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Abstract Discovering a latent common space between dif-
ferent modalities plays an important role in cross-modality
pattern recognition. Existing techniques often require
absolutely-paired observations as training data, and are
incapable of capturing more general semantic relationships
between cross-modality observations. This greatly limits
their applications. In this paper, we propose a general frame-
work for learning a latent common space from relatively-
paired observations (i.e., two observations from differ-
ent modalities are more-likely-paired than another two).
Relative-pairing information is encoded using relative prox-
imities of observations in the latent common space. By build-
ing a discriminative model and maximizing a distance mar-
gin, a projection function that maps observations into the
latent common space is learned for each modality. Cross-
modality pattern recognition can then be carried out in the
latent common space. To speed up the learning procedure
for large scale training data, the problem is reformulated into
learning a structural model, which is efficiently solved by
the cutting plane algorithm. To evaluate the performance
of the proposed framework, it has been applied to feature
fusion, cross-pose face recognition, text-image retrieval and
attribute-image retrieval. Experimental results demonstrate
that the proposed framework outperforms other state-of-the-
art approaches.
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1 Introduction

It is very common that an object can have very different rep-
resentations in different modalities. For instance, printed and
hand-written forms of the same character can look very dif-
ferent, so are face photo and face sketch of the same person.
Humans have little problem in recognizing objects across
different modalities (e.g., matching face sketches to face
photos). In contrast, conventionalmachine learningmethods,
such as k-NN classifiers, perform poorly in cross-modality
pattern recognition since they assume both the training data
and test patterns are randomly sampled from the same distri-
bution (which is not the case in cross-modality pattern recog-
nition) (Tenenbaum and Freeman 2000).

There exist a number of research studies in the literature
targeting at cross-modality pattern recognition, which can
be roughly classified into one of the three main approaches.
The first approach consists of transforming onemodality into
another in a preprocessing step (Zhou et al. 2012; Blanz et
al. 2005). The second approach is by extracting modality-
invariant features to represent an object (Lowe 2004; Zhang
et al. 2011).Amajor limitation of these two approaches is that
methods based on these approaches are usually tailor-made
for each different modality pair involved in different recogni-
tion tasks. The third approach is to find an underlying latent
common space shared between different modalities (Tenen-
baum and Freeman 2000; Knutsson et al. 1997; Lin and Tang
2006; Sun et al. 2008; Prince et al. 2008). Unlike the first
two approaches, the third approach does not depend on task-
dependent knowledge. Methods based on the third approach
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Fig. 1 Illustration of the proposed method. a shows the relative-pairing relationships between observations from image and text modalities.
indicates being more likely paired. b shows the distances between the projections of observations in the latent common space

are therefore general frameworks that can be applied to differ-
ent applications. Existingmethods of the third approach often
require absolutely-paired observations as training data. We
refer to them as Absolutely-Paired Space Analysis (APSA).
Thesemethods assume the projections of paired observations
being dependent in the latent space, and can only represent a
binary relationship between observations (i.e., either paired
observations or non-paired observations).

In many application scenarios, however, it is more suit-
able to consider relatively-paired observations (i.e., two
observations from different modalities are more-likely-
paired than another two) than absolutely-paired observa-
tions. For instance, given an input text query, an image
search-engine (such as Google) will return a list of most
probable images. The images selected by the user are not
absolutely-paired with the input text, but instead are more-
likely-paired with the input text than other returned images.
In fact, relative-pairing is a general pairing relationship
that also covers absolute-pairing. One can safely consider
two observations that are absolutely-paired being more-
likely-paired than other non-paired observations. Another
advantage of considering relatively-paired training data is
that label information of the observations can be easily
integrated to boost recognition performance. It is reason-
able to assume observations with the same label being
more-likely-paired than those with different labels. This
strategy can be used to reduce within-class scatter while
maximizing between-class scatter in the latent common
space, as well as increase the minimum distance between

observations with different labels in the latent common
space.

In this paper, we introduce a general framework named
Relatively-Paired Space Analysis (RPSA) which works on
relatively-paired observations. Note that RPSA is not a triv-
ial extension of APSA as they are based on completely dif-
ferent models. APSA methods are often based on generative
models (Knutsson et al. 1997; Bach and Jordan 2005; Prince
et al. 2008) which either explicitly or implicitly assume the
distributions of model parameters and noise (e.g., Gaussian
distribution). The final estimation will be unreliable when
real data do not fit the assumption. As opposed to APSA, our
method is based on a discriminativemodel that has no distrib-
ution assumption. Besides, APSAmethods learn a projection
function for each modality by exploring the statistics depen-
dence of the projections of absolutely-paired observations in
the latent common space. This one-to-one absolute-pairing
requirement makes them not suitable for relatively-paired
observations. In our proposed framework, we compute the
projection functions by preserving the relative proximities
of observations in the latent common space.

Figure 1 illustrates the principle of the proposed method
based on the data setWiki Text-Image (Rasiwasia et al. 2010)
used in our experiments. The data set has two modalities,
namely image modality and text modality. We select three
images a, b and c and one text article d from it. a, b and
c show a soccer player, a baseball player, and a building
respectively while d describes a soccer team “Chelsea” and
their team members. Obviously, d is highly relevant to a,
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slightly relevant to b (since both b and d have the concept
of sports), and little relevant to c. Therefore, a is more likely
pairedwith d than b, and b ismore likely pairedwith d than c.
Assume pa , pb, pc and pd are projections of a, b, c and d in
the latent common space respectively. The proposed method
attempts to learn one projection function for each modality
so that the distance between pa and pd is shorter than that
between pb and pd which is shorter than that between pc and
pd .

We first learn the model parameters of RPSA via alter-
nating variable method (Shen et al. 2011), and find that the
training time increases dramatically as the number of train-
ing triplets increases. To this end, we reformulate the RPSA
problem into learning a structural model (Tsochantaridis et
al. 2004), and a scalable approach based on the cutting plane
algorithm is proposed to solve this problem.

We validate our RPSA framework by applying it to feature
fusion, cross-pose face recognition, text-image retrieval and
attribute-image retrieval. Experimental results demonstrate
that our proposed framework outperforms other state-of-the-
art approaches. The main contributions of this paper are

1. Wepropose a general framework calledRelatively-Paired
Space Analysis (RPSA) for automatically learning a
latent common space between different modalities from
relatively-paired observations, which, to the best of our
knowledge, has not been explored before.

2. We propose a scalable optimization approach based on
the cutting plane algorithm to learn themodel parameters
of RPSA.

3. We apply our proposed RPSA framework to feature
fusion, cross-pose face recognition, text-image retrieval
and attribute-image retrieval. RPSA achieves significant
improvement in recognition and retrieval performance
compared with other state-of-the-art methods.

Preliminary results of this work had been published in
the proceedings of the British Machine Vision Conference
2013 inBristol,UK (Kuang andWong2013). The differences
between this version and the previous one are as follows:

1. A more detailed and up-to-date survey of multi-modality
analysis is included in Sect. 2.

2. A termwhich measures the sum of the distances between
points and their corresponding target neighbors is added
in the proposed objective energy function to boost the
performance of RPSA.

3. The RPSA problem is reformulated as a structural learn-
ing model and a scalable approach based on the cutting
plane algorithm is proposed to solve it.

4. New experiments on Wiki Text-Image data set (Rasiwa-
sia et al. 2010) and Public Figures Face Database (Parikh
and Grauman 2011; Kumar et al. 2009) have been car-

ried out for testing and the results are compared with
state-of-the-art techniques.

2 Related Work

There exist a large number of research studies on cross-
modality pattern recognition in the literature. Due to page
limitation, however, we focus our discussion only on those
most relevant work that automatically learn a latent common
space between different modalities. Knutsson et al. (1997)
proposed the Canonical Correlation Analysis (CCA) which
finds a latent common space by maximizing the correlation
of the projections of cross-modality observations. Sun et al.
(2008) extended CCA bymaximizing the within-class corre-
lations andminimizing between-class correlations. Torre and
Black (2001) developed the Asymmetric Coupled Compo-
nent Analysis (ACCA) to explicitly learn the dependence of
projections in a latent common space. Similarly, Lin andTang
(2005) explored the coupled space by alternatively maximiz-
ing the correlation of projections of cross-modality obser-
vations and finding the relations between these projections.
Different from CCA, Partial Least Square (PLS) (Prince et
al. 2008; Rosipal and Krämer 2006) chooses linear map-
pings such that the covariance between projections of cross-
modality observations in the latent common space is max-
imized. Bilinear Model (BLM) (Tenenbaum and Freeman
2000) was proposed to separate style and content. Obser-
vations with different styles (from different modalities) for
an object are encouraged to map to the same content in a
latent common space by solving two-factor tasks. Recently,
Sharma and Kumar (2012) proposed a General Multi-view
Analysis (GMA) approach which learns a latent common
space by solving a generalized eigenvalue problem. Kan
et al. (2012) introduced a Multi-view Discriminant Analy-
sis (MvDA) method to seek for a projection function for
each modality by optimizing a generalized Rayleigh quo-
tient. Besides, researchers have proposed advanced nonlin-
ear methods based on the Gaussian Process Latent Variable
Model (GPLVM) (Shon et al. 2006; Navaratnam et al. 2007;
Ek et al. 2008). All the above methods require absolutely-
paired observations as training data. Recently, Lampert and
Krömer (2010) learned a latent space based onweakly-paired
data (i.e., subsets of observations of one modality are paired
with those of another modality) by alternatively finding ele-
ment pairs and maximizing covariance of projections of
cross-modality observations. Different from previous work,
our proposed framework depends on neither prior distrib-
ution assumptions nor statistics computations, and learns a
latent common space bypreserving relative proximities of the
relatively-paired training data in the latent common space.

Metric learning can be interpreted as finding a latent space
for a single-modality observation space by linear projec-
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tion. Xing et al. (2002) proposed to minimize the distances
between samples from a similar set while keeping the dis-
tances of those from a dissimilar set above a threshold. Gold-
berger et al. (2004) directly maximized a stochastic variant
of the leave-one-out k-NN score on the training set. Since
then, many other methods (Weinberger et al. 2006; Davis
et al. 2007; Shen et al. 2009; Zheng et al. 2013) were pro-
posed to achieve a similar goal. Specifically, Zheng et al.
(2013) proposed a metric learning approach named Rela-
tive Distance Comparison (RDC) to solve reidentification.
They formulated RDC to maximize the likelihood of a pair
of true matches having a relatively smaller distance than that
of a wrong match pair in a soft discriminant manner. How-
ever, these methods only focus on a single modality. For
cross-modality pattern recognition problems as studied in
this paper, observations from different modalities are het-
erogeneous, and metric learning approaches cannot get good
results (Knutsson et al. 1997; Sun et al. 2008; Torre andBlack
2001; Wu et al. 2010). Our experiments on cross-pose face
recognition support this conclusion. In some cases, obser-
vations from different modalities have different numbers of
dimension (our experiments on feature fusion and image-text
retrieval are examples).Metric learning approaches cannot be
used to do cross-modality pattern recognition since metrics
such as Mahalanobis distance, require the same dimension
number for different observations (which is not the case in
this task). Our work is not a trivial extension of metric learn-
ing. First, the relative-pairing information which encodes the
relationship between observations from different modalities
is novel. Second, the scalable optimization method based
on structural learning to speed up multi-modality analysis
was not explored before. Recently, Quadrianto and Lam-
pert (2011) extended metric learning to multiple modali-
ties by explicitlymodeling linear projections. Their objective
function is non-convex and thus the final optimum obtained
depends on initialization. Moreover, their method requires
the dimension of the latent common space to be known a pri-
ori. As opposed to their method, our model is convex which
guarantees a global optimum, and can find a latent common
space with any dimension in a single optimization.

Exploiting latent spaces can also be found in related
research studies, such as local metric learning (Andrea et
al. 2007), hashing (Bronstein and Bronstein 2010), multi-
task learning (Parameswaran andWeinberger 2010), domain
adaption (Saenko et al. 2010) and ranking (Wang et al. 2009).
However, their goals are very different from the one in this
paper.

3 Relatively-Paired Space Analysis

In this section, we describe our RPSA framework for learn-
ing a latent common space from relatively-paired observa-

tions. The goal is to find linearmappings that project observa-
tions from different modalities into a latent common space in
which the relative proximities of the relatively-paired obser-
vations are preserved.

3.1 Preliminaries

Let us define some notation first. We use boldface upper-
case, lowercase and calligraphic letters (e.g., X, x and X ) to
denote matrices, vectors and sets, respectively. Xi j denotes
the (i, j)th entry of X, xi denotes the i th entry of x, and xi j
denotes the j th entry of xi .X � 0 denotesX being a positive
semi-definite matrix. Let Tr(X) denote the trace ofX andXT

its transpose, and the inner product of two matrices 〈X,Y〉
can then be represented by Tr(XTY). For a symmetric matrix
X, its eigenvalue decomposition is given byX = UΛUT with
U being an orthogonal matrix. The positive part of the matrix
X is defined as

(X)+ = Umax(Λ, 0)UT, (1)

and the negative part as

(X)− = Umin(Λ, 0)UT. (2)

Clearly, X = (X)+ + (X)− always holds true.

3.2 The RPSA Model

Consider a set of M modalities {Ω1,Ω2, . . . ,ΩM } with
dimensions {d1, d2, . . . dM } respectively, and a training data
set of N observations {x1, x2, . . . , xN } with a correspond-
ing flag set {t1, t2, . . . , tN } such that ti ∈ {1, . . . , M} indi-
cates that xi comes from Ωti . Let the relative-pairing knowl-
edge of the observations be represented by a set of triplets
T = {(i, j, k)}, where each triplet (i, j, k) encodes that xi
and x j are more-likely-paired than xi and xk . Note that xi , x j

and xk can come from either the same or different modalities.
When they are from the same modality, “being more-likely-
paired” means “being more similar”.

To learn a latent common space Z with dimension dz , we
seek a dz ×dm linear projection matrixWΩm for each modal-
ity Ωm such that the relative proximities of the projections
of the relatively-paired observations are preserved in Z , i.e.,

d(i, j) ≤ d(i, k) ∀(i, j, k) ∈ T , (3)

where

d(i, j) = ‖WΩti
xi − WΩt j

x j‖2 (4)

denotes the squared Euclidean distance between the projec-
tions of xi and x j in Z . LetW = [W1 . . .WM ] and SΩm be
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a (
∑

dn) × dm matrix with all elements being zero except
for row (

∑
n<m dn) + 1 to row

∑
n≤m dn being an identity

matrix, such that WΩm = WSΩm . Substituting this into (4)
gives

d(i, j) = (SΩti
xi − SΩt j

x j )
TWTW(SΩti

xi − SΩt j
x j )

= Tr(ACi, j ), (5)

where A = WTW and

Ci, j = (SΩti
xi − SΩt j

x j )(SΩti
xi − SΩt j

x j )
T. (6)

Substituting (5) into (3) gives

Tr(ACi,k) − Tr(ACi, j ) ≥ 0 ∀(i, j, k) ∈ T . (7)

(7) defines the relative proximity constraints on A which
encodes W (i.e., the set of projection matrices). Since ti ,
t j , tk ∈ {1, . . . , M}, there are M3 possible modality con-
figurations for a triplet (i, j, k). When ti = t j = tk , xi ,
x j and xk are from the same modality, and (7) provides con-
straints in one modality which is the same as metric learning.
Now to learn the latent common space, we find a positive-
semidefinite matrix A (i.e., A � 0.) which fulfills (7). Note
that if A∗ is a solution, multiplying A∗ by any arbitrary pos-
itive scalar will also give a solution. To specify a unique
solution, we let Ci, j,k = Ci,k − Ci, j and optimize an SVM
style energy function, given by

min
1

2
‖A‖2F + γ1

∑
ξi, j,k + γ2

∑
Tr(ACi, j )

s.t. Tr(ACi, j,k) ≥ 1 − ξi, j,k, A � 0 and

ξi, j,k ≥ 0, ∀(i, j, k) ∈ T , ∀(i, j) ∈ P, (8)

where both γ1 and γ2 are non-negative weights, and P is a
set of pairs (i, j) which indicates x j is a target neighbor of
xi . We will discuss how to set γ1, γ2, T and P in Sect. 5.2.
The first term in (8) is a regularization term which controls
the complexity of the model we learn. The second term is
the standard hinge loss term which gives a penalty for any
violated constraint defined in (7). Minimizing the hinge loss
term is equivalent to maximizing a distance margin, which
makes the learned model robust against noise. The third term
encourages the Euclidean distance between the projections
of xi and x j in the latent common space (i.e., d(i, j)) to be as
short as possible. The effects of optimizing (8) is illustrated
in Fig. 2.

Fig. 2 Illustration of the effects of optimizing (8). Given xh from
different modalities, where h ∈ {i, j, k, i, j} with (i, j, k) ∈ T and
(i, j) ∈ P , we attempt to learn projection matricesWΩth

so that a dis-
tance margin d(i, k)−d(i, j) is maximized while the distance between
points in target neighborhood d(i, j) is minimized

3.3 Optimization

We consider the Lagrangian of (8):

L(A, ξ,X,u,p) = 1

2
‖A‖2F + γ1

∑
ξi, j,k

+ γ2
∑

Tr(ACi, j ) −
∑

ui, j,kTr(ACi, j,k)

+
∑

ui, j,k −
∑

ui, j,kξi, j,k − pTξ − Tr(AX)

s.t. X � 0, and ui, j,k ≥ 0 and pi, j,k ≥ 0,

∀(i, j, k) ∈ T ,∀(i, j) ∈ P, (9)

where X, ui, j,k and p are the Lagrangian multipliers for the
primal variableA, the constraint corresponding to the training
triplet (i, j, k) in (8), and ξ respectively. Setting the gradient
of (9) with respect to the primal variables A and ξ to 0 gives

A∗ = X∗ +
∑

u∗
i, j,kCi, j,k − γ2

∑
Ci, j , (10)

and u∗
i, j,k = γ1 − pi, j,k . Substituting the above expressions

into the Lagrangian (9) gives the negative of the dual prob-
lem:

min
1

2

∥
∥
∥X − Ĉ

∥
∥
∥
2

F
−

∑
ui, j,k

s.t. X � 0 and γ1 ≥ ui, j,k ≥ 0,

∀(i, j, k) ∈ T , (11)

where Ĉ = −∑
ui, j,kCi, j,k + B with the matrix B being

γ2
∑

Ci, j .
(11) has two variables, namelyX and u. It is optimized by

alternating variable method, where one variable is optimized
while another is fixed at one time. X is first optimized while
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Algorithm 1 Algorithm of RPSA
1: Input: {xi }, {ti }, T , P , λ1 and λ2
2: Output: A∗
3: Initialize u;
4: while not converge do
5: Compute Ĉ according to the current u;
6: Compute (Ĉ)+ and (Ĉ)− by performing the eigenvalue decompo-

sition;
7: Compute the first derivative of (13) by (14);
8: Compute the objective value of (11) by 1

2Tr((Ĉ)−(Ĉ)−) −∑
ui, j,k ;

9: Update u and its approximated Hessian;
10: end while
11: Let A∗ = (Ĉ)+ − Ĉ = −(Ĉ)−;

fixing u, and u is then optimized while fixing X in each
iteration. Specifically, while fixing u, (11) fortunately has a
close-form optimal solution:

X∗ = (Ĉ)+. (12)

Fixing X leads to the following box constraints quadratic
programming (QP) over u:

min
1

2

∥
∥
∥X∗ − B +

∑
ui, j,kCi, j,k

∥
∥
∥
2

F
−

∑
ui, j,k

s.t. γ1 ≥ ui, j,k ≥ 0, ∀(i, j, k) ∈ T . (13)

The off-the-shelf first order Newton algorithm L-BFGS-B
(Liu and Nocedal 1989) is employed to solve this QP prob-
lem. L-BFGS-B is an iterative algorithm, in each iteration of
which, u is updated till the algorithm converges.

In normal alternating variable method framework, one
variable (e.g., X) is updated after another variable (e.g., u)
stop changing. For fast convergence, X is updated once u
is changed in each iteration of L-BFGS-B. Therefore, the
gradient of (13) is given by

G(ui, j,k) = Tr((X − B +
∑

ui, j,kCi, j,k)Ci, j,k) − 1

= Tr(−(Ĉ)−Ci, j,k) − 1. (14)

The overall optimization procedure is summarized in
Algorithm 1. Its main body is the off-the-shelf algorithm L-
BFGS-B. The code for computing objective value and gra-
dient, and updating X (Line 5–8) is implemented by call-
back functions. The code for updating u and its approxi-
mated Hessian (Line 9) is provided internally in L-BFGS-B.
Therefore, there is no need to implement it.

After getting the optimum A∗, we obtain W by minimiz-
ing

∥
∥A∗ − WTW

∥
∥
F. Suppose the rows of W are orthogo-

nal to each other,WTW will then be a positive-semidefinite
matrix with rank dz (i.e., the dimension of the latent com-
mon space Z ). According to Eckart–Young theorem (Stew-
art 1993), WTW will be the rank-dz approximation of A∗.
We perform eigenvalue decomposition over the positive-
semidefinite matrix A∗, getting A∗ = UΛUT with U being

an orthogonal matrix and Λ a real diagonal matrix with
decreasing singular values σ1 ≥ · · · ≥ σ∑

dm . We obtain
W = Λ′UT withΛ′ being a diagonal matrix with decreasing
diagonal values

√
σ1,

√
σ2, . . . ,

√
σdz , 0, . . . , 0. Linear pro-

jectionsWΩm for different dimensions of Z can be obtained
after optimizing (8) and one eigenvalue decomposition. Note
that the appropriate latent common space dimension dz is
application dependent, and is determined by cross validation
in this paper.

3.4 Time Complexity

In this section, we discuss the time complexity of Algo-
rithm 1. In each iteration, the time complexity for computing
Ĉ isO(Ks2) where K is the number of training triplets (i.e.,
|T |) and s is the averaged sparsity of SΩti

xi − SΩt j
x j or

that of SΩti
xi − SΩtk

xk , whichever is bigger (Line 5). The

eigenvalue decomposition of Ĉ has O(D3) time complexity
with D = ∑

dm (Line 6). Computing gradient has the time
complexity of O(Ks2) (Line 7) while O(D2 + K ) for com-
puting objective values (Line 8). The cost for updating u and
approximation Hessian (Shen et al. 2011) is O(r K ) with r
being a constant (Line 9).

If K is not much greater than D, the eigenvalue decom-
position of Ĉ dominates the computation complexity in each
iteration and the optimization algorithm can converge in a
small number of iterations. In this case, the overall time com-
plexity is O(T1D3) with D = ∑

dm and T1 being the itera-
tion number.

However, in real applications, for learning stable mod-
els, one prefers collecting large scale data set so that the
distribution of training data can converge the true, under-
lying data distribution. In general, one has O(N 3) training
triplets for the data set with size N if enumerating all possible
combinations. Although one can cut down on the number of
training triplets with heuristics as in the work of Rakotoma-
monjy (2004), the number is still very large. For instance, the
number of triplets in our experiments on the Wiki data set in
Sect. 5 is as large as 1 million. In this case, K is much greater
than D, and the time spent on the eigenvalue decomposition
can be ignored. The overall time complexity is O(T1r1K )

with r1 being a constant.
To validate the above discussion, an experiment was con-

ducted on the Wiki data to show the relationship between
the training time and the number of training triplets (Fig. 3).
It has been observed the time of eigenvalue decomposition
(Line 6) dominates the total training time when the number
of training triplets is small while that of computing gradient
(Line 7) dominates when the number of training triplets is
large (see Fig. 3a). Figure 3b shows that the training time
of Algorithm 1 is a linear function w.r.t. the number of train-

123



182 Int J Comput Vis (2015) 113:176–192

50 100 1000 10000 100000 1000000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Num. of training triplets

Ti
m

e 
ra

tio

Line 5
Line 6
Line 7
Line 8+9

(a)

101 102 103 104 105 106
10-3

10-2

10-1

100

101

Num. of training triplets

Ti
m

e

(b)

Fig. 3 Training time of RPSA against the number of training triplets. a shows the training time ratio of each step in Algorithm 1 as the number of
training triplets increases. b shows the training time of Algorithm 1 as the number of training triplets increases

ing triplets when the number is large. These observations are
consistent with our previous discussion.

4 Efficient Relatively-Paired Space Analysis

As discussed in the previous section, the optimization proce-
dure of (8) slows down dramatically as the number of training
triplets increases. The underlying reason is that large scale
training triplets would lead to a long vector u and thus a
large scale QP problem (13). One possible way to speed
up the optimization procedure is to reduce the number of
training triplets involved. In the literature, Stochastic Gra-
dient Descent (SGD) (Bottou 2010) is usually employed to
train models over large scale training samples by randomly
selecting a mini-batch of them each time. Although it is suc-
cessfully used in many applications such as training SVM
(Shalev-Shwartz et al. 2007), however, there is no theoreti-
cal guarantee that SGD converges to optimal solutions and
thus its usefulness heavily dependents on users’ parameter
tuning experience. Structural learning (Taskar 2004) can
also be used to speed up training models by selecting the
most violated constraint (training sample) in each iteration.
Joachims (2006) reformulated a linear SVM model into a
structural SVM model which is solved by the cutting plane
algorithm. The reformulation model is proved to be equiva-
lent to the original SVM model. Making things interesting,
the structural learning based approach is several orders of
magnitude faster than decomposition methods when feature
vector is highly sparse. Our model solved in this paper is
different from SVM. However, both of them involve opti-
mizations with constraints. It is not clear whether structural

learning can speed up our multi-modality analysis model or
not.

To this end, we first reformulate the problem of relatively-
paired space analysis into learning a structure model. The
cutting plane algorithm (Tsochantaridis et al. 2004) is then
used to solve this problem, in each iteration of which only a
few training triplets are involved. The efficiency ofAlgorithm
1 and structural learning based approach is finally compared
in terms of time complexity and empirical training time.

4.1 Reformulating RPSA into Structural Learning

By introducing abinaryvariable ci, j,k ∈ {0, 1} for each triplet
(i, j, k), the RPSA model can be reformulated into a struc-
tural learning problem which can be learned by solving the
following optimization problem:

min
1

2
‖A‖2F + γ1K ξ + γ2

∑
Tr(ACi, j )

s.t.
1

K

∑
ci, j,kTr(ACi, j,k) ≥ 1

K

∑
ci, j,k − ξ,

A � 0 and ξ ≥ 0,∀c ∈ {0, 1}K . (15)

While (15) has 2K constraints, one for each possible vector
c ∈ {0, 1}K , it has only one slack variable variable ξ which
is shared across all constraints. Interestingly, (15) and (8) are
equivalent.

Theorem 1 Any solution A∗ of (15) is also the solution of
(8) (and vice verse) with ξ∗ = 1

K

∑
ξ∗
i, j,k .

Proof The following derivation will show for anyA, (8) and
(15) have the same objective value. Given A, ξi, j,k can be
optimized individually such that the objective value of (8) is
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as small as possible. i.e., ξ∗
i, j,k = max(0, 1 − Tr(ACi, j,k)).

For (15), we have

γ1K ξ∗ = γ1K max(0,max
c

(
1

K

∑
ci, j,k

− 1

K

∑
ci, j,kTr(ACi, j,k))) (16a)

= γ1 max(0,max
c

(
∑

ci, j,k

−
∑

ci, j,kTr(ACi, j,k))) (16b)

= γ1 max(0,
∑

max
ci, j,k

(ci, j,k

−ci, j,kTr(ACi, j,k))) (16c)

= γ1
∑

max(0, 1 − Tr(ACi, j,k)) (16d)

= γ1
∑

ξ∗
i, j,k (16e)

(16a) follows directly from the definition of ξ∗; (16c) holds
because each element of c is independent and can be opti-
mized individually. (16c) and (16d) are equivalent because
ci, j,k ∈ {0, 1}; again, (16e) follows directly from the defin-
ition of ξ∗

i, j,k . The above equations prove that the objective
values of (8) and (15) are the same for any given A. Addi-
tionally, (8) and (15) have identical solution space. �

4.2 Optimization

Theorem1guarantees that (8) and (15) have the same optima.
One may spot that (15) has even more constraints (2K ) than
(8) (K ), and wonder what one may benefit from this kind
of reformulation. Note that there is only one slack variable
which is an upper bound for the penalty of all possible con-
straints in (15). It suggests that only a small subset of con-
straints are informative. Ignoring other non-informative con-
straints would lead to a simple reduced problem which can
be efficiently solved as only a few constraints are involved
in its primal problem or a few dual variables in its dual prob-
lem. Joachims (2006) employed the cutting-plane algorithm
to find a small set of most violated constraints to speed up
the training procedure of linear support vector machine. It
has been proved that one can approximate the SVM prob-
lem by a reduced problem with a small constant number of
constraints. Surprisingly, the number of constraints in the
reduced problem is independent of that in the original SVM.

The cutting-plane algorithm is employed to solve (15). In
each iteration, the most-violated constraint is first found:

c∗ = argmaxc
∑

ci, j,k −
∑

ci, j,kTr(ACi, j,k), (17)

and put it into the most-violated constraint set �. i.e., � =
� ∪ c∗. ci, j,k are independent and thus can be optimized
individually.One has c∗

i, j,k = 1 if Tr(ACi, j,k) < 1, otherwise
0. A is then updated by optimizing the following reduced
problem:

Algorithm 2 Algorithm of efficient relatively-paired space
analysis
1: Input: {xi }, {ti }, T , P , λ1, and λ2
2: Output: A∗
3: Initialize A = I, � = ∅;
4: while not converge do
5: Compute the most violated constraint c∗ by (17), � = �

⋃
c∗;

6: while not converge do
7: Update u by (21);

8: Update X by X = (Ĉ)+, and A by A = −(Ĉ)−;
9: end while
10: end while
11: Let A∗ = A;

min
1

2
‖A‖2F + γ1K ξ + γ2

∑
Tr(ACi, j )

s.t.
1

K

∑
ci, j,kTr(ACi, j,k) ≥ 1

K

∑
ci, j,k − ξ,

A � 0 and ξ ≥ 0,∀c ∈ �. (18)

Obviously, the number of constraints is |�|, which usually
is a small number. Let Cc = 1

K

∑
ci, j,kCi, j,k and wc =

1
K

∑
ci, j,k . The negative dual problem of (18) is given by:

min
1

2

∥
∥
∥X − Ĉ

∥
∥
∥
2

F
−

∑
wcuc

s.t.
∑

uc ≤ Kγ1, and uc ≥ 0, ∀c ∈ �, (19)

where X and uc are the Lagrangian multiplier of A and the

constraint corresponding to c respectively. Ĉ = −∑
ucCc+

B. Similar to (11), (19) also has two variables and can be
optimized by alternating variable method. Again, X has a
close-form optimal solution while fixing u. i.e.,

X
∗ = (Ĉ)+, (20)

Fixing X and optimizing uc gives a quadratic programming
(QP) with a sum constraint:

min
1

2

∥
∥
∥X

∗ − B +
∑

ucCc

∥
∥
∥
2

F
−

∑
wcuc

s.t. X � 0 and
∑

uc ≤ Kγ1, uc ≥ 0, ∀c ∈ �.

(21)

Since L-BFGS-B cannot solve QP problems with a sum con-
straint, the quadprog function with interior points option1 in
Matlab is employed to optimize it efficiently.

The optimization procedure of (15) is summarized in
Algorithm 2. In Line 3, A is initialized to an identity matrix
I. In Line 7, we initialize the problem (21) using previous u
to speed up convergence.

1 The number of variables is very small.
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Fig. 4 Efficiency comparison between Algorithm 1 and 2 on the Wiki Text-Image data set with different numbers of training triplets

4.3 Time Complexity

In each outer iteration of Algorithm 2, the time complexity of
computing the most violated constraints (Line 5) isO(Ks2).
Line 6–9 solve the reduced problem (18) which is actually an
RPSA problem and can be optimized by Algorithm 1. Since
it has very limited constraints (i.e., |�| is small and thus
u is a short vector), it can be solved with time complexity
O(T1D3) as discussed in Sect. 3.4. For large scale training
triplets, the time of computing the most violated constraints
dominates the total time of each outer iteration while that of
solving the reducedproblem is negligible. Therefore, the time
complexity of Algorithm 2 is O(T2Ks2) with the constant
T2 being the outer iteration number.

Both Algorithm 1 and 2 have a linear time complexity for
each outer iteration when a huge number of training triplets
are available. However, Algorithm 2 empirically converges
much faster than Algorithm 1. Theoretically, its outer itera-
tion number T2 does not depend on the number of training
examples K (Joachims et al. 2009).

4.4 Efficiency Comparison

Algorithm 1 and 2 both converge to an identical solution
which is guaranteed by Theorem 1. One concerns only
their efficiency. We conducted two experiments on the Wiki
text-image data set to compare them. The number of train-
ing triplets is set to 4 × 104 in the first experiment while
106 in the second one (other settings can be found in
Sect. 5.5).

Figure 4 plots the energy of (8) against training time. Fig-
ure 4a shows that Algorithm 1 converges faster than Algo-
rithm 2 when the number of triplets (K ) is small. This is
reasonable sinceAlgorithm1 invokes less eigenvalue decom-

position which dominates computation time in this case than
Algorithm 2. Moreover, Algorithm 1 has more stable energy
decreasing procedure. The underlying reason is that Algo-
rithm 2 finds a most violated constraint in each of its outer
iterations. Figure 4b shows that Algorithm 2 is typically sev-
eral orders of magnitude faster than Algorithm 1 when the
number of triplets (K ) is huge.

4.5 Discussion

In analogy to previous work (Tsochantaridis et al. 2004;
Joachims 2006), Algorithm2 also uses a 1-slack energy func-
tion. However, there are two significant differences. First,
Algorithm 2 is a reformulation of a semi-definite program-
ming problem while Tsochantaridis et al. (2004)’s work is
a general framework for structural learning and Joachims
(2006)’s work is a reformulation of a linear SVM. Sec-
ond, Algorithm 2 has very different property from that of
Joachims (2006)’s work. Algorithm 2’s reformulation has
advantagewhen K is huge comparedwith the original formu-
lation while Joachims (2006)’s reformulation has advantage
when feature vectors are highly sparse. From above discus-
sion, our main technical contribution is to seamlessly inte-
grate semi-definite programing with the cutting plane algo-
rithm. Another technical contribution is a detailed analysis
of time complexity of Algorithm 1 and 2 and their empirical
comparison.

5 Experiments

The performance of our proposed RPSA framework was
evaluated by applying it to feature fusion, cross-pose face
recognition, text-image retrieval and attribute-image retrieval.
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Table 1 Four types of triplets defined for describing relative-pairing
information of a given pair of observations (xp , xq )

Type Form Num. Remark

1 (p, q, q1) n1 xq1 is the kth (k ≤ n1) nearest neighbor of xq
s.t. tp �= tq ∧ tq = tq1 ∧ l p = lq ∧ lq �= lq1

2 (q, p, p1) n2 xp1 is the kth (k ≤ n2) nearest neighbor of xp
s.t. tq �= tp ∧ tp = tp1 ∧ lq = l p ∧ l p �= l p1

3 (p, p1, p2) n3 xp1 is the kth (k ≤ n3) nearest neighbor of xp
s.t. tp = tp1 ∧ l p = l p1

xp2 is the kth (k ≤ n3) nearest neighbor of xp
s.t. tp = tp2 ∧ l p �= l p2

4 (q, q1, q2) n4 xq1 is the kth (k ≤ n4) nearest neighbor of xq
s.t. tq = tq1 ∧ lq = lq1

xq2 is the kth (k ≤ n4) nearest neighbor of xq
s.t. tq = tq2 ∧ lq �= lq2

5.1 Training Triplets and Pairs

Training triplets (i, j, k) ∈ T can be generated in an unsu-
pervised or supervised fashion. Relatively-paired data can be
collected from clickthrough data of search engines or priori
knowledge about relative-pairing. This kind of data is nat-
urally gotten. It can also be generated from category labels
based on the principle that observations with the same label
are expected to be more-likely-paired than those with dif-
ferent labels. Let li denote the label of an observation xi .
Given a pair of cross-modality observations (xp, xq) (where
tp �= tq ) for an object, we define four types of triplets to
describe the relative-pairing knowledge (see Table 1). Each
triplet (i, j, k) suggests that xi is more-likely-paired with x j

than with xk . Euclidean distance between two observations
is used in defining nearest neighbor in Table 1. Figure 5 gives
a graphical illustration for these four types of triplets. If the
numbers of these four types of triplets are n1, n2, n3 and
n4, respectively, for each given pair (xp, xq), we say that the
training triplets have a structure of (n1, n2, n3, n4). The total
number of triplets is therefore (n1 + n2 + n3 + n4) × Np,
where Np is the number of pairs.

Similarly, we generate training pair set P from labels.
Given a pair of cross-modality observations (xp, xq) (where
tp �= tq ) for an object, three types of pairs are defined to
describe target neighborhood (see Table 2). Each pair (i, j)
suggests that xi is a target neighbor of x j and vise versa.
Again, if the number of these three types of pairs are n1, n2
and n3, respectively, for each given pair (xp, xq), we say that
the training pairs have a structure of (n1, n2, n3). Therefore,
we have (n1 + n2 + n3) × Np training pairs in total. Note
that n1 has only two choices 0 or 1.

5.2 Parameter Settings

There are two weights, namely γ1 and γ2 in our energy func-
tion (8). In our experiments, we found that γ1 is not sensitive
to other settings, such as the number of training triplets. The
underlying reason is that the hinge loss term only penal-
ize violated constraints in (7) no matter how many training
triplets we have. We therefore fixed it to 1 in all our exper-
iments. Because γ2 is the weight of the sum of distances
between points in neighborhood, it is affected by the scale of
feature vectors. Hence, we individually tuned γ2 for differ-
ent data sets using validation data. Detailed analyses can be
found in each corresponding sections.

Theoretically, the more training triplets we use, the more
constraint information and better performance we get. This
has been confirmed in our experimental results (see Fig. 6).
Therefore, we used as many as possible triplets in our experi-
ments. Because the numbers of training data of each category
in different data sets are different, we have different training
triplets in different tasks. Detailed triplet structures for dif-
ferent tasks can be found in their corresponding sections.

The parameters regarding training pairs P are insensitive
to other settings. If one expects the distance between the pro-
jections of xp and xq to be short, then n1 should be set to
1, otherwise 0. The second and third kind of training pairs
encourage small distances between projections of observa-
tions with the same label in each modality. We found that

Fig. 5 Four types of triplets defined for describing relative-pairing information of a given pair of observations (xp , xq ). xp������xq means xp and
xq are paired observations from different modalities. Grids on the same horizontal line contain cross-modality observations with the same label
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Fig. 6 Performance ofRPSAonvalidation datawith different numbers
of training triplets. RPSA is used to fuse the feature pair (Zer, Mor). n1,
n2, n3 and n4 are set to n while other parameters are tuned to maximize
the performance for each specific n

Table 2 Three types of pairs defined for describing target neighborhood
of a given pair of observations (xp , xq )

Type Form Num. Remark

1 (p, q) n1 n1 = 0 or 1

2 (p, p1) n2 xp1 is the kth (k ≤ n2) nearest neighbor of xp
s.t. tp = tp1 ∧ l p = l p1

3 (q, q1) n3 xq1 is the kth (k ≤ n3) nearest neighbor of xq
s.t. tq = tq1 ∧ lq = lq1

small target neighborhood (i.e., n2 and n3 is set to a small
number, e.g., 5) works well in our experiments. For feature
fusion, diversity of projections of exactly-pairedobservations
from different modalities and small distances between pro-
jections of observations with the same label in target neigh-
borhood in each modality are desirable. Therefore, we set
n1 = 0 and n2 = n3 = 5. For cross-modality pattern recog-
nition tasks, namely, cross-pose face recognition, text-image
retrieval and attribute-image retrieval, similar projections of
exactly-paired observations are desirable, and thus we set
n1 = 1 and n2 = n3 = 0.

To summarize, only γ2 should be tuned for each data set
while other parameters are fixed in advance.

5.3 Feature Fusion

For classifying patterns with different kinds of features stem-
ming from different sources, a critical issue is to efficiently
utilize these cross-modality features. A common solution is
feature fusion by first projecting cross-modality features into
a latent common space to reduce dimension and suppress
noise, and then adding the paired projections together as a
final feature vector. The fused feature for twomodalities (Sun
et al. 2008; Zhang and Zhang 2011) is usually given by
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Fig. 7 Performance of RPSA on validation data when fusing the
modality pair (Zer Mor) with different γ2

y = WΩti
xi + WΩt j

x j , (22)

where xi and x j are two feature vectors for different modal-
ities of an object (i.e., ti �= t j ). The proposed method was
used to fuse features of UCI Multiple Features data set.2

This data set consists of 2,000 instances of ten hand-written
numerals (‘0’–‘9’). Each instance has six features, namely
Fou, Fac, Kar, Pix, Zer and Mor, with dimensions 76, 216,
64, 240, 47, and 6 respectively. We considered each feature
as one modality. In our experiment, any two kinds of fea-
tures were selected to fuse, and we had C6

2 = 15 combi-
nation pairs. In the training phase, for each feature pair, the
number of training data for each digit (Nt ) was set to 100.
The latent common space had a dimension of 25, except for
feature pairs involving Mor where it had a dimension of 6.
In the testing phase, we find the nearest training fused fea-
ture with label for each testing fused feature. The experiment
was repeated 10 times by randomly selecting fixed number
of training data (i.e., Nt × 10, here 10 is the number of digit
categories). We evaluated our method by mean recognition
rates.

To determine γ2, we used 1
5 of training data as validation

data and the rest as “training data”. The structure of train-
ing triplets are fixed to be (79,79,79,79) (given a digit xp,
the number of digits with the same label as xp is 79 in the
“training data”). The pair of modalities (Zer, Mor) are fused
with different γ2. The recognition rates are shown in Fig. 7.
It has been observed that the proposed method gets the best
result with γ2 = 10. Therefore, we fixed γ2 to 10 in this
experiment. After parameter tuning, RPSA was trained with
all training data with fixed parameters.

The proposed method was compared with Canonical Cor-
relation Analysis (CCA) (Hardoon et al. 2004), Discrimi-
native Canonical Correlation Analysis (DCCA) (Sun et al.
2008), Partial Least Squares (PLS) (Prince et al. 2008; Rosi-
pal and Krämer 2006), bagging CCA (bgCCA), bagging

2 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
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Table 3 Recognition rates on multiple features data set

Pair Method

CCA DCCA bgCCA bgDCCA bsCCA bsDCCA PLS RCE RPSA

Fac Fou 0.86 0.89 0.86 0.89 0.84 0.88 0.94 0.95 0.98

Fac Kar 0.95 0.98 0.95 0.98 0.93 0.98 0.94 0.98 0.98

Fac Pix 0.86 0.97 0.86 0.97 0.86 0.97 0.94 0.95 0.98

Fac Zer 0.85 0.88 0.86 0.88 0.84 0.87 0.96 0.97 0.97

Fac Mor 0.73 0.82 0.75 0.82 0.74 0.81 0.88 0.88 0.97

Fou Kar 0.90 0.90 0.90 0.90 0.88 0.89 0.97 0.96 0.97

Fou Pix 0.76 0.89 0.77 0.89 0.74 0.87 0.98 0.95 0.98

Fou Zer 0.82 0.83 0.82 0.83 0.80 0.81 0.81 0.85 0.86

Fou Mor 0.75 0.77 0.75 0.77 0.74 0.76 0.44 0.80 0.84

Kar Pix 0.94 0.95 0.94 0.95 0.93 0.94 0.98 0.96 0.98

Kar Zer 0.90 0.88 0.90 0.88 0.89 0.86 0.83 0.96 0.96

Kar Mor 0.75 0.80 0.77 0.80 0.76 0.79 0.62 0.86 0.97

Pix Zer 0.83 0.87 0.83 0.87 0.80 0.86 0.84 0.94 0.97

Pix Mor 0.72 0.79 0.73 0.79 0.71 0.77 0.71 0.84 0.98

Zer Mor 0.68 0.75 0.72 0.75 0.70 0.74 0.72 0.77 0.84

The best performance for each experimental settings are in bold

DCCA(bgDCCA), boostingCCA(bsCCA), boostingDCCA
(bsDCCA) (Zhang and Zhang 2011) and Random Correla-
tion Ensemble (RCE) (Zhang and Zhang 2011). For fair com-
parison, all the methods employ nearest neighbor method as
the classifier. The results of competitors are from Table 2 in
Zhang and Zhang (2011). From Table 3, we see that RPSA is
clearly superior to CCA, DCCA, bgCCA, bgDCCA, bsCCA,
bsDCCA and PLS. RPSA achieves better accuracy than RCE
for 12 pairs, and identical accuracy for the remaining 3 pairs.
Note that RCE is a sophisticatedmethodwhich first finds ran-
dom cross-view correlations between within-class examples
and then boosts performance by ensemble learning.

Our proposed RPSA is a general framework of multi-
modality analysis. It is natural to extend RPSA to fuse fea-
tures from threemodalities.Weconducted feature fusionover
all possible three features and compared with the result with
that of Multi-View CCA (Rupnik and Shawe-Taylor 2010;
Gong et al. 2014). Therefore, we have C6

3 = 20 configura-
tions. Due to space limitation, we only reported the average
of the mean recognition rates over 20 configurations. The
average of the mean recognition rates of RPSA over three
features is 0.97 while that of Multi-View CCA is 0.93. The
average of the mean recognition rates of RPSA over two fea-
tures is 0.95, which suggests that fusing more features can
produce better recognition results.

5.4 Cross-Pose Face Recognition

Faces observed under a particular pose can be consid-
ered as being sampled from one modality, and therefore

faces observed under different poses correspond to different
modalities. RPSA can be used to recognize faces under dif-
ferent poses, in which gallery faces are in one pose while
probe faces are in another pose. Note that our method
requires knowing the rough pose of each photo (i.e., to
which modality it belongs) as in the work of Sharma and
Jacobs (2011). CMU PIE face database3 was used in our
experiments. This data set consists of 68 subjects, each of
which has face photos in 13 different poses (indexed by
c27/05/29/37/11/07/09/02/14/22/34 /25/31). Photos in the
same pose were aligned by the eyes and mouth. All pho-
tos were cropped and down-sampled to 48× 40. Each photo
was then reshaped into a column vector giving an observation
xi . In our experiments, subject 1 to 34 were used as training
data, while the rest were used as testing data. In the training
phase, we learned one projection matrix for each modality.
The learned latent common space had a dimension of 25.
In the testing phase, the nearest gallery face of each probe
face was found in the learned latent common space, and the
recognition rates were reported.

To tune γ2, we randomly selected 1
5 of training data as

validation data and the rest as “training data”. The structure
of training triplets are fixed to be (26,26,0,0) (given a face
xp, the number of faces with different labels is 26 while the
number of faces with same label as xp is 0). RPSA is used to
do cross-pose face recognition with c22 as gallery and c07 as
query. Figure 8 plots the recognition rates with different γ2.
It has been shown that RPSA is not sensitive to γ2 as long as

3 http://vasc.ri.cmu.edu/idb/html/face/.

123

http://vasc.ri.cmu.edu/idb/html/face/


188 Int J Comput Vis (2015) 113:176–192

0 0.01 0.1 1 10 100
0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

ra
te

s

Fig. 8 Performance of RPSA over the validation set with different γ2

γ2 > 0.01. Therefore, we fixed γ2 = 10. and retrained our
model over all training data.

In Table 4, we compare our method with those using
frontal faces (photos indexed by c27 in CMU PIE data set)
as gallery, in terms of mean recognition rates over differ-
ent subsets of probe poses. The subsets of probe poses are
set to be the same as those in Sharma and Jacobs (2011).
The results of competitors are from Table 3 in Sharma and
Jacobs (2011). It can be seen that RPSAoutperforms all com-
petitors. Note that TFA requires 14 user-elaborately-clicked
points for photo alignment and Gabor filter for extracting
complex features, whereas our method only needs 3 points
(eyes and mouth) for photo alignment and directly employs
the face image as a feature vector.

We also compare our method with PLS (Sharma and
Jacobs2011) andMulti-viewDiscriminantAnalysis (MvDA)
(Kan et al. 2012) which, to the best of our knowledge, report
the best performance in the recent literature. Two arbitrary
poses were selected as a gallery-probe pair, and we there-
fore had P13

2 = 156 configurations. The results are shown
in Table 5. The result of PLS is from Table 1 in Sharma and
Jacobs (2011) and that of MvDA is collected by running its
publicly available code.4 It can be seen that the proposed
RPSA is much better than PLS and MvDA. RPSA achieves
the best average recognition rates for all different galleries.
It gets the best results in 140 configurations and the second
best results in 16 configurations. RPSA is slightly worse than
MvDA for the configurations (c22,c07) and (c07, c22) (c22
is a side view while c07 is a frontal view). This might be due
to big pose difference between c22 and c07.

The overall accuracy of the proposedRPSA for all gallery-
probe pairs is 0.957 while those of PLS andMvDA are 0.901
and 0.922 respectively. Our method improves the state-of-
the-art result by 3.8 %.

In this experiment, observations from different modali-
ties have the same number of dimension. Therefore, metric

4 http://vipl.ict.ac.cn/members/mnkan.

learning methods designed for one modality can be used to
do cross-pose face recognition without considering modal-
ity difference. We evaluated the performance of the state-of-
the-art metric learning method Information Theoretic Met-
ric Learning (ITML) on this task. The average accuracies
are 0.409, 0.390, 0.547, 0.532, 0.542, 0.471, 0.583, 0.446,
0.449, 0.569, 0.463, 0.529, and 0.392 when c34, c31, c14,
c11, c29, c09, c27, c07, c05, c37, c25, c02 and c22 are gallery
respectively. Its overall accuracy is only 0.486. It has been
observed that multi-modality analysis methods greatly out-
perform metric learning methods designed for one modality
on cross-modality pattern recognition problems.

5.5 Text-Image Retrieval

Text and image are two different modalities. Using text query
to retrieve images or image query to retrieve texts are cross-
modality problems, which requires common representations.
The proposed RPSA was validated by text-image retrieval
on Wiki Text-Image data set (Rasiwasia et al. 2010). The
data set consists of 2,173 training and 693 testing image-
text pairs with 10 different categories. The images are repre-
sented by 128-dimensional SIFT feature vectors while texts
are encoded by 10-dimensional latent Dirichlet allocation
model-based feature vectors (Blei et al. 2003). In the training
phase, we learned one projection matrix for each modality.
In the testing phase, queries and probes were projected into
the learned latent space with the dimension of 10, and then
text-image retrieval was conducted by finding the nearest
neighbors of the projections of queries. It is considered to be
correct if the retrieved image (or text) has the same label as the
query text (or image). As in Sharma and Kumar (2012), the
precisions of retrieval are evaluated at 11 different recall lev-
els {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}; the Mean
Average Precision (mAP) given by 1

11

∑11
i=1 precisioni is

finally reported.
To tune γ2, 1

8 of training data were selected as validation
data and the rest as “ training set”. The structure of training
triplets were fixed to be (119,119,119,119) (given an image
xp, the number of images with the same label as xp is 119).
We evaluated RPSA with text as query on validation data.
We found that the performance was best when γ2 = 100.
Therefore, we fixed γ2 = 100. RPSA was retrained over all
training data with fixed parameters.

In our experiments, we found that overweighting the first
type of training triplets (i.e., when tp is image modality) will
greatly boost the performance of RPSA with image as query
while the second type training triplets (i.e., when tp is text
modality)with text as query. Thismight be because themodel
we learned is too simple (the dimension of the latent common
space is too low) to satisfy all training triplet constraints at the
same time. The results reported in this Section were obtained
by overweighting the first and the second type of training

123

http://vipl.ict.ac.cn/members/mnkan


Int J Comput Vis (2015) 113:176–192 189

Table 4 Mean recognition rates
for frontal faces (c27) gallery Gallery Probe Method Accuracy Method Accuracy

c27 c05/37/25/22/29/11/14/34 PGFR (Liu and Chen 2005) 0.86 RPSA 0.98

c27 c05/22 TFA (Prince et al. 2008) 0.95 RPSA 0.96

c27 c05/29/37/11/07/09 LLR (Chai et al. 2007) 0.95 RPSA 1.00

c27 c05/29/37/11/07/09 ELF (Gross et al. 2004) 0.90 RPSA 1.00

Table 5 Recognition rates for different gallery-probe pose pairs on CMU PIE

Gallery Probe

c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22 Avg.

c34 RPSA – 0.97 1 0.94 0.94 0.91 0.94 0.91 0.88 0.91 0.76 0.91 0.85 0.912

MvDA – 0.91 0.97 0.94 0.85 0.82 0.85 0.91 0.71 0.91 0.62 0.82 0.82 0.846

PLS – 0.88 0.94 0.94 0.91 0.88 0.91 0.97 0.85 0.88 0.70 0.85 0.61 0.862

c31 RPSA 0.97 – 1 1 1 0.94 0.94 1 0.97 1 0.91 0.97 0.91 0.968

MvDA 0.94 – 1 1 1 1 0.94 1 0.94 1 0.79 0.85 0.74 0.934

PLS 0.85 – 1 1 1 0.88 0.85 0.91 0.85 0.88 0.76 0.85 0.76 0.884

c14 RPSA 0.94 1 – 1 1 0.97 1 1 0.94 1 0.91 1 0.94 0.98

MvDA 0.94 1 – 0.97 1 0.97 1 1 0.79 1 0.76 0.82 0.79 0.922

PLS 0.97 1 – 1 0.97 0.91 0.97 1 0.91 1 0.82 0.91 0.67 0.928

c11 RPSA 0.97 1 1 – 1 0.94 0.97 1 1 1 0.85 0.97 0.82 0.961

MvDA 0.94 1 0.97 – 1 0.91 1 1 0.94 0.97 0.76 0.97 0.79 0.939

PLS 0.79 0.97 1 – 1 0.88 1 1 0.97 0.97 0.85 0.88 0.67 0.916

c29 RPSA 0.91 0.94 0.97 1 – 1 1 1 1 1 0.82 0.97 0.91 0.961

MvDA 0.88 0.94 0.97 1 – 0.97 1 1 1 0.97 0.76 0.88 0.79 0.931

PLS 0.76 0.94 1 1 – 1 1 1 1 1 0.85 0.91 0.73 0.933

c09 RPSA 0.97 0.97 0.97 1 1 – 1 1 1 1 0.94 0.97 0.91 0.978

MvDA 0.88 1 0.97 1 0.97 – 1 0.97 1 0.97 0.91 0.82 0.85 0.946

PLS 0.76 0.88 0.91 0.94 0.94 – 0.97 0.94 0.91 0.88 0.82 0.79 0.70 0.872

c27 RPSA 0.94 0.94 1 1 1 1 – 1 1 1 0.97 1 0.91 0.980

MvDA 0.88 0.94 0.97 1 1 0.94 – 1 1 0.97 0.82 1 0.91 0.953

PLS 0.85 0.91 0.97 1 1 1 – 1 1 1 0.85 0.88 0.79 0.939

c07 RPSA 0.91 1 1 1 1 1 1 – 1 1 0.85 0.97 0.82 0.963

MvDA 0.85 0.91 0.97 1 1 0.94 1 – 1 0.97 0.94 0.97 0.88 0.953

PLS 0.79 0.91 0.97 1 1 0.97 1 – 1 0.97 0.85 0.91 0.76 0.929

c05 RPSA 0.88 1 1 0.97 1 1 1 1 – 1 0.97 1 0.94 0.980

MvDA 0.85 0.97 0.88 1 1 1 1 1 – 1 0.94 1 0.91 0.963

PLS 0.79 0.97 0.97 0.94 1 0.94 1 1 – 0.97 0.91 0.91 0.82 0.936

c37 RPSA 0.88 0.94 1 1 1 0.97 1 1 1 – 0.97 1 0.94 0.976

MvDA 0.91 0.94 1 0.97 1 0.97 0.94 0.97 0.94 – 0.94 1 0.88 0.956

PLS 0.79 0.94 1 0.94 0.94 0.88 0.94 0.94 0.97 – 1 1 0.94 0.941

c25 RPSA 0.76 0.91 0.88 0.88 0.88 0.91 0.91 0.88 0.91 0.97 – 0.97 0.85 0.895

MvDA 0.68 0.79 0.85 0.88 0.82 0.91 0.85 0.91 0.91 0.94 – 0.91 0.82 0.858

PLS 0.67 0.82 0.76 0.79 0.88 0.88 0.88 0.91 0.94 0.97 – 0.97 0.76 0.855

c02 RPSA 0.85 0.94 0.94 0.97 1 0.97 1 1 1 1 1 – 1 0.973

MvDA 0.74 0.82 0.79 0.94 0.97 0.85 0.97 0.97 1 1 0.97 – 0.97 0.917

PLS 0.76 0.88 0.88 0.94 0.94 0.88 0.97 0.94 1 1 1 – 0.97 0.931

c22 RPSA 0.82 0.94 0.94 0.88 0.91 0.94 0.91 0.85 0.97 0.94 0.91 0.97 – 0.918

MvDA 0.85 0.79 0.85 0.79 0.82 0.85 0.91 0.91 0.82 0.88 0.91 0.94 – 0.863

PLS 0.64 0.70 0.64 0.79 0.76 0.67 0.82 0.82 0.85 0.91 0.85 0.91 – 0.784

The best performance for each experimental settings are in bold
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Table 6 mAP on Wiki Text-Image data set

Query Method

PLS BLM CCA SM SCM GMMFA GMLDA RPSA

Image 0.207 0.237 0.182 0.225 0.277 0.264 0.272 0.280

Text 0.192 0.144 0.209 0.223 0.226 0.231 0.232 0.249

Avg. 0.199 0.191 0.196 0.224 0.252 0.248 0.253 0.265

triplets by 20 times when image and text are used as queries
respectively.

The performance of RPSA is compared with those of the
state-of-the-art multi-modality analysis techniques: CCA,
PLS, BLM, Semantic Matching (SM) (Rasiwasia et al.
2010), Semantic Correlation Matching (SCM) (Rasiwasia et
al. 2010), Generalized Multi-view Marginal Fisher Analy-
sis (GMMFA) (Sharma and Kumar 2012) and Generalized
Multi-view LDA (GMLDA) (Sharma and Kumar 2012) in
Table 6. The results of competitors are from Table 3 in
Sharma and Kumar (2012). It has been shown that the pro-
posedmethod achieves the best performance in terms ofmAP
with image query, that with text query, and the average mAP.
Specifically, RPSA improves the state of the art result by

4.7 %. Figure 9 shows recall precision curves of RPSA com-
pared with others. It has been shown that RPSA performs
better than CCA and PLS with an obvious margin. Figure 10
shows mAP of each category with text query obtained by
CCA, PLS and RPSA. It has been shown that RPSA consis-
tently performs better than its competitors for each category
except sport.

5.6 Attribute-Image Retrieval

In the previous experiments, all the training triplets are gener-
ated with category labels as shown in Table 1. In this Section,
wewould like to evaluatePRSAusingnatural relative-pairing
information. The data set we used is Public Figures Face
Database (Kumar et al. 2009). In Parikh andGrauman (2011),
a subset consisting of 241 training faces and 531 test faces are
selected to study relative attributes. These faces belong to 8
persons. They have 11 attributes, namely, “Male”, “White”,
“Yong”, “Smiling”, “Chubby”, “Visible Forehead”, “Bush
Eyebrows”, “Narrow Eyes”, “Pointy Nose”, “Big Lips” and
“RoundFace”. Each face is encoded by a 542-d feature vector
based on Gist and color histogram extracted from its image.
It is also encoded by 11-d binary attribute vector. e.g., the

Fig. 9 Comparison between
recall precision curves of CCA,
PLS, and RPSA. a shows recall
precision curves with image
query. b shows recall precision
curves with text query
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Fig. 10 Comparisons between mAP of each category obtained by CCA, PLS and RPSA
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Fig. 11 Illustration of training triplets generatedwith relative attribute.
indicates beingmore likely paired. Face a ismore smiling than face b.

Therefore, a is more likely paired with the smiling (the fourth) attribute
code c than b with c

attribute vector (1,1,0,0,0,0,0,0,0,0,0) indicates a white male
face. In this experiment, face image feature is considered as
image modality while attribute code as attribute modality.
We learn a 11-d latent common space between image modal-
ity and attribute modality, and then retrieve image (attribute)
with attribute (image) as query. The evaluation measure is
the same as that in Image-Text retrieval in Sect. 5.5.

Different from text-image retrieval experiment, we used
natural training triplets instead of those generated with cat-
egory labels. In Parikh and Grauman (2011), each image is
assigned a relative strength for each attribute. If face image
a has higher strength for the k th attribute than image b, then
image a is more-likely paired with the attribute code c than
image b, where c being a 11-d zero vector except the kth
element being 1. Figure 11 shows one example. We used
73,470 training triplets by enumerating all attribute compar-
ison given in the data set.

We set n1 = 1 and n2 = n3 = 0 as attribute-image
retrieval is a cross-modality retrieval problem. To tune γ2, 1

8
of training datawere selected as validation data and the rest as
“ training set”. We found that RPSA performed best with γ2
being 100. Therefore, γ2 was fixed to 100. In order to evaluate
RPSA trained only on natural relative-pairing information,
we also reported the performance of RPSA without training
pairs (named by RPSAn). i.e., P = ∅.

Table 7 mAP on public figures face database

Query Method

CCA PLS RPSAn RPSA

Image 0.323 0.323 0.589 0.668

Attribute 0.215 0.323 0.329 0.568

Avg. 0.269 0.323 0.459 0.618

RPSA is compared with CCA and PLS. The results are
listed in Table 7. It has been shown that RPSAoutperforms its
competitors with a large margin. RPSA improves the results
of CCA and PLS by 129.7 and 91.3% in terms of the average
mAP. RPSAn is inferior to RPSA. The reason is that training
pairs used byRPSAcan encourage the projections of exactly-
paired observations from different modalities to be identical,
which is important in cross-modality pattern recognition or
retrieval as discussed in Sect. 5.2. Nevertheless, RPSAn is
still superior to CCA and PLS. Note that both RPSA and
RPSAn are trained without category labels.

6 Conclusion and Future work

In this paper,wehaveproposed a framework calledRelatively-
PairedSpaceAnalysis (RPSA)which can automatically learn
a latent common space between multiple modalities from
relatively-paired observations. Relative-pairing can explore
more general semantic relationships between observations
than absolute-pairing, and allows easy integration of label
information. Theoretically, RPSA is a discriminative model
which does not assume any parameter or noise distribution,
and is a general framework which can be used in any cross-
modality pattern recognition. We have evaluated the perfor-
mance of RPSA by applying it to feature fusion, cross-pose
face recognition, text-image retrieval and attribute-image
retrieval. Experimental results show that RPSA outperforms
other state-of-the-art techniques, some of which are tailored
for the particular problems. In future work, we would like to
extend RPSA to a nonlinear version.
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