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Abstract We present a video summarization approach
for egocentric or “wearable” camera data. Given hours of
video, the proposed method produces a compact storyboard
summary of the camera wearer’s day. In contrast to tradi-
tional keyframe selection techniques, the resulting summary
focuses on the most important objects and people with which
the camera wearer interacts. To accomplish this, we develop
region cues indicative of high-level saliency in egocentric
video—such as the nearness to hands, gaze, and frequency
of occurrence—and learn a regressor to predict the relative
importance of any new region based on these cues. Using
these predictions and a simple form of temporal event detec-
tion, our method selects frames for the storyboard that reflect
the key object-driven happenings. We adjust the compact-
ness of the final summary given either an importance selec-
tion criterion or a length budget; for the latter, we design
an efficient dynamic programming solution that accounts for
importance, visual uniqueness, and temporal displacement.
Critically, the approach is neither camera-wearer-specific nor
object-specific; that means the learned importance metric
need not be trained for a given user or context, and it can
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predict the importance of objects and people that have never
been seen previously. Our results on two egocentric video
datasets show the method’s promise relative to existing tech-
niques for saliency and summarization.
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1 Introduction

The goal of video summarization is to produce a compact
visual summary that encapsulates the key components of a
video. Its main value is in turning hours of video into a short
summary that can be interpreted by a human viewer in a
matter of seconds. Automatic video summarization methods
would be useful for a number of practical applications, such
as analyzing surveillance data, video browsing, action recog-
nition, or creating a visual diary of one’s personal lifelog
video.

Existing methods extract keyframes (Wolf 1996; Zhang et
al. 1997; Goldman et al. 2006; Liu and Kender 2002), create
montages of still images (Aner and Kender 2002; Caspi et al.
2006), or generate compact dynamic summaries (Rav-Acha
et al. 2006; Pritch et al. 2007). Despite promising results, they
assume a static background or rely on low-level appearance
and motion cues to select what will go into the final sum-
mary. However, in many interesting settings, such as ego-
centric videos, YouTube style videos, or feature films, the
background is moving and changing. More critically, a sys-
tem that lacks high-level information onwhich objectsmatter
may produce a summary that consists of irrelevant frames or
regions. In other words, existing methods are indifferent to
the impact that each object has on generating the “story” of
the video.
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Fig. 1 Given an unannotated egocentric video, our method produces
a compact storyboard visual summary that focuses on the key people
and objects

In this work, we are interested in creating object-driven
summaries for videos captured from a wearable camera. An
egocentric video offers a first-person view of the world that
cannot be captured from environmental cameras. For exam-
ple, we can often see the camera wearer’s hands, or find the
object of interest centered in the frame. Essentially, a wear-
able camera focuses on the user’s activities, social interac-
tions, and interests. We aim to exploit these properties for
egocentric video summarization.

Good summaries for egocentric data would have wide
potential uses. Not only would recreational users (including
“life-loggers”) find it useful as a video diary, but there are also
high-impact applications in law enforcement, elder and child
care, and mental health. For example, the summaries could
facilitate police officers in reviewing important evidence, sus-
pects, andwitnesses, or aid patientswithmemoryproblems to
remember specific events, objects, and people (Hodges et al.
2011; Lee and Dey 2007). Furthermore, the egocentric view
translates naturally to robotics applications—suggesting, for
example, that a robot could summarize what it encounters
while navigating unexplored territory, for later human view-
ing.

Motivated by these problems, we propose an approach
that learns category-independent importance cues designed
explicitly to target the key objects and people in the video.
The main idea is to leverage novel egocentric and high-level
saliency features to train a model that can predict important
regions in the video, and then to produce a concise visual
summary that is driven by those regions (see Fig. 1). By
learning to predict important regions, we can focus the visual
summary on the main people and objects, and ignore irrele-
vant or redundant information.

Our method works as follows. We first train a regression
model from labeled training videos that scores any region’s
likelihood of belonging to an important person or object. For
the input variables, we develop a set of high-level cues to
capture egocentric importance, such as frequency, proximity
to the camera wearer’s hand, and object-like appearance and
motion, as well as a set of low-level cues to capture region

properties such as size, width, and height. The target variable
is the overlap with ground-truth important regions, i.e., the
importance score. Given a novel video, we use the model to
predict important regions for each frame. We then partition
the video into unique temporal events, by clustering scenes
that have similar color distributions and are close in time. For
each event, we isolate unique representative instances of each
important person or object. Finally, we produce a storyboard
visual summary that displays the most important objects and
people across all events in the camera wearer’s day.

We propose two ways to adjust the compactness of the
summary, based on either a target importance criterion or a
target summary length. For the latter, we design an energy
function that accounts for the importance of the selected
frames, their visual dissimilarities, and their temporal dis-
placements, and can be efficiently optimized using dynamic
programming.

We emphasize that we do not aim to predict impor-
tance for any specific category (e.g., cars). Instead, we learn
a general model that can predict the importance of any
object instance, irrespective of its category. This category-
independence avoids the need to train importance predictors
specific to a given camera wearer, and allows the system to
recognize as important something it has never seen before.
In addition, it means that objects from the same category can
be predicted to be (un)important depending on their role in
the story of the video. For example, if the camera wearer has
lunch with his friend Jill, she would be considered important,
whereas people in the same restaurant sitting around them
could be unimportant. Then, if they later attend a party but
chat with different friends, Jill may no longer be considered
important in that context.

Our main contribution is an egocentric video summariza-
tion approach that is drivenbypredicted important people and
objects. Towards this goal, we develop two primary technical
ideas. In the first, we develop a learning approach to estimate
region importance using novel cues designed specifically for
the egocentric video setting. In the second, we devise an
efficient keyframe selection strategy that captures the most
important objects and people, subject to meeting a budget for
the desired length of the output storyboard.

We apply our method to challenging real-world videos
captured by users in uncontrolled environments, and process
a total of 27 h of video—significantlymore data than previous
work in egocentric analysis. Evaluating the predicted impor-
tance estimates and summaries, we find our approach out-
performs state-of-the-art high-level and low-level saliency
measures for this task, and produces significantlymore infor-
mative summaries than traditional methods.

This article expands upon our previous conference paper
(Lee et al. 2012). In Sects. 3.6.2 and 4.5, we introduce and
analyze a novel budgeted frame selection approach that effi-
ciently produces fixed-length summaries. In Sect. 4, we add
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new comparisons to multiple existing video summarization
methods, conduct new user studies with over 25 users to sys-
tematically gauge the summaries’ quality, and produce new
results on the Activities of Daily Living dataset (Pirsiavash
and Ramanan 2012).

2 Related Work

Video summarization Static keyframe methods compute
motion stability from optical flow (Wolf 1996) or global
scene color/texture differences (Zhang et al. 1997; Liu and
Kender 2002; Weng and Merialdo 2009) to select the frames
that go into the summary. The low-level approach means
that irrelevant frames can often be selected, which is partic-
ularly problematic for our application of summarizing hours
of continuous egocentric video that contain lots of irrele-
vant data. By generating object-driven summaries, we aim to
move beyond such low-level cues.

Video summarization can also take the form of a single
montage of still images. Existing methods take a background
reference frame and project in foreground regions (Aner and
Kender 2002), or sequentially display automatically selected
key-poses (Caspi et al. 2006). An interactive approach (Gold-
man et al. 2006) takes user-selected frames and key points,
and generates a storyboard that conveys the trajectory of an
object. These approaches generally assume short clips with
few objects, or a human-in-the-loop to guide the summa-
rization process. In contrast, we aim to summarize a camera
wearer’s day containing hours of continuous video with hun-
dreds of objects, with no human intervention.

Compact dynamic summaries simultaneously show sev-
eral spatially non-overlapping actions from different times
of the video (Rav-Acha et al. 2006; Pritch et al. 2007).
While that framework aims to focus on foreground objects,
it assumes a static camera and is therefore inapplicable to
egocentric video. A re-targeting approach aims to simulta-
neously preserve an original video’s content while reduc-
ing artifacts (Simakov et al. 2008), but unlike our approach,
does not attempt to characterize the varying degrees of object
importance. In a semi-automatic method (Liu et al. 2009),
irrelevant video frames are removed by detecting the main
object of interest given a few user-annotated training frames.
In contrast, our approach automatically discovers multiple
important objects.

Saliency detectionEarly saliency detectors rely on bottom-up
image cues (e.g., Itti et al. 1998;Gao et al. 2007).More recent
work tries to learn high-level saliencymeasures using various
Gestalt cues, whether for static images (Liu et al. 2007;Alexe
et al. 2010; Carreira and Sminchisescu 2010; Endres and
Hoiem 2010) or video (Lee et al. 2011). Whereas typically
such metrics aim to prime a visual search process, we are

interested in high-level saliency for the sake of isolating those
things worth summarizing. Researchers have also explored
ranking object importance in static images, learning what
people mention first from human-annotated tags (Spain and
Perona 2008; Hwang and Grauman 2010). In contrast, we
learn the importance of objects in terms of their role in a
long-term video’s story. Relative to any of the above, we
introduce novel saliency features amenable to the egocentric
video setting.

Egocentric visual data analysis Vision researchers have
recently returned to exploring egocentric visual analysis,
prompted in part by increasingly portable wearable cam-
eras. Early work with wearable cameras partition visual and
audio data into events (Clarkson and Pentland 1999), or uses
supervised learning for specialized tasks like sign language
recognition (Starner et al. 1998b) or location recognition
within a building (Starner et al. 1998a). Methods in ubiq-
uitous computing use manual intervention (Mann 1998) or
external non-visual sensors (Healey andPicard 1998;Hodges
et al. 2006) (e.g., skin conductivity or audio) to trigger snap-
shots from a wearable camera. Others use brain waves (Ng
et al. 2002), k-means clustering with temporal constraints
(Lin and Hauptmann 2006), or face detection (Doherty and
Smeaton 2008) to segment egocentric videos. Recent meth-
ods explore activity recognition (Spriggs et al. 2009; Fathi et
al. 2011; Pirsiavash and Ramanan 2012; Ryoo and Matthies
2013), handled object recognition (Ren and Gu 2010), nov-
elty detection (Aghazadeh et al. 2011), hand detection (Li and
Kitani 2013), gaze prediction (Li et al. 2013), social inter-
action analysis (Fathi et al. 2012), or activity discovery for
non-visual sensory data (Huynh et al. 2008). Unsupervised
algorithms are developed to discover scenes (Jojic et al. 2010)
and actions (Kitani et al. 2011), or select keyframes (Doherty
et al. 2008), based on low-level visual features extracted from
egocentric data. In contrast to all these methods, we aim to
build a visual summary, and model high-level importance of
the objects present.

To our knowledge, we are the first to explore visual
summarization of egocentric video by predicting important
objects. Recent work (Lu and Grauman 2013) builds on our
approach and uses our importance predictions as a cue to
generate story-driven egocentric video summarizations.

3 Approach

Our goal is to create a storyboard summary of a person’s
day that is driven by the important people and objects. The
video is captured using a wearable camera that continuously
recordswhat the user sees.We define importance in the scope
of egocentric video: important things are those with which
the camera wearer has significant interaction. This is reason-
able for the egocentric setting, since the camera wearer is
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likely to engage in social activities with cliques of people
(e.g., friends, co-workers) that involve interactions with spe-
cific objects (e.g., food, computer). The camera wearer will
typically find these people and objects to be memorable, as
we confirm in our user studies in Sect. 4.6.

There are four main steps to our approach: (1) using novel
egocentric saliency cues to train a category-independent
regression model that predicts how likely it is that an image
region belongs to an important person or object; (2) parti-
tioning the video into temporal events. For each event, (3)
scoring each region’s importance using the regressor; and
(4) selecting representative key-frames for the storyboard
that encapsulate the predicted important people and objects,
either using a user-specified importance criterion or a length
budget.

We first describe how we collect the video data and
ground-truth annotations needed to train our model. We then
describe each of the main steps in turn.

3.1 Egocentric Video Data Collection

We use the Looxcie wearable camera, which captures video
at 15 fps at 320 × 480 resolution. It is worn around the ear
and looks out at the world at roughly eye-level. We collected
10 videos from four subjects, each three to five h in length
(the maximum battery life), for a total of 37 h of video. We
call this the UT Egocentric (UT Ego) dataset. Our data is
publicly available.1

Four subjects wore the camera for us: one undergraduate
student, two grad students, and one office worker, ranging in
age from early to late 20s and both genders. The different
backgrounds of the subjects ensure diversity in the data—
not everyone’s day is the same—and is critical for validating
the category-independence of our approach. We asked the
subjects to record their natural daily activities, and explicitly
instructed them not to stage anything for this purpose. The
videos capture a variety of activities such as eating, shop-
ping, attending a lecture, driving, cooking, and working on a
computer.

3.2 Annotating Important Regions in Video

To train the importance predictor, we first need ground-truth
training examples. In general, determining whether an object
is important or not can be highly subjective. Fortunately, an
egocentric video provides many constraints that are sugges-
tive of an object’s importance. For example, one can observe

1 http://vision.cs.utexas.edu/projects/egocentric/ Due to privacy issues,
we are only able to share 4 of the 10 videos (one from each subject),
for a total of 17 h of video. They correspond to the test videos that we
evaluate on in Sect. 4.

the camera wearer’s hands, and an object of interest may
often be centered in the frame.

In order to learn meaningful egocentric properties without
overfitting to any particular category, we crowd-source anno-
tations using Amazon’s Mechanical Turk (MTurk). For ego-
centric videos, an object’s degree of importance will depend
on what the camera wearer is doing before, while, and after
the object or person appears. In other words, the object must
be seen in the context of the camera wearer’s activity to prop-
erly gauge its importance.

We carefully design two annotation tasks to capture this
aspect. In the first task, we ask workers to watch a 3 min
accelerated video (equivalent to 10min of original video) and
to describe in text what they perceive to be essential people
or objects necessary to create a summary of the video. In the
second task, we display uniformly sampled frames from the
video and their corresponding text descriptionsobtained from
the first task, and ask workers to draw polygons around any
described person or object. If none of the described objects
are present in a frame, the annotator is given the option to skip
it. See Fig. 2 for the two interfaces and example annotations.

We found this two-step process more effective than a sin-
gle task in which the same worker both watches the video
and then annotates the regions s/he deems important, likely
due to the time required to complete both tasks. Critically, the
two-step process also helps us avoid bias: a single annotator
asked to complete both tasks at once may be biased to pick
easier things to annotate rather than those s/he finds to be
most important. Our setup makes it easy for the first worker
to freely describe the objects without bias, since s/he only
has to enter text. We found the resulting annotations quite
consistent, and only manually pruned those where the region
outlined did not agree with the first worker’s description. For
a 3–5 h training video, we obtain roughly 35 text descriptions
and 700 object segmentations.

3.3 Learning Egocentric Region Importance

We now discuss the procedure to train a general pur-
pose category-independent model that will predict important
regions in any egocentric video, independent of the camera
wearer. Given a video, we first generate candidate regions for
each frame using a min-cut method (Carreira and Sminchis-
escu 2010), which tends to avoid oversegmenting objects.We
represent objects at the frame-level, since our uncontrolled
setting usually prohibits reliable space-time object segmenta-
tion due to frequent and rapid headmovements by the camera
wearer. We generate roughly 800 regions per frame.

For each region, we compute a set of candidate features
that could be useful to describe its importance. Since the
video is captured by an active participant, we specifically
want to exploit egocentric properties such as whether the
object/person is interacting with the camera wearer, whether
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(a)

(b)

(c)

Fig. 2 OurMechanical Turk interfaces for important person/object a text description and b annotation, and c example annotations that we obtained.
The important people and objects are annotated

(a)

(b)

Fig. 3 Illustration of our a egocentric features and b object features

it is the focus of the wearer’s gaze, and whether it frequently
appears. In addition, we aim to capture high-level saliency
cues—such as an object’smotion and appearance, or the like-
lihood of being a human face—and generic region properties
shared across categories, such as size or location.Wedescribe
the proposed features in detail next.

3.3.1 Feature Definitions

Egocentric features Figure 3a illustrates the three proposed
egocentric features. To model interaction, we compute the
Euclidean distance of the region’s centroid to the closest
detected hand in the frame.Given a frame in the test video,we
first classify each pixel as (non-)skin using color likelihoods
and a Naive Bayes classifier (Jones and Rehg 2002) trained

with ground-truth hand annotations on disjoint data. We then
classify any superpixel (computed using Felzenszwalb and
Huttenlocher 2004) as hand if more than 25 % of its pixels
are skin. While simple, we find this hand detector is suffi-
cient for our application. More sophisticated methods (e.g.,
Kolsch and Turk 2004) would certainly be possible as well.

To model gaze, we compute the Euclidean distance of the
region’s centroid to the frame center. Since the cameramoves
with the wearer’s head, this is a coarse estimate of how likely
the region is being focused upon.

To model frequency, we record the number of times an
object instance is detected within a short temporal segment
of the video. We create two frequency features: one based
on matching regions, the other based on matching points.
For the first, we compute the color dissimilarity between a
region r and each region rn in its surrounding frames, and
accumulate the total number of positive matches:

cregion(r) =
∑

f ∈W

[(
min
n

χ2(r, r f
n )

)
≤ θr

]
, (1)

where f indexes the set of framesW surrounding region r ’s
frame, χ2(r, rn) is the χ2-distance between color histograms
of r and rn , θr is the distance threshold to determine a positive
match, and [·] denotes the indicator function. The value of
cregion will be high/low when r produces many/few matches
(i.e., is frequent/infrequent).

The second frequency feature is computed by matching
Difference of Gaussian SIFT interest points. For a detected
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point p in region r , we match it to all detected points in
each frame f ∈ W , and count as positive those that pass
the ratio test (Lowe 2004). We repeat this process for each
point in region r , and record their average number of positive
matches:

cpoint (r) = 1

P

P∑

i=1

∑

f ∈W

[
d(pi , p

f
1∗)

d(pi , p
f
2∗)

≤ θp

]
, (2)

where i indexes all detected points in region r , d(pi , p
f
1∗)

and d(pi , p
f
2∗) measure the Euclidean distance between pi

and its best matching point p f
1∗ and second best matching

point p f
2∗ in frame f , respectively, and θp is Lowe’s ratio

test threshold for non-ambiguous matches (Lowe 2004). The
value of cpoint will be high/low when the SIFT points in r
produce many/few matches. For both frequency features, we
set W to span a 10 min temporal window.

Object features In addition to the egocentric-specific fea-
tures, we include three high-level (i.e., object-based) saliency
cues (see Fig. 3b). To model object-like appearance, we use
the learned region ranking function of Carreira and Smin-
chisescu (2010). It reflects Gestalt cues indicative of any
object, such as the sum of affinities along the region’s bound-
ary, its perimeter, and texture difference with nearby pixels.
(Note that the authors trained theirmeasure onPASCALdata,
which is disjoint from ours.) We stress that while this feature
estimates how “object-like” a region is, it does not gauge
importance. It is useful for identifying full object segments,
as opposed to fragments.

To model object-like motion, we develop a key-segments
video segmentation descriptor (Lee et al. 2011). It looks at the
difference in motion patterns of a region relative to its closest
surrounding regions. Specifically, we compare optical flow
histograms for the region and the pixels around it within a
loosely fit bounding box. Note that this feature is not sim-
ply looking for large motions or appearance changes from
background. Rather, we are describing how the motion of
the region differs from its closest surrounding regions; this
allows us to forgo assumptions about camera motion, and
also to be sensitive to different magnitudes of motion. Simi-
lar to the appearance feature above, it is useful for selecting
object-like regions that “stand-out” from their surroundings.

Tomodel the likelihood of a person’s face, we compute the
maximum overlap score |q∩r |

|q∪r | between the region r and any
detected frontal face q in the frame, using Viola and Jones
(2001).

Region features Finally, we compute the region’s size, cen-
troid, bounding box centroid, bounding box width, and
bounding box height. They reflect category-independent
importance cues and are blind to the region’s appearance
or motion. We expect that important people and objects will

occur at non-random scales and locations in the frame, due
to social and environmental factors that constrain their rel-
ative positioning to the camera wearer (e.g., sitting across a
table from someone when having lunch, or handling cooking
utensils at arm’s length). Our region features capture these
statistics.

Altogether, these cues form a 14-dimensional feature
space to describe each candidate region (4 egocentric, 3
object, and 7 region feature dimensions).

3.3.2 Regressor to Predict Region Importance

Using the features defined above, we next train a model that
can predict a region’s importance. The model should be able
to learn and predict a region’s degree of importance instead
of whether it is simply “important” or “not important”, so
that we can meaningfully adjust the compactness of the final
summary (as we demonstrate in Sect. 4). Thus, we opt to
train a regressor rather than a classifier.

While the features defined above can be individually
meaningful, we also expect significant interactions between
the features. For example, a region that is near the camera
wearer’s hand might be important only if it is also object-
like in appearance. Therefore, we train a linear regression
model with pair-wise interaction terms to predict a region
r ’s importance score:

I (r) = β0 +
N∑

i=1

βi xi (r) +
N∑

i=1

N∑

j=i+1

βi, j xi (r)x j (r), (3)

where the β’s are the learned parameters, xi (r) is the i th
feature value, and N = 14 is the total number of features.

For training,we define a region r ’s target importance score
by its maximum overlap |GT∩r |

|GT∪r | with any ground-truth region
GT in a training video obtained from Sect. 3.2. Thus, regions
with perfect overlap with ground-truth will have a target
importance score of 1, those with no overlap with ground-
truth will have an importance score of 0, and all others will
have an importance score in (0, 1). We standardize the fea-
tures to zero-mean and unit-variance, and solve for the β’s
using least-squares. For testing, our model takes as input a
region r ’s features (the xi ’s) and predicts its importance score
I (r). Note that we train and test using video from different
users to avoid overfitting our model to any specific camera
wearer.

3.4 Segmenting the Video into Temporal Events

Given a newvideo,wefirst partition the video temporally into
events, and then isolate the important people and objects in
each event. Events allow the final summary to include mul-
tiple instances of an object/person that is central in multiple
contexts in the video. For example, suppose that the camera
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Fig. 4 Distance matrix that measures global color dissimilarity
between all frames. (Blue/red reflects high/low distance.) The images
show representative frames of each discovered event. The block struc-
ture along the diagonal reveals groups of frames that are close in appear-
ance and time

wearer plays with her dog at home in the morning and later
takes the dog out to the park at night. We can treat the two
instances of the dog as different objects (since they appear
in different events) and include both in the final summary.
Moreover, events indicate which selected frames are more
related to one another, giving a hierarchical structure to the
final summary.

While shot boundary detection has been frequently used
to perform event segmentation for videos, it is impractical for
our wearable camera data setting. Traditional shot detection
generally assumes visual continuity and thus tends to over-
segment egocentric events due to frequent head movements.
Instead, we detect egocentric events by clustering scenes in
such a way that frames with similar global appearance can be
grouped together even when there are a few unrelated frames
(“gaps”) between them.

Let V denote the set of all video frames. We compute a
pairwise distance matrix DV between all frames fm, fn ∈ V ,
using the distance:

D( fm, fn) = 1 − wt
m,n exp

(
− 1

�
χ2( fm, fn)

)
, (4)

where wt
m,n = 1

t max(0, t − |m − n|), t is the size of the
temporal window surrounding frame fm , χ2( fm, fn) is the
χ2-distance between color histograms of fm and fn , and �

denotes themeanof theχ2-distances among all frames. Thus,
frames similar in color receive a low distance, subject to a
weight that discourages frames too distant in time from being
grouped.

We next perform complete-link agglomerative clustering
with DV , grouping frames until the smallest maximum inter-
frame distance is larger than two standard deviations beyond
�. The first and last frames in a cluster determine the start
and end frames of an event, respectively. Figure 4 shows
the distance matrix computed for one subject’s day, and the
representative frames for each discovered event.

Fig. 5 Discovering an event’s key people and objects. For each event,
we group together regions that are likely to belong to the same object,
and then for each group,we select the regionwith the highest importance
score as its representative

3.5 Discovering an Event’s Key People/Objects

For each event, we aim to select the important people and
objects that will go into the final summary, while avoiding
redundancy. Recall that objects are represented at the frame-
level (Sect. 3.3). Thus, our goal is to group together instances
of the same person or object that appear over time in each
event.

Given an event, we first score each bottom-up segment in
each frame using our regressor. Sincewe do not know a priori
how many important things an event contains, we generate
a candidate pool of clusters from the set C of bottom-up
regions, and then remove any redundant clusters, as follows.

To extract the candidate groups, we first compute an affin-
ity matrix KC over all pairs of regions rm, rn ∈ C, where
affinity is determined by color similarity: KC(rm, rn) =
exp(− 1

�
χ2(rm, rn)), where � denotes the mean χ2-distance

among all pairs in C.We next partition KC intomultiple (pos-
sibly overlapping) inlier/outlier clusters using a factorization
approach (Perona and Freeman 1998). Themethod finds tight
sub-graphs within the input affinity graph while resisting the
influence of outliers. Each resulting sub-graph consists of
a candidate important object’s instances. To reduce redun-
dancy, we sort the sub-graph clusters by the average I (r) of
their member regions, and remove those with high affinity to
a higher-ranked cluster. Finally, for each remaining cluster,
we select the region with the highest importance score as its
representative (see Fig. 5).

3.6 Generating a Storyboard Summary

Finally, we create a storyboard visual summary of the video.
We display the event boundaries and frames of the selected
important people and objects (see Fig. 11). Each event can
display a varying number of frames, depending on howmany
unique important things our method discovers.

We propose two ways to adjust the compactness of the
summary: (1) according to a target importance criterion, and

123



Int J Comput Vis (2015) 114:38–55 45

(2) according to a target summary length. We describe each
process in detail next.

3.6.1 Summarization Given an Importance Criterion

Wefirst describe how to summarize the video given an impor-
tance criterion. This allows the system to automatically pro-
duce the most compact summary possible that encapsulates
only the people and objects that meet the importance thresh-
old.

When discovering an event’s key people and objects
(Sect. 3.5), we take only those regions that have importance
scores higher than the specified criterion to form set C. We
then proceed to group instances of the same person or object
together in C, and select the frame with the highest scoring
region in each group to go into the summary.

3.6.2 Summarization Given a Length Budget

Alternatively, we can summarize the video given a length
budget k. This allows the system to answer requests such as,
“Generate a 5-min summary.” We formulate the objective as
a k-frame selection problem and define the following energy
function:

E(S) = −
|S|∑

i=1

I ( fsi ) +
|S|−1∑

i=1

exp
(
− 1

�
χ2( fsi , fsi+1)

)

−
|S|−1∑

i=1

|si − si+1| 12 , (5)

where S = {s1, . . . , sk} is the set of indices of the k selected
frames, and � is the mean of the χ2-distances among all
frames.

There are three terms in our energy function. The first
term enforces selection of important frames, since we want
the summary to contain the discovered important people and
objects. We score each frame using the region that has the
highest importance score: I ( fsi ) = maxm I (rm,i ), where
rm,i is the mth region in frame i . Our second term enforces
visual uniqueness, i.e., that adjacent selected frames contain
different objects. We want the summary to avoid including
redundant frames. Thus, we compute an affinity based on the
χ2-distance between color histograms of adjacent frames fsi
and fsi+1 . Finally, our last term enforces selection of frames
that are spread out in time such that the summary best cap-
tures the entire “story” of the original video. For this, we
compute the difference in frame index of the selected frames.

Note that
∑|S|−1

i=1 |si − si+1| 12 achieves a maximumwhen the
temporal distances between all adjacent frames |si − si+1|
are equal.

We compute the optimal set S∗ of k frames by finding the
set that minimizes Eq. 5:

S∗ = argmin
S⊂V

E(S), (6)

where V is the set of frames of the selected important people
and objects from Sect. 3.5.

A naive approach for optimizing Eq. 6 would take time
O(

(F
k

)
) for F = |V | total frames. Instead, we efficiently find

theoptimal set S∗ usingdynamicprogramming, by exploiting
the optimal substructure that exists in the k-frame selection
problem.

Specifically, the minimum energy M( fn, t) of a t-length
summary that selects frame fn at time step t can be recur-
sively computed as follows:

M( fn, t)t≤n≤F−k+t

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−I ( fn), if t = 1.

−I ( fn) + min
p≤m≤q

(e( fm, fn)

+ M( fm, t − 1)), if 1 < t ≤ k,

(7)

where p = t − 1, q = F − k + t + 1, and e( fm, fn) =
exp(− 1

�
χ2( fm, fn)) − |m − n| 12 . We enforce the selected

set of frames to be a temporally ordered subsequence of the
original video: si < si+1,∀i . Thus, any “path” that does not
obey this rule is assigned infinite cost.

Using Eq. 7, we can compute the minimum energy for a
k-length summary as E(S∗) = minn M( fn, k), which can
be solved in O(F2k) time. We retrieve the optimal set of k
frames S∗ by backtracking from fn at time k.

3.6.3 Discussion

The two strategies presented above offer certain trade-offs.
The importance criterion automatically produces the most
compact summary possible that includes all unique instances
of the important people and objects; however, it does not give
the user direct control on the length of the output summary. In
contrast, while the proposed budgeted formulation can return
a storyboard of a specified length, it does not permit setting
an absolute threshold on how important objects must be for
inclusion.

In addition to being a compact video diary of one’s day,
our storyboard summary can be considered as a visual index
to help a user peruse specific parts of the video. Thiswould be
useful when one wants to relive a specific moment or search
for less important people or objects that occurred with those
found by our method.

Algorithm 1 recaps all the steps of our approach.

4 Results

In this section we evaluate our approach on our newUT Ego-
centric (UTEgo) dataset and on theActivities ofDaily Living
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Input: Egocentric video, and importance selection criterion or
length budget k.

Output: Storyboard summary.
1. Train regression model. (Sec. 3.3)
2. Segment video into temporal events. (Sec. 3.4)
For each event,
3. Compute I (r) for all regions. (Sec. 3.3)
4. Group regions that belong to same person/object. (Sec. 3.5)
5. Retain unique clusters, select most important region in each
group. (Sec. 3.5)
6. Generate storyboard summary that shows selected important
people/objects. (Sec. 3.6)

Algorithm 1: Our summarization approach

(ADL) dataset (Pirsiavash and Ramanan 2012), which con-
sists of 17 and 10 h of egocentric video, respectively.We offer
direct comparisons to existing methods for both saliency and
video summarization, and we perform a user study with over
25 subjects to quantify the perceived quality of our results.
We use UT Ego for the experiments in Sects. 4.2–4.6, and
ADL for the experiments in Sect. 4.7.

4.1 Dataset and Implementation Details

For our UT Ego dataset, we collected 10 videos from four
subjects, each 3–5 h long.2 Each person contributed one
video, except one who contributed seven. The videos are
challenging due to frequent camera viewpoint/illumination
changes and motion blur. For evaluation, we use four data
splits: for each split we train with data from three users and
test on one video from the remaining user. Hence, the camera
wearers in any given training set are disjoint from those in
the test set, ensuring we do not learn user- or object-specific
cues.

ADL contains 20 videos from chest-mounted cameras,
each on average about 30 min long. The camera wearers per-
form daily activities in the house, like brushing hair, cook-
ing, washing dishes, or watching TV. To generate candidate
object regions on ADL, we use BING (Cheng et al. 2014),
which generates bounding box proposals and is orders of
magnitude faster than the min-cut approach of Carreira and
Sminchisescu (2010).

We use Lab space color histograms, with 23 bins per
channel, and optical flow histograms with 61 bins per direc-
tion using Brox and Malik (2011). We set t = 27,000 and
t = 2,250 (i.e., a 60 and 5min temporalwindow), forUTEgo
and ADL, respectively. We set θr = 10,000 and θp = 0.7
after visually examining a few examples. We fix all para-
meters for all results. For efficiency, we process every 15th
frame (i.e., 1 fps). For Eq. 5, we standardize each term to
zero-mean and unit-variance using training data.

2 See Footnote 1
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Fig. 6 Precision-Recall for important object prediction. Numbers in
the legends denote average precision. By leveraging egocentric-specific
cues, our approach more accurately discovers the important regions

4.2 Important Region Prediction Accuracy

We first evaluate our method’s ability to predict important
regions, compared to three state-of-the-art methods: (1) the
object-like score of Carreira and Sminchisescu (2010), (2)
the object-like score of Endres and Hoiem (2010), and (3)
a bottom-up saliency detector (Walther and Koch 2006).
The first two are high-level learned functions that predict a
region’s likelihood of overlapping a true object, whereas the
third is a low-level detector to find regions that “stand-out”.
They are all general-purpose metrics (not tailored to egocen-
tric data), so they allowus to gauge the impact of our proposed
egocentric cues for finding important objects in video.

We use the annotations obtained onMTurk as ground truth
(GT) (see Sect. 3.2). Some frames contain more than one
important region, and some contain none, depending onwhat
the annotators deemed important. On average, each video
contains 680 annotated frames and 280,000 test regions. A
region r is considered to be a true positive (i.e., important
object), if its overlap score with any GT region is greater
than 0.5, following PASCAL convention.

Figure 6 shows precision-recall curves on all test regions
across all train/test splits. Our approach predicts important
regions significantly better than all three existing methods.
The two high-level methods (Carreira and Sminchisescu
2010; Endres and Hoiem 2010) can successfully find promi-
nent object-like regions, and so they noticeably outperform
the low-level saliency detector. However, by focusing on
detecting any object, unlike our approach they are unable to
distinguish those that may be important to a camera wearer.

Figure 7 shows example important regions detected by
each method. The first four columns show examples of cor-
rect predictions made by our method. We see that low-level
saliency detection (Walther and Koch 2006) is insufficient;
its local estimates fail to find object-like regions. For exam-
ple, it finds a bright blob surrounded by a dark region to be
the most salient (first row, fourth column).

The last four columns show examples of incorrect pre-
dictions made by our method. The high-level saliency detec-
tion methods (Carreira and Sminchisescu 2010; Endres and
Hoiem 2010) produce better predictions for these exam-
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Fig. 7 Example selected regions/frames. The first four columns show examples of correct predictions made by our approach, and the last four
columns show failure cases in which the high-level saliency methods (Carreira and Sminchisescu 2010; Endres and Hoiem 2010) make better
predictions

Fig. 8 Top 28 features with
highest learned weights

ples. In the first example, our method produces an under-
segmentation of the important object and includes regions
surrounding the television due to the combined region hav-
ing higher object-like appearance score than the television
alone. In the second example, our method incorrectly detects
the user’s hand to be important, while in the third and fourth
examples, it determines background regions to be important
due to their high frequency.

We next perform ablation studies to investigate the contri-
bution of the pairwise interaction terms of our importance
predictor. Specifically, we compare to a linear regression
model and an L1-regularized linear regression model using
only the original 14-dimensional features. The average pre-
cision of the linear regression model is 0.20, and the average
precision of the L1-regularized model ranges from 0.14 to
0.20 depending on the level of sparsity, as enforced by the
weight on the regularization term. This result shows that the
original features alone are not sufficiently expressive, and
that the pairwise terms are necessary to more fully capture
the relationship between the features and desired importance
values.

4.3 Which Cues Matter Most for Importance?

Figure 8 shows the top 28 out of 105
(= 14+ (14

2

))
features

that receive the highest learned weights (i.e., β magnitudes).

Region size is the highest weighted cue, which is reasonable
since an important person/object is likely to appear roughly at
a fixed distance from the camera wearer. Among the egocen-
tric features, gaze and frequency have the highest weights.
Frontal face overlap is also highly weighted; intuitively, an
important person would likely be facing and conversing with
the camera wearer.

Some highly weighted pair-wise interaction terms are also
quite interesting. The feature measuring a region’s face over-
lap and y-position has more impact on importance than face
overlap alone. This suggests that an important person usually
appears at a fixed height relative to the camera wearer. Simi-
larly, the feature for object-like appearance and y-position
has high weight, suggesting that a camera wearer often
adjusts his ego-frameof reference to viewan important object
at a particular height.

Surprisingly, the pairing of the interaction (distance to
hand) and frequency cues receives the lowest weight. A plau-
sible explanation is that the frequency of a handled object
highly depends on the camera wearer’s activity. For exam-
ple, when eating, the camera wearer’s hand will be visible
and the food will appear frequently. On the other hand, when
grocery shopping, the important item s/he grabs from the
shelf will (likely) be seen for only a short time. These con-
flicting signals would lead to this pair-wise term having low
weight. Another paired term with low weight is an “object-
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Fig. 9 Comparison to alternative summarization strategies, in terms of important object recall rate. Using the same number of frames, our approach
includes more important people and objects

like” region that is frequent; this is likely due to unimpor-
tant background objects (e.g., the lamp behind the camera
wearer’s companion). This suggests that higher-order terms
could yield even more informative features.

4.4 Importance-Based Summarization Accuracy

Next we evaluate our method’s summarization results using
the importance-based criterion, and in the following section
we evaluate its budget-based results.

4.4.1 Quantitative Evaluation

The central premise of our work is that day-to-day activ-
ity viewed from the first person perspective largely revolves
around the important people and objects with which the cam-
era wearer interacts. Accordingly, a good visual summary
must capture those important entities. Thus, we analyze the
recall rate for our method and two competing summarization
strategies. The first is uniform keyframe sampling, and the
second is event-based adaptive keyframe sampling. The lat-
ter computes events using the same procedure as our method
(Sect. 3.4), and then divides its keyframes evenly across
events. Both methods are modeled after standard keyframe
and event detection methods (Money and Agius Feb 2008;
Wolf 1996; Zhang et al. 1997).

Figure 9 shows the results. Each set of bars shows the recall
rates for the three methods. Our method varies its selection
criterion on I (r) over {0.2, 0.4}, for two summaries in total
for each user. These thresholds are used to cover a broad
spectrum (i.e., low and high selection criteria) and are arbi-
trary; we see consistent relative results for any threshold. To
compare our recall rates to those of the baselines, we create
summaries for the baselines with the same number of frames
as ours.

If a frame contains multiple important objects, we score
only the main one. Likewise, if a summary contains multiple
instances of the sameGTobject, it gets credit only once. Note
that this measure is favorable to the baselines, since it does
not consider object prominence in the frame. For example,
we give credit for the TV in the last frame in Fig. 10, bottom
row, even though it is only partially captured. Furthermore, by
definition, the uniform and event-based baselines are likely

Fig. 10 Comparison to alternative summarization strategies, in terms
of the prominence of the objects within selected keyframes. Our sum-
maries more prominently display the important objects

to get many hits for the most frequent objects. These make
the baselines very strong and meaningful comparisons.

Overall, our summaries include more important peo-
ple/objects with the same number of frames. For example,
for User 2 with selection criterion on I (r) > 0.2, our method
finds 62%of important objects in 27 frames,whereas the uni-
form keyframe and event-based adaptive keyframe sampling
methods find 54 and 46 % of important objects, respectively.
The lower absolute recall rate for all methods for User 4 is
due to many small GT objects that appear together in the
same frame (the user was cooking and baking). On average,
we find 9.13 events/video and 2.05 people/objects per event.

While Fig. 9 captures the recall rate of the important
objects, it does not measure the prominence of the objects in
the selected frames. An informative summary should include
not just any instance of the important object, but frames in
which it is displayed prominently (i.e., large and centered).
To this end, in Fig. 10, we quantify the prominence of impor-
tant objects in each method’s summaries, in terms of the dis-
tance of the region’s centroid to the frame center. We see
our method better isolates the prominent instances, thanks
to its egocentric cues. For example, in the top right exam-
ple, the TV has high prominence in our summary and low
prominence in the uniform keyframe sampling’s summary.

4.4.2 Summarization Examples

Figure 11 shows example summaries from our method and
the keyframe sampling baseline. The colored blocks on ours
indicate the discovered events. We see that our summary not
only has better recall of important objects, but it also selects
views in which they are prominent in the frame. This helps
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Fig. 11 a Our summary versus b uniform keyframe sampling for two
user videos. The colored blocks for ours indicate the discovered events.
Our summary focuses on the important people and objects. While uni-
form keyframe sampling does hint at the course of events, it tends to

include irrelevant or redundant frames (e.g., repeated instances of the
man in the bottom example) because it lacks a notion of object impor-
tance

more clearly reveal the story of the video. For instance, for the
top example, the story is: selecting an itemat the supermarket
→ driving home→ cooking→ eating and watching TV. We
provide additional summaries at the project webpage.

Figure 11 (bottom) also depicts our method’s failure
modes. Redundant frames of the same object can appear
due to errors in event segmentation (see the man captured
in Events 2 and 3) or the candidate important object cluster-
ing (the sink is captured twice in Event 10). Adding features
like GPS or depth might reduce such errors.

Figure 12 shows another examplewherewe track the cam-
era wearer’s location with a GPS receiver, and display our
method’s keyframes on a map with the tracks (purple trajec-
tory) and timeline. This result suggests a novel multi-media
application of our visual summarization algorithm that incor-
porates location, temporal, and visual data.

In all the results in this section, the two baselines per-
form fairly similarly to one another; compared to ourmethod,

Fig. 12 An application of our approach that shows the GPS tracks of
the camera wearer, the important people and objects that s/he interacted
with, and their timeline

they are prone to choosing unimportant or redundant frames
that lack focus on those objects a human viewer has deemed
important. This supports our main hypothesis that the tradi-
tional low-level cues used in generic video summarization
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Fig. 13 Comparison to alternative k-frame summarization strategies.Our budgeted frame selection approach producesmore informative summaries
with fewer frames

methods are insufficient to select keyframes that capture key
objects in egocentric video. Building on this finding, the user
studies below analyze the impact that including important
objects has on perceived summary quality.

4.5 Budgeted Frame Selection Accuracy

We next evaluate our approach for the scenario where we
must handle requests such as, “I would like to see a 10-frame
summary of the original video”.

We compare our budgeted k-frame selection approach to
four alternative methods: (1) the state-of-the-art video sum-
marization method of Weng and Merialdo (2009), which
selects keyframes that provide maximal content inclusion.
Briefly, it iteratively selects the frame that is on average most
similar to all remaining frames without being redundant to
the frames that have already been chosen.3 (2) The keyframe
selection approach of Liu and Kender (2002), which opti-
mizes an energy function that enforces adjacent frames to be
maximally different. For fairest comparison, we use the same
χ2-distance on color histograms used by ourmethod to gauge
visual dissimilarity. (3) a side-by-side implementation of our
approach without event segmentation and region grouping
(i.e., it selects k-frames from all frames of the video), and
(4) uniform keyframe sampling. The former two contrast our
method with existing techniques that target the generic video
summarization problem, highlighting the need to specialize
to egocentric data as we propose. The latter two isolate the
impact of our importance predictions as well as our event
segmentation and region grouping.

4.5.1 Quantitative Evaluation

The plots in Fig. 13 show the results. We plot% of important
objects found as a function of # of frames in the summary, in
order to analyze both the recall rate of the important objects
as well as the compactness of the summaries. Each point on
the curve shows the result for a different summary of the
required length. We score the objects found in the same way
as in Sect. 4.4.1.

3 Thismethod summarizes a collection of videos, sowe treat each event
in our data as a different video.

Ourmodel significantly outperforms the keyframemethod
(Liu and Kender 2002), which confirms that modeling the
importance of the object or person is critical to produce infor-
mative summaries for egocentric videos. In fact, the existing
method performs even worse than uniform sampling, due
to its preference for frames that are maximally dissimilar
to their surrounding selected frames. As a result, it tends to
select redundant frames containing the same visual elements
in an alternating fashion. Our summary does not have this
issue since we represent each object in each event with a
single region/frame through region clustering.

Our model also outperforms the multi-document method
(Weng and Merialdo 2009) on all but one user. While this
prior method successfully selects diverse content through-
out the video, its reliance on low-level image cues leads to
choosing some non-essential frames.

With very short summaries, uniform sampling performs
similarly to ours; the selected keyframes are more spread
out in time and have a high chance of including unique peo-
ple/objects. However, with longer summaries, our method
always outperforms uniform sampling, since uniform sam-
pling ignores object importance and tends to include frames
repeating the same important object.

Our model also outperforms the baseline that selects k-
frames from the entire video without event segmentation and
region grouping (“No events”). Since this method does not
group instances of the same object together, it can select the
same important object multiple times.

4.5.2 Summarization Examples

Figure 14 shows example summaries createdby eachmethod.
By focusing on the important people and objects, our method
produces the best results.

4.6 User Studies to Evaluate Summaries

We next perform user studies, since ultimately the impact
of a summary depends on its value to a human viewer. As
subjects, we recruit both the camera wearers as well as 25
subjects uninvolved with the data collection or research in
any way. The camera wearers are a valuable resource to dis-
cern summary quality, since they alone fully experienced
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Fig. 14 Example summaries per method on UT Ego. The “No events”
baseline can include redundant frames because it lacks event segmenta-
tion and region clustering to group instances of the same object together
(e.g., the yellow notepad andman). Keyframe selection (Liu andKender
2002) focuses on selecting adjacent frames that are maximally dissim-
ilar, leading it to toggle between highly diverse frames, which need not
capture important objects. While the multi-document summarization

objective (Weng and Merialdo 2009) overcomes this toggling effect,
both it and uniform keyframe sampling tend to select redundant frames
(e.g., see repeated instances of the man). Overall, our summary best
focuses on the important people and objects. It selects informative
frames that convey the chain of events through the objects and peo-
ple that drive the first person interactions
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Table 1 Camera wearer user
study results comparing our
summaries to uniform keyframe
sampling

Much better
(%)

Better
(%)

Similar
(%)

Worse
(%)

Much worse
(%)

Imp. captured 31.25 37.5 18.75 12.5 0

Overall quality 25 43.75 18.75 12.5 0

the original content. Complementary to that, the uninvolved
subjects are valuable to objectively gauge whether the over-
all events are understandable—without the implicit benefit
of being able to “fill in the gaps” with their own firsthand
experience of the events being summarized.

4.6.1 Evaluation by the Camera Wearers

To quantify perceived quality, we ask the camera wearers
to compare our method’s summaries to those generated by
uniform keyframe sampling. The camera wearers are good
judges, since they know the full extent of their day that we
are attempting to summarize.

We generate four pairs of summaries for each user, each
of different length. We ask the subjects to view our summary
and the baseline’s (in some randomorder unknown to the sub-
ject, and different for each pair), and answer two questions:
(1)Which summary captures the important people/objects of
your day better? and (2)Which provides a better overall sum-
mary? The first specifically isolates how well each method
finds important, prominent objects, and the second addresses
the overall quality and story of the summary.

Table 1 shows the results, in terms of how often our sum-
mary is preferred. In short, out of 16 total comparisons, our
summaries were found to be better 68.75 % of the time. We
find our approach can fail to produce better summaries than
uniform keyframe sampling if the user’s day is very simple.
Specifically, User 3wasworking on her laptop the entire day;
first at home, then at class, then during lunch, and finally at
the library. For this video, uniform keyframe sampling was
sufficient to produce a good summary.

4.6.2 Evaluation by Independent Subjects

Next, to measure the quality of our summary on an absolute
scale and to allow independent judges to evaluate a visual
summary’s informativeness, we ask each camera wearer to
provide a “ground-truth” text summary of his/her day. Specif-
ically, we ask the users to provide full sentence descriptions
that emphasize the key happenings (i.e., who s/he met, what
s/he did, where, and when), and in sequential order as they
happened that day. The resulting text summaries are 6-10
sentences long. Here is an example from User 2:

My boyfriend and I drove to a farmers market in the
early afternoon, where we sampled some food. Then
(also in the early afternoon) we drove to a pizza place,

where we stayed for a while, talked, had pizza, drank
beer, and watched TV. After that, in the afternoon, we
walked to a frozen yogurt place and split a cup of frozen
yogurt, with brief looks at an animation that was play-
ing. Then we walked around for a while, and drove
home in the early evening. At home, we played with
Legos for a while, in the living room. Then we watched
some videos on YouTube. After that we played with
Legos some more, and I washed some dishes in the
kitchen, in the evening.

See the supplementary file for the remaining text summaries.
We then ask 25 subjects using Mechanical Turk to com-

pare our summary and the baselines’ (without knowing
which method generated the summary) to the text sum-
mary provided by the camera wearer of the corresponding
video, and answer: How well does the visual summary fol-
low the story of the text summary? On a scale of 1 to 5
(1 being “very well” and 5 being “very poorly”), over all
16 summaries, ours scored 2.61 (±0.97). The prior meth-
ods (Liu and Kender 2002; Weng and Merialdo 2009), and
uniform sampling scored only 3.43 (±1.05), 3.28 (±1.10),
2.94 (±1.09), respectively. In general, the judges found the
longer summaries to better align with the corresponding text
summary than the shorter summaries. On some videos, our
shorter summaries failed to capture all of the details in the
text summary, resulting in poor scores.

While the result above gauges quality on an absolute scale,
we also ran a comparative test. Here, we ask the subjects
to compare our summary and each baseline’s (in random
order) to the text summary, and answer: Which visual sum-
mary more closely follows the story of the text summary?
Table 2 shows the accumulated responses from all 25 sub-
jects. Out of 16 total comparisons to each baseline, our sum-
maries were found to be better 48–62% of the time, and only
worse 24–38 % of the time.

4.7 Experiments on ADL

Finally, we perform experiments on ADL, an interesting and
complimentary dataset to UT Ego that contains egocentric
videos of people performing daily activities in their home
(e.g., washing dishes, brushing teeth, etc.). It contains 20
videos, each roughly 30 min in length.

Since this data lacks ground-truth important object anno-
tations, we use it only to evaluate our summaries. We take
the importance predictor from UT Ego (trained on all four
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Table 2 Mechanical Turk user
study results on UT Ego
comparing our summaries to
baseline summaries

Much better
(%)

Better
(%)

Similar
(%)

Worse
(%)

Much worse
(%)

Keyframes (Liu and Kender 2002) 16.43 45.45 13.99 18.88 5.25

Multi-document (Weng and Merialdo 2009) 21.08 36.14 17.47 17.47 7.84

uniform sampling 10.22 37.63 14.52 29.03 8.60

Table 3 Mechanical Turk user
study results on ADL comparing
our summaries to baseline
summaries

Much better
(%)

Better
(%)

Similar
(%)

Worse
(%)

Much worse
(%)

Keyframes (Liu and Kender 2002) 26.80 41.24 17.01 11.34 3.61

Multi-document (Weng and Merialdo 2009) 13.90 28.88 25.67 26.20 5.35

uniform sampling 11.95 33.96 20.75 25.79 7.55

Fig. 15 Example summaries per method on ADL. Keyframe selec-
tion (Liu and Kender 2002) focuses on selecting adjacent frames that
are maximally dissimilar, leading it to toggle between highly diverse
frames, which need not capture important objects. While the multi-
document summarization objective (Weng and Merialdo 2009) over-

comes this toggling effect, both it and uniform keyframe sampling can
select irrelevant frames (e.g., see 2nd and 7th columns). Overall, our
summary selects informative frames that best focus on the important
objects that drive the first person interactions

videos), and use it to predict region importance on the ADL
videos. We use our budgeted frame selection approach and
set the summary frame-length to k = 8 (an arbitrary but
reasonable number given the short length of ADL videos).
For each video, we ask an independent subject to watch the
video and provide a text summary that emphasizes the key
happenings, in the same manner as described in Sect. 4.6.2.
The resulting summaries tend to focus on specific actions
and are more descriptive than those provided by the camera
wearers on UT Ego. We suspect this is due to the relatively
short length of each video (∼30 min). Here is an example
summary:

A guy brought his laundry basket to the laundry room
to do laundry. He poured in the liquid detergent and did
his laundry. He thenwent back home and started to play
a video game on TV. The guy went into his room and
turned on his laptop computer and looked at a picture of
a monkey. The guy went into the bathroom to wash his
face and brush his teeth. The guy is now in his kitchen
and poured some juice to drink. He’s looking at a list
and checking off his list. The guy is making tea. The
guy went into the bathroom to comb his hair. The guy
cleaned his kitchen floor with a broom. He then went
into his bedroom and put on his shoes.
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See supplementary file for all text summaries.
We then ask 10 Mechanical Turk subjects per video

to compare our summaries to those of uniform sampling,
keyframes (Liu and Kender 2002), and multi-document
(Weng andMerialdo 2009), and ask the same set of questions
as in Sect. 4.6.2. Table 3 shows the results. Out of 20 total
pairwise comparisons to each baseline, our summaries were
found to be better 42–68%of the time, andworse 15–33%of
the time. In terms of how each method’s summary compares
to the text summary, ours, Liu and Kender (2002), Weng
and Merialdo (2009), and uniform sampling scored 2.71
(±1.02), 3.58 (±0.97), 2.99 (±1.15), 2.89 (±1.06), respec-
tively (recall that lower numbers are better: 1 being “very
well” and 5 being “very poorly”). We show clear improve-
ment over keyframes (Liu and Kender 2002), which tends to
simply oscillate between bright/dark frames. Our improve-
ments over uniform sampling and multi-document (Weng
and Merialdo 2009) are less compared to those on UT Ego.
This is likely due to the ADL videos being shorter in length
and more structured; in ADL, the camera wearers are given
a list of actions they should perform, whereas UT Ego is
completely unscripted. Under these conditions, summariza-
tion algorithms that aim to select frames that are spread-out
over time are likely to select meaningful frames. Still, by
focusing on the important objects, our approach produces
the best summaries. Figure 15 shows example summaries
created by each method. Our method selects the most infor-
mative frames.

Overall, the results are a promising indication that dis-
covering important people and objects leads to higher qual-
ity summaries for egocentric video. Not only do we better
recount those objects that human viewers deem important in
the context of the surrounding activity, but we also generate
summaries that human viewers prefer to multiple existing
summarization approaches.

5 Conclusion and Future Work

We introduced an approach to summarize egocentric video
using novel egocentric cues to predict important regions.
We presented two ways to adjust summary compactness:
given either an importance selection criterion or a length
budget. For the latter, we developed an efficient optimization
strategy to recover the best k-frame summary. To our knowl-
edge, ours is the first work to summarize videos from wear-
able cameras by discovering objects that may be important
to the camera wearer. Existing summarization techniques
rely on static cameras or low-level visual similarity, and so
they fail to account for the key objects that drive first person
interactions. Through extensive experiments, we showed that
our approach produces significantly more informative sum-
maries than prior methods.

Future work can expand this idea in several interesting
directions. We assumed that the importance cues can be
learned and shared across users, and our experiments con-
firmed that it is feasible. However, there are also subjec-
tive elements; e.g., depending on the user, a person that
he has significant interactions with may or may not be
considered important. To overcome the subjectivity, one
could learn a wearer-specific model that uses input from the
wearer for training to complement our wearer-independent
model.

Secondly, event segmentation remains a challenge for
egocentric data. With the frequent head and body motion
inherent to wearable video, grouping frames according to
low-level scene statistics is imperfect. In our system, this
can sometimes lead to redundant keyframes showing the
same object. One way to mitigate this issue is to use a
GPS receiver and generate event clusters using both loca-
tion information and scene appearance. This could pro-
vide better separation of events, especially when the scene
appearance between two neighboring events is similar.
More broadly, more robust detection of event boundaries is
needed.

Finally, while our interest lies in the computer vision chal-
lenges, other sensing modalities naturally can play a role in
egocentric summarization. For example, audio cues could
signal person importance based on their speech near the cam-
era, while ambient noise may be indicative of the scene type.
Other sensors like an accelerometer can reveal the user’s ges-
tures and activity, while GPS coordinates could give real-
world location context relevant to which objects are likely
important (e.g., a plate in a restaurant, vs. an athlete in a
stadium).
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