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Abstract Aesthetic image analysis is the study and assess-
ment of the aesthetic properties of images. Current compu-
tational approaches to aesthetic image analysis either pro-
vide accurate or interpretable results. To obtain both accu-
racy and interpretability by humans, we advocate the use
of learned and nameable visual attributes as mid-level fea-
tures. For this purpose, we propose to discover and learn the
visual appearance of attributes automatically, using a recently
introduced database, called AVA, which contains more than
250,000 images together with their aesthetic scores and tex-
tual comments given by photography enthusiasts.Weprovide
a detailed analysis of these annotations as well as the context
in which they were given. We then describe how these three
key components of AVA—images, scores, and comments—
can be effectively leveraged to learn visual attributes. Lastly,
we show that these learned attributes can be successfully used
in three applications: aesthetic quality prediction, image tag-
ging and retrieval.
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1 Introduction

The volume of visual data we handle on a daily basis is grow-
ing exponentially, and will continue to do so due to the avail-
ability of ubiquitous and cheap sensors, sharing platforms
and new social trends. Artificial intelligence systems have
proven useful for processing and interpreting this prepon-
derance of data. In the last decade, the computer vision and
image retrieval community was focused on developing tools
for semantic analysis of multimedia content. While this is
still a very active research field, new questions are arising.
These questions are about visual properties beyond visual
semantics, such as imagepreference (Datta et al. 2006), affec-
tiveness (Machajdik and Hanbury 2010), and memorability
(Isola et al. 2011), as well as object importance (Berg et al.
2012). Answering subjective, human-centric questions such
as “would someone find this image aesthetically pleasing” is
very challenging, even for humans. However, it was experi-
mentally shown that these visual cognition phenomena can
be predicted using data-driven approaches (Luo and Tang
2008; Datta et al. 2008; Machajdik and Hanbury 2010; Dhar
et al. 2011; Marchesotti et al. 2011; Murray et al. 2012a).
In this work we focus on image preference: that is, whether
people will like an image and which visual elements makes
it un/attractive.

Early work on image preference prediction (Datta et al.
2006; Ke et al. 2006) proposed to mimic the best practices
of professional photographers. In a nutshell, the idea was (i)
to select rules (e.g. “contains opposing colors”) from pho-
tographic resources such as (Kodak 1987) and (ii) to design
for each rule a visual feature to predict the image compli-
ance (e.g. a color histogram). Many subsequent works have
focused on adding new photographic rules and on improv-
ing the visual features of existing rules (Luo and Tang 2008;
Dhar et al. 2011). As noted for instance in (Dhar et al. 2011)
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Fig. 1 We propose an end-to-end pipeline capable of learning visual
attributes using information contained in the AVA dataset. Textual
attributes are automatically discovered using textual comments and

preference scores. Visual attribute models for these textual attributes
are then learned using generic features extracted from images, as well
as preference scores. See Sects. 4 and 5 for further details

these rules can be understood as visual attributes (Ferrari and
Zisserman 2007; Lampert et al. 2009; Farhadi et al. 2009),
i.e. medium-level descriptions whose purpose is to bridge
the gap between the high-level concepts to be recognized
(beautiful vs. ugly in our case) and the low-level pixels. How-
ever, there are at least two issues with such an approach to
aesthetic prediction. Firstly, the hand-selection of attributes
from a photographic guide is not exhaustive and does not give
any indication of when, and to what extent, such rules are
used. Secondly, hand-designed visual features only imper-
fectly model the corresponding rules.

As an alternative to rules and hand-designed features, it
was proposed in (Marchesotti et al. 2011) to rely on generic
features such as theGIST (Oliva and Torralba 2001), the bag-
of-visual-words (BOV) (Csurka et al. 2004) or the Fisher vec-
tor (FV) (Perronnin et al. 2010). While it was shown experi-
mentally that such an approach can lead to improved results
with respect to hand-designed attribute techniques, a major
shortcoming is that interpretability of the results is lost. In
other words, while it is possible to say that an image has a
high or low aesthetic value, it is impossible to tell why. We
thus raise the following question: can we preserve the advan-
tages of generic features and obtain interpretable results? In
this work, we will address this problem by discovering and
learning attributes automatically.

As described by (Parikh and Grauman 2011b),
“[a]ttributes represent a class-discriminative, but not class-
specific property that both computers and humans can decide
on”. Such a statement implies that attributes should be under-
standable by humans. Because selecting attributes by hand-
picking photographic rules is problematic, we intend to auto-
matically discover attributes using a data-driven approach. A
natural way to enforce interpretability of the automatically
discovered attributes is to mine them from natural text cor-
pora, as done for instance in (Berg et al. 2010). We adopt
this approach, and mine attributes using aesthetics-related
textual terms associated with images. The discovery process
is as follows: (i) textual image meta-data are used to form
a vocabulary of aesthetic terms; (ii) the discriminability of
each vocabulary term is assessed and the most discriminative
terms are retained as textual attributes; (iii) visual appear-

ance models for these textual attributes are trained using
generic image descriptors and the most detectable models
are retained as visual attributes.

Such an approach however, has a key requirement: a
database with a unique conjunction of aesthetics-related
content, namely (i) textual meta-data from which to mine
for aesthetic terms; (ii) aesthetic preference scores to pro-
vide supervisory information when assessing the discrim-
inability of attributes; (iii) images on which to train visual
attributemodels for textual aesthetic attributes.While several
datasets exist which contain images and associated prefer-
ence scores, to our knowledge only the recently-introduced
AVA dataset (Murray et al. 2012a) contains the full set of
required content. AVA contains more than 250,000 images
along with preference score distributions and textual com-
ments given to images by photography enthusiasts. As such,
we propose to leverage AVA as an essential resource for our
approach.

The main contributions of our proposed method are thus
the following:

1. An in-depth analysis of the AVAdataset, and in particular
its textual comments and aesthetic preference scores.

2. A novel approach to aesthetic image analysis which com-
bines the benefits of “attribute-based” and “gen- eric”
techniques by (i) automatically discovering discrimina-
tive textual attributes using user comments and prefer-
ence scores (step 1 in Fig. 1); and (ii) supervised learning
of detectable visual attributes using textual attributes and
generic visual features (step 2 in Fig. 1).

3. The application of the learned visual attributes to three
different scenarios: aesthetic quality prediction, image
classification and retrieval (step 3 in Fig. 1).

The remainder of this work is organized as follows: in
Sect. 2 we review works related to aesthetic analysis and
attributes. We then introduce the AVA dataset and explain
why it is an essential resource for aesthetic attribute learning
(Sect. 3). In Sect. 3.3 we analyze aesthetic preference as
expressed by real-valued scores while in Sect. 3.4 we analyze
aesthetic preference as expressed in textual comments. We
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then introduce the proposed approach to discover attributes
that consists of (i) mining for discriminative textual attributes
using the user comments and user scores (Sect. 4) and (ii)
learning visual attributes by modeling the visual appearance
of textual attributes using generic visual features (Sect. 5). In
Sect. 6, we show practical applications of these attributes.

This paper extends our previous work (Murray et al.
2012a; Marchesotti and Perronnin 2013) with (1) a more
detailed quantitative and qualitative analysis of the textual
comments included in theAVAcorpus, (2) an expanded quan-
titative evaluation of the textual features derived from these
comments, (3) a quantitative assessment of the generalization
performance of our learned visual attributes on a different
image corpus and (4) an expanded image retrieval applica-
tion to include joint attribute-semantic queries.

2 Related Work

The study of aesthetics spans millennia, from the works of
philosophers such Plato to those of researchers today in fields
as diverse as neuroscience, psychology, and computer sci-
ence (Shelley 2012b; Leder et al. 2004; Chatterjee 2011).
This highly inter-disciplinary interest in the topic is a natural
outcome of the complex and multi-faceted nature of aesthet-
ics, which is defined in the American Heritage® Dictionary
of the English Language (“aesthetics” 2012) as “the study of
the mind and emotions in relation to the sense of beauty.”

One major debate in the aesthetics research community
surrounds the relative influence of subjective versus objec-
tive factors in aesthetic appreciation (Shelley 2012b). This
debate has been ongoing at least since Baumgarten argued
that aesthetic appreciation was the result of objective reason-
ing (Hammermeister 2002), while David Hume and Edmund
Burke (Gracyk 2011; Shelley 2012a) took the opposing view
that aesthetic appreciation was due to induced feelings.

For photography, which is the subject of our work, there
are generally-accepted principles and techniques that are
used by artists themselves to enhance the aesthetic quality
of their artworks (Krages 2005). Examples include the “rule
of thirds” compositional rule and “color harmony” guidelines
(Krages 2005; Jacobson and Ostwald 1946). Note that these
and other guidelines may be applicable to other pictorial art-
forms such as paintings, which nonetheless remain out of the
scope of this work.

These principles and techniques may have arisen due
to both objective and subjective/cultural factors. However,
what is critical for data-driven image aesthetics analysis is
that they are often detectable using machine learning tech-
niques and trainingdata. The computer vision community has
used detectable principles and techniques in order to design
systems that attempt to predict the average response of an
observer when asked questions such as “do you find this

image aesthetically pleasing?”, or “how would you rate this
image on a score of 1–10?”.

As this work discovers attributes relevant for image aes-
thetics analsyis, we review the literature on aesthetics pre-
diction and attributes.

2.1 Computational Image Aesthetics Prediction

As mentioned above, the computer vision community has
in recent years developed data-driven approaches for ana-
lyzing pictorial artworks, particularly paintings and pho-
tographs. Such approaches use standard machine learning
techniques such as linear classifiers or regressors to predict
aesthetic annotations. Therefore the bulk of research effort
has focused on designing appropriate visual features for rep-
resenting image aesthetic characteristics. In general, these
features attempt to capture specific aesthetic principles and
techniques related to composition and the use of color and
light (Datta et al. 2006; Ke et al. 2006; Luo and Tang 2008;
Obrador et al. 2010; Dhar et al. 2011; Luo et al. 2011; Joshi
et al. 2011; San Pedro et al. 2012; Obrador et al. 2012).

Datta’s seminal work on aesthetic prediction extracted 56
visual features from an image and used these to train a sta-
tistical model to automatically classify an image as being of
“beautiful” or “ugly” aesthetic quality (Datta et al. 2006).
The features included relative color frequencies, mean pixel
intensity, mean pixel saturation and mean pixel hue. Pho-
tographic rules of thumb such as the rule-of-thirds were
also incorporated as well as other features related to texture,
aspect ratio, and low depth-of-field.

There have beenmany other works in this line, such as that
of Ke et al. (2006) who proposed features capturing the spa-
tial distribution of edges, color, blur, and brightness. Luo and
Tang (2008) extracted semantic features describing lighting,
color, and composition from the foreground image region
after segmentation. Dhar et al. (2011) proposed the use of
human-describable attributes related to composition, illumi-
nation and the image content. In Li et al. (2010), face-specific
aesthetic features such as individual face expressions, indi-
vidual face poses, and between-face distances were captured
and used to assess and improve portraiture.

As mentioned before, it is difficult to define an exhaustive
list of aesthetics-relevant image descriptors. An alternative
approach, proposed by Marchesotti et al. (2011) is to use
general-purpose image signatures to train aesthetics models.
In this work the Bag-Of-Visual-words descriptor (Csurka et
al. 2004; Sivic and Zisserman 2003) and the Fisher Vec-
tor (FV, Perronnin and Dance 2007; Perronnin et al. 2010),
based on SIFT (Lowe 1999) and color statistics features,
were shown to achieve state-of-the-art aesthetic classifica-
tion results. The authors posited that generic features are
able to implicitly encode the aesthetic properties of an image.
In addition, the spatial pyramid framework (Lazebnik et al.
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2006) was able to roughly encode compositional informa-
tion. Some recent works have complemented visual features
with aethetic features mined from textual data (San Pedro et
al. 2012; Geng et al. 2011), by generating word frequency or
TF-IDF vectors from comments given to images by individ-
uals.

The promising results obtained by various aestheticsmod-
els have enabled the development of prototypes for not only
assessing but also improving image aesthetics (Joshi et al.
2011). In particular, the web application ACQUINE (Datta
and Wang 2010) allows one to upload images and receive a
real-valued aesthetic score. Another such system, OSCAR
(Yao et al. 2012), is a mobile application which provides
on-line feedback to assist the user in improving an image’s
composition or colorfulness.

2.2 Visual and Textual Attributes

There is a significant body of work on attribute learning in
the computer vision and multimedia literature. This is a cost-
effective alternative to hand-listing attributes (Ferrari and
Zisserman 2007; Lampert et al. 2009) and to architectures
which require a human in the loop (Parikh and Grauman
2011a). Existing solutions (Berg et al. 2010; Wang et al.
2009; Yanai and Barnard 2005) were typically developed for
visual object recognition tasks. Wang et al. (2009) proposes
to mine pre-existing natural language resources. Berg et al.
(2010) usesmutual information to learn attributes relevant for
e-commerce categories (handbags, shoes, earrings and ties).
Duan et al. (2012) uses latent CRF to discover detectable
and discriminative attributes. Donahue and Grauman (2011)
learnedmodels for pre-determinednameable visual attributes
and applied them in scene and human attractiveness classifi-
cation tasks. Moreover, approaches such as (Rohrbach et al.
2010) use natural language text in the form of captions or
surrounding image text. Only Orendovici and Wang (2010)
take into account text to devise aesthetic attributes, but the
process is entirely manual.

In contrast to the reviewed works which hand-pick aes-
thetic attributes, we aim to automatically discover them from
textual data, with preference scores as supervisory informa-
tion.We next describe the dataset, AVA, that wewill leverage
for training our models.

3 AVA: A Large-Scale Database for Aesthetic Visual
Analysis

AVA (Aesthetic Visual Analysis) is a publicly available data-
base for aesthetics analysis which we recently introduced in
(Murray et al. 2012a). In what follows, we first compare AVA
to related databases, and describe their limitations for our
goal of automatic discovery of mid-level image representa-

Table 1 Comparison of the properties of current databases containing
aesthetic annotations

AVA PN CUHK CUHKPQ CLEF

Large scale Y N N N Y

Score distr. Y Y N N N

Rich annotations Y N Y Y Y

Semantic labels Y N N Y Y

Style labels Y N N N Y

AVA is large-scale and contains score distributions, rich annotations,
and semantic and style labels

tions for aesthetic analysis.We then provide a detailed analy-
sis of AVA, focusing on 3 key components: (i) its images; (ii)
its real-valued score annotations; and (iii) its textual com-
ments.

3.1 AVA and Related Databases

In addition toAVA, there exist several public image databases
in current use which contain aesthetic annotations. In this
section,we compare the properties of these databases to those
of AVA and discuss the features that differentiate AVA from
such databases. A summary of this comparison is shown in
Table 1.

3.1.1 Photo.net, PN

(Datta et al. 2006) PN contains 3,581 images from the social
network Photo.net. In this online community, members
are instructed to give two scores from 1 to 7 for an image.
One score corresponds to the image’s aesthetics and the other
to the image’s originality. The dataset includes the mean aes-
thetic score and the mean originality score for each image.
As described in (Datta et al. 2006), the aesthetic and original-
ity scores are highly correlated, with little disparity between
these two scores for a given image. This is probably due to the
difficulty of separating these two characteristics of an image.
As the two scores are therefore virtually interchangeable,
works using PN have restricted their analysis to the aesthetic
scores. Figure 2 shows sample photos of high quality with
their scores and number of votes.

Upon visual inspection of PN, we have noticed a correla-
tion between images receiving a high grade and the presence
of frames manually created by the owners to enhance the
visual appearance (see examples in Fig. 3). In fact, we man-
ually detected that more than 30% of the images are framed.

In addition to this bias, many images in PN have been
scored by very few users. In fact, the images were included
on the condition that they had received scores from at least
two users. In contrast, each image included in AVA has at
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Fig. 2 Photos highly rated by peer voting in an on-line photo sharing
community (photo.net)

Fig. 3 Sample images from PNwith borders manually created by pho-
tographers to enhance the photo visual appearance

least 78 votes. In addition, AVA contains approximately 70
times as many images.

3.1.2 CUHK

(Ke et al. 2006)CUHKcontains 12,000 images, half ofwhich
are considered high quality and the rest labeled as low qual-
ity. (Ke et al. 2006) observed the same bias for images with
border as we did for PN, so they removed all the frames
from the images they released. The images were obtained by
retaining the top and bottom 10% (in terms of mean scores)
of 60,000 images randomly crawled fromwww.dpchallenge.
com. Our dataset differs from CUHK in several ways. While
AVA includes more ambiguous images, CUHK only con-
tains images with a very clear consensus on their score. As a
consequence, the images in CUHK are much less represen-
tative of the range of images, in terms of aesthetic quality,
that one would find in a real-world application such as re-
ranking images returned by a search on the web. In addition,
CUHK is no longer a challenging dataset for classification;
recent methods achieved accuracies superior to 90% on this
dataset (Marchesotti et al. 2011). Finally, CUHK provides
only binary labels (1 = high quality images, 0 = low qual-
ity images) whereas AVA provides an entire distribution of
scores for each image.

3.1.3 CUHKPQ

(Luo et al. 2011) CUHKPQ consists of 17,690 images
obtained from a variety of on-line communities and divided
into 7 semantic categories. Each image was labeled as either
high or low quality by at least 8 out of 10 independent view-
ers. Therefore this dataset consists of very high consensus
images and their binary labels. Like CUHK, it is not a chal-
lenging dataset for the problem of binary classification: the
method of (Luo et al. 2011) obtained Area under the ROC
curve (AROC) values between 0.89 and 0.95 for all semantic
categories. Also like CUHK, the images in the dataset do not
span the full range of images, in terms of aesthetic quality,
that one is likely to find in a real-world aesthetic predic-
tion application. In addition, despite the fact that AVA shares
similar semantic annotations, it differs in terms of scale and
also in terms of consistency. In fact, CUHKPQ was created
by mixing high quality images derived from photographic
communities and low quality images provided by university
students.

3.1.4 MIRFLICKR/Image CLEF: Visual Concept Detection
and Annotation Task 2011

(Müller et al. 2010) MIRFLICKR is a large dataset intro-
duced in the community of multimedia retrieval. It con-
tains 1 million images collected from Flickr, along with
textual tags, aesthetic annotations (Flickr’s interestingness
flag) and EXIF meta-data. A sub-part of MIRFLICKR was
used by CLEF (the Cross-Language Evaluation Forum) to
organize two challenges on “Visual Concept Detection”. For
these challenges, the basic annotations were enriched with
emotional annotations and with some tags related to photo-
graphic style. It is probably the dataset closest to AVA but
it lacks rich aesthetic preference annotations. In fact, only
the “interestingness” flag is available to describe aesthetic
preference. Some of the 44 visual concepts available might
be related to AVA photographic styles but they focus on two
very specific aspects: exposure and blur. Only the following
categories are available: neutral illumination, over-exposed,
under-exposed, motion blur, no blur, out of focus, and par-
tially blurred. In addition, the number of images with such
style annotations is limited.

3.2 AVA and Its Annotations

AVAcontains photographic images and a rich variety of asso-
ciated meta-data, derived from www.dpchallenge.com. To
our knowledge, AVA represents the first attempt to create a
large database containing a unique combination of heteroge-
neous annotations. The peculiarity of this database is that it
is derived from a community where images are uploaded
and scored in response to photographic challenges. Each
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Fig. 4 A sample challenge entitled “Skyscape” from the social net-
work www.dpchallenge.com. Users submit images that should conform
to the challenge description and be of high aesthetic quality. The sub-
mitted images are rated bymembers of the social network during a finite
score period. After this period, the images are ranked by their average
scores and the top three images are awarded ribbons

challenge is defined by a title and a short description (see
Fig. 4 for a sample challenge).

Using this interesting characteristic, we associated each
image inAVAwith the information of its corresponding chal-
lenge. This information can be exploited in combinationwith
aesthetic scores or semantic tags to gain an understanding of
the context in which such annotations were provided. We
created AVA by collecting approximately 255,000 images
covering a wide variety of subjects on 1,447 challenges. We
combined the challengeswith identical titles and descriptions
and we reduced them to 963. Each image is associated with
a single challenge.
In AVA we provide three types of annotations:
Aesthetic Annotations Each image is associated with a dis-
tribution of scores which correspond to individual votes. The
number of votes per image ranges from 78 to 549, with an
average of 210 votes. Such score distributions represent a
gold mine of aesthetic judgments generated by hundreds of
amateur and professional photographerswith a practiced eye.
In addition, AVA contains rich textual comments given to
users by other community members. We believe that such

annotations have a high intrinsic value because they capture
the way hobbyists and professionals understand visual aes-
thetics.
Semantic Annotations We provide 66 textual tags describing
the semantics of the images. Approximately 200,000 images
contain at least one tag, and 150,000 images contain 2 tags.
The frequency of the most common tags in the database can
be observed in Fig. 5.
Photographic Style Annotations Despite the lack of a formal
definition, we understand photographic style as a consistent
manner of shooting photographs achieved by manipulating
camera configurations (such as shutter speed, exposure, or
ISO level). Wemanually selected 72 Challenges correspond-
ing to photographic styles and we identified three broad cat-
egories according to a popular photography manual (Kodak
1987): Light, Color, Composition. We then merged similar
challenges (e.g. “Duotones” and “Black & White”) and we
associated each stylewith one category. The 14 resulting pho-
tographic styles along with the number of associated images
are: Complementary Colors (949), Duotones (1,301), High
Dynamic Range (396), Image Grain (840), Light on White
(1,199), Long Exposure (845), Macro (1,698), Motion Blur
(609), Negative Image (959), Rule of Thirds (1,031), Shallow
DOF (710), Silhouettes (1,389), Soft Focus (1,479), Vanish-
ing Point (674).

In the next two sections we focus on the key AVA annota-
tions necessary for our goal of learning aesthetic attributes,
namely the score distributions and textual comments.

3.3 Aesthetic Preference as Real-Valued Scores

Annotations of aesthetic preference are typically in the form
of real-valued scores. When multiple scores are given to an
image, as it is the case with images derived from social net-
working sites like www.dpchallenge.com, a score distribu-
tion is formed. In this section,we analyze the rich score distri-
butions (consisting on average of approximately 200 scores)
available in AVA in order to gain a deeper understanding of

Fig. 5 Frequency of the 30
most common semantic tags in
AVA. The tags cover a wide
range of content and styles. The
most popular content-related
tags are nature and landscape,
while the most popular styles
are black and white and macro
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Table 2 Goodness-of-Fit per distribution with respect to mean score:
the last row shows the average RMSE for all images in the dataset

Mean score Average RMSE

Gaussian Γ Γ ′

1–2 0.1138 0.0717 0.1249

2–3 0.0579 0.0460 0.0633

3–4 0.0279 0.0444 0.0325

4–5 0.0291 0.0412 0.0389

5–6 0.0288 0.0321 0.0445

6–7 0.0260 0.0250 0.0455

7–8 0.0268 0.0273 0.0424

8–9 0.0532 0.0591 0.0403

Average RMSE 0.0284 0.0335 0.0429

The Gaussian distribution was the best-performing model for 62% of
images in AVA
Bold value signifies the lowest RMSE for a given range of mean scores

such distributions and of what kind of information can be
deduced from them.

3.3.1 Score Distributions are Largely Gaussian

Table 2 shows a comparison of Goodness-of-Fit (GoF), as
measured by RMSE, between top performing distributions
we used to model the score distributions of AVA. One sees
that Gaussian functions perform adequately for images with
mean scores between 2 and 8, which constitute 99.77% of
all the images in the dataset. In fact, the RMSEs for Gaussian
models are rarely higher than 0.06. This is illustrated inFig. 6.
Each plot shows a density function obtained by averaging the
score distributions of images whose mean score lies within a
specified range. The averaged score distributions are usually
well approximated byGaussian functions (see Fig. 6b, c).We
also fitted Gaussian Mixture Models with three Gaussians
to the distributions but we only found minor improvement
with respect to one Gaussian. Beta, Weibull and General-
ized Extreme Value distributions were also fitted to the score
distributions, but gave poor RMSE results.
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Fig. 7 Distributions of variances of score distributions, for imageswith
different mean scores. The variance tends to increase with the distance
between the mean score and the mid-point of the score scale

Non-Gaussian distributions tend to be highly-skewed.
This skew can be attributed to a floor and ceiling effect
(Cramer and Howitt 2004), occurring at the low and high
extremes of the score scale. This can be observed in Fig. 6a,
d. Images with positively-skewed distributions are better
modeled by a Gamma distribution Γ (s), which may also
model negatively-skewed distributions using the transforma-
tion Γ ′(s) = Γ ((smin + smax )− s), where smin and smax are
the minimum and maximum scores of the score scale.

3.3.2 Standard Deviation is a Function of Mean Score

Box-plots of the variance of scores for images with mean
scores within a specified range are shown in Fig. 7. It can be
seen that images with “average” scores (scores around 4, 5
and 6) tend to have a lower variance than images with scores
greater than 6.6 or less than 4.5. Indeed, the closer the mean
score gets to the extreme scores of 1 or 10, the higher the
probability of a greater variance in the scores. This is likely
due to the non-Gaussian nature of score distributions at the
extremes of the score scale.

3.3.3 Images with High Variance are Often
Non-conventional

To gain an understanding of the additional information a dis-
tribution of scores may provide, we performed a qualitative
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Fig. 6 Averaged distributions for images with different mean scores. Distributions with mean scores close to the mid-point of the score scale tend
to be Gaussian, with highly-skewed distributions appearing at the end-points of the scale
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Table 3 By qualitatively inspecting images with different means and
variances, we identified 4 categories of images with shared patterns,
common quality features and subjects

Variance

Mean Low High

Low Poor, conventional
technique and/or
subject matter

Poor, non-conventional
technique and/or subject
matter

High Good, conventional
technique and/or
subject matter

Good, non-conventional
technique and/or subject
matter

lo
w

va
ri
an

ce
hi
gh

va
ri
an

ce

Fig. 8 Examples of images with mean scores around 5 but with differ-
ent score variances. High-variance images have non-conventional styles
or subjects

inspection of images with low and high variance. Table 3 dis-
plays our findings. The styles and photographic techniques
employed to shoot seem to correlatewith themean score pho-
tographs receive. For a given mean value however, images
with a high variance seem more likely to be edgy or subject
to interpretation, while images with a low variance tend to
use conventional styles or depict conventional subject matter.
This is consistent with our intuition that an innovative appli-
cation of photographic techniques and/or a creative interpre-
tation of a challenge description is more likely to result in
a divergence of opinion among voters. Examples of images
with low and high score variances are shown in Fig. 8. The
bottom-left photo in particular, submitted to the challenge
“Faceless”, had an average score of 5.46 but a very high vari-
ance of 5.27. The comments it received indicate that while
many voters found the photo humorous, others may have
found it rude.

3.3.4 Semantic Content and Aesthetic Preference

We evaluated aggregated statistics for each challenge using
the score distributions of the images that were submitted.
Figure 9 shows a histogram of the mean score of all chal-
lenges. As expected, the mean scores are approximately nor-
mally distributed around the mid-point of the score scale.
We inspected the titles and associated descriptions of the

VALENCE

AROUSAL

Bored (4.806)

masters’ studies

+ve

At Rest (4.747)

Despair(4.786)

Fear(4.801)

Silence (4.948)

Conflict(4.934)

-ve

high

low

Fig. 9 Challenges with a lower-than-normal average vote are often in
the left quadrants of the arousal-valence plane. The two outliers on the
right are masters’ studies challenges

challenges at the two extremes of this distribution. We did
not observe any semantic coherence between the challenges
in the right-most part of the distribution. However, it is worth
noticing that two “masters’ studies” (where only members
who have won awards in previous challenges are allowed to
participate) were among the top 5 scoring challenges. We
use the arousal-valence emotional plane (Russell 1980) to
plot the challenges on the left of the distribution (the low-
scoring tail). The dimension of valence ranges from highly
positive to highly negative, whereas the dimension of arousal
ranges frompassive to active. In particular, among the lowest-
scoring challenges we identified: #1 “At Rest” (av. vote =
4.747), #2 “Despair” (av. vote = 4.786), #3 “Fear” (av.vote =
4.801), #4 “Bored” (av. vote = 4.8060), # 6 “Pain” (av. vote
= 4.818), #23 “Conflict” (av. vote = 4.934), #25 “Silence”
(av. vote = 4.948), #30 “Shadows” (av. vote = 4.953), #32
“Waiting” (av. vote. = 4.953), #39 “Obsolete” (av.vote =
4.9740). In each case, the photographers were instructed to
depict or interpret the emotion or concept of the challenge’s
title. This suggests that themes in the left quadrants of the
arousal-valence plane (see Fig. 9) bias the aesthetic judg-
ments towards lower scores.

We investigated the relationship between the title and
description of a challenge and the mean of the variance of the
score distributions of images submitted to that challenge.We
found that the majority of free study challenges were among
the bottom 100 challenges by variance, with 11 free studies
among the bottom 20 challenges. Free study challenges have
no restrictions or requirements as to the subject matter of
the submitted photographs. The low variance of these types
of challenges suggests that challenges with specific require-
ments tend to lead to a greater variance of opinion, probably
with respect to howwell entries adhere to these requirements.

3.4 Aesthetic Preference as Textual Comments

Of the 255,530 images in AVA, most of them (253,903)
received at least one comment from a member of the social
network. There are two phases in which comments may be
given. In the first phase, the challenge is ongoing and the
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Table 4 Statistics on comments in AVA

Statistics During challenge After challenge Overall

Comments per image (μ and σ ) 9.99 (8.41) 1.49 (4.77) 11.49 (11.12)

Words per comment (μ and σ ) 16.10 (8.24) 43.51 (61.74) 18.12 (11.55)

On average, an image tends to have about 11 comments, with a comment having about 18 words on average. As the statistics in columns 2 and 3
attest however, commenting behavior is quite different during and after challenges

comments and votes given to images are not yet visible to
the community. In this phase, a user is allowed to give a
comment to an image after giving that image a score. Com-
ments given in this phase should therefore be unbiased with
respect to the opinions of othermembers. In the secondphase,
the challenge has been completed and the results are pub-
lic. Comments given in this phase are therefore likely to be
biased in at least two ways. First, images which performed
well during the challenge are likely to have a greater num-
ber of comments as they are more visible, being high in the
rankings for that challenge. Second, the comments given to
an image in this period may be influenced by the results of
the challenge and the comments it has already received.

The guidelines for commenting1 encourage the users to
leave comments when voting and to include advice for
improving the work. As such, comments typically express
the member’s opinion on the quality of the photograph, their
justifications for giving a certain score, as well as critiques of
the strengths and weaknesses of the photograph. For exam-
ple, the top right image in Fig. 8 received the following com-
ment:

“Like the shot. One thing I think it
could be helped by is a bit more
contrast, make the colors more rich
and stand out that much more. I like
the [square] crop...good choice.”

These comments are a rich source of information about
the reasons for which an individual may assign a particular
aesthetic score to an image.

We investigated several properties of the comments given
to images in AVA: the number of available comments; the
commentators’ activity; and the quality of available com-
ments.

3.4.1 Number of Comments

Statistics on the number and length of comments given to
images are shown in Table 4. On average, an image tends to
have about 11 comments, with a comment having about 18
words on average. However, the mean number of comments
given during a challenge is greater than the mean number of
comments given after. Interestingly, the length of comments

1 http://www.dpchallenge.com/help_faq.php#howcomments.

given during a challenge is on average much shorter than
those given after the challenge. Our observations lead us to
believe that this is due to a “critique club” effect. The cri-
tique club comprises volunteer members who give a detailed
critique of images which they have been assigned to review.
The website states that2

“...the Critique Club critiques
should be significantly longer than
your average challenge comment and
they should contain details about
why the viewer feels a certain way
about a photograph.”

For an image to be critiqued, its authormust request a critique
when submitting the image. These critiques are then posted to
the image’s page after voting has finished.As such comments
are detailed and long, they likely increase the average length
of comments given after challenge completion.

As shown in Table 5, the number of commentsmade about
an image varies significantly with respect to the mean score
given to that image. Unsurprisingly, high-scoring images
have a large number of comments compared to other images.
This bias is more pronounced when comparing the number
of comments given during voting to the number of comments
given after. Images with mean scores close to the midpoint
of the score scale tend to have very few comments, perhaps
because it is difficult to form an opinion about an image that
is neither clearly bad nor clearly good. However, the mean
length of the comments given to such images is much higher
than the global average. This may be because critique club
comments are often one of the few comments given to such
images, and bias the mean length towards a higher number.

3.4.2 Commentators’ Activity

For the images in AVA, 27,557 unique members made
2,934,728 comments. Figure 10 shows the commenting
activity of these commentators.We found that approximately
86% of users write comments only occasionally, while the
remaining 3,983 users are regular commentators who have
authored at least 100 comments.

2 http://www.dpchallenge.com/forum.php?action=read&FORUM_
THREAD_ID=19842.
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Table 5 Number of comments in the AVA database and their length (in number of words) for images within the given score range

Statistic During challenge After challenge Overall

Mean number of comments
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More and longer comments are made during challenges than afterwards. Overall, high-scoring images have a large number of comments compared
to other images

3.4.3 Technical Content in Comments

We investigated the words present in comments to determine
how many comments contained technical content related to
photographic techniques and aesthetic quality. We manually
selected the technical words found among the 1,000 most
frequently used words in the set of comments. We found 149
such words, examples of which are “exposure”, “lighting”,
“vivid” and “texture”.We note that this was a non-exhaustive
list of the technical terms included in the corpus of comments.
Even so, we found that 77% of comments include at least
one of these technical words, and among these comments,
2.8 words were used on average.

We next describe how AVA’s textual comments, used in
conjunction with its real-valued scores can be leveraged to
automatically discover visual attributes.

4 Discovering Textual Attributes

As stated earlier, we aim to use the user comments of
the AVA dataset as a textual resource, since they contain
very rich information about aesthetics. However, such com-
ments are quite noisy: they can be very short as shown in
the previous section and they are written in a very sponta-
neous manner. This makes our task particularly challeng-
ing.

In this section we first describe how the comments found
in AVA can be used to obtain textual features for image aes-
thetics (Sect. 4.1). We then describe in Sect. 4.2.1 a first
approach to attribute discovery which is fully unsupervised
as it only relies on comments. We show its limitations and
then propose in Sect. 4.2.2 a supervised approach to attribute
discovery which relies on the user scores.
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Fig. 10 Histogram of number of users for different activity levels,
where activity level is denoted by number of comments made. The
activity level ranges from 1 to 24,232 comments

4.1 Textual Features for Image Aesthetics

Textual information has only recently been used to infer the
aesthetics of images. (Geng et al. 2011) created several bags-
of-textual-words from different text sources related to web
images. These sources included the image url and the title of
the page on which the image is found. The textual vocabu-
lary consisted of the 8 words in their dataset with the most
information gain. (San Pedro et al. 2012) used a sentiment
analysis method to extract features from textual comments
given to images by users. These features were the 49 most
frequents words used in comments to refer to visual charac-
teristics of images. Examples include “color”, “composition”
and “lighting”.

As mentioned previously, the textual comments in AVA
contain detailed opinions of users on the aesthetic properties
of images. We used these comments to create descriptors
comprised of term frequency-inverse document frequency
(tf-idf) weights. Such descriptors have been very successful
in information retrieval applications (Joachims 1998).

We first created a tokenized corpus using the comments
of all images in AVA. The terms in the corpus which are
repeated at least 10 times are used to create a vocabulary.
We merge all the critiques related to an image into a single
textual document.Merging the generally very short and noisy
comments averages noise and thus leads to a more robust
representation. We tokenize and spell-check each document
and we remove stop-words and numbers. Each document
is represented as a bag-of-words (BOW) histogram using
the term frequency-inverse document frequency weighting
(tf-idf). Hence, each commented image is associated with a
bag-of-words vector.

We constructed vocabularies comprising: (i) unigrams or
single word terms; (ii) bigrams or terms compromising two
words that appear consecutively in a comment; or (iii) uni-
grams and bigrams. We chose to investigate these particular
vocabulary compositions as they achieved good performance
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Fig. 11 Classification accuracy on sAVA using different flavors of tex-
tual descriptors. Unigrams+Bigrams outperform Unigrams which out-
perform Bigrams

in the text categorization literature (Bekkerman and Allan
2004).

Our unigram, bigram and unigram+bigram vocabular-
ies contained 30,595, 138,993 and 169,560 terms respec-
tively. Bigrams retain some of the semantic relations between
words, while this is completely lost in the case of unigrams.
On the other hand, unigrams which are highly informative of
aesthetic impressions are not present in the bigram feature
representation.

We evaluate our TF-IDF vectors using a subset of AVA
which we will call sAVA. This subset of 70,000 images was
created by (San Pedro et al. 2012) for evaluating textual fea-
tures derived from user comments. We randomly select from
sAVA 30,000 images for training, 10,000 for validation, and
30,000 images for testing. To evaluate on an aesthetics clas-
sification we must derive binary labels from the user scores.
To do this, we follow (Datta et al. 2008) and set two thresh-
olds θ1 = 5+ δ/2 and θ2 = 5− δ/2. We then annotate each
image with the label “beautiful” if qav(i) ≥ θ1 and “bad”
if qav(i) ≤ θ2. δ is used to artificially create a gap between
high and low quality images, as pictures lying in this gap are
likely to represent noisy data in the peer-score process. As
in (Datta et al. 2006) we vary this δ value in our experiments.
Increasing the value δ obviouslymakes the classification task
easier. Note that images belonging to the “bad” class are not
necessarily bad per se. They only correspond to images that
received lower scores.

Results are shown in Fig. 11. We found that vectors
constructed from a unigram vocabulary performed better
than those formed from a bigram vocabulary, while vec-
tors formed from a vocabulary of unigrams and bigrams out-
performed both, findings which are consistent with text cate-
gorization problems (Bekkerman and Allan 2004). However,
the gain in performance was modest and unlikely to justify
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Table 6 Regression performance on sAVA dataset

Method Spearman’s ρ

San Pedro et al., visual-based 0.3133

Marchesotti et al., visual-based 0.4524

San Pedro et al., comment-based 0.5839

San Pedro et al., visual+comment-based 0.6107

Unigrams 0.8335

Bigrams 0.8209

Unigrams + Bigrams 0.8433

Our proposed textual features outperform the state-of-the-art feature
extraction schemes
Bold value signifies the highest correlation across all methods

the increase in training time and storage requirements due to
the increased vocabulary size.

We also measured the correlation between our classifier
scores and the scores of the test images. As shown in Table 6,
our textual features out-perform the text and visual-based
features of (San Pedro et al. 2012), and the state-of-the-art
visual features of (Marchesotti et al. 2011). This shows that
our textual features can be used to predict attractiveness, thus
validating their usefulness for our task.We next describe how
we automatically discover attributes from these features.

4.2 Attributes Discovery from Textual Features

We aim to use the features, or terms, in our textual vocabulary
as aesthetic attributes.We next present two approaches to this
task: one without and one with supervisory data.

4.2.1 Unsupervised Attributes Discovery

As a first attempt to discover attributes, we use the unsuper-
vised probabilistic Latent Semantic Analysis (pLSA) (Hof-
mann 2001) algorithm on the BOW histograms. The hope
is that the learned topics correlate with photographic tech-
niques and therefore they are interpretable as attributes. In
Table 7, we report some of the most interpretable topics dis-
covered by pLSA with K = 50 hidden topics. We can see
that some topics relate to general appreciation andmood (T3,
T11, T28, T20), to photographic techniques and colors (T35,
T27, T49) or to semantic labels (T8, T14, T37). Despite the
relevance of these topics to visual attractiveness, we cannot
directly use them as attributes: they are too vague (i.e. not
granular enough) and much manual post-processing would
be needed to extract something useful. Experiments with dif-
ferent numbers of topics K did not lead to more convincing
results.

4.2.2 Supervised Attributes Discovery

We devise an alternative strategy based on the following
approach: we use the attractiveness scores as supervisory
information to mitigate the noise of textual labels. The hope
is that by using attractiveness scores we will be able to iden-
tify interpretable textual features that are highly correlated
with aesthetic preference and use them to predict aesthetic
scores.
Selecting Discriminative Textual FeaturesWemine beautiful
and ugly attributes by discovering which terms can predict
the aesthetic score of an image.

Table 7 Sample topics
generated by pLSA for K = 50
topics T3: ribbon, congrats, congratulations, deserved, first, red, well, awesome, yellow, great, glad,

fantastic, excellent, page, wonderful, happy

T11: beautiful, wow, amazing, congratulations, top, congrats, finish, love, stunning, great,
wonderful, excellent, awesome, perfect, fantastic, gorgeous, absolutely, capture

T28: idea, creative, clever, concept, cool, executed, execution, original, well, great, pencil, job,
creativity, thought, top, work, shannon, interesting, good

T20: funny, lol, laugh, hilarious, humor, expression, haha, title, fun, made, oh,love,smile, hahaha,
great

T35: motion, panning, blur, speed, movement, shutter, moving, blurred, abstract, blurry, effect,
pan, stopped, sense, camera, fast, train, slow, background, exposure

T27: colors, red, colours, green, abstract, color, yellow, orange, beautiful, colour, border, vibrant,
complementary, composition, leaf, lovely, love, background, bright, purple

T49: selective, desat, desaturation, red, use, color, works, processing, desaturated, saturation,
editing, fan

T8: portrait, eyes, face, expression, beautiful, skin, hair, character, portraits, eye, smile, nose,
lovely, self, girl, look, wonderful, great, lighting, crop

T14: cat, cats, kitty, eyes, fur, pet

T37: sign, road, signs, street, stop
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Table 8 Most discriminant unigrams and bigrams with their regression coefficient β

Unigrams+ Great (0.4351), like (0.3301), excellent (0.2943), love (0.2911), beautiful (0.2704), done (0.2609), very (0.2515), well
(0.2465), shot (0.2228), congratulations (0.2223), perfect (0.2142), congrats (0.2114), wonderful (0.2099), nice (0.1984),
wow (0.1942), one (0.1664), top (0.1651), good (0.1639), awesome (0.1636),

Unigrams- Sorry (−0.2767), focus (−0.2345), blurry (−0.2066), small (−0.1950), not (−0.1947), don (−0.1881), doesn (−0.1651),
flash (−0.1326), snapshot (−0.1292), too (−0.1263), grainy (−0.1176), meet (−0.1122), out (−0.1054), try (−0.1041),
low (−0.1013), poor (−0.0978), distracting (−0.0724),

BIGRAMS+ Well done (0.6198), very nice (0.6073), great shot (0.5706), very good (0.3479), great job (0.3287), your top (0.3262), my
favorites (0.3207), top quality (0.3198), great capture (0.3051), lovely composition (0.3014), my top (0.2942), nice shot
(0.2360), th placing (0.2330), great lighting (0.2302), great color (0.2245), excellent shot (0.2221), good work (0.2218),
well executed (0.2069), great composition (0.2047), my only (0.2032)

Bigrams- Too small (−0.3447), too blurry (−0.3237), not very (−0.3007), does not (−0.2917), not meet (−0.2697), wrong challenge
(−0.2561), better focus (−0.2280), not really (−0.2279), sorry but (−0.2106), really see (−0.2103), poor focus
(−0.2068), too out (−0.2055), keep trying (−0.2026), see any (−0.2021), , not sure (−0.2017), too dark (−0.2007), next
time (−0.1865), missing something (−0.1862), just don (−0.1857), not seeing (−0.1785)

Bigrams are in general more interpretable than unigrams since they can capture the polarity of comments and critiques

For this purpose, we train an elastic net (Zou and Hastie
2005) support vector regressor to predict aesthetic scores and,
at the same time, select textual features. It is a regularized
regression method that combines an �2-norm and a sparsity-
inducing �1-norm.Let N be the number of textual documents.
Let D be the dimensionality of the BOW histograms. Let X
be the N × D matrix of documents. Let y be the N ×1 vector
of scores of aesthetic preference (the score of an image is the
average of the scores it received). Our goal if to learn a D-
dimensional vector β̂ that reflects the contribution of each
BOW entry to the aethetic preference. Toward this purpose,
we optimize the following objective:

β̂ = argmin
β

||y − Xβ||2 + λ1||β||1 + λ2||β||2 (1)

where λ1 and λ2 are the regularization parameters.
We first experiment with the same vocabulary of D ≈ 30,000
unigrams described in Sect. 4.1.We cross-validated the regu-
larization parameters using Spearman’s ρ correlation coeffi-
cient and we selected the values of λ1 and λ2 providing high-
est performances with 1, 500 non-zero β coefficients. We
analyze the candidate attributes by sorting them according to
|β| (see Table 8) to verify their interpretability. By inspect-
ing the most discriminant unigrams, we can see that the ones
at the top of each rank relate to specific visual attributes
(e.g. grainy, blurry). But others can be ambiguous (e.g. not,
doesn’t, poor) and interpreting them is rather problematic.

To resolve these ambiguities we turn to bigrams. As men-
tioned in Sect. 4.1, bigrams preserve some of the semantic
relations between neighboring words, which is essential for
our purpose of obtaining human-interpretable attributes. In
particular, bigrams capture non-compositional meanings that
a simpler feature does not (Riloff et al. 2006). For instance
theword “lighting” does not have an intrinsic polaritywhile a
bigram composed of “great” and “lighting” can successfully

clarify the meaning. As such, the use of bigrams is a popular
choice in opinion mining (Pang et al. 2012).

We performed regression on the 90,000 most frequent
bigrams among those described in Sect. 4.1, using the same
procedure employed for unigrams. The bottom rows of Table
8 show the bigrams which receive the highest/lowest regres-
sion weights. As expected, regression weights implicitly
select those features as the most discriminant ones for pre-
dicting attractiveness. The highest weights correspond to
“beautiful” attributes while the lowest weights correspond
to “ugly” attributes. It is noteworthy that we use an Elastic
Net to overcome the limitations of other sparsity-inducing
norms like LASSO (Tibshirani 1996) in the feature selection
tasks: if there is a group of features amongwhich the pairwise
correlations are very high, then the LASSO tends to select
only one random feature from the group (Zou and Hastie
2005). In our case, LASSO produces a compact vocabulary
of uncorrelated attribute labels, but also a very small number
of labeled images. This is problematic because we need as
many annotated images as possible at a later stage to train
one visual classifiers for each attribute.
Clustering BigramsTheeffect of theElasticNet on correlated
features can be seen by looking at table 8: as expected, the
Elastic Net tolerates correlated features (synonym bigrams)
such “well done” or “very nice”, “beautiful colors” and “great
colors”. This augments the number of annotated images,
but it requires us to handle synonyms in the vocabulary of
attributes. For this reason, we compact the list of 3,000 can-
didate bigrams (1,500 for Beautiful attributes and 1,500 for
Ugly attributes) with Spectral Clustering (Ng et al. 2002).
We cluster the beautiful and ugly bigrams separately. We
heuristically set the number of clusters to 200 (100 Beautiful
and 100 Ugly clusters) and we create the similarity matrices
with a simple but very effective measure of bigram similar-
ity: we calculate the Levenshtein distance among the second
term within each bigram and we discard the first term. This
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Fig. 12 Area Under the Curve (AUC) calculated for the top 50 Beautiful and Ugly attributes

approach is based on the following intuition: most bigrams
are composed of a first termwhich indicates the polarity and a
second term which describes the visual attribute e.g. “lovely
composition”, “too dark”, “poor focus”. What we obtain is
an almost duplicate-free set of attributes, and a richer set
of images associated with them. Some sample clusters are
reported here below:

C18: [’beautiful’, ’colors’] [’great’, ’colors’] [’great’, ’colours’]
[’nice’, ’colors’]
C56: [’challenge’, ’perfectly’] [’just’, ’perfect’]

C67: [’nicely’, ’captured’] [’well’, ’captured’] [’you’, ’captured’]

C89: [’excellent’, ’detail’] [’great’, ’detail’] [’nice’, ’detail’]).

We randomly draw a bigram from each cluster to name the
corresponding attribute.

5 Learning Visual Attributes

The goal is now to learn one visual attribute model for each
discovered textual attribute. However, it is difficult to hand-
design a different visual model for each of our 200 attributes.
Therefore we propose to learn such attribute models from
generic visual features, in the same manner that March-
esotti et al. (2011) proposed to use generic visual features
to learn preference models. In this section, we first describe

the chosen generic visual features that we use to represent
our images.We then explain how attributemodels are learned
and then re-ranked based on visualness.

5.1 Visual Features for Image Aesthetics

We extract 128-dim SIFT (Lowe 1999) and 96-dim color
descriptors (Clinchant et al. 2007) from 24x24 patches on
dense grids every 4 pixels at 5 scales. We reduce dimen-
sionality by using a 64-dim PCA. These low-level descrip-
tors are aggregated into an image-level signature using the
Fisher Vector (FV) (Chatfield et al. 2011). We use visual
vocabularies of 64 Gaussians and encode some rough image
layout information by concatenating FVs extracted from the
whole image, its 4 quadrants and three equally-sized hori-
zontal image strips. We chose this image representation as
it has been shown to result in state-of-the-art performance
for semantic (Chatfield et al. 2011) as well as aesthetic tasks
(Marchesotti et al. 2011). We compute one SIFT-based and
one color-based representation per image andwe concatenate
them. This leads to a combined 131,072-dim representation
which is PQ-compressed (Jégou et al. 2011) to reduce the
memory footprint and to enable all images to be kept inRAM.

5.2 Attribute Learning from Visual Features

A categorization problem is considered to be large-scale if
either (i) the size of the feature space; (ii) the number of
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(a) Beautiful Attributes (b) Ugly Attributes

Fig. 13 ROC curves for SIFT features and color statistics features,
averaged over a beautiful; and b ugly attributes

(a) Beautiful Attributes (b) Ugly Attributes

Fig. 14 ROCcurves formulti-class classifiers and 1-vs-rest classifiers,
averaged over a beautiful; and b ugly attributes

classes; or (iii) the number of training samples is large. Given
the high dimensionality of the FVs, the large number of
images available in AVA (approx. 250,000), and the large
number of attribute classifiers to be learned, our classifica-
tion problem resides squarely in the large-scale paradigm. It
is therefore fundamental to employ a scalable solution.

For this reason, we use linear classifiers optimized with
an online learning algorithm, namely Stochastic Gradient
Descent (SGD) (Bottou and Bousquet 2007). We use a regu-
larized logistic regression objective function. Using logistic
loss (rather than a hinge loss for instance) provides a proba-
bilistic interpretation of the classification scores, which is a
desirable property since we are training attributes. The resul-
tant linear classifiers are our visual attribute models. In the
previous section, we enforced interpretability and discrim-
inability of the attribute labels using attractiveness scores
as a supervision mechanism. However, this choice does not
ensure that all these attributes can be recognized by a com-
puter. This is the reason why we measure “visualness” using
the Area Under the ROC Curve (AUC) calculated for each
individual attribute. In particular, we benchmark the clas-
sification performances of each attribute (1-vs-all) and we
rank them using AUC. We show the top 50 attributes in Fig.
12 for Ugly and Beautiful attributes. Our first observation is
that beautiful attributes performbetter than ugly attributes do.

This is not surprising since the latter attributes were trained
with fewer images: as shown in Table 5, people are less likely
to comment on low-quality images, limiting the training set
for ugly attributes. Second, we notice that attributes which
detect lighting conditions and colors (e.g. too dark, great
colour, too harsh) perform better than more complex visual
concepts such as interesting idea, bit distracting, very dra-
matic.

It is also worth noting that both SIFT and color-based fea-
tures are useful for the classification of attributes. This is not
surprising since some attributes are very color-related (“nice
colors”, “black background”), while others arewell-captured
by gradient information (“leading lines”, “great sharpness”).
As Fig. 13 shows, combining SIFT and color features results
in increased performance. We also compared the perfor-
mances of two learning approaches: 1-vs-rest against multi-
class classifiers (Crammer and Singer 2002). As shown in
Fig. 14, the former strategy provided significantly better
results experimentally. This may result from a large over-
lap between attribute classes in feature space, a regime in
which multi-class classification has been observed to per-
form poorly compared to one-vs-rest classification (Akata et
al. 2014).

5.3 The Attribute Representation

To form an image representation using our learned attribute
classifiers, we compute the classifier scores given to the
image’s FV by the 100 best-performing (in terms of AUC)
beautiful andugly attributes. This results in a 200-dimensional
real-valued attribute vector which we can use to train pref-
erence models (see Sect. 6 for several applications). Fig-
ure 15 shows a random sample of images and their 5 nearest
neighbors in the 200-dimensional attribute space, as well as
the original high-dimensional FV space. The nearest neigh-
bors often have similar color and composition attributes and,
as with textual queries, similar semantic content. When the
query image has strong stylistic or compositional attributes,
this is reflected in its nearest neighbors in attribute space.
This can be seen in the first query image in Fig. 15, whose
strong sepia tones and uncluttered composition are reflected
in its nearest nearest neighbors in the attribute space. The
last query image contains strong line patterns and a black
and white palette, attributes which are well represented in
its nearest neighbors. The nearest neighbors in the FV space
reflect these attributes less uniformly.

6 Applications

In this section we consider three applications of the proposed
attributes: aesthetic prediction, image tagging, and query-by-
text image retrieval.
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Fig. 15 Five randomly-chosen
images and their 5 nearest
neighbors in (i) the
200-dimensional attribute space
(top rows); (ii) the original
high-dimensional FV space
(bottom rows)

6.1 Aesthetic Prediction

In some cases, we might be interested in giving a binary
answer regarding the attractiveness of an image: beautiful
versus ugly. Such binary decisions are the organizing princi-
ple behind online photo-sharing venues such as www.imgur.
com (via “like” and “dislike” buttons) and http://www.reddit.
com/r/itookapicture/ (via “upvote” and “downvote” buttons).
We therefore propose to use our learned attributes to make
such a prediction and compare to the approach of (March-
esotti et al. 2011) which is based on generic image features
and is to date the best-performing baseline on AVA dataset.

To make the comparison with (Marchesotti et al. 2011),
we use the same FV features and linear classifiers in both
cases. As can be seen in Fig. 16a, attributes perform on par
with low-level generic features, despite the significant dif-
ference in dimensionality (131,072 dimensions for the low-
level features and 200 dimensions for the attributes). There-
fore attributes achieve equivalent performance (AUC= 0.718
for attributes, versus 0.715 for generic generic features) and
introduce the possibility of replacing a single image attrac-
tiveness label (beautiful or ugly) with the labels of the most
responsive attributes. Note that while one can also reduce
the dimensionality of the FVs using random projections or
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(a) AVA (b) Photo.net

Fig. 16 Aesthetic preference prediction: comparison between learned
attributes and generic visual features (Marchesotti et al. 2011) for the
AVA dataset (a), and with generalization to Photo.net images (b)

PCA, there is no guarantee that the new dimensions will be
human-interpretable, and even if so, they would need to be
manually labeled.

6.1.1 Generalization Performance

To investigate the generalizability of the attributes, we eval-
uated their performance on images obtained from Photo.net.
We downloaded a random selection of 10K training and test-
ing images, and 7K validation images, along with their mean
aesthetic scores. Our attribute vectors achieved AUC = 0.631
on the test set, compared to AUC = 0.659 for generic FV (see
also Fig. 16b), demonstrating that our attributes can indeed be
applied to predict aesthetic preference for images collected
in an entirely different context. In addition, for the price of a
small performance decrease compared to FV, one gains inter-
pretability of aesthetic preference, without using any textual
meta-data that may be associated with the Photo.net images.
We note that this scenario, in which images are assumed
to have no aesthetics-related textual meta-data, is by far the
most typical in existing image corpora.

6.2 Image Tagging

We now go beyond tagging an image as beautiful or ugly,
as a binary decision can be too aggressive for a problem as
subjective as aesthetic quality. Indeed, it could formapositive
or negative prior in the user’s mind in contradiction to his/her
tastes and opinions.

To gain users’ consensus we design an application that
not only predicts aesthetic quality (Is this image beautiful
or ugly?) but also produces a qualitative description of the
aesthetic properties of an image in terms of beautiful/ugly
attributes. As can be seen from the examples of Table 9, this
strategy gives the user higher degree of interpretation of the
aesthetic quality. For instance, while many users might agree
that the leftmost image is a beautiful picture, others might
disagree that the yellow flower on the right is ugly: in gen-
eral people tend to refuse criticism. Instead, with attributes
such as more light, more depth field of view and not sure
the application takes a more cautious approach and enables
the user to form his/her own opinion. Finally, we realize that
these are just plausible hypotheses that should be tested with
a full-fledged user study. However such an evaluation is out
of the scope of this work.

6.3 Query-by-Text Image Retrieval

We now show how the learned attributes, evaluated quanti-
tatively in Sect. 5.2 (see Fig. 12), can be used to perform
attribute-based image retrieval. We display the top-returned
results of several queries for Beautiful and Ugly attributes
in the mosaic of Fig. 17. We notice that the images clearly
explain the labels discovered in AVA even for fairly complex
attributes such as too busy, blown out, white balance (note
the various kind of color casts present in the images of row
6) or Much noise in the last row.

Table 9 Sample results for an image annotation application where the aesthetic quality of each image is described using the 5 most reactive
attributes

great macro, very pretty,
great focus, nice detail,
so cute

great capture,
great angle,
nice perspective,
lovely photo, nice detail

more dof, not sure,
too busy, motion blur,
blown out

soft focus, not sure,
more light,
sharper focus, more dof
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Fig. 17 Images with top scores for some representative beautiful and ugly attributes

The top-ranked images sometime contain very similar
semantic content. For example, the top-ranked images for
the attribute nice perspective are almost all images of archi-
tectural structures. This indicates that our visual attributes
may be highly correlated with semantic information, which
is unsurprising given that photographic style is very content-
dependent. An interesting topic for future work would
involve leveraging semantic annotations (which are present
in AVA) in order to design learning strategies that overcome
this potential limitation.

Our learned attributes may also be used in combina-
tion with semantic models to enable joint attribute/semantic
queries. To demonstrate this we train classifiers, using the
same train/val/test splits, for the 8 semantic categories stud-
ied by Murray et al. (2012a): “animal”, “architecture”,
“cityscape”, “floral”, “fooddrink”, “landscape”, “portrait”,

and “stilllife”. For a joint query such as landscape with
great colors, we first apply the landscape semantic classifier
and the great colours attribute classifier to the test images.
These scores are converted to probabilities, multiplied and
then sorted to produce a final ranking of the test images with
respect to the joint query. We use multiplication to approxi-
mate the “AND” operator, as wewant images relevant to both
terms in the query to be the most highly ranked. While more
sophisticated fusions are possible (Murray et al. 2012b), their
evaluation for this task falls out of the score of this work. Fig-
ure 18 shows the top 5 results for some sample joint queries.
Once again, the images clearly reflect the attributes, and also
contain relevant semantic content. Note for instance that the
two landscape-related queries return very different top results
due to the different attributes requested: dramatic sky vs great
colours.
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architecture/leading
lines

animal/great macro

landscape/dramatic
sky

landscape/great col-
ors

flower/black back-
ground

Fig. 18 Images with top scores for some sample joint attribute/semantic queries

6.3.1 User Study

Images in AVA are only partially annotated with semantic
and attribute information. For instance, although many of
the displayed results shown in Fig. 18 are reasonable, they
could be counted as errors because they lack the correspond-
ing semantic or aesthetic tag. Consequently, a quantitative
evaluation of the image retrieval results that relies solely on
AVA annotations would provide a very pessimistic perfor-
mance estimate.

Therefore, to assess the quality of these results we per-
formed a user study using CrowdFlower, 3 one of the lead-
ing crowdsourcing platforms. The setup of the experiment
was the following: we showed crowdsourcing workers an
image and we asked two questions about its relevance to the
query (e.g. “1. Determine if the image subject is ARCHI-
TECTURE”, “2. Determine if the image features the pho-
tographic technique LEADING LINES”). The semantic and
attribute relevance were assessed independently for two rea-
sons: firstly, we wanted to simplify as much as possible the
task of the workers. Secondly, wewanted to compare the per-
formance of semantic to aesthetic attribute retrieval. A three-
value scale (Agree, Unsure, Disagree) was chosen. Three

3 http://www.crowdflower.com/.

judgments per image were sufficient to get a high degree of
agreement among randomly-chosen workers (>84urves for
SIFT features and %).

We launched the experiment on the 5 joint queries shown
in Fig. 18. For each query the top 200 images retrieved by
the automatic classifier were used in the study. Images were
randomized before they were shown to workers.

To assess the quality of the ranks we used Precision@K
(see Fig. 19a). To get maximum precision, both attributes
had to be assessed by three workers in an image. The
best performing queries are landscape/dramatic sky and ani-
mals/macro.

To gain a deeper understanding of these results, we also
counted the errors among aesthetic and semantic attributes
on a per-query basis. The results are shown in Fig. 19b. Two
conclusions can be drawn: firstly, most errors are seman-
tic. Secondly, flowers and animals are the queries where the
content attributes have lowest performance. While aesthetic
attributes based on color ( e.g. “black background”, “great
colour”) or simple composition properties such as macro (
big object and out of focus background) perform well, other
more complex composition attributes such as leading lines
are more difficult to capture.

We also measured the confidence of responses for each
query, shown in Fig. 19c. The confidence here is measured
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Fig. 19 Results of user study on image retrieval, showing a preci-
sion@K; b proportion of errors per query related to either semantics or
attributes; and c the average annotation confidence, i.e. agreement, per
query

as the agreement between the responses of the three work-
ers on a per-image basis. As can be seen, confidence on
content attributes is higher than confidence on aesthetic
attributes: this coincides with the fact that, in general, seman-
tic attributes are less subjective than aesthetic attributes.

7 Conclusions

In this paper, we tackled the problem of visual attractiveness
analysis using visual attributes as mid-level features. Despite
the great deal of subjectivity of the problem, we showed
that we can automatically learn semantically-meaningful
attributes using the unique conjunction of image, scoring,
and textual data in the AVA dataset, for which we provided

an in-depth analysis. We demonstrated the effectiveness of
our attributes in various applications such as score predic-
tion, image auto-tagging or image retrieval. Future work will
focus on testing with users the advantage of our beautiful
and ugly attributes and on mitigating biases introduced by
semantic information.
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