ways to define the fun-
damental matrix (Hartley and Zisserman 2004). Here, we
choose the following definition

Definition 4 For two 3×4matricesQ andR, the correspond-
ing fundamental matrix is represented by the function value
F (Q,R), where F : R3×4 × R

3×4 → R
3×3 is defined as

[F (Q,R)]ki = (−1)i+k det

[
Q−i

R−k

]
(8)

where Q−i ∈ R
2×4 is formed by removing the i-th row of Q

and R−k is defined similarly.

Formore details of this definitionwe refer the reader to (Hart-
ley and Zisserman 2004, Sect.17.1). Notice that the funda-
mental matrix is the output of the function F applied to Q
and R and not the mapping F itself. One of the advantages
of using the above definition for the fundamental matrix is
that it is not restricted to the case of proper full-rank camera
matrices. It can be defined for any pair of 3×4matrices. Also,
the reader must keep in mind that, like other entities in this
paper, the fundamental matrix here is treated as a member
of R3×3, not as an up-to-scale equivalence class of matri-
ces. Basically, the above definition says that the elements
of the fundamental matrix of two matrices Q,R ∈ R

3×4 are
the determinant of 4 × 4 submatrices stack(Q,R) made by
choosing two rows from Q and two rows from R. This gives
the following lemma

Lemma 2 For two 3 × 4 matrices Q and R, the fundamen-
tal matrix F (Q,R) is nonzero if and only if there exists an
invertible 4 × 4 submatrix of stack(Q,R) made by choosing
two rows from Q and two rows from R.

The next two lemmas about the fundamental matrix will
be used later in this paper.

Lemma 3 (Hartley andZisserman 2004)Consider two pairs
of camera matrices Q,R and Q̂, R̂ such that Q and R both
have full row rank and also have distinct null spaces, that
is N (Q) �= N (R). Then (Q,R) and (Q̂, R̂) are projectively
equivalent according to Definition 1 if and only if F (Q,R)

and F (Q̂, R̂) are equal up to a nonzero scaling factor.

Notice that, unlike (Q,R), no assumptions are made in the
above about (Q̂, R̂).

Lemma 4 (Hartley and Zisserman 2004) Consider two full-
row-rank matrices Q and R such that N (Q) �= N (R). If for
a matrix F ∈ R

3×3 the relation

QTFR + RTFTQ = 04×4

holds (or equivalently XT (QTFR)X = 0 holds for all X ∈
R
4), then F is equal to F (Q,R) up to a scaling factor.
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3.4 Cross-shaped Matrices

The concept of cross-shaped matrices is essential for the
statement of our main theorem and the characterization of
false solutions to the projective factorization problem.

Definition 5 A matrix A = [ai j ] is said to be cross-shaped,
if it has a row r and a column c for which⎧⎨
⎩

ai j = 0 i �= r, j �= c,
ai j �= 0 i = r, j �= c,
ai j �= 0 i �= r, j = c.

(9)

The pair of indices (r, c) is called the centre of a cross-
shapedmatrix and arc is called its central element, which can
be either zero or nonzero according to (9). A cross-shaped
matrix can be zero-centred or nonzero-centred depending on
whether the central element arc is zero or nonzero.

A cross-shaped matrix has all of its elements equal to zero
except the elements of a certain row r and a certain column c.
The r -th row and the c-th column have all nonzero elements,
except at their junction where the element can be zero or
nonzero. Examples of cross-shaped matrices are depicted in
Fig. 1. Notice that any permutation to rows and columns of a
cross-shaped matrix results in another cross-shaped matrix.

Lemma 5 (i) Any two m × n nonzero-centred cross-shaped
matrices with a common centre (r, c) are diagonally equiva-
lent. (ii) any two m × n zero-centred cross-shaped matrices
with a common centre (r, c) are diagonally equivalent.

Proof Consider two m × n cross-shaped matrices A = [ai j ]
and B = [bi j ] with a common centre (r, c). According to
Definition 3, to prove diagonal equivalence we need to show
that B = diag(τ )A diag(ν) for some vectors τ and ν with all
nonzero entries. IfA andB are both zero-centred, that is arc =
brc = 0, then we choose the vectors τ = (τ1, τ2, . . . , τm)T

and ν = (ν1, ν2, . . . , νn)T , such that τr = νc = 1, τi =
bic/aic for i �= r , and ν j = br j/ar j for j �= c. If A and B are
both nonzero-centred, that is arc �= 0 and brc �= 0, then the
vectors τ = (τ1, τ2, . . . , τm)T and ν = (ν1, ν2, . . . , νn)T

are chosen such that τi = bic/aic for i = 1, . . . , m, νc = 1,
and ν j = br j/(ar jτr ) for j �= c. In either cases, one can
easily check that τ and ν have all-nonzero entries and B =
diag(τ )A diag(ν). ��

Now, we have the required tools to state our main theorem
on projective reconstruction.

4 A General Projective Reconstruction Theorem

In this section we give a projective reconstruction theorem
which is more general than the classic theorem in the sense
that it does not assume, a priori, that the estimated depths

λ̂i j are all nonzero. This provides significantly more flexi-
bility in the choice of depth constraints for depth estimation
algorithms.

Our general projective reconstruction theorem is then:

Theorem 1 Consider a set of m ≥ 2 camera matrices {Pi }
and n ≥ 8 points {X j } which are generic in the sense of con-
ditions (G1–G4) which will be introduced later, and project
into a set of image points {xi j } according to

λi jxi j = PiX j , (10)

for nonzero depths λi j �= 0 for i = 1, . . . , m and j =
1, . . . , n. Now, consider any other configuration of m camera
matrices {P̂i }, n points {X̂ j } and mn depths {λ̂i j } related to
the same image data {xi j } by

λ̂i jxi j = P̂i X̂ j . (11)

If the depth matrix �̂ = [λ̂i j ] satisfies the following condi-
tions

(D1) �̂ has no zero columns,
(D2) �̂ has no zero rows, and
(D3) �̂ is not a cross-shaped matrix,

then the camera-point configuration ({P̂i }, {X̂ j }) is projec-
tively equivalent to ({Pi }, {X j }).
Furthermore, we shall show in Sect. 5 that if any of the
depth assumptions (D1), (D2) or (D3) is removed, it allows
the existence of a configuration ({P̂i }, {X̂ j }), satisfying the
relations λ̂i jxi j = P̂i X̂ j and projectively non-equivalent to
({Pi }, {X j }).

Loosely speaking, by true camera matrices Pi and points
X j being generic, we mean that the camera matrices have
full row rank and the points and camera centres are in gen-
eral position. In Sect. 4.1 we will be more specific about
the required genericity conditions and mention four generic
properties (G1–G4) underwhichTheorem1 is true. To under-
stand the paper, it is essential to notice that the genericity
assumptions only apply to the true configuration ({Pi }, {X j }).
No assumption is made about the estimated (hatted) quanti-
ties P̂i and X̂ j except the relation λ̂i jxi j = P̂i X̂ j . We do not a
priori rule out the possibility that P̂i -s or X̂ j -s belong to some
non-generic set. Referring to P̂i -s as camera matrices carries
no implications about them whatsoever other than that they
are 3 × 4 real matrices. They can be rank-deficient or even
zero unless the opposite is proven.

At a first glance, Theorem 1 might seem contradictory,
as it says that only some small subset of the elements of
�̂ = [λ̂i j ] being nonzero is sufficient for ({Pi }, {X j }) and
({P̂i }, {X̂ j }) being projectively equivalent.On the other hand,
from Lemma 1 we know that if ({Pi }, {X j }) and ({P̂i }, {X̂ j })
are projectively equivalent, then �̂must be diagonally equiv-
alent to� and hence have all nonzero elements. Thematter is
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that one has to distinguish between the implications of depth
assumptions (D1–D3) in their own rights and their implica-
tions combinedwith the relations λ̂i jxi j = P̂i X̂ j . Theorem1,
therefore, implies that if a special subset of depths {λ̂i j } are
known to be nonzero, then all of them are. This provides
a sound theoretical base for choosing and analysing depth
constraints for factorization-based projective reconstruction.

4.1 The Generic Camera-Point Setup

It is known that projective reconstruction from image data
can be problematic if the (true) camera matrices and points
belong to special degenerate setups (Hartley and Zisserman
2004; Hartley and Kahl 2007). The Projective Reconstruc-
tion Theorem is then said to be generically true, meaning
that is can be proved under some generic assumptions about
how the ground truth is configured. Here, we list the generic
assumptions made about the true setup of cameras and points
for the proof of our theorem.

We assume that there exist m ≥ 2 camera matrices
P1,P2, . . . ,Pm ∈ R

3×4 and n ≥ 8 points X1,X2, . . . ,Xn in
R
4. They are generically configured in the following sense:

(G1) All camera matrices P1,P2, . . . ,Pm ∈ R
3×4 have full

row rank.
(G2) Taking any two views i and k, and two nonzero vec-

tors Ci ∈ N (Pi ) and Ck ∈ N (Pk), any four vectors
among Ci ,Ck,X1,X2, . . . ,Xn , are linearly indepen-
dent.

(G3) For any view i , and a nonzero vector Ci ∈ N (Pi ),
no n points amongCi ,X1,X2, . . . ,Xn lie on a twisted
cubic4 (or any of the degenerate critical sets resulting
in a resection ambiguity, see (Hartley and Zisserman
2004, Sect. 22.1 and Hartley and Kahl 2007).

(G4) For any two views i and k, and two nonzero vec-
tors Ci ∈ N (Pi ) and Ck ∈ N (Pk), the points
{Ci ,Ck} ∪ {X j } j=1,...,n do not all lie on any (proper
or degenerate) ruled quadric surface4 (see Hartley and
Zisserman 2004, Sect. 22.2 and Hartley and Kahl
2007).

Notice that condition (G1) makes the choice ofCi andCk

in conditions (G2–G4) unique up to scale. It implies that that
any nonzero Ci ∈ N (Pi ) represents the camera centre of
Pi . Condition (G2) has many implications when combined
with (G1). Here, we list the ones needed in the paper:

4 For simplicity of notation, we are being a bit sloppy here about the
projective entities like projective lines, quadric surfaces and twisted
cubics. The reader must understand that when talking about a point
X ∈ R

4 lying on a projective entity, what we really mean is that the
projective point in P

3 represented by X in homogeneous coordinates
lies on them.

(G2-1) For all i and j we have PiX j �= 0 (as for any nonzero
Ci ∈ N (Pi ), Ci and X j are linearly independent).
Geometrically,X j does not coincide with the camera
centre of Pi .

(G2-2) For any two views i, k we have N (Pi ) �= N (Pk),
andhence, nopair of cameras share a commoncamera
centre.

(G2-3) For any two views i, k, stack(Pi ,Pk) has full row
rank, and thus, so does P = stack(P1,P2, . . . ,Pm).

(G2-4) For any two views i, k, and any point X j , the three
nonzero vectors Ci , Ck and X j are linearly indepen-
dent and therefore, X j does not lie on the projective
line4 joining the camera centres of Pi and Pk .

(G2-5) For any view i , any three vectors among PiX1,PiX2,

. . . ,PiXn are linearly independent (as Ci /∈ span
(Y1,Y2,Y3) for any three distinct vectors Y1,Y2,

Y3 ∈ {X j } and any nonzero vector Ci ∈ N (Pi )).

Notice that conditions (G3) and (G4) are generic forn ≥ 8,
because of the facts that 6 points in general position com-
pletely specify a twisted cubic and9points in general position
determine a quadric surface (Semple and Kneebone 1952).
One might find tighter generic conditions under which our
projective reconstruction theorem is still true. However, we
avoid doing this as it unnecessarily complicates the paper.

4.2 Overview of the Proof

Here, we state the general outline of the proof. Each part of
the proof will then be demonstrated in a separate subsection.
The complete proof is rather long and intricate. The reader
may therefore wish to skip to Sect. 5.

Proof (Sketch of the Proof for Theorem 1) Under the theo-
rem’s assumptions, we shall show the following:

– There exist at least two views k and l for which the
corresponding fundamental matrixF (P̂k, P̂l) is nonzero
(Sect. 4.3).

– If F (P̂k, P̂l) �= 0 then the two configurations (Pk,Pl ,

{X j }) and (P̂k, P̂l , {X̂ j }) are projectively equivalent
(Sect. 4.4).

– If for two views k and l, (Pk,Pl , {X j }) and (P̂k, P̂l , {X̂ j })
are projectively equivalent, then ({Pi }, {X j }) and ({P̂i },
{X̂ j }) are projectively equivalent (Sect. 4.5).

This completes the proof. ��
Before stating the different parts of the proof, it is worth

mentioning that for proving Theorem 1 one may simply
assume that the set of true depths λi j are all equal to one.
This can be seen by a simple change of variables x′

i j = λi jxi j ,

λ′
i j = 1 and λ̂′

i j = λ̂i j/λi j , implying λ′
i jx

′
i j = x′

i j = PiX j
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and λ̂′
i jx

′
i j = P̂i X̂ j . Notice that λ̂′

i j = λ̂i j/λi j is zero if and

only if λ̂i j is zero. Therefore, (D1–D3) are true for the λ̂′
i j -s

if and only if they hold for the λ̂i j -s. This change of variables
requires λi j �= 0 which was among the assumptions of the
theorem (and even if it was not explicitlymentioned, it would
be required as a consequence of PiX j �= 0 from (G2-1) and
the relations λi jxi j = PiX j ). Throughout the proof of The-
orem 1, we assume λi j = 1. With this assumption, the Eqs.
(10) and (11) are combined into

P̂i X̂ j = λ̂i jPiX j . (12)

Theorem 1 is proved as a conjunction of several lemmas.
Therefore, to avoid redundancy, we assume the following
throughout the rest of this section:

There exist m ≥ 2 camera matrices P1,P2, . . . ,Pm ∈
R
3×4 and n ≥ 8 points X1,X2, . . . ,Xn ∈ R

4 (called the
true sets of camera matrices and points, or the ground truth),
and an estimated setup of m camera matrices and n points
({P̂i }, {X̂ j }), related by (12) for a set of scalars {λ̂i j }.

4.3 The Existence of a Nonzero Fundamental Matrix

The following lemma is the key to the proof of Theorem 1:

Lemma 6 If the genericity assumptions (G1–G4) hold for
({Pi }, {X j }), and depth assumptions (D1–D3) hold for {λ̂i j },
there exist two views k and l such that the fundamental matrix
F (P̂k, P̂l) is nonzero.

Using Lemma 2, one can say that what is claimed in
Lemma 6 is equivalent to the existence of an invertible 4× 4
submatrix of stack(P̂k, P̂l) for some views k and l, made
by choosing two rows from P̂k and two rows from P̂l . This
lemma is essential as the case of zero fundamental matrices
for all pairs of views happens in the cross-shaped degener-
ate solutions. We will see later in Sect. 5 that a cross-shaped
depth matrix �̂ happens when for one special view r we have
rank(P̂r ) = 3 and for the rest of the views i �= r we have
rank(P̂i ) = 1. One can easily see from Lemma 2 that in this
case all pairwise fundamental matrices are zero.

Lemma 6 is the hardest step in the proof of Theorem 1.
We prove this lemma as a consequence of a series of lemmas.
Figure 5 can help the reader to keep track of the inference
process. The reader might notice that there are different ways
of proving someof the lemmas here. Part of this is because the
genericity conditions (G1–G4) are not tight. First, we state a
lemma giving some simple facts about the second configu-
ration of cameras, points and depths ({P̂i }, {X̂ j }, {λ̂i j }).
Lemma 7 Under (G1, G2) and (D1, D2) The following hold

(i) For all j we have X̂ j �= 0, and for all i we have P̂i �= 0,
(ii) λ̂i j = 0 if and only if X̂ j ∈ N (P̂i ), where N (P̂i ) is the

null space of P̂i .

Fig. 5 The inference graph for the proof of Lemma 6. Lemma 7 has
been omitted due to its frequent use

(iii) rank(P̂i ) ≥ min (3, ni ), where ni is the number of
nonzero elements among λ̂i1, λ̂i2, . . . , λ̂in ,

(iv) If rank(stack(P̂i , P̂k)) = rank(P̂i ) = 3 for two distinct
views i, k, then for all j , λ̂i j = 0 implies λ̂k j = 0.

(v) If rank(P̂i ) = 3, all the points X̂ j for which λ̂i j = 0 are
equal up to a nonzero scaling factor.

Proof To see (i), notice that for any i and j if we have λ̂i j �=
0, then from P̂i X̂ j = λ̂i jPiX j and PiX j �= 0 (G2-1) we
conclude that X̂ j �= 0 and P̂i �= 0. Then (i) follows from
the fact that at each row and each column of �̂ = [λ̂i j ] there
exists at least one nonzero element due to (D1, D2).

(ii) is obvious by P̂i X̂ j = λ̂i jPiX j from (12) and the fact
that PiX j �= 0 from (G2-1).

To prove (iii), notice that if λ̂i j is nonzero for some i
and j , from P̂i X̂ j = λ̂i jPiX j we conclude that PiX j ∈
C (P̂i ), where C (P̂i ) denotes the column space of P̂i . Now,
if there are ni nonzero λ̂i j -s for view i , which (by a possi-
ble relabeling) we assume they are λ̂i1, λ̂i2, . . . , λ̂ini , then
span(PiX1,PiX2, . . . ,PiXni ) ⊆ C (P̂i ). By (G2-5) then we
have min(3, ni ) = dim

(
span(PiX1,PiX2, . . . ,PiXni )

) ≤
dim(C (P̂i )) = rank(P̂i ).

To see (iv), notice that as rank(P̂i ) = 3, if the matrix
stack(P̂i , P̂k) has a rank of less than 4, the row space of
P̂i includes that of P̂k , that is R(P̂k) ⊆ R(P̂i ), and thus
N (P̂i ) ⊆ N (P̂k). Hence, from part (ii) of the lemma we
have λ̂i j = 0 ⇔ X j ∈ N (P̂i ) ⇒ X j ∈ N (P̂k) ⇔ λ̂k j =
0.

(v) simply follows from parts (i) and (ii) of this lemma
and the fact that a P̂i of rank 3 has a 1D null space. ��
Wemake extensive use of Lemma 7 in what comes next. The
readermight want to keep sight of it while reading the proofs.

Lemma 8 Consider two 3 × 4 matrices Q and R such that
rank(Q) ≥ 2 and rank(R) ≥ 2. Then F (Q,R) �= 0 if and
only if stack(Q,R) has rank 4.
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Proof Assume stack(Q,R) has rank 4. If R and Q have both
rank 3, then stack(Q,R) having rank 4 means N (R) �=
N (Q). Geometrically, it means that R and Q are two rank-
3 camera matrices with different camera centres. It is well
known that in this case the fundamental matrix F (Q,R) is
nonzero (Hartley and Zisserman 2004).

If R has rank 2, it has two rows rT
i and rT

j spanning its row
space, that is span(ri , r j ) = R(R). Further, as stack(Q,R)

has rank 4, there exist at least two rows qT
k and qT

l of Q such
that dim(span(ri , r j ,qk,ql)) = 4. The two rows qk and ql

can be chosen by taking the set {ri , r j }, adding rows ofQ, one
by one, to this set, and choose the two rows whose addition
leads to a jump in the dimension the span of the vectors in
the set. As, the 4 × 4 matrix stack(rT

i , rT
j ,qT

k ,qT
l ) has rank

4, Lemma 2 suggests that F (Q,R) �= 0.
The other direction of the lemma is proved immediately

from Lemma 2. ��
Lemma 8 shows that to prove the main Lemma 6, it is suf-
ficient to find two camera matrices both of rank 2 or more,
whose vertical concatenation gives a matrix of rank 4. We
will show in Lemma 13 that this is possible. But, to get there
we need two extra lemmas. The next lemma relies on the
Camera Resectioning Lemma discussed in Appendix 1.

Lemma 9 Under (G1–G3), if for two distinct views k and
l, there are at least n − 1 indices j among the point indices
1, 2, . . . , n, for which the vector (λ̂k j , λ̂l j ) is nonzero, we
cannot have R(P̂l) ⊆ R(P̂k), where R denotes the row
space of a matrix.

Proof To get a contradiction, assumeR(P̂l) ⊆ R(P̂k). Then
there must exist a 3× 3 matrix H such that P̂l = HP̂k . There-
fore, for all j we have P̂lX̂ j = HP̂kX̂ j and by the relation
P̂i X̂ j = λ̂i jPiX j we get λ̂l jPlX j = λ̂k jHPkX j for all j .
Now, we can apply Lemma 19 on Camera Resectioning (see
Appendix 1) as (λ̂k j , λ̂l j ) is nonzero for at least n −1 indices
j and (G1–G3) hold.5 By applying Lemma 19 we get

HPk = a Pl . (13)

for some scalar a. Now notice that H �= 0, as otherwise from
P̂l = HP̂k we have P̂l = 0, which is not possible due to
Lemma 7i. As H �= 0 and Pk has full row rank according to
(G1), then the scalar a in (13) cannot be zero. Therefore, we
have

Pl = 1

a
HPk (14)

5 According to (G3) the n −1 pointsX j corresponding to nonzero zero
vectors (λ̂k j , λ̂l j ) and the camera centre of Pl do not all lie on a twisted
cubic. This is a generic property as n−1 ≥ 6 (see Sect. 4.1). Notice that
here the matrices Pl and HPk respectively act as Q and Q̂ in Lemma 19.
The genericity conditions (G1–G3) provide the conditions (C1, C2) in
Lemma 19.

meaning R(Pl) ⊆ R(Pk). This possibility is excluded by
(G1, G2-2) and hence we get a contradiction. This completes
the proof. ��
Lemma 10 If (D1, D2) and (G1, G2) hold, then for at least
one view i we have rank(P̂i ) ≥ 2.

Proof To get a contradiction, assume that no matrix P̂i has
rank 2 ormore.As P̂i -s are nonzero (Lemma7i), we conclude
that all P̂i -s have rank 1. By (D2) and Lemma 7iii then each
row of �̂must have exactly one nonzero element. Moreover,
according to (D1), all columns of �̂ have at least one nonzero
element. These two facts imply that m ≥ n and that (by
relabeling of the views) the rows of �̂ can be permuted such
that its top n × n block is a diagonal matrix Dn×n with all
nonzero diagonal elements, that is

�̂ =
[
Dn×n

A

]
(15)

where Dn×n = diag(λ̂11, λ̂22, . . . , λ̂nn) and λ̂ j j �= 0 for all
j = 1, . . . , n. Using the relations P̂i X̂ j = λ̂i jPiX j , the
above gives⎡
⎢⎢⎢⎣
P̂1
P̂2
...

P̂n

⎤
⎥⎥⎥⎦

[
X̂1 X̂2 . . . X̂n

]
=

⎡
⎢⎢⎢⎣
v1

v2
. . .

vn

⎤
⎥⎥⎥⎦ (16)

where the 3m × n matrix on the right hand side is block-
diagonal with nonzero diagonal blocks v j = λ̂ j jP jX j �= 0
(as λ̂ j j �= 0 and P jX j �= 0 due to (G2-1)). This suggests
that on the right hand side there is a matrix of rank n. On the
other hand, the left hand side of (16) has rank 4 or less as
[X̂1 X̂2 . . . X̂n] is 4×n. This is a contradiction since n ≥ 8.��
Lemma 11 If (D1, D2) and (G1, G2) hold, then for at least
one view i we have rank(P̂i ) = 3.

Proof To get a contradiction, we assume that rank(P̂i ) ≤ 2
for all i . Consider an arbitrary view l. As rank(P̂l) ≤ 2, by
Lemma 7iii, we know that among λ̂l1, λ̂l2, . . . , λ̂ln at most
two are nonzero. By relabeling the points {X j } and accord-
ingly {X̂ j } if necessary, we can assume that λ̂l3 = λ̂l4 =
· · · = λ̂ln = 0. Now, by (D1), we know that the third col-
umn of �̂ is not zero and therefore, there must be a view k
for which λ̂k3 �= 0. Again, there are at most two nonzero
projective depths among λ̂k1, . . . , λ̂kn , and thus, at most one
nonzero depths among λ̂k4, . . . , λ̂kn . By relabeling the points
X4, . . . ,Xn and accordingly X̂4, . . . , X̂n , we can assume that
λ̂k5 = λ̂k6 = · · · = λ̂kn = 0. Notice that this relabeling
retains λ̂l3 = λ̂l4 = · · · = λ̂ln = 0.

Now, as n ≥ 8, we can consider the points X̂5, X̂6 and X̂7.
If these points are equal up to scale, then by Lemma 7ii, for
each view i , the depths λ̂i5, λ̂i6 and λ̂i7 are either all zero or
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all nonzero. In this case, by (D1), there must be a view i for
which λ̂i5, λ̂i6 and λ̂i7 are all nonzero. But this means that
rank(P̂i ) = 3 by Lemma 7iii, contradicting our assumption
rank(P̂i ) ≤ 2 for all i .

Thus, X̂5, X̂6 and X̂7 are not equal up to scale, and there-
fore, the dimension of span(X̂5, X̂6, X̂7) is at least 2. As
λ̂k3 �= 0 and λ̂k5 = λ̂k6 = λ̂k7 = 0, by Lemma 7ii
we have X̂3 /∈ N (P̂k) and span(X̂5, X̂6, X̂7) ⊆ N (P̂k).
This means that dim(span(X̂3, X̂5, X̂6, X̂7)) is at least 3.
Now, since λ̂l3 = λ̂l5 = λ̂l6 = λ̂l7 = 0, by Lemma
7ii, we can say span(X̂3, X̂5, X̂6, X̂7) ⊆ N (P̂l). Since
span(X̂3, X̂5, X̂6, X̂7) is either 3D or 4D, this means that
rank(P̂l) ≤ 1. As we chose l to be any arbitrary view, this
means that rank(P̂i ) ≤ 1 for all i . But according to Lemma
10 this cannot happen, and we get a contradiction. ��
Lemma 12 Assume that (D1, D2) and (G1, G2) hold, and
denote by ni the number of nonzero elements of the i-th row
of �̂. If for some view r we have nr ≥ n − 1 and ni = 1 for
all i �= r , then the matrix �̂ has to be cross-shaped.

Proof As m ≥ 2, there exist at least another view k other
than r . Assume the (only) nonzero element on the k-th row
of �̂ is λ̂kc. We will show that for any view l other than r and
k (if there is any) the only nonzero element in the l-th row of
�̂ has to be λ̂lc.

Consider a view l other than r and k. As n ≥ 8, and
there is exactly one nonzero element in the k-th row of �̂,
one nonzero element in the l-th row of �̂, and at most one
zero element in the r -th row of �̂, one can find three distinct
indices j1, j2, j3 such that λ̂r j1 �= 0, λ̂r j2 �= 0, λ̂r j3 �= 0,
λ̂k j1 = λ̂k j2 = λ̂k j3 = 0 and λ̂l j1 = λ̂l j2 = λ̂l j3 = 0. We have

P̂r span(X̂ j1, X̂ j2 , X̂ j3) = span
(
P̂r X̂ j1 , P̂r X̂ j2 , P̂r X̂ j3

)

= span
(
PrX j1 ,PrX j2 ,PrX j3

)
. (17)

where the product P̂r span(X̂ j1 , X̂ j2 , X̂ j3) represents the set
created by multiplying P̂r by each element of the subspace
span(X̂ j1 , X̂ j2 , X̂ j3). The last equality in (17) comes from
(12) and the fact that λ̂r j1 , λ̂r j2 and λ̂r j3 are nonzero. Accord-
ing to (G2-5), span(PrX j1,PrX j2 ,PrX j3) is 3D, and there-
fore, (17) suggests that span(X̂ j1 , X̂ j2 , X̂ j3) has to be also 3D.
From λ̂k j1 = λ̂k j2 = λ̂k j3 = 0 and λ̂l j1 = λ̂l j2 = λ̂l j3 = 0
respectivelywe conclude that span(X̂ j1 , X̂ j2 , X̂ j3) ∈ N (P̂k)

and span(X̂ j1 , X̂ j2 , X̂ j3) ∈ N (P̂l) (Lemma 7ii). As P̂k and
P̂l are both nonzero (Lemma 7i), and hence, of rank one
or more, and their null-spaces include a the 3D subspace
span(X̂ j1 , X̂ j2 , X̂ j3), it follows that N (P̂k) = N (P̂l) =
span(X̂ j1 , X̂ j2 , X̂ j3). This means that for any j , λ̂k j and λ̂l j

are either both nonzero or both zero. As λ̂kc �= 0, we must
have λ̂lc �= 0. Since this is true for any view l other than k
and r , we can say that for all views i �= r , the (only) nonzero
element is in the c-th column of λ̂ic.

By the assumption of the lemma, the r -th row of �̂ can
have either no zero element or one zero element. If it does
have one zero element, it has to be λ̂rc, as otherwise, if λ̂rc′ =
0 for some c′ �= c, the c′-th column of �̂ would be zero,
violating (D1). Now, we have the case where all elements of
�̂ are zero except those in the r -th row or the c-th column,
and among the elements in the r -th row or the c-th column,
all are nonzero except possibly λ̂rc. This means that �̂ is
cross-shaped. ��
Lemma 13 Under (D1–D3), (G1–G3) there exist two views
i and k such that rank(P̂i ) ≥ 2, rank(P̂k) ≥ 2 and
stack(P̂i , P̂k) has rank 4.

Proof Lemma 11 says that under our assumptions, there
exists at least one estimated camera matrix P̂i of rank 3.
With a possible re-indexing of the views, we can assume
that rank(P̂1) = 3. Now we consider two cases. The first
case is when among λ̂11, λ̂12, . . . , λ̂1n there exists at most
one zero element. In this case there must be at least another
view k with two or more nonzero elements in the corre-
sponding row of �̂, as otherwise, according to Lemma 12,
�̂ would be cross-shaped, violating (D3). By Lemma 7iii
then we have rank(P̂k) ≥ 2. Because at least for n − 1 point
indices j we have λ̂1 j �= 0, and thus (λ̂1 j , λ̂k j )

T �= 0, from
Lemma 9 we know that the row space of P̂k cannot be a
subset of the row space of P̂1. Therefore, as rank(P̂1) = 3

we have rank

[
P̂1
P̂k

]
= 4. This along with the fact that

rank(P̂1) = 3 ≥ 2 and rank(P̂k) ≥ 2 completes the proof for
this case.

The only case left is when there are at least two zero ele-
ments among λ̂11, λ̂12, . . . , λ̂1n . By a possible re-indexing
we can assume that λ̂11 = λ̂12 = 0. From Lemma 7(v) it
follows that X̂1 and X̂2 must be equal up to scale. According
to (D1), there must be at least one view k for which λ̂k1 �= 0.
As X̂1 and X̂2 are nonzero (Lemma 7i) and equal up to scale,
λ̂k1 �= 0 implies λ̂k2 �= 0 (by Lemma 7ii). This means that
rank(P̂k) ≥ 2 (Lemma 7iii). As we have rank(P̂1) = 3,

λ̂11 = 0 and λ̂k1 �= 0, by Lemma 7iv we get rank

[
P̂1
P̂k

]
= 4.

This completes the proof as we also have rank(P̂1) ≥ 2 and
rank(P̂k) ≥ 2. ��

Lemma 6 now follows directly from Lemmas 13 and 8.

4.4 Projective Equivalence for Two Views

The main result of this section is the following lemma:

Lemma 14 Under (G1, G2, G4) and (D1), If the fundamen-
tal matrix F (P̂k, P̂l) is nonzero for two views k and l, then
the two configurations (Pk,Pl , {X j }) and (P̂k, P̂l , {X̂ j }) are
projectively equivalent.
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Proof For simplicity, we take k = 1 and l = 2. The other
cases follow by relabeling the views. For each j we have
P̂1X̂ j = λ̂1 jP1X j and P̂2X̂ j = λ̂2 jP2X j , or equivalently

[
P̂1, P1X j 0
P̂2, 0 P2X j

] ⎛
⎝−X̂ j

λ̂1 j

λ̂2 j

⎞
⎠ = 0, j = 1, 2, . . . , n. (18)

As, X̂ j �= 0 (Lemma 7i) the 6 × 6 matrix on the left hand
side of (18) has a nontrivial null space and hence a vanishing
determinant. Define the function S : R4 → R as

S (X)
def= det

[
P̂1, P1X 0
P̂2, 0 P2X

]
. (19)

Using the properties of the determinant and Definition 4 of
the fundamental matrix, the above can be written as (Hartley
and Zisserman, 2004, Sect.17.1):

S (X) = XTPT
1 F̂12 P2X = XT SX (20)

where F̂12
def= F (P̂1, P̂2) is the fundamental matrix of P̂1

and P̂2 as defined in Definition 4, and S
def= PT

1 F̂12 P2. We
shall show thatS (X) has to be identically zero. To see this,
assume thatS (X) is not identically zero. Then the equation

S (X) = XT SX = 0 (21)

defines a quadric surface. From (18) we know S (X j ) = 0
for all j = 1, 2, . . . , n and therefore all the points {X j } lie
on this quadric surface. Also, for any pair of nonzero vectors
C1 ∈ N (P1) and C2 ∈ N (P2) (camera centres) one can
easily check that S (C1) = S (C2) = 0 and therefore, C1

and C2 also lie on the quadric surface.

As the fundamental matrix F̂12
def= F (P̂1, P̂2) is rank defi-

cient (Hartley and Zisserman 2004), we can have a nonzero
vector v ∈ N (F̂12). Since P2 has full row rank by (G1),
we can write v = P2Y for some Y ∈ R

4. Then, by taking
a nonzero vector C2 ∈ N (P2), one can easily check that
for any two scalars α and β we have S (αY + βC2) = 0.
This, plus the fact that Y and C2 are linearly independent
(as P2C2 = 0 �= v = P2Y), implies that the quadric surface
S (X) = 0 contains a projective line and hence is ruled.

Now, we have the case that the nonzero vectors C1 ∈
N (P1) and C2 ∈ N (P2) (camera centres) plus the points
X1,X2, . . . ,Xn all lie on a (proper or degenerate) ruled
quadric surface represented by (21). This contradicts the
genericity condition (G4). This only leaves the possibility
that S (X) is identically zero or equivalently, S + ST = 0,
that is

PT
1 F̂12 P2 + PT

2 F̂T
12 P1 = 0 (22)

Therefore, according to Lemma 4 (whose conditions hold by
(G1) and (G2-2)) the matrix F̂12 = F (P̂1, P̂2) is a multiple
ofF (P1,P2). As we have assumed thatF (P̂1, P̂2) �= 0, and
having (G1) and (G2-2), by Lemma 3 we know that (P̂1, P̂2)

is projectively equivalent to (P1,P2). As (G2-4) holds, using
the Triangulation Lemma 18 (see Appendix 1) we can prove
that (P1,P2, {X j }) and (P̂1, P̂2, {X̂ j }) are projectively equiv-
alent.6 ��

4.5 Projective Equivalence for All Views

Lemma 15 Under (G1–G4) and (D1, D2), if for two
views k and l the two configurations (Pk,Pl , {X j }) and
(P̂k, P̂l , {X̂ j }) are projectively equivalent, then for the whole
camera matrices and points, the configurations ({Pi }, {X j })
and ({P̂i }, {X̂ j }) are projectively equivalent.

Proof For convenience, take k = 1 and l = 2 (the other
cases follow by relabeling the views). First of all, notice that
as (P1,P2, {X j }) and (P̂1, P̂2, {X̂ j }) are projectively equiv-
alent, we have

P̂1 = τ1P1H, P̂2 = τ2P2H, (23)

X̂ j = ν jH
−1X j , j = 1, 2, . . . , n, (24)

for an invertible matrix H and nonzero scalars τ1, τ2 and
ν1, . . . , νn . From (G2) and (24), we can say that for any
four distinct point indices j1, . . . , j4, the points X̂ j1 , X̂ j2 ,
X̂ j3 and X̂ j4 span a 4-dimensional space. Therefore, for each
view i at most 3 depth scalars λ̂i j can be zero, as otherwise,
if we have λ̂i j1 = λ̂i j2 = λ̂i j3 = λ̂i j4 = 0 it means that
X̂ j1 , X̂ j2 , X̂ j3 , X̂ j4 ∈ N (P̂i ) (Lemma 7ii). This, however,
implies P̂i = 0 contradicting Lemma 7i.

Now, since we know that for each view i we have at most
3 zero depths λ̂i j , from n ≥ 8, we know that there are more
than 3 nonzero depths λ̂i j at each row i . Therefore, according
to Lemma 7iii, we can say that rank(P̂i ) = 3 for all i .

Now, notice that as (P1,P2, {X j }) and (P̂1, P̂2, {X̂ j }) are
projectively equivalent, from Lemma 1 (whose conditions
hold by (G1, G2) and their consequences (G2-1) and (G2-3))
we have λ̂1 j �= 0 and λ̂2 j �= 0 for all j = 1, 2, . . . , n. Now,
for any view k ≥ 3, consider the pair of matrices (P̂1, P̂k).
We have rank(P̂k) = rank(P̂1) = 3 and moreover, the vector
(λ̂1 j , λ̂k j ) is nonzero for all j . Therefore, by Lemma 9we get
rank

(
stack(P̂1, P̂k)

) = 4. After that, by Lemma 13 it follows
that the fundamental matrix F (P̂1, P̂k) is nonzero. Then by
Lemma 14 we can say that (P1,Pk, {X j }) and (P̂1, P̂k, {X̂ j })
are projectively equivalent. Therefore,

P̂1 = τ ′
1P1G, P̂k = τ ′

kPkG, (25)

X̂ j = ν′
jG

−1X j , j = 1, 2, . . . , n, (26)

for an invertible matrix G and nonzero scalars τ ′
1, τ ′

k and
ν′
1, ν

′
2, . . . , ν

′
n . From (24) and (26) we have

GH−1X j = ν′
j

ν j
X j = α jX j (27)

6 This can be done similarly to (Hartley and Zisserman, 2004, Theo-
rem 10.1), so we do not repeat it here.

123



100 Int J Comput Vis (2015) 115:87–114

where α j
def= ν′

j/ν j . This says that the points X1, . . . ,Xn are

eigenvectors ofGH−1. ConsiderX1,X2, . . . ,X5. They are all
eigenvectors of the 4× 4 matrix GH−1, each associated with
a nonzero eigenvalue α j = ν′

j/ν j , and according to (G2), no
four eigenvectors among them are linearly dependent. This
can only happen when GH−1 ∈ R

4×4 has a 4D eigenspace,
and therefore, all eigenvalues of GH−1, including α j -s, are
equal to a common nonzero scalar α. Thus, we must have
GH−1 = αI or G = αH. This, plus (23) and (25) gives
τ1 = ατ ′

1. By using α = α j = ν′
j/ν j and τ1 = ατ ′

1, and

defining τk
def= ατ ′

k we have

P̂1 = τ1P1H, P̂k = τkPkH, (28)

X̂ j = ν jH
−1X j , j = 1, 2, . . . , n, (29)

Since the above is true for all k = 3, . . . , n, and also for k = 2
by (23), we conclude that the two configurations ({Pi }, {X j })
and ({P̂i }, {X̂ j }) are projectively equivalent. ��

5 Minimality of (D1–D3) and Cross-shaped
Configurations

From depth assumptions (D1–D3) we see that in order to
get the projective reconstruction working we require that
none of the rows or columns of the depth matrix �̂ = [λ̂i j ]
are zero and that �̂ is not cross-shaped. One might wonder
whether projective reconstruction is possible under weaker
constraints on the estimated depth matrix. For example, what
happens if we just require that the matrix has no zero rows
and no zero columns.

In this section we shall show that, in some specific sense,
(D1–D3) is a minimal assumption for projective reconstruc-
tion. However, by this we do not mean that it is the weakest
possible constraint that guarantees the uniqueness of projec-
tive reconstruction up to projectivity. But, it is minimal in
the sense that if any of (D1), (D2) or (D3) is removed, and
no extra conditions are added, the resulting constraints can-
not rule out false solutions to projective reconstruction. This
shows that the false solutions to the factorization problem
�̂ � [xi j ] = P̂ X̂ are not limited to the trivial cases of having
depth matrices with some zero rows or columns.

It is trivial to demonstrate degenerate solutions created by
violating (D1). For example, we can set λ̂1k = λ̂2k = . . . =
λ̂mk = 0 and X̂k = 0, as it satisfies P̂i X̂k = λ̂ikxik . For the
rest of variables we can have P̂i = Pi for all i and X̂ j = X j

and λ̂i j = λi j for all j �= k. Similarly, if we relax (D2)
by allowing the l-th row of �̂ to be nonzero, we can have a
configuration in which P̂l = 0.

The more difficult job is to show that the relaxation of
(D3) allows a projectively non-equivalent setup. Relaxing
this condition means that �̂ is cross-shaped. We show that
in this case for any configuration of the true camera matrices

Pi , points X j and depths λi j , we can find a non-equivalent
setup ({P̂i }, {X̂ j }, {λ̂i j }) satisfying the projection equations.

Consider m arbitrary 3 × 4 projection matrices P1,P2,
. . . ,Pm and an arbitrary set of points X1,X2, . . . ,Xn ∈ R

4

(with m and n arbitrary), giving the image points xi j through
the relation λi jxi j = PiX j for nonzero scalars λ̂i j . Now, for
any arbitrary view r and point index c we can take

λ̂ic = λic, i = 1, 2, . . . , m, (30)

λ̂r j = λr j , j = 1, 2, . . . , n, (31)

λ̂i j = 0, i �= r, j �= c. (32)

P̂r = Pr , (33)

P̂i = PiXcC̄T
r i �= r (34)

X̂c = (
I − C̄r C̄T

r

)
Xc + C̄r , (35)

X̂ j = (
I − C̄r C̄T

r

)
X j j �= c. (36)

where C̄r is the normalized camera centre ofPr (a unit vector
in the null-space of Pr ). Notice that the matrix I − C̄r C̄T

r is
the orthogonal projection onto the row space of Pr . Now, it
can be easily checked that

P̂i X̂ j = PiX j = λi jxi j = λ̂i jxi j if i = r or j = c (37)

P̂i X̂ j = 0 = 0 · xi j = λ̂i jxi j if i �= r and j �= c (38)

Notice that to derive (37) one has to check three cases sep-
arately: first i = r, j = c, second i = r, j �= c, and third
i �= r, j = c. You can see that with this choice we have
P̂i X̂ j = λ̂i jxi j for all i and j . It is obvious that ({P̂i }, {X̂ j })
is not projectively equivalent to ({Pi }, {X j }), as, for example,
for any i �= r we have rank(P̂i ) = 1 regardless of the value
of Pi . From (30–32) it follows that

�̂ =
⎡
⎣0 1r−1 0
1T

c−1 1 1T
n−c

0 1m−r 0

⎤
⎦ ◦ � (39)

where the zero matrices denoted by 0 are of compatible size
and ◦ denotes the Hadamard (element-wise) product. This
shows that �̂ = [λ̂i j ] is a nonzero-centred cross-shaped
matrix centred at (r, c), according to Definition 5.

One can observe that instead of (35) we can give any
arbitrary value to X̂c, provided that it is not perpendicular to
Cr , and still get a setup with a cross-shaped depth matrix.
Especially, we leave it to the reader to check that by taking
X̂c equal to C̄r instead of (I − C̄r C̄T

r )Xc + C̄r in (35), we
have a setup in which the depth matrix �̂ is arranged as (30–
32) with the exception that the central element λ̂rc is zero,
that is

�̂ =
⎡
⎣0 1r−1 0
1T

c−1 0 1T
n−c

0 1m−r 0

⎤
⎦ ◦ �. (40)

This means that �̂ is a zero-centred cross-shaped matrix.
Fig. 2 illustrates such a solution for the case of r = 1, c = 1.
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Obviously for any pair of vectors τ ∈ R
m and ν ∈ R

n

with all nonzero entries, we can find a new configuration
with �̂′ = diag(τ ) �̂ diag(ν), P̂′

i = τi P̂i and X̂′
j = ν j X̂ j ,

satisfying P̂′
i X̂

′
j = λ̂′

i jxi j (as (τi P̂i )(ν j X̂ j ) = (τiν j λ̂i j ) xi j ).
Notice that, according to the above discussion, both configu-
rations (39) and (40) can be obtained for any configuration of
m views and n points, and for any choice of r and c. We also
know from Lemma 5 that any m × n cross-shaped matrix is
diagonally equivalent to either (39) or (40) for some choice
of r and c. Putting all these together we get the following
lemma.

Lemma 16 Consider any configuration of m camera matri-
ces and n points ({Pi }, {X j }) giving the image points {xi j }
through the relations λi jxi j = PiX j with nonzero scalars
λi j �= 0. Then for any cross-shaped matrix �̂ = [λ̂i j ], there
exists a configuration ({P̂i }, {X̂ j }), such that the relation
λ̂i jxi j = P̂i X̂ j holds for all i = 1, . . . , m and j = 1, . . . , n.

This lemma is used in the next session as a useful test for the
assessment of depth constraints. It says that if a constraint
allows any cross-shaped structure for the depth matrix, then
it allows for a false solution.

6 The Constraint Space

In this section we will have a closer look at the depth con-
straints used in factorization-based projective reconstruction.
Consider a set of m ≥ 2 projection matrices P1, . . . ,Pm ∈
R
3×4 and a set of n ≥ 8 points X1, . . . ,Xn ∈ R

4, generi-
cally configured in the sense of (G1-G4) and projecting into
a set of image points xi j ∈ R

3 according to λi jxi j = PiX j .
Given a constraint space C ⊆ R

m×n we want to assess the
solutions to the problem

find
�̂, P̂3m×4, X̂4×n

s.t. �̂ � [xi j ] = P̂ X̂, �̂ ∈ C (41)

in terms of whether ({P̂i }, {X̂ j }) is projectively equivalent
to ({Pi }, {X j }), where P̂ = stack(P̂1, P̂2, · · · , P̂m), X̂ =
[X̂1X̂2 · · · X̂n] and �̂ � [xi j ] = P̂ X̂ represents all the rela-
tions λ̂i jxi j = P̂i X̂ j in matrix form, as described for (2) and
(3). By P̂3m×4 and X̂4×n we respectively mean P̂ ∈ R

3m×4

and X̂ ∈ R
4×n .

Notice that, it is not sufficient that every �̂ in C satis-
fies depth assumptions (D1–D3). The constraint space must
also be inclusive, that is, it must make possible the existence
of {P̂i } and {X̂ j } for which �̂ � [xi j ] = P̂ X̂ holds for all
i and j . In other words, it must guarantee that (41) has at
least one solution. One can check that for any �̂ diagonally
equivalent to the true depth matrix �, there exists a setup
({P̂i }, {X̂ j }), defined by P̂i = τiPi , X̂ j = ν jX j , which is
projectively equivalent to ({Pi }, {X j }) and satisfies the rela-
tion �̂�[xi j ] = P̂ X̂. Therefore, for (41) to have at least one

solution, it is sufficient that the constraint space C allows at
least one �̂which is diagonally equivalent to�. Actually, this
requirement is also necessary, since, according to Lemma 1,
if there exists a setup ({P̂i }, {X̂ j }) projectively equivalent to
({Pi }, {X j })which satisfies the relations λ̂i jxi j = P̂i X̂ j , then
�̂ must be diagonally equivalent to �. As we do not know
the true depths � beforehand, we would like the constraint
�̂ ∈ C to work for any initial value of depths �. Hence, we
need it to allow at least one diagonally equivalent matrix for
every depth matrix � whose entries are all nonzero. If we
have some prior knowledge about the true depth matrix � in
the form of � ∈ P for some set P ⊆ R

m×n , the constraint
is only required to allow at least one diagonally equivalent
matrix for every depth matrix � in P . For example, in many
applications it is known a priori that the true depths λi j are all
positive. In such cases P is the set of m × n matrices with all
positive elements. The concept of inclusiveness, therefore,
can be defined formally as follows:

Definition 6 Given a set P ⊆ R
m×n representing our prior

knowledge about the possible values of the true depth matrix
(� ∈ P), the constraint space C ⊆ R

m×n is called inclusive
if for every m × n matrix � ∈ P , there exists at least one
matrix �̂ ∈ C which is diagonally equivalent to �.

Definition 7 The constraint space C ⊆ R
m×n is called

uniquely inclusive if for every m × n matrix � ∈ P , there
exists exactly one matrix �̂ ∈ C which is diagonally equiv-
alent to �.

In this paper whenever we use the term inclusive without
specifying P , we mean the general case of P being the set of
allm×n matriceswith no zero element.Wewill only consider
one other case where P is the set of all m × n matrices with
all positive elements.

In addition to inclusiveness as a necessary property for
a constraint, it is desirable for a constraint to exclude false
solutions. This property can be defined as follows:

Definition 8 For m≥2 and n≥8, a constraint space C ⊆
R

m×n is called exclusive7 if every �̂ ∈ C satisfies (D1-D3).

Now, we can present a class of constraints under which
solving problem (41) leads to projective reconstruction:

Definition 9 Given integersm ≥ 2 and n ≥ 8, and a set P ⊆
R

m×n representing our prior knowledge about the true depth

7 In fact, the term exclusive might not be a precise term here, as (D1–
D3) holding for all �̂ ∈ C is just a sufficient condition for a constraint
to exclude false solutions.While, according to Lemma 16, (D3) holding
for all �̂ ∈ C is necessary for ruling out false solutions, (D1) and (D2)
holding for all members of C is not necessary for this purpose. This is
because there might exist some �̂ ∈ C for which (D1) or (D2) do not
hold, but it is excluded by �̂ � [xi j ] = P̂X̂. This is why in Sect. 5 we
said that (D1–D3) are minimal in a certain sense.
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matrix, we call the constraint space C ⊆ R
m×n (uniquely)

reconstruction friendly if it is both exclusive and (uniquely)
inclusive with respect to P .

We will apply the same terms (inclusive, exclusive, recon-
struction friendly) to the constraints themselves (as rela-
tions), andwhat wemean is that the corresponding constraint
space has the property. The following proposition follows
from the discussion above and Theorem 1.

Proposition 1 Consider a setup of m ≥ 2 camera matrices
and n ≥ 8 points ({Pi }, {X j }) generically configured in the
sense of (G1–G4), and projecting into the image points {xi j }
according to λi jxi j = PiX j with nonzero scalars λi j . If C
is a reconstruction friendly constraint space, then problem
(41) has at least one solution and for any solution (�̂, P̂, X̂),
the configuration ({P̂i }, {X̂ j }) is projectively equivalent to
({Pi }, {X j }), where the matrices P̂i ∈ R

3×4 and the points
X̂ j ∈ R

4 come from P̂ = stack(P̂1, P̂2, · · · , P̂m) and X̂ =
[X̂1X̂2 · · · X̂n]. If C is uniquely reconstruction friendly, then
there is a unique depth matrix �̂ as the solution to (41).

Notice, that the uniqueness is with respect to �̂, however
a certain solution �̂ gives a class of camera matrices and
points, namely (P̂H,H−1X̂) where H is an arbitrary 4 × 4
invertible matrix.

Being reconstruction friendly is a desirable property for a
constraint. However, this does notmean that other constraints
are not useful. There can be other ways of avoiding false
solutions, including choosing a proper initial solution for
iterative factorization algorithms or trying different initial
solutions or different forms of a certain class of constraints.
What is important for reconstruction unfriendly constraints
is to be aware of possible false solutions and being able to
determine whether the algorithm has fallen into any of them.

Besides giving correct solutions to (41), there are other
desirable properties for a constraint space.Weare specifically
talking about the propertiesmaking the constraint usablewith
practical algorithms. For example, when dealing with itera-
tive algorithms that converge to the final solution, it is essen-
tial that the constraint space C is closed. This is because for
a non-closed constraint space, even if the sequence of solu-
tions throughout all iterations satisfy all the constraints, they
may converge to something outside C .

In the next subsections, to demonstrate how the theory we
developed can be applied to the analysis of depth constraints,
we examine some of the depth constraints used in the litera-
ture on factorization-based algorithms. It turned out that all
of the constraints we could find in the literature either have a
compact constraint space or are in the form of linear equali-
ties. We consider each of these classes in a separate subsec-
tion. For each class, in addition to reviewing the constraints
in the literature, we introduce a new class of constraints with
extra desirable properties. This gives the reader an idea as to

how our theory can be exploited for the design of new con-
straints. In particular, in Sect. 6.2.3, we introduce a class of
linear equality constraints which are reconstruction friendly.

6.1 Compact Constraint Spaces

6.1.1 The Transportation Polytope Constraint

We consider the constraint used in Dai et al. (2010, 2013),
which requires �̂ to have prescribed row and column sums
and to have all nonnegative elements. This can be represented
as

�̂1n = u, �̂T 1m = v, (42)

�̂ � 0, (43)

where the vectors u ∈ R
m and v ∈ R

n are such that ui > 0
for all i , v j > 0 for all j and

∑m
i=1 ui = ∑n

j=1 v j . The
relation � means element-wise greater or equal. Notice that
although (42) introduces m + n constraints, only m + n − 1
of them are linearly independent. In Angst et al. (2011) it has
been noted that the corresponding constraint space is known
as the Transportation Polytope. Thanks to a generalization
of the well-known Sinkhorn’s Theorem (Sinkhorn 1964) for
rectangular matrices (Sinkhorn 1967), one can say that for
every m ×n matrix � with all positive elements and any two
vectors u ∈ R

m and v ∈ R
n with all positive entries, there

exists a matrix �̂ which is diagonally equivalent to � and
satisfies the row and column sums constraint (42). Therefore,
(42) is inclusive if the true depth matrix � is known to have
all positive values, that is the set P representing the prior
knowledge in Definition 9 is equal to the set of all m × n
matrices with all positive elements. It is also obvious that the
constraint (42) enforces all rows and all columns of �̂ to be
nonzero. Hence, every matrix in the constraint space satisfies
(D1, D2). To see if the constraint is exclusive it only remains
to examine whether or not constraints (42) and (43) allow for
any cross-shaped depth matrix.

Assume that �̂ is a cross-shaped matrix centred at (r, c),
as in Fig. 6. Then the elements of �̂ are uniquely determined
by (42) as follows: λ̂ic = ui for all i �= r , λ̂r j = v j for
all j �= c and λ̂rc = ur − ∑

j �=c v j = vc − ∑
i �=r u j (the

latter equality is true due to
∑m

i=1 ui = ∑n
j=1 v j ). This has

been illustrated in Fig. 6. It is easy to check at all elements of
�̂ are nonnegative except possibly λ̂rc. Therefore, to satisfy
(43), we must have ur − ∑

j �=c v j ≥ 0. Therefore, if for any
choice of r and c, ur − ∑

j �=c v j ≥ 0 is satisfied, then the
constraints (42) and (43) allow for a cross-shaped structure
and hence, according to Lemma 16, allow a false solution to
(41). Otherwise, (42) and (43) together give a reconstruction
friendly constraint space, and hence, do not allow any false
solution according to Proposition 1.
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Fig. 6 A 4 × 6 cross-shaped depth matrix �̂ centred at (r, c) with
r = 3, c = 4. The blank parts of the matrix indicate zero elements.
The only way for the rows and columns of the matrix to sum up to the
marginal values {ui } and {v j } is to have λ̂ic = ui for i �= r , λ̂r j = v j

for j �= c, and λ̂rc = ur − ∑
j �=c v j = vc − ∑

i �=r u j .

As a major example, if we take u = n1m and v = m1n

as chosen in (Dai et al. 2010, 2013), for any choice of r and
c we have ur − ∑

j �=c v j = m + n − mn. This is always
smaller than zero by our assumption of having two or more
views (m ≥ 2) and 8 or more points (n ≥ 8). Therefore, with
the choice of u = n1m and v = m1n , (42) and (43) give
a reconstruction friendly constraint space. The disadvantage
of this constraint is that it includes inequalities. This makes it
difficult to implement fast and efficient algorithms for large
scale problems.

6.1.2 Fixing the Norms of Rows and Columns

As suggested by Triggs (1996) and Hartley and Zisserman
(2004), after each iteration of a factorization-based algo-
rithm, one can alternatingly scale row and columns of �̂

to have prescribed norms. Here, we analyse this case for the
cases where the norms are l p-norms for some real number
p ≥ 1 (being real implies p < ∞). Consider the matrix

	̂
def= [|λ̂i j |p], whose i j-th element is equal to |λ̂i j |p. If all

λ̂i j -s are nonzero, all elements of 	̂ are positive, and hence,
alternatingly scaling row and columns of �̂ to have pre-
scribed l p-norms is equivalent to alternatingly scaling rows
and columnsof 	̂ to haveprescribed sums, that is applying the
Sinkhorn’s algorithm to 	̂ (Sinkhorn 1964, 1967), making
	̂ converge to a matrix with the desired marginal sums and
hence making �̂ converge to a matrix with given row and
column l p-norms. Therefore, applying this iterative proce-
dure after every iteration of a factorization-based algorithms
keeps �̂ in the following constraint space

n∑
j=1

|λ̂i j |p = ui , i = 1, . . . , m (44)

m∑
i=1

|λ̂i j |p = v j , j = 1, . . . , n (45)

for vectors u = [u1, . . . , um]T and v = [v1, . . . , vn]T with
all positive elements. Notice that u and vmust be taken such
that

∑m
i=1 ui = ∑n

j=1 v j . The above constrains 	̂ = [|λ̂i j |p]
as

	̂1n = u, 	̂T 1m = v. (46)

Moreover, 	̂ � 0 is automatically satisfied by the definition

of 	̂. For the true depths λi j , take 	
def= [|λi j |p] and notice

that it has all positive elements as λi j -s are all nonzero. Thus,
by applying the generalization of the Sinkhorn’s theorem to
rectangular matrices (Sinkhorn 1967) we can say that there
exists vectors τ = [τ1, τ2, . . . , τm]T , ν = [ν1, ν2, . . . , νn]T

with all positive entries such that 	̂ = diag(τ ) 	 diag(ν)

satisfies (46). Thus, for τ ′ = [τ 1/p
1 , τ

1/p
2 , . . . , τ

1/p
m ]T , ν′ =

[ν1/p
1 , ν

1/p
2 , . . . , ν

1/p
n ]T , thematrix �̂ = diag(τ ′)� diag(ν′)

satisfies (44) and (45). Therefore, (44) and (45) together give
an inclusive constraint space. To check for (D1–D3), notice
that 	̂ and �̂ have a common zero pattern. Therefore, (D1–
D3) are satisfied for �̂ if and only if they are satisfied for
	̂. By considering (46) and 	̂ � 0, with the same discus-
sion as the previous subsection we can say that (44) and
(45) form a reconstruction friendly constraint if and only if
ur −∑

j �=c v j ≥ 0 for all r and c. Specifically, if one requires
rows to have common norms and also columns to have com-
mon norms, as suggested by Triggs (1996) and Hartley and
Zisserman (2004), then we have u = αn1m and v = αm1n

for some nonzero scaling factor α. A similar argument as in
the previous subsection shows that with this choice of u and
v, fixing l p-norms of rows and columns results in a recon-
struction friendly constraint space.

The problem with (46) as a constraint is that even simple
target functions are hard to optimize subject to it. Implement-
ing this constraint as a balancing stage after every iteration of
a factorization-based algorithm can prevent us from having
a descent move at every iteration.

6.1.3 Fixed Row or Column Norms

Heyden et al. (1999) uses the constraint of fixing the l2-norms
of the rows of the depthmatrix. This constraint can bewritten
as

n∑
j=1

|λ̂i j |2 = ui , i = 1, . . . , m (47)

for fixed positive numbers ui . Indeed, this constraint is inclu-
sive as for every matrix � with all nonzero rows one can
scale the rows to obtain a matrix �̂ = diag(τ )� with
prescribed row norms. Every matrix �̂ satisfying this con-
straint has nonzero rows. However, the constraint allows for
zero columns and cross-shaped solutions. A similar situation
holds for Mahamud et al. (2001) where the columns of the
depth matrix are required to have a unit weighted l2-norm.

The disadvantage of these constraints is allowing for zero
columns (or zero rows in the second case) and cross-shaped
structures. The advantage is that they can be efficiently
implemented with iterative factorization-based algorithms,
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by solving a number of eigenvalue problems at every iteration
(Mahamud et al. 2001). The compactness of the constraint
space contributes to the proof of special convergence prop-
erties for special factorization-based algorithms (Mahamud
et al. 2001).

6.1.4 Fixing Norms of Tiles

In this subsection we show how the fixed row and fixed col-
umn constraints can be somehow combined to make more
desirable constraints. This is done by tiling the depth matrix
�̂ with row and column vectors, and requiring each tile to
have a unit norm (or a fixed norm in general). Examples of
tiling can be seen in Fig. 4 at p. 2.

The process of tiling is done as follow: It starts by putting
a single tile (row vector or column vector) in the matrix. We
then keep adding tiles such that the tiled area stays rectan-
gular. At every stage either a horizontal tile (row vector) is
vertically concatenated or a vertical tile (column vector) is
horizontally concatenated to the tiled area,with the constraint
that the tiled region remains rectangular. The process is con-
tinued until the whole �̂ is tiled. This process is illustrated
in Fig. 7. By tiling the matrix in this way, the corresponding
constraint will be inclusive. We do not prove this formally
here, instead, we show how the proof is constructed by giving
an example in Fig. 7.

(a) (b)

Fig. 7 Examples of the procedure of tiling a 4 × 5 depth matrix. The
numbers show the order in which the tiles are placed. In these examples,
we start by placing a 2 × 1 tile on the left bottom of the matrix. The
tiles are added such that the tiled region at any time remains a rectangle.
Having an m′ ×n′ rectangular area tiled already, we either concatenate
an m′ ×1 vertical block to its left, or a 1×n′ block to its top. The claim
is that with this procedure the constraint of every tile having a unit (or
a fixed positive) norm is inclusive. This can be shown as follows: We
start by taking �̂ = �, and keep updating �̂ by scaling one of its rows
or one of its columns at a time until it satisfies all the constraints, that is
all of its tiles have a unit norm. For matrix a, the updates can be done as
follows: choose arbitrary nonzero values for τ3 and τ4 and apply them
to the matrix (multiply them respectively by the 3rd and 4th row of
�̂). Now, choose ν5 such that tile 1 has a unit norm and apply it. Then
choose τ2 and apply it such that tile 2 has a unit norm. Now, choose and
apply ν4, ν3 and ν2 such that tiles 3, 4, 5 have a unit norm, and finally
choose and apply τ1 and then ν1 to respectively make tiles 6 and 7 have
a unit norm. The procedure for b is similar, but the order of finding τi -s
and ν j -s is as follows: τ3, τ4, ν5, ν4, τ2, ν3, ν2, ν1, τ1

Figure 4 at p. 2 shows six examples of tiling a 4× 6 depth
matrix. Looking at Fig. 4a one can see that for an m × n
matrix, if the tiling begins by placing a 1× n block, all other
tiles have to be also 1×n and the constraint is reduced to the
case of requiring fixed row norms, a special case of which
was discussed in the previous subsection. Similarly, if the first
tile is m × 1, the constraint amounts to fixing the norms of
columns of the depth matrix Fig. 4b. But the case of interest
here is when the first tile is a 1 × 1 block, like Fig. 4c–f. In
this case, the constraint rules out having zero rows or zero
columns in the depthmatrix. It does not rule out cross-shaped
structures, but it constrains the central position of the cross
to the location of 1 × 1 tiles (see Fig. 4c–f).

If the norms used for the constraints areweighted l2-norms
with properly chosen weights, an efficient factorization algo-
rithm can be implemented. For more details see Sect. 9. Sim-
ilar convergence properties as in Mahamud et al. (2001) can
be proved for these constraints given a proper algorithm.

6.2 Linear Equality Constraints

6.2.1 Fixing Sums of Rows and Columns

In this subsection, we consider constraining �̂ to have pre-
scribed row and column sums, that is

�̂1n = u, �̂T 1m = v, (48)

for two m- and n-dimensional vectors u and v with all
nonzero entries for which

∑m
i=1 ui = ∑n

j=1 v j . This is sim-
ilar to the transportation polytope constraint introduced in
Sect. 6.1.1, with the only difference that it does not require
�̂ � 0. Thus, it has the advantage of allowing for more effi-
cient algorithms compared to the case where inequality con-
straints are also present. We can see this in Dai et al. (2013),
where the inequality constraint �̂ � 0 has been disregarded
when proposing fast and scalable algorithms.

With a similar argument as was made in Sect. 6.1.1, one
can say that (48) gives an inclusive constraint space when the
true depthmatrix� is known to have all positive elements and
u and v are chosen to have all positive entries. The constraint
also enforces all rows and columns of �̂ to be nonzero.

However, as noted in Sect. 6.1.1, a cross-shaped matrix
with any arbitrary centre (r, c) whose elements are chosen
as λ̂ic = ui for all i �= r , λ̂r j = v j for all j �= c and λ̂rc =
ur −∑

j �=c v j = vc −∑
i �=r u j , satisfies (48). Therefore, by

Lemma 16 we can say that it always allows for cross-shaped
solutions.

Thebad thing about this typeof constraint is that there is no
limitation as to where the cross-shaped structure can be cen-
tred. But the good news is that, according to our experiments
(Sect. 9), it can be hard for an iterative algorithm to converge
to a cross-shaped solution with the choice of u = n1m and
v = m1n . This could be explained as follows: As noted in
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(a) (b)

Fig. 8 Examples of 4 × 6 matrices, both satisfying �̂1n = n1m and
�̂T 1m = m1n . a is a typical initial state for iterative factorization-based
algorithm, b is the only cross-shape structure centred at (2,4) allowed
by the constraint. If the true depths are all positive, it can be harder for
an algorithm to converge from (a) to (b), compared to converging to a
correct solution with all positive elements

Sect. 6.1.1, if any cross-shaped structure occurs, the central
element will have to be equal to m + n − mn. Under our
assumptions (m ≥ 2, n ≥ 8), this is a negative number and
its absolute value grows linearly both with respect to m and
n. This can make it hard for the algorithm to converge to a
cross-shaped structure starting from an initial solution like a
matrix of all ones. This has been depicted in Fig. 8 for a 4×6
matrix, where the central element of the cross has to be −14.
For a fairly small configuration of 20-views and 8-points this
value is −132. This suggests that as the dimension of the
depth matrix grows, it is made harder for the algorithm to
converge to a cross-shaped solution.

6.2.2 Fixing Elements of One Row and One Column

Here, we consider the constraint of having all elements of a
specific row and a specific column of the depth matrix equal
to one, as used in Ueshiba and Tomita (1998). This means
requiring λ̂r j = 1 for all j , and λ̂ic = 1 for all i . This can be
represented as

M ◦ �̂ = M. (49)

where ◦ represents the Hadamard (element-wise) product
and M is a mask matrix, having all elements of a specific
row r and a specific column c equal to 1, and the rest of its
elements equal to zero. This means that the mask matrix
M is a cross-shaped matrix centred at (r, c). We leave it
to the reader to check that this is an inclusive constraint,
and also every matrix in the constraint space satisfies depth
assumptions (D1) and (D2). However, one can easily check
that, as M itself is a cross-shaped matrix, the constraint (49)
allows for cross-shaped depth matrices. Therefore, by using
the above constraint problem (41) can admit false solu-
tions.

One advantage of this type of constraint is its element-
wise nature. This can make the formulation of iterative fac-
torization algorithmsmuch easier compared to other types of
constraints. The other advantage is that there is only a single
possibility about where the cross in centred, which is the cen-
tre of cross in M. Therefore, the occurrence of a cross-shaped

solution can be easily verified. In the case where a cross-
shaped solution happens, one can try rerunning the algorithm
with a different mask M whose cross is centred elsewhere.

6.2.3 Step-like Mask Constraint: A Linear Reconstruction
Friendly Equality Constraint

This section demonstrates a group of linear equality con-
straints which are reconstruction friendly. Like the previous
subsection, the linear equalities are in the form of fixing ele-
ments of the depthmatrix at certain sites. Therefore, it enjoys
all the benefits of elementwise constraints.

To present the constraint, we first define the concept of
a step-like mask. Consider an m × n matrix M. To make a
step-like mask, we have a travel starting from the upper-
left corner of the matrix (location 1, 1) and ending at its
lower-right corner (location m, n). The travel from (1, 1) to
(m, n) is done by taking m + n − 2 moves, such that at
each move we either go one step to the right or go one step
down. In total, we will make m − 1 downward moves and
n − 1 moves to the right. Therefore, the travel can be made
in (m+n−2)!/((m−1)! (n−1)!) ways. After doing a travel,
we make the associated step-like mask by setting to 1 all
(m +n −1) elements of M corresponding to the locations that
we have visited and setting to zero the rest of the elements.
Examples of step-like masks are shown in Fig. 3 at p. 2 for
m = 4 and n = 6.

Notice that a step-like mask has m + n − 1 nonzero ele-
ments which are arranged such that the matrix has no zero
rows and no zero columns. An exclusive step-like mask is
defined to be a step-like mask which is not cross-shaped (see
Fig. 3). With an m × n step-like mask we can put linear
equality constraints on a depth matrix �̂ as follows

M ◦ �̂ = M. (50)

where ◦ represents the Hadamard (element-wise) product. In
other words, it enforces the matrix �̂ to have unit elements
at the sites where M has ones.

One can show that with an exclusive step-like mask M,
the constraint (50) is uniquely reconstruction friendly. As
the constraints enforce �̂ to be nonzero at the sites where M
has ones, it is easy to see that if �̂ satisfies (50), it satisfies
(D1–D3) and hence the constraint space is exclusive. There-
fore, we just have to show that for each matrix � with all
nonzero elements, there exists exactly one diagonally equiv-
alent matrix �̂ satisfying (50). The proof is quite simple,
but we do not provide it here. Instead, we explain the idea
of the proof by giving an example for a special case in Fig.
9.

One can think of many ways to extend the step-like con-
straints. For example, one can fix the desired elements of
�̂ to arbitrary nonzero values instead of ones. The reader
can also check that if M is obtained by applying any row
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Fig. 9 An example of a 3 × 4 depth matrix � (left) and an exclusive
step-like mask M = [mi j ] (right). The elements λi j of � are underlined
at the sites where mi j = 1, which is where λ̂i j -s are constrained to
be equal to 1. The aim is to show that there exists a unique �̂ in the
form of �̂ = diag(τ ) � diag(ν)whose elements are 1 at the sites where
M has ones. Equivalently M ◦ �̂ = M. This can be done as follows:
Start by taking �̂ = �, and keep updating �̂ by scaling its rows and
columns, one at a time, until it satisfies the constraint M ◦ �̂ = M. For
the above matrix, we start by assigning an arbitrary nonzero value to
τ1 and multiplying τ1 by the first row of �̂. Then we choose ν1 and
ν2 and multiply them by the corresponding columns of �̂ such that
λ̂11 = 1 and λ̂12 = 1. Now, we choose τ2 and τ3 and multiply them by
the corresponding rows of �̂ such that we have λ̂22 = 1 and λ̂32 = 1.
Finally, we choose ν3 and ν4 and multiply them by the corresponding
columns of �̂ to have λ̂33 = 1 and λ̂34 = 1. Notice that in this process,
except τ1 which is chosen arbitrarily, there is only one choice for each
of the entries τ2, τ3, ν1, ν2, ν3, ν4 for each choice of τ1. Because, given
any pair of vectors (τ , ν), all pairs of vectors (ατ , α−1ν) for all α �= 0
have the same effect, this means that given the matrices � and M, the
choice of �̂ = diag(τ ) � diag(ν) is unique

and column permutation to an exclusive step-like mask,
then the constraint (50) will still be reconstruction friendly.
One important extension is to remove some of the con-
straints by turning to 0 some of the elements of the mask
matrix M. Potential elements of a step-like matrix M for the
removal (switching to zero) are the stair edges, which are
the elements whose left and lower elements (or right and
upper elements) are both 1 (see Fig. 10). We call the new
matrices edgeless step-like masks. As switching some ele-
ments of M to zero amounts to removing some linear equa-
tions from the set of constraints, an edgeless step-like mask
still gives an inclusive constraint. If the edge elements for
the removal are chosen carefully from an exclusive step-
like mask, the corresponding constraint M ◦ �̂ = M can
still be exclusive, not allowing for the violation of (D1–
D3). Figure 10a, b illustrates examples of exclusive edgeless
step-like masks. The corresponding constraint M ◦ �̂ = M
for such a mask is reconstruction friendly, however it is
not uniquely reconstruction friendly. Our experiments show
that, using the same algorithm, an edgeless mask results in
a faster convergence than its corresponding edged mask.
One explanation is that, in this case, the removal of each
constraint, in addition to increasing the dimension of the
search space, increases the dimension of the solution space8

by one. This can allow an iterative algorithm to find a
shorter path from the initial estimate of �̂ to a correct solu-
tion.

8 namely {�̂ | �̂ = diag(τ ) �diag(ν), M ◦ �̂ = M}.

(a) (b) (c)

Fig. 10 Examples of 4× 6 edgeless step-like mask matrices obtained
by removing (making zero) some of the stair edges of matrices in Fig. 3.
The blank parts of the matrices are zero. The elements explicitly shown
by 0 are the removed edges (those that are 1 on the original step-like
matrix). a and b are examples of an exclusive edgeless step-like matrix,
resulting in a reconstruction friendly constraint

7 Projective Reconstruction via Rank Minimization

Recall from the last section that in the factorization-based
projective reconstruction the following problem is sought to
be solved

find
�̂, P̂3m×4, X̂4×n

s.t. �̂ � [xi j ] = P̂ X̂, �̂ ∈ C (51)

which is a restatement of (41). Rank minimization is one
of the approaches to factorization-based projective recon-
struction, in which, in lieu of (51), the following problem is
solved:

min
�̂

rank
(
�̂ � [xi j ]

)
s.t. �̂ ∈ C. (52)

Two other closely related problems are

find �̂ s.t. rank
(
�̂ � [xi j ]

) ≤ 4, �̂ ∈ C, (53)

find �̂ s.t. rank
(
�̂ � [xi j ]

) = 4, �̂ ∈ C. (54)

If any solution �̂ is found for any of the above problems such
that rank(�̂ � [xi j ]) ≤ 4, the camera matrices and points
can be estimated from the factorization of �̂ � [xi j ]. We
shall show that ifC is reconstruction friendly, any solution to
any of the above problems leads to projective reconstruction.
First, it is easy to see that (53) is in fact equivalent to problem
(51):

Lemma 17 Given any set of 3D points xi j for i =
1, 2, . . . , m and j = 1, 2, . . . , n, the problems (53) and (51)
are equivalent in terms of finding �̂.

Here, by being equivalent we mean that any solution �̂

to one problem is a solution to the other. Obviously, this
implies that if there exists no solution to one of the problems,
then there cannot exist any solution to the other. The proof,
which is left to the reader, uses the fact that any 3m × n
matrix whose rank is 4 or less, can be factored as the product
of a 3m × 4 matrix P̂ by a 4 × n matrix X̂. Notice that to
prove the above lemma we need not make any assumption
about C or how the points xi j are created. The two other
problems (52) and (54) are not in general equivalent to (51).
However, if C is reconstruction friendly, one can show that
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all the four problems (52)–eq:projspsrankspsfind and (51)
are equivalent:

Proposition 2 Consider a setup of m ≥ 2 camera matrices
and n ≥ 8 points ({Pi }, {X j }) generically configured in the
sense of (G1–G4), and projecting into the image points {xi j }
according to λi jxi j = PiX j with nonzero scalars λi j . If
C ⊆ R

m×n is a reconstruction friendly constraint space,
then given the image points xi j , the problems (52), (53) and
(54) are all equivalent to (51) in terms of finding �̂.

Proof As (53) and (51) are equivalent, the proof will be com-
plete by showing

– (54) ⊆ (53),
– (51) ⊆ (54),
– (52) ⊆ (53),
– (54) ⊆ (52),

where (P1) ⊆ (P2) means that any solution to (P1) is a solu-
tion to (P2). The first part, that is (54) ⊆ (53), is obvious.
To show (51) ⊆ (54), assume that (�̂, P̂, X̂) is a solution to
(51). By Proposition 1 and the definition of projective equiv-
alence we can conclude that P̂ = diag(τ ⊗ 13)PH and X̂ =
H−1X diag(ν) for some invertible matrix H and vectors τ and
ν with all nonzero entries, where P = stack(P1, . . . ,Pm),
X = [X1, . . . ,Xn] and ⊗ denotes the Kronecker product.
This gives

�̂ � [xi j ] = P̂X̂ = diag(τ ⊗ 13)PX diag(ν) (55)

From (G1,G2) it follows that P and X respectively have full
column and full row rank, and hence, PX is of rank 4. Given
this, plus the fact that τ and ν have all nonzero entries, (55)
implies that rank(�̂�[xi j ]) = 4,meaning that �̂ is a solution
to (54).

To see (52)⊆ (53), notice that according to Proposition 1,
(51) has at least one solution. This means that the equiva-
lent problem (53) has also one solution �̂′ ⊆ C for which
rank(�̂′ � [xi j ]) ≤ 4. For any solution �̂ ⊆ C to (52) we
have rank(�̂ � [xi j ]) ≤ rank(�̂′ � [xi j ]) ≤ 4. This means
that �̂ is also a solution to (53).

Finally, to show (54) ⊆ (52), notice that from (53) ≡ (51)
and (51) ⊆ (54) we already know that (53) ⊆ (54). It follows
that rank(�̂�[xi j ]) ≥ 4 for all �̂ ∈ C . Thus, any solution to
(54) minimizes rank(�̂�[xi j ]), and hence, is also a solution
to (52). ��

As a corollary, we can say that with the conditions of
Proposition 2, all the problems (52), (53) and (54) have at
least one solution. This is because Proposition 1 suggests
this fact about (51). It is also worth to mention that, with
some extra effort, a stronger variant of Proposition 2 can be
proved in which the constraint �̂ ∈ C is only required to

exclude (D1) and (D2), rather than (D1–D3) altogether. In
other words, the problems (51–54) are still equivalent if only
(D1) and (D2) are ruled out by the constraint.

8 Iterative Projective Reconstruction Algorithms

Most of the projective factorization-based problems are
solved iteratively. The output of such algorithms is not in the
form of a deterministic final solution, but rather is a sequence
({P̂(t)

i }, {X̂(t)
j }, {λ̂(t)

i j }) which one hopes to converge to a sen-
sible solution. There are many questions such as whether this
sequence converges, and if it does, whether it converges to
a correct solution. Answering such algorithm-specific ques-
tions, however, is beyond the scope of this paper. However,
a more basic question that needs answering is that, given a
constraint space C , if the sequence {�̂(t)} ⊆ C converges to
some �̂, andmoreover, the sequence {�̂(t)�[xi j ]−P̂(t) X̂(t)}
converges to zero, then whether �̂ is a solution to the factor-
ization problem (41), that is �̂ ∈ C and �̂ � [xi j ] = P̂ X̂ for
some P̂ ∈ R

3m×4 and X̂ ∈ R
4×n . It is easy to check that C

being closed is sufficient for this to happen:

Proposition 3 Consider a set of image points {xi j }, i =
1, . . . , m and j = 1, . . . , n, and a closed constraint space
C ⊆ R

m×n. If there exists a sequence of depth matri-
ces {�̂(t)} ⊆ C converging to a matrix �̂, and for each
�̂(t) there exist P̂(t) ∈ R

3m×4 and X̂(t) ∈ R
4×n such that

�̂(t) � [xi j ] − P̂(t) X̂(t) → 0 as t → ∞, then there exist
P̂ ∈ R

3m×4 and X̂ ∈ R
4×n such that (�̂, P̂, X̂) is a solution

to the factorization problem

find
�̂, P̂3m×4, X̂4×n

s.t. �̂ � [xi j ] = P̂ X̂, �̂ ∈ C (56)

Proof Let A(t) = P̂(t) X̂(t). As the mapping �′ �→ �′ �
[xi j ] is continuous, �̂(t) � [xi j ] − A(t) → 0 and �̂(t) → �̂

give A(t) → �̂ � [xi j ] def= A. Also, rank(A) ≤ 4 because
rank(A(t)) ≤ 4 and the space of 3m × n real matrices with
rank 4 or less is closed. Thus,A can be factored asA = P̂X̂ for
some P̂ ∈ R

3m×4 and X̂ ∈ R
4×n , giving �̂�[xi j ] = A = P̂X̂.

Moreover, as C is closed and {�̂(t)} ⊆ C we have �̂ ∈ C .
This completes the proof. ��

According to the above, as long as the constraint space C
is closed, all the results obtained in the previous section about
the solutions to the factorization problem (41), can be safely
used for iterative algorithms when the sequence of depths
{�̂(t)} is convergent and �̂(t) �[xi j ]− P̂(t) X̂(t) converges to
zero.
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9 Experimental Results

9.1 Constraints and Algorithms

The results of this paper are not bound to any particular algo-
rithm and this paper is not concerned with convergence prop-
erties or how to find global minima. The aim of this section
is, therefore, the verification of our theory by implement-
ing a basic iterative factorization procedure and showing the
algorithm’s behaviour for different choices of the depth con-
straints, in terms of finding the correct solutions.

Given the image data matrix [xi j ] and a constraint space
C , we estimate the depths through the following optimization
problem:

min
�̂,P̂,X̂

∥∥∥�̂ � [xi j ] − P̂X̂
∥∥∥

F
subject to �̂ ∈ C, (57)

where �̂ ∈ R
m×n , X̂ ∈ R

m×4 and P̂ ∈ R
4×n for a config-

uration of m views and n points. Clearly, when the data is
noise-free (that is xi j exactly equals PiX j/λi j for all i, j),
and the constraint spaceC is inclusive, the above problemhas
global minima with zero target value, including the correct
solutions. If the constraint space is also exclusive, and there-
fore is reconstruction friendly, the global minima contain
only the correct solutions for which ({P̂i }, {X̂ j }) are projec-
tively equivalent to the true configuration ({Pi }, {X j }).

To make a clear comparison, among many different pos-
sible choices for depth constraints, we choose only four,
each representing one class of constraints discussed before.
A schema of these four constraints is depicted in Fig. 11.
The first two constraints are linear equality ones and the
next two are examples of compact constraint spaces. The first
constraint, abbreviated as ES-MASK is a masked constraint
which fixes some elements of �̂ according to M ◦ �̂ = M
for a mask M. ES-MASK uses a specific exclusive edgeless
step-like mask. In the case of a fat depth matrix (n ≥ m), this

Fig. 11 Four constraints implemented for the experiments. ES-MASK
is a masked constraint with an edgeless step-like mask M. The constraint
fixes some elements of �̂ according to M ◦ �̂ = M. RC-SUM fixes row
and column sums according to �̂1n = n1m , �̂T 1m = m1n . R-NORM
fixes a weighted l2-norm of each rows of �̂, and T-NORM fixes a
weighted l2-norm of tiles of �̂

mask is the horizontal concatenation of an m × m identity
matrix and an m × (n−m) matrix whose last row consists
of ones and its rest of elements are zero (see Fig. 11). A
similar choice can be made for tall matrices. We choose the
edgeless step-like mask as our experiments show that it con-
verges more quickly than the edged version (see Sect. 6.2.3
for a discussion). The second-constraint, RC-SUM, makes
the rows of �̂ sum up to n and its columns sum up to m,
that is �̂1n = n1m, �̂T 1m = m1n (Sect. 6.2.1). The third
constraint, R-NORM, requires rows of the depth matrix to
have a unit norm (Sect. 6.1.3). The final constraint, T-norm,
is requiring tiles of the depth matrix to have a unit norm
(Sect. 6.1.4), where the tiling is done according to Fig. 11.
The last two constraints can be considered as examples of
tiled constraints (see Sect. 6.1.4). The norm used for these
two constraints are weighted l2-norms with special weights
as follows: For an m′ ×n′ tile (m′ = 1 or n′ = 1) in the depth
matrix, the constraint is that the corresponding 3m′×n′ block
in �̂ � [xi j ] has a unit Frobenius norm, which amounts to a
unit weighted l2-norm for the corresponding m′ × n′ block
of �̂.

The optimization problem (57) is hard to solve. Here, we
try to solve it by alternatingly minimizing over different sets
of variables. With linear equality constraints, we consider
two algorithms for the minimization problem (57):

(A1) Alternate between minimizing with respect to �̂ subject
to the constraint �̂ ∈ C , and minimizing with respect to
(X̂, P̂).

(A2) Alternate betweenminimizingwith respect to (�̂, P̂), and
minimizing with respect to (�̂, X̂), subject to �̂ ∈ C in
both cases.

Notice that, the minimization with respect to �̂, (�̂, P̂) or
(�̂, X̂) is nothing butminimizing a positive definite quadratic
form with respect to a linear equality constraint, which has
a closed-form solution. Minimizing with respect to (X̂, P̂)

can be done by a rank-4 SVD thresholding of �̂ � [xi j ] and
factorizing the rank-4 matrix as P̂X̂. While each iteration of
(A2) is usually more complicated and time-consuming com-
pared to (A1), our experiments show that, generally, (A2)
results in faster convergence. Another advantage of (A2) is
that it can be readily adapted for the when there is missing
data (seeHartley and Schaffalizky 2003) for the case of affine
camera model). In our experiments, we use (A2) for optimiz-
ing with respect to ES-MASK as it converges more quickly.
For RC-SUM in most of the cases (A1) and (A2) both give
the correct result. However, it appears that (A2) is relatively
more prone to converge to a cross-shaped solution, which is
allowed by this constraint. Therefore, for RC-SUM we use
(A1). We will provide a brief comparison between (A1) and
(A2) in the next subsection.
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(a) (b) (c)

Fig. 12 An example where all algorithms converge to a correct solu-
tion. a Shows all the four cases have converged to a global minimum, b
shows that all the four cases have obtained the true depths up to diagonal

equivalence, and c confirms this by showing that the depth matrix �̂

satisfies (D1–D3). In c the gray-level of the image at different locations
represents the absolute value of the corresponding element in �̂

The last two constraints are both examples of tiling con-
straints. Our method for optimizing (57) is to alternatingly
minimize with respect to �̂ and then with respect to (X̂, P̂).
The latter is done by a rank-4 SVD thresholding of �̂�[xi j ]
and factorization. For the former step, we fix P̂X̂ and min-

imize
∥∥∥�̂ � [xi j ] − P̂X̂

∥∥∥
F
subject to the constraint that for

each m′ × n′ tile of �̂, the corresponding 3m′ × n′ block of
�̂ � [xi j ] has unit Frobenius norm. This means that, each
tile of �̂ can be optimized separately. Showing by λ̂, the
vector of elements of �̂ belonging to a certain tile, the corre-
sponding optimization problem for this tile is in the form of
min

λ̂
‖Aλ̂−b‖2 with respect to ‖Aλ̂‖2 = 1 for somematrix A

and some vector b. This problem has a closed-form solution.

9.2 Synthetic Data

We take a configuration of 8 views and 20 points. The ele-
ments of thematricesPi and pointsX j are sampled according
to a standard normal distribution. The depths are taken to be
λi j = 3 + ηi j , where the ηi j -s are sampled from a stan-
dard normal distribution. This way we can get a fairly wide
range of depths. Negative depths are not allowed, and if they
happen, we repeat the sampling. This is mainly because of
the fact that for the RC-SUM constraint, the inclusiveness is
only proved for positive depths. The image data is calculated
according toxi j = PiX j/λi j ,with no added error.Notice that
here, unlike in the case of real data in the next subsection,
we do not require the last element of the X j -s and the xi j -s
to be 1, and consider the projective factorization problem in
its general algebraic form.

In each case, we plot the convergence graph, which is the

value of the target function
∥∥∥�̂ � [xi j ] − P̂X̂

∥∥∥
F
throughout

iterations, followed by a graph of depth error. To deal with
diagonal ambiguity of the depth matrix, the depth error is

calculated as
∥∥∥� − diag(τ ) �̂ diag(ν)

∥∥∥, where τ and ν are

set such that diag(τ ) �̂ diag(ν) has the same row norms and
column norms as�. This can be done using Sinkhorn’s algo-

rithm as described in Sect. 6.1.2. Finally, for each constraint
we depict the estimated depth matrix �̂ as a grayscale image
whose intensity values show the absolute values of the ele-
ments of �̂.

In the first example, we set the initial value of �̂ to 1m×n

which is a matrix of all ones. The results for one run of
the algorithm are shown in Fig. 12. Figure 12a shows that
the algorithm has converged to a global minimum for all
four constraints. Figure 12b shows that in all four cases the
algorithm has converged to a correct solution. Figure 12c
confirms this by showing that in no case the algorithm has
converged to a cross-shaped solution or a solution with zero
rows or zero columns.

In the second test, we set the initial value of �̂ to be 1
at the first row and 10th column, and 0.02 elsewhere. This
makes the initial �̂ close to a cross-shaped matrix. The result
is shown in Fig. 13. According to Fig. 13a, in all cases the
target error has converged to zero, meaning that a solution
is found for the factorization problem �̂ � [xi j ] = P̂X̂.
Figure 13b, shows that for the constraint ES-MASK and
RC-SUM, the algorithm gives a correct solution, however,
for R-NORM and T-NORM, it has converged to a wrong
solution. Figure 13c supports this by showing that the algo-
rithm has converged to a cross-shaped solution for R-NORM
and T-NORM. Although, the constraint RC-SUM allows for
cross-shaped configurations, according to our discussion in
Sect. 6.2.1, it is unlikely for the algorithm to converge to a
cross-shaped solution if the initial solution has all positive
numbers (see Fig. 8). However, our experiments show that
if we start from a configuration close to the cross-shaped
solution of the constraint RC-SUM (with a negative element
at the centre of the cross), the algorithm will converge to a
cross-shaped configuration.

Next, we provide a comparison between the algorithms
(A1) and (A2), introduced in Sect. 9.1, for the linear equal-
ity constraints ES-MASK and RC-SUM. We run 100 trials
for each algorithm with the same random setup as the previ-
ous experiment. Each algorithm runs until a cost of less than
10−6 is obtained or 20000 iterations are reached. Table 1
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(a) (b) (c)

Fig. 13 a The target error in all cases has converged to zero, b the depth error has converged to zero only for ES-MASK and RC-SUM, meaning
that only ES-MASK and RC-SUM have converged to a correct solution, c confirms this by showing that R-NORM and T-NORM have converged
to cross-shaped solutions

Table 1 Comparison of the algorithms (A1) and (A2) for each of the
linear equality constraints ES-MASK and RC-SUM

Algorithm ES-MASK RC-SUM

A1 A2 A1 A2

Iterations (med) 2256 42 421 34

Iter. time (mean) 0.2 ms 2.9 ms 0.5 ms 3.2 ms

Total time (med) 523 ms 138 ms 254 ms 117 ms

The results are obtained over 100 trials per algorithm. Each algorithm
stops when it achieves a cost of less than 10−6, or reaches 20,000 itera-
tions. The first row of the table is the median of the number of iterations
taken by each algorithm. The second row is the average time of a single
iteration. The last row is the median of the total time of each trial

summarizes the results. In general, we can say (A2) spends
more time at each iteration, however, it converges in signif-
icantly fewer iterations than (A1). Overall, (A2) has a faster
convergence.

9.3 Real Data

We use the Model House data set provided by the Visual
Geometry Group at Oxford University.9 As our theory does
not deal with the case of missing data, from the data matrix
we choose a block of 8 views and 19 points for which there
is no missing data. Here, the true depths are not available.
Thus, to see if the algorithm has converged to a correct solu-
tion, we use a special version of the reprojection error. The
basic reprojection error is

∑
i j‖xi j − αi j P̂i X̂ j‖ where for

each i and j , αi j is chosen such that the third entry of the
vector αi j P̂i X̂ j is equal to the third entry of xi j , which is 1
in this case. However, as this can cause fluctuations in the
convergence graph at the points where the last element of
P̂i X̂ j is close to zero, we instead choose each αi j such that
it minimizes ‖xi j − αi j P̂i X̂ j‖.

Figure 14 shows one run of the algorithm for each of the
four constraints starting from �̂ = 1m×n . It can be seen that

9 http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.

for all the constraints the algorithm has converged to a solu-
tion with a very small error. Figure 14b shows that all of
them have converged to something close to a correct solu-
tion. This is affirmed by Fig. 14c, showing that all solutions
satisfy depth conditions (D1–D3). Comparing Fig. 14c with
Fig. 12c one can see that the depths in Fig. 14c are more uni-
form. One reason is that the true depths in this experiment
are relatively close together compared to the case of syn-
thetic data. Except, T-NORM, all the other constraints tend
to somewhat preserve this uniformity, especially when the
initial solution is a uniform choice like 1m×n .

In the second test we start from an initial �̂which is close
to a cross-shaped matrix, as chosen in the second test for
the synthetic data. The result is shown in Fig. 15. Figure 15a
shows that the RC-SUM has not converged to a solution with
a small target error, but the other 3 constraints seem to have.10

Therefore, we cannot say anything about RC-SUM. Figure
15b shows that R-NORM and T-NORM did not converge to
a correct solution. Figure 15c confirms this by showing that
R-NORM and T-NORMhave converged to (something close
to) a cross-shaped solution.

10 Conclusion and Future Work

We proved a more general version of the Projective Recon-
struction Theorem, which is well suited to the choice and
analysis of depth constraints for factorization-based projec-
tive reconstruction algorithms. We also demonstrated how
our theoretical results can be used for the analysis of existing
depth constraints used for the factorization-based algorithms
and also for the design of new types of depth constraints.

The main result of our paper is that the false solutions to
the factorization problem �̂ � [xi j ] = P̂ X̂, are restricted to
the cases where �̂ has zero rows or zero columns and also

10 Notice that the scale of the vertical axis in Fig. 15a is different from
that of Fig. 14a.
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(a) (b) (c)

Fig. 14 An example where all algorithms converge to a solution with
a very small target value which is also close to a correct solution. In c,
one can observe a bright strip on the top of the corresponding image of

T-NORM. The reason is that T-NORM forces each elements of the top
row of �̂ to have a unit (weighted l2) norm, while for the other rows,
the whole row is required to have a unit norm. See Fig. 11(T-NORM)

(a) (b) (c)

Fig. 15 An example where the algorithms are started from an initial
solution which is close to a cross-shaped matrix. a shows that RC-SUM
has not converged to a solution with a small target error. R-NORM and

T-NORM have converged to something with a small target value, but
did not get close to a correct solution. This is obvious from (b) and (c)

when it has a cross-shaped structure. Any solution which
rules out these cases is a correct solution.

We presented a class of linear equality constraints which
are able to rule out all the degenerate false solutions. Our
experiments also showed that choosing a good initial solution
can result in finding the correct depths, even with some of
the constraints that do not rule out all the false solutions.

Indeed, this paper is just a first step on this matter. Hence,
many practical issues have been disregarded. For example,
here it has been assumed that all points are visible in all views.
A very important extension to this work is therefore consid-
ering the case of incomplete image data. Another assumption
here was that the image data is not contaminated with noise.
The case of noisy data is another major issue which must be
addressed in future work.

Another important generalization of thiswork is the exten-
sion to higher dimensional projections, for example projec-
tions from P

r to P
s , or more generally, when for the i-th

view the projection is Pr → P
si . This extension is impor-

tant because it has applications in problems like projective
motion segmentation and non-rigid reconstruction.

Yet another follow-up is the study of the convergence of
specific factorization-based algorithms for each of the con-
straints and the design of constraints with desirable conver-

gence properties. For example, we know that certain con-
vergence properties can be proved for certain algorithms
with compact constraint spaces. However, guaranteed con-
vergence to a global minimum is still an unsolved problem.
Another interesting problem to solve is to find compact con-
straints which are reconstruction friendly, allow for efficient
factorization-based algorithms, and give a descent move at
every iteration of the algorithm.

Appendix 1: The Triangulation Problem

Triangulation is the process of determining the location of
a 3D point given its images in two or more cameras with
known camera matrices. The following lemma states that the
solution to triangulation is unique in generic cases:

Lemma 18 (Triangulation) Consider two full-row-rank
camera matrices P1,P2 ∈ R

3×4, two points X,Y ∈ R
4, and

scalars λ̂1 and λ̂2 such that the vector (λ̂1, λ̂2) is nonzero,
for which the relations

P1Y = λ̂1P1X (58)

P2Y = λ̂2P2X (59)
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hold. Take nonzero vectors C1 ∈ N (P1) and C2 ∈ N (P2).
If the three vectors C1, C2 and X are linearly independent,
then Y is equal to X up to a nonzero scaling factor.

Notice that the condition of C1, C2 and X being linearly
independent means that the two camera centres are distinct
and X does not lie on the projective line joining them (see
footnote 4). A geometric proof of this is given in (Hartley
and Zisserman, 2004, Theorem 10.1). Here, we give an alge-
braic proof as one might argue that Hartley and Zisserman
(2004) has used projective equality relations which cannot
be fully translated to our affine space equations since we do
not assume that λ̂1 and λ̂2 are both nonzero in (58) and (59).

Proof Since P1 and P2 have full row rank they have a 1D
null space. Thus, relations (58) and (59) respectively imply

Y = α1C1 + λ̂1X, (60)

Y = α2C2 + λ̂2X, (61)

for some scalarsα1 andα2. These giveα1C1+λ̂1X = α2C2+
λ̂2X or

α1C1 − α2C2 + (λ̂1 − λ̂2)X = 0 (62)

As the three vectors C1, C2 and X are linearly independent,
(62) implies that α1 = 0, α2 = 0 and λ̂1 = λ̂2. Define

ν
def= λ̂1 = λ̂2. Then, from (60) we have Y = νX. Moreover,

ν must be nonzero as the lemma assumes that the vector
(λ̂1, λ̂2) = (ν, ν) is nonzero. ��

Appendix 2: The Camera Resectioning Problem

Camera resectioning is the task of computing camera para-
meters given the 3D points and their images. It can be shown
that with sufficient 3D points in general locations, the cam-
era matrix can be uniquely determined up to scale (Hartley
and Zisserman 2004). Here, we consider a slightly revised
version of this problem, which fits our case where the esti-
mated projective depths are not assumed to be all nonzero
and the second (estimated) set of camera matrices need not
be assumed to have full rank.

Lemma 19 (Resectioning)Consider a 3×4matrixQ of rank
3 and a set of points X1,X2, . . . ,Xp such that for a nonzero
vector C ∈ N (Q) we have

(C1) Any four vectors among C,X1,X2, . . . ,Xp are lin-
early independent, and

(C2) the set of points {C,X1,X2, . . . ,Xn} do not lie on a
twisted cubic (see footnote 4) or any of the degenerate
critical sets resulting in a resection ambiguity (set out
in Hartley and Zisserman 2004, Sect.22.1).

Now, for any Q̂ ∈ R
3×4 if we have

α jQX j = β j Q̂X j (63)

for all j = 1, 2, . . . , p where scalars α j and β j are such
that the vector (α j , β j ) is nonzero for all j , then Q̂ = aQ for
some scalar a.

Proof First, since 6 points in general position completely
specify a twisted cubic (Semple and Kneebone 1952), (C2)
implies that p + 1 ≥ 7, or p ≥ 6.

If Q̂ = 0, then Q̂ = aQ with a = 0, proving the claim of
the lemma. Thus, in what follows we only consider the case
of Q̂ �= 0.

By (C1), for all j we have QX j �= 0. Therefore, β j �= 0,
as otherwise if β j = 0 from (α j , β j )

T �= 0 we would
have α �= 0 and therefore 0 = β j Q̂X j = α jQX j �= 0,
which is a contradiction. From β j �= 0 and (63) it fol-
lows that if α j = 0 for some j , then X j ∈ N (Q̂). Now,
if for 4 indices j we have α j = 0, from (C1) it follows
that Q̂ has a 4D null space, or equivalently Q̂ = 0. Since
we excluded this case, we conclude that there are less than
4 zero-valued α j -s. As p ≥ 6, it follows that there are at
least three nonzero α j -s, namely α j1 , α j2 and α j3 . Since
β j -s are all nonzero, α j �= 0 along with (63) implies that
QX j is in C (Q̂), the column space of Q̂. Therefore, we have
span(QX j1 ,QX j2 ,QX j3) ⊆ C (Q̂). From (C1) we know that
span(X j1 ,X j2 ,X j3) is 3-dimensional and does not contain
the null space of Q. Therefore, span(QX j1 ,QX j2 ,QX j3) is
also 3-dimensional. From span(QX j1 ,QX j2 ,QX j3) ⊆ C (Q̂)

then we conclude that Q̂ has full row rank.
As rank(Q̂) = 3, we can consider it as a proper camera

matrix in multiple view geometry, talking about its camera
centre represented by its null space. Therefore, for two cam-
era matrices Q and Q̂ and all the points X j for which α j �= 0
we can apply the results of the classic camera resectioning
problem: It is known that for two (up to scale) distinct camera
matrices Q and Q̂ to see the pointsX j equally up to a possible
nonzero scaling factor, the points X j and the camera centres
must lie on a common twisted cubic (or possibly some other
specific degenerate sets, see (Hartley and Zisserman 2004;
Buchanan 1988)).

Notice that, as rank(Q̂) = 3, (C1) implies that among the
pointsX j atmost one lies on the null-space of Q̂ and therefore,
by (63) we can say that at most one α j can be zero. By
possibly relabeling the points we assume that α1, . . . , αp−1

are all nonzero.
Now to get a contradiction, assume that there is a resec-

tion ambiguity. We consider two cases namely αp �= 0 and
αp = 0. If αp �= 0 then by α jQX j = β j Q̂X j we know that
X1, . . . ,Xp are viewed equally up to scale by both Q and Q̂
and thus X1, . . . ,X6 along with the camera centre of Qmust
lie on a twisted cubic (or other degenerate sets leading to
a resection ambiguity), which is impossible due to (C2). If
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α6 = 0, implying X6 ∈ N (Q̂), then again the camera center
of Q,X1, . . . ,X5 andX6 (this time as the camera centre of Q̂)
must lie on a twisted cubic (or the degenerate sets), contra-
dicting with (C2). Hence there can be no resection ambiguity
and Q and Q̂ must be equal up to a scaling factor. ��

Appendix 3: Proof of Lemma 1

Proof of Lemma 1 We need to prove that under assumptions
of Lemma 1 and the relations

λi jxi j = PiX j (64)

λ̂i jxi j = P̂i X̂ j (65)

({Pi }, {X j }) and ({P̂i }, {X̂ j }) are projectively equivalent if
and only if the matrices � and �̂ are diagonally equivalent.

First, assume that ({Pi }, {X j }) and ({P̂i }, {X̂ j }) are pro-
jectively equivalent. Then, there exist nonzero scalars τ1, τ2,

. . . , τm and ν1, ν2, . . . , νn and an invertible matrix H such
that (5) and (6) hold. Therefore we have

λ̂i jPiX j = λ̂i jλi jxi j = λi j P̂i X̂ j

= λi jν jτi Pi HH−1 X j = λi jν jτi Pi X j .

where the first, second and third equations above hold respec-
tively from (64), (65) and (5) and (6) together. By condition
(i) in the lemma, that is Pi X j �= 0, we have λ̂i j = λi jν jτi

for all i and j . This is equivalent to (7) and hence � and �̂

are diagonally equivalent.
To prove the other direction, assume that � and �̂ are

diagonally equivalent. Then from (7) we have λ̂i j = λi jν jτi .
This along with (64) and (65) gives

P̂i X̂ j = λ̂i jxi j = λi jν jτixi j = τiν jPiX j = (τiPi )(ν jX j )(66)

for i = 1, . . . , m and j = 1, . . . , n. Let Qi = τiPi and
Y j = ν jX j , so we have P̂i X̂ j = QiY j . Denote by Q and P̂
the vertical concatenations of Qi -s and P̂i -s respectively and
denote by Y and X̂ respectively the horizontal concatenations
of Y j -s and X̂ j -s. From P̂i X̂ j = QiY j we have

P̂X̂ = QY
def= A. (67)

From conditions (ii) and (iii) in the lemma along with the
fact that τi and ν j are nonzero, we can conclude that Q has

full column rank and Y has full row rank. Therefore, A
def= QY

has rank 4 and the 3m × 4 and 4 × n matrices P̂ and X̂ must
be full-column- and full-row-rank matrices respectively. As
QY and P̂X̂ are two rank-r factorizations of A, having P̂ =
QH and X̂ = H−1Y for some invertible matrix H is the only
possibility11. This is the same thing as

11 The proof is quite simple: The column space of Q, P̂ and A must be
equal and therefore we have P̂ = QH for some invertible 4×4 matrix H.

P̂i = QiH = τiPiH (68)

X̂ j = H−1Y j = ν jH
−1X j (69)

Thus, ({Pi }, {X j }) and ({P̂i }, {X̂ j }) are projectively equiva-
lent. ��
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