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Abstract In this paper, we address the problems of contour
detection, bottom-up grouping, object detection and semantic
segmentation on RGB-D data. We focus on the challenging
setting of cluttered indoor scenes, and evaluate our approach
on the recently introduced NYU-Depth V2 (NYUD2) dataset
(Silberman et al., ECCV, 2012). We propose algorithms
for object boundary detection and hierarchical segmentation
that generalize the g Pb − ucm approach of Arbelaez et al.
(TPAMI, 2011) by making effective use of depth information.
We show that our system can label each contour with its type
(depth, normal or albedo). We also propose a generic method
for long-range amodal completion of surfaces and show its
effectiveness in grouping. We train RGB-D object detectors
by analyzing and computing histogram of oriented gradients
on the depth image and using them with deformable part
models (Felzenszwalb et al., TPAMI, 2010). We observe that
this simple strategy for training object detectors significantly
outperforms more complicated models in the literature. We
then turn to the problem of semantic segmentation for which
we propose an approach that classifies superpixels into the
dominant object categories in the NYUD2 dataset. We design
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generic and class-specific features to encode the appearance
and geometry of objects. We also show that additional fea-
tures computed from RGB-D object detectors and scene clas-
sifiers further improves semantic segmentation accuracy. In
all of these tasks, we report significant improvements over
the state-of-the-art.

Keywords RGB-D contour detection · RGB-D image
segmentation · RGB-D object detection · RGB-D semantic
segmentation · RGB-D scene classification

1 Introduction

The problem of scene and image understanding from monoc-
ular images has been studied very well in recent years (Gupta
et al. 2010; Hedau et al. 2012; Hoiem et al. 2007; Lee et al.
2010, 2009; Saxena et al. 2008). Some works have addressed
the task of inferring coarse 3D layout of outdoor scenes,
exploiting appearance and geometric information (Hoiem et
al. 2007; Saxena et al. 2008). Recently, the focus has shifted
towards the more difficult case of cluttered indoor scenes
(Gupta et al. 2011; Hedau et al. 2012; Lee et al. 2010, 2009).
In this context, the notion of affordance and the functionality
of objects for human use acquires importance. Thus, Hedau
et al. (2012) recovers walk-able surfaces by reasoning on
the location and shape of furniture, Lee et al. (2010), Lee
et al. (2009) reason about the 3D geometry of the room and
objects, while Gupta et al. (2011) focuses on interpreting the
scene in a human-centric perspective.

Another major line of work has been object detection.
Most notable among them is the work in the sliding win-
dow paradigm one of the first example being Viola and Jones
(2001), which considered the task of face detection, Dalal
and Triggs (2005), which proposed and benchmarked vari-
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Fig. 1 Output of our system: We take in as input a single color and
depth image (a, b) and produce as output a bottom-up segmentation
(c), long range completions (d), contour classification (e) [into depth

discontinuities (red), concave normal discontinuities (green) and con-
vex normal discontinuities (blue)], object detections (f), and a semantic
segmentation (g) (Color figure online)

ous feature choices for use with sliding window detectors,
and more recent works (Bourdev et al. 2010; Felzenszwalb
et al. 2010) which extends the sliding window approaches to
reason about parts and their relative arrangements. Notably,
Felzenszwalb et al. (2010)’s deformable part models (DPM),
is the widely accepted state-of-the-art method for object
detection.1

With the recent introduction of a commodity depth sen-
sor (like the Microsoft Kinect), a new area of research has
opened up in computer vision of looking at tasks which have
traditionally been very hard. For example, recent works have
considered 3D reconstruction tasks such as real-time scene
reconstruction (Izadi et al. 2011), and recovering high fidelity
albedo, shape and illumination (Barron and Malik 2013).

There has also been a lot of work on semantic understand-
ing of images given RGB-D input from a depth sensor. A
particularly striking first work among this is that of real-time
human pose estimation from single RGB-D images (Shotton
et al. 2011), in which they demonstrate that with the avail-
ability of RGB-D input they can solve the hard problem of
human joint localization well enough to be used in a practical
application. Subsequently, there have been numerous papers
in both robotics and vision communities looking at various
image and scene understanding problems namely, bottom-up
segmentation (Dollár and Zitnick 2013; Ren and Bo 2012;
Silberman et al. 2012), semantic segmentation (Carreira et
al. 2012; Koppula et al. 2011; Ren et al. 2012; Silberman et
al. 2012), and object detection (Janoch et al. 2013; soo Kim
et al. 2013; Lai et al. 2013; Tang et al. 2012; Ye 2013).

In this paper we tackle all these three tasks—bottom-up
segmentation, object detection and semantic segmentation
for indoor RGB-D images. The output of our approach is
shown in Fig. 1: given a single RGB-D image (a, b), our
system produces contour detection, bottom-up segmentation

1 In recent work (Girshick et al. 2014), report much better object detec-
tion performance by using features from a Convolutional Neural Net-
work (CNN) trained on a large image classification dataset (Deng et al.
2009). In our more recent work (Gupta et al. 2014), we experimented
with these CNN based features and observe similar improvements in
object detection performance, and moreover also show how CNNs can
be used to learn features from depth images. We refer the readers to
(Gupta et al. 2014) for more details on this.

(c), contour classification (d), grouping by amodal comple-
tion (e), object detection (f) and semantic labeling of objects
and scene surfaces (g).

This is an extended version of the work that appeared in
Gupta et al. (2013). It differs from Gupta et al. (2013), in
that we also investigate the problem of RGB-D detection,
and show that incorporating additional features from object
detector activations further improves the semantic segmen-
tation accuracy.

This paper is organized as follows: we review related work
in Sect. 2. We describe our algorithm and results for per-
ceptual re-organization (bottom-up segmentation and amodal
completion) in Sect. 3. We then describe how we train RGB-
D object detectors and compare them with existing methods
in the literature in Sect. 4. We then describe our system for
semantic segmentation in Sect. 5. Finally, we use the output
from our object detectors and scene classifiers for the task of
semantic segmentation, and show how this additional knowl-
edge can help us improve the performance of our semantic
segmentation system in Sect. 6.

2 Related Work

2.1 Bottom-up and Semantic Segmentation

One of the first attempts at bottom-up and semantic seg-
mentation is that of Silberman et al. (2012), in which they
consider the task of bottom-up RGB-D segmentation and
semantic scene labeling, by modifying the algorithm of
Hoiem et al. (2011) to use depth for bottom-up segmenta-
tion and then using context features derived from inferring
support relationships in the scene for performing semantic
segmentation. Ren et al. (2012)’s work uses features based on
kernel descriptors on superpixels and their ancestors from a
region hierarchy, followed by a Markov random field (MRF)
context model. Koppula et al. (2011) also study the prob-
lem of indoor scene parsing with RGB-D data in the context
of mobile robotics, where multiple views of the scene are
acquired with a Kinect sensor and subsequently merged into
a full 3D reconstruction. The full 3D point cloud is over-
segmented and used as underlying structure for an MRF
model. A rich set of features is defined, describing local
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appearance, shape and geometry, and contextual relation-
ships among object classes. A max-margin formulation is
proposed to learn the model parameters and inference is per-
formed via LP relaxation.

Our work differs from the references above in both our
approach to segmentation and to recognition. We visit the
segmentation problem afresh by extending the gPb-ucm
(Arbelaez et al. 2011) machinery to leverage depth informa-
tion, giving us significantly better bottom-up segmentation
when compared to earlier works. We also consider the inter-
esting problem of amodal completion (Kanizsa 1979) and
obtain long range groups, which gives us better bottom-up
region proposals for scene surfaces which are often inter-
rupted by objects in front of them. Finally, we are also able
to label each edge as being a depth edge, a normal edge, or
neither.

Our approach for recognition builds on insights from the
performance of different methods on the PASCAL VOC seg-
mentation challenge (Everingham et al. 2012). We observe
that approaches like Arbelaez et al. (2012), Carreira et al.
(2012),Carreira et al. (2012), which focus on classifying
bottom-up region candidates using strong features on the
region have obtained significantly better results than MRF-
based methods (Ladicky et al. 2010). Based on this motiva-
tion, we propose new features to represent bottom-up region
proposals (which in our case are non-overlapping superpixels
and their amodal completion), and use additive kernel SVM
classifiers.

2.2 Object Detection

For object detection, from a robotics perspective, Lai et al.
(2011, 2013) collect a dataset of day-to-day objects, and
propose novel kernel descriptor features to recognize these
objects. We study the same problem, but consider it in uncon-
trolled and cluttered real world scenes, and develop tech-
niques which can generalize across instances of the same
category. Moreover, we are more interested in the problem
of detecting large furniture like items. Johnson et al., Rusu et
al., and Frome et al. look at computing features for describing
points in point cloud data (Frome et al. 2004; Johnson and
Hebert 1999; Rusu et al. 2009), but in this work we want to
design features for complete objects. Janoch et al. (2013)
also consider the task of object detection in RGB-D set-
tings, and propose modifications to the approach of Felzen-
szwalb et al. (2010), and re-scoring and pruning detections to
improve detection accuracy. In more recent work (soo Kim
et al. 2013), propose modifications to DPMs to reason in 3D
and take into account bottom-up grouping cues, and show
improvements over the approach of Janoch et al. (2013).
Tang et al. (2012) also look at the task of object detection
and work in the same framework, but do not reason about
perspective in their calculations for depth image gradients.

Ye (2013) also look at the same task but compute features
on the surface normal images. Our work is more similar to
that of Tang et al. (2012), Ye (2013), but we differ in the
features that we use, and observe that even a simple model
with the right features can outperform more complicated
approaches.

3 Perceptual Organization

One of our main goals is to perform perceptual organiza-
tion on RGB-D images. We would like an algorithm that
detects contours and produces a hierarchy of bottom-up seg-
mentations from which we can extract superpixels at any
granularity. We would also like a generic machinery that
can be trained to detect object boundaries, but that can also
be used to detect different types of geometric contours by
leveraging the depth information. In order to design such a
depth-aware perceptual organization system, we build on the
architecture of the g Pb − ucm algorithm (Arbelaez et al.
2011), which is a widely used software for monocular image
segmentation.

3.1 Geometric Contour Cues

In addition to color data, we have, at each image pixel, an
estimation of its 3D location in the scene from which we can
infer its surface normal orientation. We use this local geo-
metric information to compute three oriented contour signals
at each pixel in the image: a depth gradient DG which identi-
fies the presence of a discontinuity in depth, a convex normal
gradient N G+ which captures if the surface bends-out at a
given point in a given direction, and a concave normal gra-
dient N G−, capturing if the surface bends-in.

Generalizing the color and texture gradients of g Pb to
RGB-D images in not a trivial task because of the character-
istics of the data, particularly: (1) a nonlinear noise model
of the form |δZ | ∝ Z2|δd|, where δZ is the error in depth
observation, Z is the actual depth, δd is the error in dis-
parity observation (due to the triangulation-based nature of
the Kinect), causing non-stochastic and systematic quanti-
zation of the depth, (2) lack of temporal synchronization
between color and depth channels, resulting in misalign-
ment in the dataset being used, (3) missing depth observa-
tions. We address these issues by carefully designing geo-
metric contour cues that have a clear physical interpreta-
tion, using multiple sizes for the window of analysis, not
interpolating for missing depth information, estimating nor-
mals by least square fits to disparity instead of points in
the point cloud, and independently smoothing the orien-
tation channels with Savitsky and Golay (1964) parabolic
fitting.
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In order to estimate the local geometric contour cues, we
consider a disk centered at each image location. We split the
disk into two halves at a pre-defined orientation and com-
pare the information in the two disk-halves, as suggested
originally in Martin et al. (2004) for contour detection in
monocular images. In the experiments, we consider 4 differ-
ent disk radii varying from 5 to 20 pixels and 8 orientations.
We compute the 3 local geometric gradients DG, N G+ and
N G− by examining the point cloud in the 2 oriented half-
disks. We first represent the distribution of points on each
half-disk with a planar model. Then, for DG we calculate
the distance between the two planes at the disk center and
for N G+ and N G− we calculate the angle between the nor-
mals of the planes.

3.2 Contour Detection and Segmentation

We formulate contour detection as a binary pixel classifi-
cation problem where the goal is to separate contour from
non-contour pixels, an approach commonly adopted in the
literature (Arbelaez et al. 2011; Hoiem et al. 2011; Martin et
al. 2004). We learn classifiers for each orientation channel
independently and combine their final outputs, rather than
training one single classifier for all contours.
Contour Locations We first consider the average of all local
contour cues in each orientation and form a combined gra-
dient by taking the maximum response across orientations.
We then compute the watershed transform of the combined
gradient and declare all pixels on the watershed lines as
possible contour locations. Since the combined gradient is
constructed with contours from all the cues, the watershed
over-segmentation guarantees full recall for the contour loca-
tions. We then separate all the boundary location candidates
by orientation.
Labels We transfer the labels from ground-truth manual
annotations to the candidate locations for each orientation
channel independently. We first identify the ground-truth
contours in a given orientation, and then declare as positives
the candidate contour pixels in the same orientation within a
distance tolerance. The remaining boundary location candi-
dates in the same orientation are declared negatives.
Features For each orientation, we consider as features our
geometric cues DG, N G+ and N G− at 4 scales, and the
monocular cues from g Pb : BG, CG and T G at their 3
default scales. We also consider three additional cues: the
depth of the pixel, a spectral gradient (Arbelaez et al. 2011)
obtained by globalizing the combined local gradient via spec-
tral graph partitioning, and the length of the oriented contour.
Oriented Contour Detectors We use as classifiers support
vector machines (SVMs) with additive kernels (Maji et al.
2013), which allow learning nonlinear decision boundaries
with an efficiency close to linear SVMs, and use their proba-

bilistic output as the strength of our oriented contour detec-
tors.
Hierarchical Segmentation Finally, we use the generic
machinery of Arbelaez et al. (2011) to construct a hierar-
chy of segmentations, by merging regions of the initial over-
segmentation based on the average strength of our oriented
contour detectors.

3.3 Amodal Completion

The hierarchical segmentation obtained thus far only groups
regions which are continuous in 2D image space. However,
surfaces which are continuous in 3D space can be fragmented
into smaller pieces because of occlusion. Common examples
are floors, table tops and counter tops, which often get frag-
mented into small superpixels because of objects resting on
them.

In monocular images, the only low-level signal that can be
used to do this long-range grouping is color and texture con-
tinuity which is often unreliable in the presence of spatially
varying illumination. However, in our case with access to 3D
data, we can use the more robust and invariant geometrical
continuity to do long-range grouping. We operationalize this
idea as follows:

1. Estimate low dimensional parametric geometric models
for individual superpixels obtained from the hierarchical
segmentation.

2. Greedily merge superpixels into bigger more complete
regions based on the agreement among the parametric
geometric fits, and re-estimate the geometric model.

In the context of indoor scenes we use planes as our low
dimensional geometric primitive. As a measure of the agree-
ment we use the (1) orientation (angle between normals to
planar approximation to the 2 superpixels) and (2) residual
error (symmetrized average distance between points on one
superpixel from the plane defined by the other superpixel);
and use a linear function of these 2 features to determine
which superpixels to merge.

As an output of this greedy merging, we get a set of non-
overlapping regions which consists of both long and short
range completions of the base superpixels.

3.4 Results

We train and test our oriented contour detectors using the
instance level boundary annotations of the NYUD2 as the
ground-truth labels. We follow the standard train-test splits
of NYUD2 dataset with 795 training images and 654 testing
images (these splits make sure that images from the same
scene are either entirely in the test set or entirely in the train
set).
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Fig. 2 Boundary benchmark on NYUD2: our approach (red) signifi-
cantly outperforms baselines (Arbelaez et al. 2011) (black) and Silber-
man et al. (2012) (blue) (Color figure online)

We evaluate performance using the standard benchmarks
of the Berkeley Segmentation Dataset (Arbelaez et al. 2011):
precision and recall on boundaries and Ground Truth Cover-
ing of regions. We consider two natural baselines for bottom-
up segmentation: the algorithm g Pb − ucm, which does
not have access to depth information, and the approach of
Silberman et al. (2012), made available by the authors
(labeled NYUD2 baseline), which produces a small set (5)
of nested segmentations using color and depth.

Figure 2 and Table 1 2 present the results. Our depth-
aware segmentation system produces contours of far higher
accuracy than g Pb − ucm, improving the average precision
(AP) from 0.55 to 0.70 and the maximal F-measure (ODS in
Table 1, left) from 0.62 to 0.69. In terms of region quality, the
improvement is also significant, increasing the best ground
truth covering of a single level in the hierarchy (ODS in Table
1, right) from 0.55 to 0.62, and the quality of the best seg-
ments across the hierarchy from 0.69 to 0.75. Thus, on aver-
age, for each ground truth object mask in the image, there is
one region in the hierarchy that overlaps 75 % with it. The
comparison against the NYUD2 baseline, which has access to
depth information, is also largely favorable for our approach.
In all the benchmarks, the performance of the NYUD2 base-
line lies between g Pb − ucm and our algorithm.

2 ODS refers to optimal dataset scale, OIS refers to optimal image scale,
bestC is the average overlap of the best segment in the segmentation
hierarchy to each ground truth region. We refer the reader to Arbelaez
et al. (2011) for more details about these metrics.

In Silberman et al. (2012), only the coarsest level of the
NYUD2 baseline is used as spatial support to instantiate
a probabilistic model for semantic segmentation. However,
a drawback of choosing one single level of superpixels in
later applications is that it inevitably leads to over- or under-
segmentation. Table 2 compares in detail this design choice
against our amodal completion approach. A first observa-
tion is that our base superpixels are finer than the NYUD2
ones: we obtain a larger number and our ground truth cov-
ering is lower (from 0.61 to 0.58), indicating higher over-
segmentation in our superpixels. The boundary benchmark
confirms this observation, as our F-measure is slightly lower,
but with higher Recall and lower Precision.

The last row of Table 2 provides empirical support for our
amodal completion strategy: by augmenting our fine super-
pixels with a small set of amodally completed regions (6
on average), we preserve the boundary Recall of the under-
lying over-segmentation while improving the quality of the
regions significantly, increasing the bestC score from 0.58 to
0.63. The significance of this jump can be judged by com-
parison with the ODS score of the full hierarchy (Table 1,
right), which is 0.62: no single level in the full hierarchy
would produce better regions than our amodally completed
superpixels.

Our use of our depth-aware contour cues DG, N G+, and
N G−, is further justified because it allows us to also infer the
type for each boundary, whether it is an depth edge, concave
edge, convex edge or an albedo edge. We simply average
the strengths across the different scales for each of these
channels, and threshold them appropriately to obtain labels
for each contour. We show some qualitative examples of the
output we get in the last column of Fig. 3 (5th column).

4 RGB-D Detector

Given access to point cloud data, it is natural to think of a 3D
model which scans a 3D volume in space and reasons about
parts and deformations in 3D space. While it is appealing to
have such a model, we argue that this choice between a 3D
scanning volume detector and a 2D scanning window detec-
tor only changes the way computation is organized, and that
the same 3D reasoning can be done in windows extracted
from the 2D image. For example, this reasoning can be in the
form of better 3D aware features that can be computed from
the points in the support of the 2D sliding window. Not only
does this approach deal with the issue of computational com-
plexity, but also readily allows us to extend existing methods
in computer vision to RGB-D data.

Hence, we generalize the Deformable Parts Model detec-
tor from Felzenszwalb et al. (2010) to RGB-D images by
computing additional features channels on the depth image.
We adopt the paradigm of having a multi-scale scanning

123



138 Int J Comput Vis (2015) 112:133–149

Table 1 Segmentation
benchmarks for hierarchical
segmentation on NYUD2

See Footnote 2 for explanation
of ODS, OIS, bestC

Boundary benchmark Region benchmark

ODS OIS AP ODS OIS bestC

gPb-ucm 0.62 0.65 0.55 0.55 0.60 0.69

NYUD2 hierarchy 0.65 0.65 − 0.61 0.61 0.63

Our hierarchy 0.69 0.71 0.70 0.62 0.67 0.75

Table 2 Segmentation benchmarks for superpixels on NYUD2

Rec Prec F-meas bestC Total

NYUD2 superpixels 0.78 0.55 0.65 0.61 87

Our superpixels 0.86 0.51 0.64 0.58 144

Our amodal completion 0.86 0.51 0.64 0.63 150

See Footnote 2 for explanation of bestC

window detector, computing features from organized spa-
tial cells in the detector support, and learning a model which
has deformable parts.

4.1 Features

Note that our sliding window detector searches over scale, so
when we are thinking of the features we can assume that the
window of analysis has been normalized for scale variations.
In addition to the HOG features to capture appearance we
use the following features to encode the shape information
from the depth image.

4.1.1 Histogram of Depth Gradients

In past work which studied the task of adapting 2D object
detectors to RGB-D data (Janoch et al. 2013; Tang et al.
2012), a popular choice is to simply extend the histogram
of oriented gradients (HOG) used on color images to depth
images. One would think that this primarily captures depth
discontinuities and object boundaries. However as we show
in Appendix 2, the histogram of depth gradients actually cap-
tures the orientation of the surface and not just the depth dis-
continuities. Very briefly, the gradient orientation at a point
is along the direction in which the surface is receding away
from the viewer (the tilt), and the gradient magnitude cap-
tures the rate at which the surface is receding away (or the
slant of the surface). Note that when the surface is more or
less parallel to the viewing plane, then the estimate for the
gradient orientation is inaccurate, and thus the contribution
of such points should be down-weighed, and this is precisely
what happens when we accumulate the gradient magnitude
over different orientations.

The final step in HOG computation involves contrast nor-
malization. We stick with this step, as it makes the fea-
ture vector around depth discontinuities (where the surface

recedes very sharply) in the same range as the the feature
vector around non-depth discontinuity areas.

With this contrast normalization step, it turns out that the
histogram of depth gradients is very similar to the histogram
of disparity gradients (the gradient orientation is exactly the
same, the gradient magnitude are somewhat different, but this
difference essentially goes away due to contrast normaliza-
tion, the complete justification of this is given in Appendix 2).
In all our experiments we use HHG, histogram of oriented
horizontal disparity gradients, as this has better error proper-
ties than histogram of depth gradients (since a stereo sensor
actually measures disparity and not depth).

4.1.2 Histogram of Height

As we show in Appendix 1, we can estimate the direction for
gravity and estimate the absolute height above the ground
plane for each point. We use this estimate of height, to com-
pute a histogram capturing the distribution of heights of the
points in each cell. We use the L2 normalized square root of
the counts in each bin as features for each cell. We call this
feature HH.

4.2 Results

In this section, we validate empirically our design choices and
compare our results to related work We report experiments
on NYUD2 and B3DO.

4.2.1 Performance on NYUD2

The NYUD2 dataset was originally proposed to study
bottom-up segmentation, semantic segmentation and support
surface inference (Silberman et al. 2012). However, since it
provides dense pixel labels for each object instance, we can
easily derive bounding box annotations (by putting a tight
bounding box around each instance) and study the task of
object detection.

Since, we are interested in investigating the task of detect-
ing furniture like objects in indoor scenes, we select the fol-
lowing five most common (by number of pixels) furniture
categories in the dataset—bed, chair, sofa, counter, and table
(we exclude cabinets because they are more a part of the
scene rather than being a furniture item). For the sake of
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Fig. 3 Output of our system: we take in as input a single color and
depth image (a, b) and produce as output bottom up segmentation (c),
long range completion (d), contour classification (e) [into depth dis-

continuities (red), concave normal discontinuities (green) and convex
normal discontinuities (blue)], object detection (f), and semantic seg-
mentation (g) (Color figure online)
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Table 3 Performance on
NYUD2 (Silberman et al.
2012): we use the standard
PASCAL (Everingham et al.
2010) metric of average
precision (AP) for measuring
detection performance

We compare against an
appearance only baseline
(Felzenszwalb et al. 2010),
putting bounding boxes around
semantic segmentation
produced by our approach in
Gupta et al. (2013), and the
publicly reported performance
numbers of Ye (2013). Note that
the semantic segmentation
output from Gupta et al. (2013)
does not give instance labels

DPM
(Felzenszwalb
et al. 2010)

segToDet
(CVPR13
Gupta et
al. 2013)

Ye et al.
(Ye 2013)

Our

Bed 27.6 52.1 37.5 56.0

Chair 7.8 6.4 15.1 23.5

Sofa 9.4 17.5 15.5 34.2

Counter 7.3 32.7 16.4 24.0

Lamp 22.2 1.4 23.4 26.7

Pillow 4.3 3.3 16.9 20.7

Sink 5.9 14.0 23.0 22.8

Garbage-bin 6.6 − 16.4 26.7

Table 5.5 9.3 − 17.2

Bathtub 0.9 28.4 − 19.3

Television 5.8 3.1 − 19.5

Bookshelf 9.0 6.7 − 17.5

Toilet 34.4 13.3 − 45.1

Box 0.1 0.7 − 0.6

Desk 0.7 0.8 − 6.2

Door 2.5 5.0 − 9.5

Dresser 1.4 13.3 − 16.4

Monitor 10.0 − − 34.9

Night-stand 9.2 − − 32.6

Mean over 9.0 − − 23.9

19 Categories

Mean over 12.1 18.2 21.1 29.7

Common categories

comparison to past and future work we also include all cat-
egories studied by Ye (2013), and all categories that are part
of the RMRC challenge Reconstruction meets recognition
challenge (2013).

We follow the same standard train and test sets (of 795
and 654 images respectively as explained in Sect. 3). We
found that training with multiple components did not improve
performance given the small amount of data.

We follow the standard PASCAL (Everingham et al. 2010)
metric of average precision (AP) for measuring detection
performance. We report the performance that we obtain in
Table 3.

We compare against the state of the art appearance only
method (Felzenszwalb et al. 2010) and other approaches
which make use of depth information (Ye 2013). We also
compare against the output of our semantic segmentation sys-
tem as proposed in Gupta et al. (2013). We compute bounding
box predictions for a class c from the semantic segmentation
output by putting a tight bounding box around each connected
component of pixels belonging to class c, and assigning each
such box a score based on the confidence score for class c of
pixels within the box (note that the semantic segmentation

output does not have instance information and the tightest
bounding box around a connected component often includes
multiple instances). We observe that we are able to consis-
tently outperform the baselines. We provide some qualita-
tive visualizations for our bed, chair, sofa, table and counter
detections in Fig. 3 (6th column).

4.2.2 Performance on B3DO

The B3DO dataset considers the task of detecting mostly
small ‘prop-like’ objects which includes bottle, bowls, cups,
keyboards, monitors, computer mouse, phones, pillows and a
larger furniture object, chair, and provides 2D bounding box
annotations for objects of these categories. For this dataset,
we only use the HHG and HOG features and do not use the
HH features since the gravity estimate fails because there are
a lot of images where the camera is not roughly horizontal
(like when over looking the top of a table).

We follow the standard evaluation protocol of training on
the 6 train sets and testing on the 6 corresponding validation
sets, and reporting the average AP obtained for each category.
We report the performance in Table 4. We compare against
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Table 4 Performance on
B3DO: comparison with Janoch
et al. (2013), soo Kim et al.
(2013) on B3DO dataset

DPM
(Felzenszwalb
et al. 2010)

Janoch
(Janoch et al.
2013)-Prn

Janoch
(Janoch et al.
2013)-Rscr

soo Kim et al.
(2013)

Our

Bottle 10.1 10.4 10.1 10.1 21.9

Bowl 37.8 38.8 38.0 45.4 47.8

Chair 16.8 21.8 23.0 17.1 39.9

Cup 30.9 33.6 35.6 38.3 47.0

Keyboard 22.3 24.2 25.0 25.6 25.7

Monitor 66.8 64.8 66.7 68.2 64.9

Mouse 22.8 25.2 27.6 25.4 48.8

Phone 18.0 19.2 19.7 19.8 19.4

Mean 28.2 29.7 30.7 31.2 39.4

Table 5 Ablation study: see Sect. 4.2.3

Full No hhg No hh No hog # Train # Val

Chair 22.5 19.6 22.6 20.4 547 611

Pillow 21.1 8.15 18.9 21.4 266 276

Table 14.2 9.06 11.2 11.7 186 211

Box 0.498 0.466 0.217 0.225 163 210

Sofa 28.4 16.1 19.8 25.6 117 129

Door 4.68 6.33 2.72 1.86 136 129

Lamp 25.9 16.7 26 25 123 143

Counter 14.9 7.28 11.7 14.3 130 104

Desk 2.34 1.64 1.78 2.09 59 122

Bed 56.6 45.3 51.5 57 94 96

Bookshelf 6.3 4.1 5.02 2.69 46 87

Sink 36.1 12.1 28.7 30.7 63 47

Monitor 27.6 21.8 29.4 8.62 40 37

Night-stand 16.5 16.6 18.3 15.6 45 51

Garbage-bin 26.6 13 24.7 15.6 51 55

Dresser 23.2 3.03 13.1 9.51 40 25

Television 23.5 19.2 24.8 9.41 47 33

Toilet 48.3 50.3 50.8 48.3 20 17

Bathtub 12.2 11.6 7.73 11.8 15 19

Mean 21.7 14.9 19.4 17.5 115 126

We remove the different features from the full detector system and study
how the performance degrades

the approach of soo Kim et al. (2013), who also studied the
same task of object detection in RGB-D images.

Although, we designed our model and features with large
furniture like objects in mind, we see that our approach works
reasonably well, on this task and we get competitive perfor-
mance even on small ‘prop-like’ objects. We consistently
outperform past approaches which have studied this task in
the past.

4.2.3 Ablation Study

Here we study the impact of each of our features towards
the performance of our proposed detector. We do an ablation
study by removing each component of our detector. We do
this analysis on the train set of the NYUD2 dataset. We split
the train set into 2 halves and train on one and report perfor-
mance on the other. We report the ablation study in Table 5.

We see that all features contribute to the performance. The
most important features are HOG on the appearance image
and Histogram of Disparity Gradient features.

To gain further understanding of what the detector is learn-
ing, we provide visualizations of the model and its various
parts in Appendix 3.

5 Semantic Segmentation

We now turn to the problem of semantic segmentation on
NYUD2. The task proposed in Silberman et al. (2012) con-
sists of labeling image pixels into just four super-ordinate
classes—ground, structure, furniture and props. We study
a more fine-grained 40 class discrimination task, using the
most common classes of NYUD2. These include scene struc-
ture categories like walls, floors, ceiling, windows, doors;
furniture items like beds, chairs, tables, sofa; and objects
like lamps, bags, towels, boxes. The complete list is given in
Table 6.

We leverage the reorganization machinery developed in
Sect. 3 and approach the semantic segmentation task by pre-
dicting labels for each superpixel. We define features based
on the geocentric pose, shape, size and appearance of the
superpixel and its amodal completion. We then train classi-
fiers using these features to obtain a probability of belonging
to each class for each superpixel. We experiment with ran-
dom decision tree forests (Breiman 2001; Criminisi et al.
2012) (RF), and additive kernel (Maji et al. 2013) support
vector machines (SVM).
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5.1 Features

As noted above, we define features for each superpixel based
on the properties of both the superpixel and its amodal com-
pletion. As we describe below, our features capture affor-
dances via absolute sizes and heights which are more mean-
ingful when calculated for the amodal completion rather than
just over the superpixel. Note that we describe the features
below in context of superpixels but we actually calculate
them for both the superpixel and its amodal completion.

5.1.1 Generic Features

Geocentric Pose These features capture the pose - orien-
tation and height, of the superpixel relative to the gravity
direction. These features include (1) orientation features: we
leverage our estimate of the gravity direction from Appen-
dix 1, and use as features, the angle with respect to grav-
ity, absolute orientation in space, fraction of superpixel that
is vertical, fraction of superpixel that is horizontal, and (2)
height above the ground: we use height above the lowest
point in the image as a surrogate for the height from the sup-
porting ground plane and use as features the minimum and
maximum height above ground, mean and median height of
the horizontal part of the superpixel.

Size Features These features capture the spatial extent of the
superpixel. This includes the size of the 3D bounding rectan-
gle, the surface area—total area, vertical area, horizontal area
facing up, horizontal area facing down, if the superpixel is
clipped by the image and what fraction of the convex hull is
occluded.

Shape Features These include—planarity of the superpixel
(estimated by the error in the plane fitting), average strength
of local geometric gradients inside the region, on the bound-
ary of the region and outside the region, average orientation of
patches in the regions around the superpixel. These features
are relatively crude and can be replaced by richer features
such as spin images (Johnson and Hebert 1999) or 3D shape
contexts (Frome et al. 2004).

In total, these add up to 101 features each for the superpixel
and its amodal completion.

5.1.2 Category Specific Features

In addition to features above, we train one-versus-rest SVM
classifiers based on appearance and shape of the superpixel,
and use the SVM scores for each category as features along
with the other features mentioned above. To train these
SVMs, we use (1) histograms of vector quantized color SIFT
(van de Sande et al. 2010) as the appearance features, and
(2) histograms of geocentric textons (vector quantized words

in the joint 2-dimensional space of height from the ground
and local angle with the gravity direction) as shape features.
This makes up for 40 features each for the superpixel and its
amodal completion.

5.2 Results

With the features as described above we experiment with 2
different types of classifiers—(1) random forest classifiers
with 40 trees with randomization happening both across fea-
tures and training points for each tree (we use TreeBagger
function in MATLAB), (2) SVM classifiers with additive ker-
nels. At test time, for both these methods, we get a posterior
probability for each superpixel of belonging to each of the 40
classes and assign the most probable class to each superpixel.

We use the standard split of NYUD2 with 795 training
set images and 654 test set images for evaluation. To prevent
over-fitting because of retraining on the same set, we train
our category specific SVMs only on half of the train set.

Performance on the 40 category task We measure the perfor-
mance of our algorithm using the Jaccard index (true predic-
tions divided by union of predictions and true labels—same
as the metric used for evaluation in the PASCAL VOC seg-
mentation task) between the predicted pixels and ground truth
pixels for each category. As an aggregate measure, we look
at the frequency weighted average of the class-wise Jaccard
index (fwavacc), but for completeness also report the average
of the Jaccard index (avacc), and the pixel-level classification
accuracy (pixacc). To understand the quality of the classifiers
for each individual category independent of calibration, we
also compute maxIU, the maximum intersection over union
for all thresholds of the classifier score for each category
individually, and report their average, and denote this with
mean(maxIU).

We report the performance in Table 6 (first 4 rows in the
two tables). As baselines, we use Silberman et al. (2012)-
Structure Classifier, where we retrain their structure classi-
fiers for the 40 class task, and Ren et al. (2012), where we
again retrained their model for this task on this dataset using
code available on their website.3 We observe that we are able
to do well on scene surfaces (walls, floors, ceilings, cabinets,
counters), and most furniture items (bed, chairs, sofa). We
do poorly on small objects, due to limited training data and
weak shape features (our features are designed to describe
big scene level surfaces and objects). We also consistently
outperform the baselines. Figure 3 presents some qualitative
examples.

3 We run their code on NYUD2 with our bottom-up segmentation hier-
archy using the same classifier hyper-parameters as specified in their
code.
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Table 7 Ablation study on half of the train set: all components of our semantic segmentation system contribute to the performance

Full Only
generic

Only
category

Only
geom

Only
app

No
amodal

Silberman et
al. (2012)-SP

Ren et al. (2012)
features

SVM 42.06 35.51 38.69 37.55 31.8 41.17 41.19 36.68

RF 39.4 36.09 39.14 35.08 30.62 39.07 39.92 −
SVM (color sp) 38.45 32.09 35.68 34.92 28.81 37.93 − −
See text for details

Table 8 Performance on the 4 class task: comparison with Silberman et al. (2012), Ren et al. (2012) on the 4 super-ordinate categories task

Floor Structure Furniture Prop fwavacc avacc Mean pixacc
(maxIU)

Silberman et al. (2012)-SC 79.5 66.2 51.9 27.1 56.3 56.2 − 71.9

Silberman et al. (2012)-LP 65.5 65.9 49.9 24 53.4 51.3 − 70

Ren et al. (2012) 75 69 54 35 59 58 − 73

Our 80.8 72.6 63.1 37.5 64.5 63.5 64.1 77.8

Our + det (RGB) 81.0 72.5 62.9 37.5 64.4 63.5 63.9 77.9

Our + det 80.9 73.6 64.1 38.0 65.3 64.1 64.6 78.4

Our + scene 81.1 72.9 62.9 36.8 64.4 63.4 64.1 78.0

Our + det + scene 81.1 74.0 64.0 38.5 65.5 64.4 64.7 78.1

We report the pixel-wise Jaccard index for 4 categories, and 3 aggregate metrics: avg average Jaccard index, fwavacc pixel-frequency weighted
average Jaccard index, mean(maxIU) average of maxIU for each category, and pixacc pixel accuracy. Silberman et al. (2012)-SC is the output of the
Silberman et al. (2012)’s structure classifier, Silberman et al. (2012)-LP is the output obtained after solving the linear program for support inference
in Silberman et al. (2012)3. See caption from Table 6 for description of last four lines in the table

Ablation Studies In order to gain insights into how much
each type of feature contributes towards the semantic seg-
mentation task, we conduct an ablation study by removing
parts from the final system. We report our observations in
Table 7. Randomized decision forests (RF) work slightly
better than SVMs when using only generic or category spe-
cific features, but SVMs are able to more effectively combine
information when using both these sets of features. Using fea-
tures from amodal completion also provides some improve-
ment. Silberman et al. (2012)-SP: we also retrain our system
on the superpixels from Silberman et al. (2012) and obtain
better performance than Silberman et al. (2012) (36.51) indi-
cating that the gain in performance comes in from better fea-
tures and not just from better bottom-up segmentation. Ren et
al. (2012) features: we also tried the RGB-D kernel descrip-
tor features from Ren et al. (2012) on our superpixels, and
observe that they do slightly worse than our category spe-
cific features. We also analyse the importance of our RGB-
D bottom-up segmentation, and report performance of our
system when used with RGB based superpixels from Arbe-
laez et al. (2011) (SVM color sp). We note that an improved
bottom-up segmentation boosts performance of the semantic
segmentation task.
Performance on NYUD2 4 category task We compare our
performance with existing results on the super-ordinate cat-
egory task as defined in Silberman et al. (2012) in Table 8.

To generate predictions for the super-ordinate categories, we
simply retrain our classifiers to predict the 4 super-ordinate
category labels. As before we report the pixel wise Jaccard
index for the different super-categories. Note that this metric
is independent of the segmentation used for recognition, and
measures the end-to-end performance of the system unlike
the metric originally used by Silberman et al. (2012) (which
measures performance in terms of accuracy in predictions
on superpixels which vary from segmentation to segmen-
tation). As before, we report fwavacc, avacc, pixacc and
mean(maxIU) aggregate metrics. As baselines, we compare
against (Silberman et al. 2012; Ren et al. 2012).4

6 Detectors and Scene Context for Semantic
Segmentation

The features that we proposed in Sect. 5 try to classify each
superpixel independently and do not reason about full object
information. To address this limitation, we propose augment-
ing the features for a superpixel with additional features com-
puted from activations of object detectors (which have access
to whole object information), and scene classifiers (which

4 We thank the authors of Silberman et al. (2012) for providing us with
their precomputed results. For Ren et al. (2012), as before we retrained
their algorithm for the 4 class task.
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Fig. 4 Examples illustrating where object detectors and scene classifi-
cation help: semantic segmentation output improves as we add features
from object detector activations and scene classifiers (going from left
image to right image)

have access to the whole image). The features from object
detector activations provide the missing top-down informa-
tion and scene classifier outputs provide object scene con-
text information (of the form that night stands occur more
frequently in bedrooms than in living rooms). In this sec-
tion, we describe how we compute these features and show
experimental results which illustrate that adding these fea-
tures helps improve performance for the semantic segmen-
tation task. Figure 4 shows examples of the error modes that
get fixed on using these additional features.

6.1 Detector Activations Features

We compute the output of the RGB-D detector that we trained
in Sect. 4, and do the standard DPM non-max suppression.
Then, for each class we pick a threshold for the score of
the detector such that the detector obtains a precision of
p(= 0.50) on the validation set. We then prune away all
detections which have a score smaller than this threshold.
We use the remaining detections to compute features for
each superpixel. We can see this pruning as introducing a
non-linearity on the detection scores, allowing the classifier
to use information from the good detections more effectively
and not getting influenced by the bad detections which are
not as informative.

For each superpixel, for each category for which we have
a detector, we compute all detections whose bounding box
overlaps with the bounding box of the superpixel. Among
these detections, we pick the detection with maximum over-
lap, and then compute the following features between the
superpixel and the picked detection: score of the detection
selected, overlap between the detector and superpixel bound-
ing boxes, mean and median depth in the detector box and
the superpixel.

With these additional features, we train the same super-
pixel classifiers that we trained in Sect. 5. We report the per-
formance we get in Tables 6 and 8. our + det (RGB) corre-
sponds to when we use RGB DPMs to compute these features
and our + det corresponds to when we use our proposed
RGB-D DPM detectors. We observe very little improve-
ment when using RGB DPMs but a large improvement when
using RGB-D DPMs, for which we see improvement in per-
formance across all aggregate metrics and for most of the
columns marked with a dagger (†) are the categories for
which we added detectors.

6.2 Scene Classifier Features

We use the scene label annotations provided in the NYUD2
dataset (we only consider the most common 9 scene cate-
gories and map the remaining into a class ‘other’), to train a
scene classifier. To train these scene classifiers, we use fea-
tures computed by average pooling the prediction for each of
the 40 classes in a 1, 2 × 2, 4 × 4 spatial pyramid (Lazebnik
et al. 2006), and training an additive kernel SVM. We find
that these features perform comparable to the other baseline
features that we tried Appendix 4.

We then use these scene classifiers to compute additional
features for superpixels in the image and train the same super-
pixel classifiers that we trained in Sect. 5. We report the per-
formance we get in Tables 6 and 8 (our + scene). We observe
that there is a consistent improvement which is comparable to
the improvement that we get when using detector activation
features. As a final experiment, we use both scene classi-
fier features and object detector activation feature and see a
further improvement in performance.

7 Conclusion

We have developed a set of algorithmic tools for perceptual
organization and recognition in indoor scenes from RGB-D
data. Our system produces contour detection, hierarchical
segmentation, grouping by amodal completion, object detec-
tion and semantic labeling of objects and scene surfaces. We
report significant improvements over the state-of-the-art in
all of these tasks.
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Appendix 1: Extracting a Geocentric Coordinate Frame

We note that the direction of gravity imposes a lot of structure
on how the real world looks (the floor and other supporting
surfaces are always horizontal, the walls are always vertical).
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Hence, to leverage this structure, we develop a simple algo-
rithm to determine the direction of gravity.

Note that this differs from the Manhattan World assump-
tion made by, e.g. Gupta et al. (2011) in the past. The assump-
tion that there are 3 principal mutually orthogonal directions
is not universally valid. On the other hand the role of the grav-
ity vector in architectural design is equally important for a
hut in Zimbabwe or an apartment in Manhattan.

Since we have depth data available, we propose a sim-
ple yet robust algorithm to estimate the direction of gravity.
Intuitively, the algorithm tries to find the direction which is
the most aligned to or most orthogonal to locally estimated
surface normal directions at as many points as possible. The
algorithm starts with an estimate of the gravity vector and
iteratively refines the estimate via the following 2 steps.

1. Using the current estimate of the gravity direction gi−1,
make hard-assignments of local surface normals to
aligned set N‖ and orthogonal set N⊥, (based on a thresh-
old d on the angle made by the local surface normal with
gi−1). Stack the vectors in N‖ to form a matrix N‖, and
similarly in N⊥ to form N⊥.

N‖ = {n : θ(n, gi−1) < d or θ(n, gi−1) > 180◦ − d}
N⊥ = {n : 90◦ − d < θ(n, gi−1) < 90◦ + d}
where, θ(a, b) = Angle between a and b.

Typically, N‖ would contain normals from points on the
floor and table-tops and N⊥ would contain normals from
points on the walls.

2. Solve for a new estimate of the gravity vector gi which is
as aligned to normals in the aligned set and as orthogonal
to the normals in the orthogonal set as possible. This cor-
responds to solving the following optimization problem,
which simplifies into finding the eigen-vector with the
smallest eigen value of the 3×3 matrix, N⊥N t⊥ − N‖N t‖.

min
g:‖g‖2=1

∑

n∈N⊥

cos2(θ(n, g)) +
∑

n∈N‖

sin2(θ(n, g))

Our initial estimate for the gravity vector g0 is the Y-axis,
and we run 5 iterations with d = 45◦ followed by 5 iterations
with d = 15◦.

To benchmark the accuracy of our gravity direction, we
use the metric of Silberman et al. (2012). We rotate the point
cloud to align the Y-axis with the estimated gravity direction
and look at the angle the floor makes with the Y-axis. We
show the cumulative distribution of the angle of the floor
with the Y-axis in Fig. 5. Note that our gravity estimate is
within 5◦ of the actual direction for 90 % of the images, and
works as well as the method of Silberman et al. (2012), while
being significantly simpler.
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Fig. 5 Cumulative distribution of angle of the floor with the estimated
gravity direction (Color figure online)

Appendix 2: Histogram of Depth Gradients

Suppose we are looking at a plane NX X + NY Y + NZ Z + d
= 0 in space. A point (X, Y, Z) in the world gets imaged

at the point
(

x = f X
Z , y = f Y

Z

)
, where f is the focal length

of the camera. Using this in the first equation, we get the
relation, NX

Z x
f + NY

Z y
f + NZ Z + d = 0, which simplifies

to give Z = − f d
f NZ +NY y+NX x . Differentiating this with respect

to the image gradient gives us,

∂ Z

∂x
= NX Z2

d f
(1)

∂ Z

∂y
= NY Z2

d f
(2)

Using this with the relation that relates disparity δ with
depth value Z , δ = b f

Z , where b is the baseline for the Kinect,
gives us the derivatives for the disparity δ to be

∂δ

∂x
= −bNX

d
(3)

∂δ

∂y
= −bNY

d
(4)

Thus, the gradient orientation for both the disparity and
the depth image comes out to be tan−1( NY

NX
) (although the

contrast is swapped). The gradient magnitude for the depth

image is
Z2

√
1−N 2

Z

d f = Z2 sin(θ)
d f , and for the disparity image

is
b
√

1−N 2
Z

d = b sin(θ)
d , where θ is the angle that the normal at

this point makes with the image plane.
Note that, the gradient magnitude for the disparity and the

depth image differ in that the depth gradient has a factor of
Z2, which makes points further away have a larger gradient
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Fig. 6 Visualization for the DPM parts for bed, chairs and toilets

Fig. 7 Root and part filters for the bed. We can see that the model
captures the shape for a bed. Horizontal lines correspond to horizontal
surfaces and the vertical lines correspond to vertical surface. We can
see that the model learnt a box which we are looking at towards one of
its corners

magnitude. This agrees well with the noise model for the
Kinect (quantization of the disparity value, which leads to an
error in Z which value proportional to Z2). In this sense, the
disparity gradient is much better behaved than the gradient
of the depth image.

Note that, the subsequent contrast normalization step in
standard HOG computation, essentially gets rid of this dif-
ference between these 2 quantities (assuming that the close
by cells have more or less comparable Z values).

Appendix 3: Visualization for RGB-D Detector Parts

One interesting thing to visualize is what the DPM is learning
with these features. The question that we want to ask here is
that whether the parts that we get semantically meaningful?

The hope is that with access to depth data, the parts that get
discovered should be more meaningful than ones you get
with purely appearance data.

In Fig. 6, we visualize the various DPM parts for the bed,
chair and toilet detector. We run the detector on a set of images
that the detector did not see at train time, pick the top few
detections based on the detector score. We then crop out the
part of the image that a particular part of the DPM got placed
at, and visualize these image patches for the different DPM
parts.

We observe that the parts are tight semantically—that
is, a particular part likes semantically similar regions of
the object class. For comparison, we also provide visual-
izations for the parts that get learnt for an appearance only
DPM. As expected, the parts from our DPM are semanti-
cally tighter than the parts from an appearance only DPM.
Recently, in the context of intensity images there has been
a lot of work in trying to get mid-level parts in an unsu-
pervised manner from weak annotations like that of bound-
ing boxes in intensity images (Endres et al. 2013), and in
a supervised manner from strong annotations like that of
keypoint annotation (Bourdev et al. 2010). These visual-
izations suggest that it may be possible to get very rea-
sonable mid-level parts from weak annotations in RGB-D
images, which can be used to train appearance only part
detectors.

We also visualize what the HHG features learn. In Fig. 7,
we see that the model as expected picks on the shape cues.
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Table 9 Performance on the
scene classification task: we
report the diagonal entry of the
confusion matrix for each
category; and the mean diagonal
of the confusion matrix and the
overall accuracy as aggregate
metrics

‘G. Textons’ refer to Geocentric
Textons introduced in Sect. 5.1.2

SPM on SPM on SPM on SIFT SPM on
SIFT G. Textons + G.Textons our output

Bedroom 78.0 70.7 80.6 77.5

Kitchen 67.9 58.5 73.6 76.4

Living room 39.3 32.7 40.2 41.1

Bathroom 44.8 56.9 65.5 74.1

Dining room 41.8 23.6 45.5 30.9

Office 34.2 15.8 34.2 5.3

Home office 0.0 8.3 16.7 4.2

Classroom 60.9 43.5 60.9 52.2

Bookstore 0.0 18.2 0.0 72.7

Others 22.0 9.8 31.7 19.5

Mean diagonal 38.9 33.8 44.9 45.4

Accuracy 53.2 46.2 58.4 55.7

There is a flat horizontal surface along the sides and on the
middle portion which corresponds to the floor and the top
of the bed and there are vertical surfaces going from the
horizontal floor to the top of the bed.

Appendix 4: Scene Classification

We address the task of indoor scene classification based on
the idea that a scene can be recognized by identifying the
objects in it. Thus, we use our predicted semantic segmenta-
tion maps as features for this task. We use the spatial pyramid
(SPM) formulation of Lazebnik et al. (2006), but instead of
using histograms of vector quantized SIFT descriptors as
features, we use the average presence of each semantic class
(as predicted by our algorithm) in each pyramid cell as our
feature.

To evaluate our performance, we use the scene labels pro-
vided by the NYUD2. The dataset has 27 scene categories
but only a few are well represented. Hence, we reduce the
27 categories into 10 categories (9 most common categories
and the rest). As before, we train on the 795 images from the
train set and test on the remaining 654 images. We report the
diagonal of the confusion matrix for each of the scene class
and use the mean of the diagonal, and overall accuracy as
aggregate measures of performance.

We use a 1, 2 × 2, 4 × 4 spatial pyramid and use a SVM
with an additive kernel as our classifier (Maji et al. 2013).
We use the 40 category output of our algorithm. We compare
against an appearance-only baseline based on SPM on vector
quantized color SIFT descriptors (van de Sande et al. 2010), a
geometry-only baseline based on SPM on geocentric textons
(introduced in Sect. 5.1.2), and a third baseline which uses
both SIFT and Geocentric Textons in the SPM.

We report the performance we achieve in Table 9.
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