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Abstract In the context of extracting information from
video, bad weather conditions like rain can have a detrimen-
tal effect. In this paper, a novel framework to detect and
remove rain streaks from video is proposed. The first part
of the proposed framework for rain removal is a technique
to detect rain streaks based on phase congruency features.
The variation of features from frame to frame is used to esti-
mate the candidate rain pixels in a frame. In order to reduce
the number of false candidates due to global motion, frames
are registered using phase correlation. The second part of
the proposed framework is a novel reconstruction technique
that utilizes information from three different sources, which
are intensities of the rain affected pixel, spatial neighbors,
and temporal neighbors. An optimal estimate for the actual
intensity of the rain affected pixel is made based on the min-
imization of registration error between frames. An optical
flow technique using local phase information is adopted for
registration. This part of the proposed framework for remov-
ing rain is modeled such that the presence of local motion will
not distort the features in the reconstructed video. The pro-
posed framework is evaluated quantitatively and qualitatively
on a variety of videos with varying complexities. The effec-
tiveness of the algorithm is quantitatively verified by com-
puting a no-reference image quality measure on individual
frames of the reconstructed video. From a variety of exper-
iments that are performed on output videos, it is shown that
the proposed technique performs better than state-of-the-art
techniques.
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1 Introduction

The advent of low cost technology in the field of video capture
systems has made it easier for various organizations to adopt
surveillance technology. However, the major challenge when
it comes to videos from surveillance videos is the detrimental
effect of bad weather conditions. Bad weather manifests itself
in videos in the form of low lighting, blurred scene content,
highly saturated regions of illumination, etc. Different kinds
of weather conditions affect the captured video in different
ways. Research by Narasimhan and Nayar (2002) makes a
broad classification of weather conditions into two, static and
dynamic. The classification is based on the size of particles
that cause a particular type of weather. The larger sized par-
ticles are visibly affected by gravity and hence cause a large
change in the video over a sequence of frames. Static weather
conditions are caused by particles that are very small (less
than 10µm) and manifests itself as haze, fog or cloud. In the
case of dynamic weather conditions, particles are larger than
100µm. Rain and snow are examples of dynamic weather
conditions and the changes in video over subsequent frames
is very much pronounced.

In this research, the focus is on removing rain streaks from
videos. The objective is to study the characteristics of rain
streaks in video and thus devise a framework for accurate
reconstruction of a scene by removing all the rain streaks.
The process to remove rain involves two steps: (1) detect
the presence of rain or locate where rain streaks appear in
a frame of video, (2) estimate the actual intensity of a pixel
that is affected by rain. In order to detect a rain streak, the
primary challenge is to characterize rain streaks that appear
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Fig. 1 Architecture of the proposed framework to remove rain from
video

in video in terms of edge information, chromatic properties
and their spatio-temporal behavior. The challenges associ-
ated with scene reconstruction are edge preservation for the
actual scene, maintaining temporal motion smoothness and
prevent loss of useful information.

In the first part of this research, a feature based framework
for detecting rain streaks is developed. In the second part, an
effective method for compensation of rain affected pixels
is developed. Figure 1 gives a brief overview of the com-
plete framework for rain streak detection and removal from
video.

In the method for rain streak detection, frames in the video
are aligned using global phase correlation to eliminate the
effect of global motion in the scene caused by movement of
the camera. Variations in the scene from one frame to the
next are captured using phase congruency features providing
a set of candidate rain pixels. The number of false detections
are reduced by the application of a chromatic constraint. The
final output of the rain streak detection algorithm is the set of
rain streaks present in the scene along with certain false detec-
tions caused by the local motion components in the scene.
The second part of the framework reconstructs the actual
scene in a robust manner by eliminating the effect of false
detections due to local motion and have the best possible
estimate of the actual scene intensity. The algorithm utilizes
information embedded in the rain affected pixel, information
from its spatial neighbors and the information from temporal
neighbors for the estimation process.

The proposed framework addresses the problem of remov-
ing rain by giving equal emphasis for the rain streak detec-
tion and scene reconstruction. The aim is for both parts of
the framework to complement each other to have a better
solution. Therefore, the constraints involved in the part for
detection of rain streaks may be relaxed to make sure all
the rain streaks are detected while increasing the number of
false detections. The second part of the framework would

make sure that the effect of false detections have no effect on
the quality of the resultant video.

1.1 Previous Work

Most of the methods to remove rain that exist in the field of
computer vision were reviewed by Tripathi and Mukhopad-
hyay (2012a). The procedure for rain streak detection has
been the focus of attention for most methods in current liter-
ature.

Since rain streaks do not occlude a scene at all times, the
logical step is to filter each pixel in a temporal direction to
have an estimate of the intensity of actual scene. The ini-
tial approach towards removing rain was the use of tempo-
ral median filter as done by Starik and Werman (2003) and
Hase et al. (1999). The method was successful when there
was no motion component associated with the video, in the
global or local sense. Zhang et al. (2006) exploited the spatio-
temporal and chromatic properties of rain streaks to detect
rain streaks in video. A temporal histogram was constructed
for every pixel from which a decision was made on whether
a pixel is part of rain streak or background. The main dis-
advantage is that the technique requires a histogram to be
constructed and therefore requires at least fifty frames. Shen
and Xue (2011) proposed a fast method based on optical flow
that is used to detect rain. A three-dimensional anisotropic
diffusion method is used to estimate the background scene
intensity from the spatio-temporal neighbors. The method
for detection is incomplete because it is highly probable that
the optical flow components could be incorrectly calculated
for small regions. Another method utilizing spatio-temporal
properties of rain was proposed by Xue et al. (2012). Spa-
tial features, wavelet features and motion constraints were
combined to increase the accuracy of rain streak detection.
The major disadvantage of this technique is the use of bilat-
eral filter in order to eliminate false detections. It is highly
probable that large streaks are not eliminated by the filter.
The image inpainting technique used for reconstructing the
scene to remove rain would be incapable of compensating for
rain affected pixels in complex scenes and when heavy rain is
to be removed. Park and Lee (2008) modeled the variation of
intensity at a pixel in a scene using a Kalman filter. However,
this method fails when motion component is present in the
scene. A method based predominantly on the shape proper-
ties of rain streaks was presented by Brewer and Liu (2008).
The latest research with regard to removing rain streaks was
presented by Kim et al. (2013). The paper presents a method
to detect rain streaks on a single image by characterizing the
shape of a streak. The shape of a single streak is assumed to
be an elongated ellipse. The authors used kernel regression
to detect rain streaks in an image. The detected rain affected
pixels are reconstructed using a non-local means filter. The
method works well for well defined rain streaks with defi-
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nite shape. However, streaks could be really blurred affecting
the performance of the algorithm. The reconstruction tech-
nique utilizes information from the same image. In the case
of heavy rainfall, this technique would not find enough infor-
mation for reconstruction.

Garg and Nayar (2007) developed models for rain streaks
based on the physical and photometric properties of rain
drops. They used these models to detect rain streaks and to
remove them from videos. The main assumption in that case
was the uniform size of rain drops and the equal velocity of
rain drops. The variation in depth was not taken into con-
sideration. This became a problem while trying to remove
rain from videos that contained heavy rain. The process of
estimating the background intensity was not sufficient in
regions with rapid movement. Barnum et al. (2010) did a
frequency space analysis of rain and snow affected videos.
They modeled rain and snow in the frequency space based
on the statistical properties of rain and snow streaks. Each
rain streak was assumed to be a blurred Gaussian. The
model was unsuccessful in eliminating blurred streaks from
video.

Bossu et al. (2011) segmented out candidate rain streaks
from the foreground based on Gaussian Mixture Models and
by applying constraints based on shape and size character-
istics of rain streaks. The method utilized the property of
uniform direction of rain streaks to create histogram of orien-
tated streaks (HOS) for reducing the false detections. Tripathi
and Mukhopadhyay (2011) developed a Bayesian framework
to detect rain. The method is extended to remove rain from
video by Tripathi and Mukhopadhyay (2012b).

A learning based method to remove rain from a single
image was proposed by Kang et al. (2012a). Rain streaks were
detected using a method based on Morphological Component
Analysis (MCA) and dictionary learning. The method uses
a bilateral filter to get the initial set of candidate rain pixels.
The bilateral filter could miss large and blurred streaks. The
method was extended to have a self-learning mechanism by
Kang et al. (2012b). Context information in a scene was used
for assisting rain streak detection as an improvement of this
method by Huang et al. (2012).

In almost all the aforementioned methods, the main con-
centration has been on improving the process of detecting
rain streaks. This would affect the ability of algorithms to
remove all rain streaks present in the video, and blurred rain
streaks are mostly missed by detection techniques. This moti-
vated the development of a robust reconstruction technique
proposed in this paper. By making use of a detection process
that does not miss any rain streaks, more emphasis is laid
on the design of the reconstruction process to compensate
for rain affected pixels and preserve the details present in
false detections. The following contributions are made in
this paper—(1) development of a novel technique for rain
streak detection based on phase congruency features, and (2)

development of a robust reconstruction technique to remove
rain from video by compensating for rain affected pixels.

The paper is organized as follows. Section 2 provides an
overview of the characteristics of rain streaks in video. The
method for detecting rain streaks is presented in Sect. 3. The
proposed technique for reconstruction to remove rain streaks
is given in Sect. 4. In Sect. 5, the experimental procedures
are explained. The paper concludes in Sect. 6.

2 Characteristics of Rain Streaks in Video

A set of generalized characteristics can be inferred from the
various models of raindrop explained in the previous section.
These characteristics form the foundation for the framework
developed for detecting rain streaks. In addition to the elabo-
rate research presented by Garg and Nayar (2003) regarding
properties of rain, some significant characteristics of rain are
presented by Zhang et al. (2006). Some of the essential prop-
erties of rain streaks in video are explained in this section.

2.1 Temporal Property

The human eye is able to see through rain due in large part to
the fact that all parts of the scene are not occluded by rain at
all instances. The removal of rain streaks, that can be consid-
ered as dynamic components that vary from frame to frame, is
the focus of this research. As the depth of view increases, the
rain streaks are not separately visible and the image enhance-
ment problem becomes equivalent to haze removal. Previous
research by Garg and Nayar (2007) has shown that the pixel
intensity increases sharply when rain occludes a scene. This
is due to the fact that the resultant intensity of any raindrop on
an image is the result of the radiances due to refraction, specu-
lar reflection and internal reflection. In the case of heavy rain,
the intensity tends to remain high in comparison to the actual
scene intensity. Therefore, more neighboring frames may be
required to compensate for the rain affected pixels. This is
the case where considering one frame before and after the
current frame becomes insufficient to estimate the intensity
of the background.

2.2 Chromatic Property

Garg and Nayar (2007) showed that a rain drop refracts a wide
range of light causing an increase in intensity at a particular
pixel. Zhang et al. (2006) showed that the change in levels for
the individual color components of the pixel due to rain is the
same. Assume that the change in color components red (R),
green (G) and blue (B) is �R, �G, and �B respectively. It is
observed that the mean of �R, �G, and �B for any spatial
neighborhood is the same. For the same neighborhood, the
standard deviation of �R, �G, and �B is also the same.

123



74 Int J Comput Vis (2015) 112:71–89

2.3 Directional Property

Another observation that has been utilized by Garg and Nayar
(2004) is the directional property of rain in videos. If rain is
present in a frame, all the rain streaks will be oriented in sim-
ilar direction. They computed the correlation between neigh-
boring pixels to detect rain affected pixels. This property is
used in the method for detecting rain streaks. It is embedded
in the calculation of phase congruency.

3 Detecting Rain Using Phase Congruency Features

From a human visual perspective, rain streaks are sensed
because of the rapid changes from frame to frame. Therefore,
by finding the difference between two successive frames,
it is possible to identify possible rain-affected pixels. The
number of non-rain pixels detected as part of rain increases
with the increase in motion component associated with the
frame, either local or global. It is necessary to detect those
features that are significantly altered from frame to frame
in terms of visual perception. By incorporating phase based
edge feature detection into the algorithm, it is observed that
the detection of rain streaks could be done effectively.

3.1 Significance of Phase Information

The importance of phase information of an image was illus-
trated by Oppenheim and Lim (1981). In the case of a scene
affected by rain, the dominant structural information between
frames remains mostly the same. This helps in having phase
based correlation techniques used to register two frames that
are affected by rain. Previous research by Mechler et al.
(2002) indicates that the human feature detection mecha-
nism tends to be more aligned towards regions of phase con-
gruency. Phase based information is robust towards changes
in illumination as well. The local intensities act as a con-
fidence measure for the reliability of sensing. Phase based
reconstruction has been found to be much better in terms of
perception. The latest research by Wadhwa et al. (2013) for
magnification of videos using phase processing has achieved
really good results.

In the context of rain streak detection, the spatial varia-
tions are much more localized. These localized bright streaks
need to be extracted from a frame irrespective of the illumi-
nation in the local neighborhood. Therefore, phase congru-
ency based features are used to detect rain streaks. Any kind
of noise that caused intensity variations in a scene could be
completely captured using phase congruency features irre-
spective of the local illumination component. With the help
of the oriented filter in the feature computation technique,
edges in a particular orientation can be isolated to utilize the
directional property of rain streaks.

3.2 Phase Congruency

The principal reason that humans are able to visually recog-
nize individual rain streaks in a particular frame is because
there is a step change in intensity along the edge of the rain
streak. Phase congruency (PC) is a feature detection mecha-
nism that recognizes those edges and is invariant to illumina-
tion and contrast. The key observation that led to the devel-
opment of phase congruency algorithm is that the Fourier
components of an image are maximal in phase where there
are edges or lines. Features are identified according to the
extent to which the Fourier components are in phase.

3.2.1 Choice of Band-Pass Filter

In order to extract phase information from images, the first
step is to convolve the two dimensional signal with a pair
of quadrature filters. Gabor filters have been very popular
as band pass filters, especially in the case of phase-based
information extraction. They are efficient in providing high
localization in terms of space and frequency. However, the
Gabor filter is not very efficient when the information that
needs to be extracted is spread over a broad spectrum and
spatial localization is required. In the case of rain streaks,
such is the case as proven by Barnum et al. (2010).

The log-Gabor filter by Field (1987) overcomes the afore-
mentioned drawbacks of the Gabor filter and is adopted as
the band-pass filter in this research. In frequency space, the
filter can be represented as in (1).

G(ω) = exp

(−(log(ω/ω0))
2

2(log(k/ω0))2

)
(1)

where ω0 is the filter’s center frequency and k/ω0 is kept
constant for various ω0. The cross-section of the transfer
function of the filter can be represented as in (2).

G(θ) = exp

(
−(θ − θ0)

2

2σ 2
θ

)
(2)

where θ0 represents the orientation of the filter and σθ is the
standard deviation of the Gaussian spreading function in the
angular direction.

The log Gabor filter does not have any DC component
associated with it as evident from the equation. The filter
response also has an extended tail that covers a wide range
of frequencies providing higher localization in space when
compared to the Gabor filter.

3.2.2 Method to Compute Phase Congruency Features

The PC computation method adopted in this research was
proposed by Kovesi (1999). His method was based on
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the local energy model developed by Morrone and Owens
(1987). They observed that the point of strong phase congru-
ency corresponds to a point of maximum energy. Let I (x)

be an input periodic signal defined in [−π, π ]. f (x) is the
signal I (x) with no DC component and fH (x) is the Hilbert
Transform of f (x) which is a 90◦ phase shifted version of
f (x). The local energy, E(x) can then be computed from
f (x) and its Hilbert Transform as in (3).

E(x) =
√

f 2(x) + f 2
H (x) (3)

It has been shown in earlier research by Venkatesh and Owens
(1989) that the energy is equal to the product of phase con-
gruency PC and the sum of Fourier amplitudes An as in (4).

E(x) = PC(x)
∑

n

An (4)

Therefore the peaks in phase congruency correspond to the
peaks in the energy function. Equation (4) also shows that
the phase congruency measure is independent of the overall
magnitude of the signal, thus making the feature invariant to
changes in illumination and contrast. The components, f (x)

and fH (x) are computed by the convolution of the signal with
a quadrature pair of filters. Logarithmic Gabor filters are used
in this case. Consider I (x) as an input signal and Me

n and Mo
n

are the even symmetric and odd symmetric components of
the log Gabor function at a particular scale n. Me

n and Mo
n

can be represented in frequency domain as Me
n and Mo

n and
is expressed as in (5).

Me
n = G(ω) (5)

Mo
n = isign(ω)G(ω)

where i = √−1. Then the amplitude and phase for the input
signal in the transformed domain is obtained as in (6) and (7)
where on(x) and en(x) are the responses for each quadrature
pair of filters as given in (8).

An =
√

e2
n(x) + o2

n(x) (6)

φn(x) = tan−1
(

on(x)

en(x)

)
(7)

[en(x), on(x)] = [I (x) ∗ Me
n , I (x) ∗ Mo

n ] (8)

where ′∗′ represents the convolution operation.
The values for f (x) and fH (x) can be computed using

en(x) and on(x) as shown in (9) and (10).

f (x) =
∑

n

en(x) (9)

fH (x) =
∑

n

on(x) (10)

When the Fourier components are very small, the problem of
computing phase congruency becomes ill-conditioned. This

problem is solved by adding a small constant ε to the sum of
Fourier components as shown in (11).

PC(x) = E(x)

ε + ∑
n An

(11)

Equation (11) is the final expression to calculate phase con-
gruency for a one dimensional signal. The computation of
phase congruency features for a two-dimensional signal is as
follows.

As in (8), the even symmetric and odd symmetric compo-
nents at a particular scale n and orientation o can be computed
as shown in (12).

[eno(x, y), ono(x, y)] = [I (x, y) ∗ Me
no, I (x, y) ∗ Mo

no]
(12)

The amplitude Ano of the response at a particular scale and
orientation can be computed as in (13). For an image, the
calculation of phase congruency PC is as shown in (14).

Ano =
√

e2
no(x, y) + o2

no(x, y) (13)

PC(x, y) =
∑

o

√
(
∑

n eno(x, y))2 + (
∑

n ono(x, y))2

ε + ∑
o
∑

n Ano(x, y)

(14)

3.3 Framework for Detection of Rain Streaks in Video

The initial framework developed by Santhaseelan and Asari
(2011) for rain streak detection and removal is shown in
Fig. 2.

The algorithm starts with the difference image computa-
tion for the three color components. Phase congruency fea-
tures are calculated for the difference image, after which
chromatic constraints are applied to get the candidate rain
pixels. The detected streaks are compensated for using tem-
poral neighbors that are not rain streaks.

The temporal property of rain described in the previous
section indicates that there will be a positive change in inten-
sity of a rain affected pixel. In the first step (as shown in (15)),
the difference image of the current frame with respect to its

Fig. 2 Initial framework for rain streak detection and compensation
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neighbors is computed. The difference image is computed for
all the three color components separately. The neighboring
frame is subtracted from the current frame. If the resultant
value at a pixel is negative, it is clamped to zero. The presence
of rain causes an increase in intensity. Positive differences are
preserved.

ΔI (x, y, t)=
{

I (x, y, t)− I (x, y, t −1) if I (x, y, t)> I (x, y, t −1)

0 if I (x, y, t)≤ I (x, y, t −1)

(15)

where I (x, y, t) represents all the color components.
The next step is to find the phase congruency features of

the difference image, ΔI for all the color components as
in (16).

PC(x, y, t) = P(ΔI ) (16)

where the function P() represents the calculation of phase
congruency features. Again, the features are calculated for
each color component separately.

An illustration of the aforementioned steps is given in
Fig. 3.

The final result has a large amount of directional structure
due to the orientation selection in the log-Gabor filter. In this
case, orientation of 90◦ was selected. For most cases of rain

Red Green Blue

Fig. 3 Illustration of rain streak detection. Top row original frames
with rain, middle row difference image for different color components,
bottom row phase congruency features for the difference images

in videos, this orientation is sufficient to capture inter-frame
variations. The variation in direction of rainfall is assumed to
be minimal. However, there are scenarios where wind would
cause the streaks to be oriented in directions other than down-
ward. A variation of −45 to +45 degrees would be a good
range. In order to compensate for such variations, the combi-
nation of phase congruency features from two more orienta-
tions can be considered during the detection of rain streaks.

After applying phase congruency, only the candidate pix-
els (rain affected pixels) with intensity variations in neighbor-
ing frames remain in the processed image. Chromatic prop-
erty suggests that the change in all the three color components
(Red(R), Green(G), Blue(B)) will be the same in terms
of the strength of the phase congruency features when rain
occludes a pixel. Since the change in all the three components
will be the same when there is rain occluding a pixel accord-
ing to the chromatic property, the following expression (17)
provides another constraint to reduce false detections.

PCred(x, y, t) ≈ PCgreen(x, y, t) ≈ PCblue(x, y, t) (17)

where PCred , PCgreen and PCblue represent the phase con-
gruency features of the R, G, and B components respec-
tively. The difference between the three PC components are
assumed to be lesser than an empirical constant (0.02 for the
experiments in this research). Pixels that do not satisfy the
constraint in (17) are eliminated from the set of candidate
rain pixels. The result of eliminating such false detections is
illustrated in Fig. 4.

In the context of a more permissive rain streak detection
model being used in conjunction with the reconstruction tech-
nique, this constraint is not very critical. However, when used
with a nave reconstruction technique, the constraint seemed
to provide better visual quality than without it as illustrated
in Santhaseelan and Asari (2011).

In order to remove rain, the next challenge is to estimate
the background intensity levels of the rain affected pixels. In

Fig. 4 Effect of applying constraint based on chromatic property. a
original frame, b frame with candidate rain pixels, c frame with can-
didate rain pixels after removing false detections based on chromatic
property

123



Int J Comput Vis (2015) 112:71–89 77

Fig. 5 Result of removing rain from a static video

order to verify the performance of the detection framework, a
naive approach to scene reconstruction is adopted. A search
is performed on the neighboring frames for a corresponding
rain affected pixel. The value of the background intensity Ibg

is estimated as the median of the temporal neighbors of the
rain affected pixel.

Alpha-blending was used to calculate the intensity value
for the rain affected pixel as shown in (18).

Ino−rain = α Ibg + (1 − α)Irain (18)

The new intensity is denoted as Ino−rain , the background
intensity is denoted as Ibg and the intensity of the rain-
affected pixel is denoted as Irain . The global blending para-
meter is α, which is an empirical value that gave the best
possible output in terms of visual quality. A sample frame
where rain is removed is shown in Fig. 5.

It is observed in the resultant video that the proposed
method is able to preserve dynamic components of the scene
like variation in the pool of water. This can be attributed to
the better selection of candidate rain pixels obtained by using
phase congruency features.

3.4 Frame Alignment using Phase Correlation

One of the major challenges in order to detect the presence
of rain is the movement of camera. During the computation
of candidate rain pixels, global motion creates false detec-
tions. Therefore, it is essential that successive frames are

aligned before the computation of difference image. Phase
correlation (Reddy and Chatterji (1996)) is the method used
to align frames as it is resilient to noise to a very large extent.
Phase correlation can be used to compute the translational
shift in images from the phase information. Since most of
the processing is done on videos with a frame rate of 30
fps, the global motion is approximated to be translational.
Other kinds of movement is canceled out during the process
of reconstruction explained in the next section.

When feature based techniques like Scale Invariant Fea-
ture Transform (SIFT) (Lowe (2004)) are used for stabiliza-
tion, the feature points could be on the rain streaks. Such fea-
ture points cannot be matched reliably from frame to frame.
This could cause stabilization procedures to fail, especially
for videos containing heavy rain. Another option for stabi-
lization could be using region based matching techniques for
stabilization. However, it is likely that rain streaks closer to
the camera could cause errors in matching between frames.
This problem warrants the use of a stabilization technique
that has high resilience to the presence of noise. In the case
of phase correlation, the similarity is accounted for in terms
of the global structure.

3.5 Modified Framework for Detection of Rain Streaks
in Video

The initial algorithm (shown in Fig. 2) is modified to account
for movement of camera. While the basic structure of the
detection framework remains the same, a pre-processing
step to stabilize video frames is added. Neighboring frames
are always aligned with respect to the current frame being
processed to detect rain streaks. The modified framework of
the algorithm is shown in Fig. 6 (Santhaseelan and Asari
(2012)).

The first step in the modified algorithm is to align neigh-
boring frames with respect to the current frame in which
rain streaks are to be detected. Then the difference image
between various components is calculated. Phase congru-
ency features are computed on the difference images. Chro-
matic constraints are applied to segment out the candidate
rain pixels. These pixels are then compensated using infor-
mation from the temporal neighbors that are aligned with the
current frame as well.

Fig. 6 Modified algorithm for detection of rain streaks with compen-
sation for global motion
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Fig. 7 Example frame from a video with camera movement and where rain streaks are detected. a original frame with rain, b frame with candidate
rain streaks and c the final frame containing just the rain streaks

In the modified algorithm, the previous frame I (x, y, t −
1) is aligned with respect to the current frame I (x, y, t) and
is modified into Ia(x, y, t − 1) as in (19).

Ia(x, y, t − 1) = I (x + d1, y + d2, t − 1) (19)

Thus the equation for finding difference between frames
changes as shown in (20).

ΔI (x, y, t)=
{

I (x, y, t)− Ia(x, y, t −1) if I (x, y, t)> Ia(x, y, t −1)

0 if I (x, y, t) ≤ Ia(x, y, t −1)

(20)

The rest of the algorithm for detection remains the same as
mentioned in the previous section. In order to compensate for
the rain affected pixels, the neighboring frames are aligned
with respect to the current frame before estimation of the
intensity of replacement pixel. The computational expense
for phase correlation is very less. The reason is that the tech-
nique consists of processing in the frequency domain and has
two operations to compute Fourier Transform.

An example is shown in Fig. 7 to illustrate the effective-
ness of the framework.

It can be observed that rain streaks are the only differences
that exist after reconstruction. It can also be observed that
there are no differences along vertical edges or along the
outline of the person.

The algorithm for rain removal based on phase congru-
ency has been found to be effective in situations where there
are no moving objects in the scene. The presence of mov-
ing objects causes an increase in the number of false detec-
tions. Even though attempts have been made at eliminating
the false detections based on local phase correlations, the
quality of output video is poor as the result contains block
effects. Even though the noise in individual frames appear
to be diminished, temporal smoothness of the video is lost.
This requires the design of a robust reconstruction algorithm
that takes into account the effect of smaller streaks as well
as maintaining the quality of video in terms of temporal
smoothness.

4 Scene Reconstruction Based on Optical Flow of Local
Phase

The observation that any part of the scene is not occluded
by rain at all instances forms the basis of all reconstruction
algorithms. In the case of spatial reconstruction, the assump-
tion is that rain streaks are high frequency components in the
image or frame. In some other cases, it is observed that by
blending the intensity of the rain affected pixel along with
the estimated actual scene intensity provides a good recon-
struction of the original scene in terms of visual quality. In
this research it has been observed that all the aforementioned
statements hold true subject to certain constraints. This calls
for the development of a technique for scene reconstruction
that removes rain with minimal loss of information and max-
imum increase in video quality. The advantage of having a
strong algorithm for reconstruction can allow for relaxation
of constraints during rain streak detection.

There are three main sources of information to accurately
estimate the intensity of the background (a) intensity of the
rain affected pixel, (b) information from spatial neighbors,
and (c) information from temporal neighbors. Within the con-
straints of the given sources of information, an optimized
solution needs to be designed whereby the salient edges in
the scene can be preserved while the temporal smoothness
of video is not compromised.

4.1 Utilizing Pixel Information

As mentioned in the properties of rain, the presence of rain
causes an increase in the intensity at a pixel location. There-
fore, it is imperative that the estimated actual intensity of the
scene does not exceed the intensity of pixel in the presence
of rain which leads to the following guiding principle for the
reconstruction of a scene to remove rain.

Optimization criteria 1: The intensity of the actual back-
ground cannot be greater than the intensity of the pixel with
rain occluding it.

In mathematical terms the following expression (21)
should hold good.
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Irr (x, y) ≤ I (x, y) (21)

where Irr (x, y) is the intensity in the reconstructed scene
(scene with rain removed) and I (x, y) is the original intensity
of the pixel which is affected by rain.

This criterion was introduced to reduce chances of a false
estimation of background intensity. Since the background
intensity cannot be greater than the intensity of the pixel with
rain, this would be a constraint that is easy to apply with-
out too much computational effort. There could be instances
where rain has to be removed in scenes containing a lot of
textural background. The presence of textures can cause the
number of false detections to increase. The aforementioned
condition becomes crucial in such circumstances.

4.2 Utilizing Spatial and Temporal Information

While pixel information can be readily transformed into a
constraint, the process is not trivial while using spatial and
temporal neighbors. The effectiveness of both spatial and
temporal information to remove rain is illustrated in Fig. 8.

From a variety of experiments, it is inferred that spatial
and temporal information cannot be used independently to
arrive at a feasible solution. The main challenge during the
course of reconstruction is to avoid deterioration in video
quality due to presence of local motion in the video. The loss
of quality is particularly evident along the edges. However,
it is observed that the regions that have a motion compo-
nent associated with it are present in subsequent frames at a
different location with the same intensity pattern. Therefore,
those regions can be completely registered from frame to
frame causing minimal registration error. However, the same
is not the case for rain streaks. The pixels containing rain

Fig. 8 Illustration of the effect of temporal and spatial compensation
methods to remove rain

cannot be registered accurately because of its rapid change
in spatio-temporal domain. In light of the observations made,
the following statement was set as the guiding principle in
the design of the optimal solution.

Optimization criteria 2: The intensity of replacement
pixel should minimize the registration error with respect to
the preceding frame containing no rain.

In mathematical terms, the criteria can be used to estimate
the intensity of the reconstructed scene Irr (x, y, t) as in (22).

Irr (x, y, t) = argmin
I ′∈Q

{I ′ − Irr (x − u, y − v, t − 1)} (22)

where Q = {I (x, y, t), Ik(x, y, t)}, (x, y) is the co-ordinates
of a pixel in image space, t represents the time instant,
I (x, y, t) is the intensity of the pixel which is affected by
rain, Ik(x, y, t) is the estimate from the temporal neighbors.
In this research, Ik(x, y, t) is computed as the median of k
temporal neighbors of the pixel at (x, y, t). The optical flow
velocity of the pixel is denoted by (u, v). By incorporat-
ing registration between frames to compensate for the rain
affected pixels, the temporal smoothness can be increased.

4.3 Key Observation

The main difference between rain streaks and the movement
of objects is the continuity in movement. Rain streaks that
appear in one frame are not present in the next frame. The
edges or other features of the object remain in the frame,
albeit at a different location. During reconstruction, a reg-
istration method is required that is resilient to the presence
of rain streaks in order to apply the criterion mentioned in
(22). In this scenario, consider a neighborhood around a rain
affected pixel. It can be observed that the neighborhood is
not completely occluded by the streak. If the streak is very
near to the camera and covers a large area, it would appear
blurred. In the case of sharp high intensity streaks, the breadth
is comparatively lesser. Based on this idea, experiments
were performed in trying to track local phase components
from one frame to the next which led to the following key
observation.

Observation: The computation of optical flow velocity
using local phase information is more resilient to the pres-
ence of rain streaks in comparison with velocities computed
using intensity information.

In intensity based optical flow, the robustness of the com-
putation of velocities depend on the size of the window being
considered. If the rain streaks are sufficiently large (closer to
the camera), the computation of flow velocities will be error-
prone since the intensity patch could match to an entirely
different region containing rain. However, the same does not
hold true for local phase based flow computation. During the
computation of local phase, the dominant structure in a local
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Fig. 9 Siginificance of phase
based optical flow. a Original
image with region of interest
marked in yellow. b Optical flow
components using phase based
optical flow. c Optical flow
vectors based on intensity

neighborhood is considered for the process. This neighbor-
hood is defined indirectly by the parameters of the band pass
filter. Therefore, when optical flow components are computed
for a window of phase information, the net effect is that the
local structure is being matched in its entirety with that of
the corresponding frame. This would cause the optical flow
components to be unaffected by the presence of rain. The dif-
ference in optical flow velocities using intensity and phase is
illustrated as shown in Fig. 9.

It can be observed that the velocity patterns for phase based
optical flow remain the same in the region of rain streak, while
that of the intensity based optical flow is completely changed.

Local phase information can be computed in multiple
ways, the most prominent method of which is the use of
steerable wavelet filters. However, most of the methods are
only capable of generating isotropic representation of phase.
In order to extract phase information from images using an
anisotropic model, the monogenic signal representation by
Felsberg and Sommer (2001) is used.

4.4 Monogenic Signal Representation

The analytic signal model in signal processing had enabled
the extraction of phase information from signals for the one
dimensional case. The isotropic extension of the analytic sig-
nal model to multiple dimensions is called the monogenic sig-
nal (Felsberg and Sommer (2001)). The implicit assumption

is that the 2D signal is composed of i1D signals. An intrinsic
one dimensional (i1D) signal is a signal that requires only
one independent variable for its representation. Therefore, if
a 2D signal were to be represented using a single i1D sig-
nal, the amplitude, phase and orientation of that i1D signal
is assumed to be the local amplitude, local phase and local
orientation of the 2D signal. Thus an image, I (x) can be
represented as shown in (23).

I (x) = A(x) cos ϕ(x) (23)

where x = (x, y) is the spatial co-ordinates of the signal
I , A(x) is the local amplitude and ϕ(x) is the local phase
of the i1D signal. The i1D signal is oriented along the local
orientation, θ(x).

In order to extract the i1D signal from the 2D signal, a band
pass filter along with the Riesz Transform needs to be used.
The combination of the band pass filter with the Riesz Trans-
form is called the spherical quadrature filter SQF). Local
amplitude, local phase and local orientation are estimated
from the response of even and a pair of odd spherical quadra-
ture filters (SQF). The even SQF is the band pass filter, which
in this research is a log-Gabor filter. In the frequency domain,
the transfer function of the odd pair of SQF is computed as
the product of a band-pass filter and a pair of Riesz kernels.
The spatial and frequency domain representation of the pair
of Riesz kernels is given in (24) and (25) respectively.
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h1(x, y) = x

2π |x|3 , h2(x, y) = y

2π |x|3 , x = (x, y) ∈ R
2

(24)

H1(ω1, ω2) = − iω1

|ω| , H2(ω1, ω2) = − iω2

|ω| , ω = (ω1, ω2)

(25)

where (h1, h2) represents the pair of Riesz kernels in spa-
tial domain with the corresponding frequency domain repre-
sentations as (H1, H2) and ω = (ω1, ω2) are the frequency
components.

The odd set of SQFs can then be represented as in (26).

Go1(ω) = − iω1

|ω| Ge(ω)

Go2(ω) = − iω2

|ω| Ge(ω) (26)

where Ge(ω) is the transfer function of the log Gabor filter
given in (1).

In the spatial domain, the original signal I (x) is convolved
with the transfer function of even and odd pair of SQFs as
shown in (27) to obtain the components of the monogenic
signal representation ( f (x), f1(x), f2(x)).

f (x) = I (x) ∗ ge(x)

f1(x) = I (x) ∗ go1(x)

f2(x) = I (x) ∗ go2(x) (27)

where ’∗’ represents the 2D convolution, ge(x), go1(x) and
go2(x) are the spatial domain representations of Ge(ω),
Go1(ω) and Go1(ω) respectively.

The local amplitude A(x), local phase ϕ(x) and local ori-
entation θ(x) can then be computed as shown in (28), (29)
and (30) respectively.

A(x) =
√

f 2(x) + f 2
1 (x) + f 2

2 (x) (28)

ϕ(x) = arctan

⎛
⎝

√
f 2
1 (x) + f 2

2 (x)

f (x)

⎞
⎠ , ϕ ∈ [0, π) (29)

θ(x) = arctan

(
f2(x)

f1(x)

)
, θ ∈ [0, π) (30)

The local phase along with the local orientation can be
considered to be a vector with magnitude given by the local
phase ϕ and an angle given by the local orientation θ . This
vector is called the phase vector Φ(x) and can be represented
as in (31).

Φ(x) = ϕ(x)η(x) (31)

where η(x) = [cos(θ(x)), sin(θ(x))]T is the unit vector
along the angle given by local orientation, θ(x). The phase

vector Φ(x) can be represented in terms of its components
as Φ(x) = [Φ1(x),Φ2(x)]T .

In this research, the phase vector Φ is used to repre-
sent regions of the image. In the monogenic signal model,
assumption is that a local image region is comprised of intrin-
sic 1D signals. Phase vector represents the phase and orien-
tation of the intrinsic 1D signal in a local neighborhood. In
terms of physical interpretation, the local phase captures the
structural information of the object and the local orientation
sheds light on the geometric information of the object. The
contrast information in the image is given by the local ampli-
tude.

Robust estimation of orientation: The estimation for
local orientation could be affected by noise to a very large
degree. Unser et al. (2009) proposed to have a least square
estimate of the orientation based on the local neighborhood.
The robust estimate is obtained by maximizing the direc-
tional Hilbert transform of the function over a neighborhood
as represented by the optimization function in (32).

θ̄ (x) = arg max
θ∈[−π,π ]

∫
R2

vσ (x′ − x)|Hθ { f (x′)}|dx′ (32)

where x′ is any pixel in the local neighborhood, vσ is a
Gaussian kernel and σ 2 is its variance, Hθ (·) is the direc-
tional Hilbert transform represented in the frequency domain
as in (33).

Hθ (ω) = ω1 cos(θ) + ω2 sin(θ)

|ω| (33)

where ω1 and ω2 are the components of angular frequency, ω.

4.5 Optical Flow using Phase Information

The optical flow technique has been adopted from the method
by Alessandrini et al. (2013). The authors present a multi-
scale computation technique based on the flow of phase vec-
tors from one frame to the next. In classical optical flow
computation, brightness of an image region is assumed to be
constant. In this case, the phase vector in a particular region is
assumed to be constant. One of the main advantages of using
phase is to reduce the dependence on variation in intensity
due to changes in illumination.

In mathematical terms, the phase constancy assumption
can be expressed as in (34).

Φ(x, t + 1) = Φ(x − d(x), t) (34)

where d(x) = [u(x), v(x)] represents the displacement made
by the pixel at x, and (u, v) is the optical flow velocity in x
and y directions. If the displacement is assumed to be small,
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then (34) can be approximated using the Taylor series expan-
sion as in (35).

Φ(x − d(x), t) ≈ Φ(x, t) − J(x, t)d(x) (35)

where J is the Jacobian matrix of Φ. If a local neighborhood
around a point is defined, then the local displacement d can be
assumed to be similar for all the pixels in the neighborhood
window, w. Using this assumption, a group of linear equa-
tions can be defined leading to the following expression (36).

〈J〉wd = −〈Φt 〉w, (36)

where J(x, t) =
[
Φ1x (x, t) Φ1y(x, t)

Φ2x (x, t) Φ2y(x, t)

]

[Φ1, Φ2] = ϕ(x)[cos(θ), sin(θ)]

In (36), Φ1x = ∂Φ1/∂x , Φ1y = ∂Φ1/∂y, Φ2x = ∂Φ2/∂x ,
and Φ2y = ∂Φ2/∂y. Φt is the temporal derivative of Φ and
can be expressed as in (37).

Φt (x, t) = Φ(x, t + 1) − Φ(x, t) (37)

Then the temporal derivative of the phase vector can be
expressed in terms of SQFs as in (38), which was derived in
Felsberg (2007).

Φt = ft fRt+1 − fRt ft+1

| ft fRt+1 − fRt ft+1| arctan

(
| ft fRt+1 − fRt ft+1|

ft ft+1 − f T
Rt

fRt+1

)

(38)

where ft is f (x) at frame t , fRt is fR(x) at frame t , and
fR(x) = [ f1(x), f2(x)]T .

The aforementioned model for optical flow by Felsberg
(2007) considered only translation of pixels. In Alessandrini
et al. (2013), the case of affine flow was considered instead
of a constant motion constraint that was dependent on the
window size w. The affine model for a window w centered
at (x0, y0) = (0, 0) can be expressed as in (39).

d(x) = A(x)u (39)

where A =
[

1 0 x y 0 0

0 1 0 0 x y

]

u = [d10, d20, d1x , d1y, d2x , d2y]T

d10 and d20 is the displacement of the center of the win-
dow. The other components are partial derivatives as given
by d1x = ∂d1/∂x , d1y = ∂d1/∂y, d2x = ∂d2/∂x and
d2y = ∂d2/∂y.

By combining (39) with (36) and multiplying with
mathb f AT , we get the equation as in (40). Equation (40) is

the equivalent of the Lucas Kanade algorithm using mono-
genic phase vectors.

〈M〉wu = 〈b〉w (40)

where M = AT JA

b = −AT Φt

From further simplification of (40), the following expres-
sions for M and b can be derived.

M=

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ1x Φ1y xΦ1x yΦ1x xΦ1y yΦ1y

Φ2x Φ2y xΦ2x yΦ2x xΦ2y yΦ2y

xΦ1x xΦ1y x2Φ1x xyΦ1x x2Φ1y xyΦ1y

yΦ1x yΦ1y xyΦ1x y2Φ1x xyΦ1y y2Φ1y

xΦ2x xΦ2y x2Φ2x xyΦ2x x2Φ2y xyΦ2y

yΦ2x yΦ2y xyΦ2x y2Φ2x xyΦ2y y2Φ2y

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

b = − [
Φ1t Φ2t xΦ1t xΦ2t yΦ1t yΦ2t

]

where Φ1x = ∂Φ1/∂x , Φ1y = ∂Φ1/∂y, Φ2x = ∂Φ2/∂x ,
Φ2y = ∂Φ2/∂y, Φ1t = ∂Φ1/∂t and Φ2t = ∂Φ2/∂t .

The next step is to decide on what would be an ideal size
for the window w. In order to overcome the difficulties of
too low or too high a window size, a multiscale approach
for calculation of flow is followed. The basic idea is that the
solution for u is computed at multiple scales. The value u for
which a measure of residual error is minimum is considered
to best estimate of optical flow. In order to compute a dense
flow field, bicubic interpolation is used. The expression for
residual error is given as in (42).

Residual error = ‖Mun − b‖/|w| (42)

where n represents the scale.

4.6 Algorithm for Scene Reconstruction

This section provides a detailed explanation of the algorithm
for reconstruction. As mentioned earlier, the background
intensity of any pixel in a frame can be estimated using the
information from the spatial and temporal neighbors.

The aim of the reconstruction algorithm is to replace the
rain affected pixel with the actual intensity of the background
pixel. As mentioned earlier, the temporal neighbors provide
very good estimate provided no motion is associated with the
pixel. Therefore, the default replacement pixel is the tempo-
ral neighbor that does not contain rain. In this research, the
median of k temporal neighbors is considered to be an opti-
mal estimate.

The crucial part of the algorithm is to decide when a candi-
date pixel has to be replaced by the intensity from temporal
neighbors. Here, the second optimization criteria based on
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registering the current frame to the previous rain removed
frame is utilized. The intensity of the reconstructed pixel is
selected such that it reduces the difference with the regis-
tered pixel in the previous frame containing no rain. How-
ever, the pixel intensity remains unaltered if the intensity of
the replacement pixel is greater than the intensity of the can-
didate rain pixel. That step is in accordance with the first opti-
mization criteria. These steps are presented in Algorithm 1.

Algorithm 1 Algorithm for reconstruction
Initialization:Compute the median for first k frames.
for t = k + 1 to N do

Compute optical flow (u, v) for every pixel in frame I (x, y, t) to
frame Irr (x, y, t − 1)

for every candidate rain pixel at location (x, y) in the frame at
time t do
Find the registered pixel in previous rain removed frame,

Ireg = Irr (x − u, y − v, t − 1)

Find registration error, r = I (x, y, t) − Ireg
if r < 0 then

Irr (x, y, t) = I (x, y, t)
else

Irr (x, y, t) = Ik(x, y, t)
end if

end for
end for

The algorithm starts with an initialization process. During
the initialization, it is assumed that there is no local motion
component associated with the video apart from rain streaks.
Rain streaks are removed from the first k frames using a tem-
poral median filter on the pixels that are detected to be part
of rain streaks. Further processing is done on the remaining
frames of video. The total number of frames is denoted as N .
The next step is to compute the optical flow vector from the
current frame I (x, y, t) to the previous frame that does not
contain rain. A pixel-wise registration error is computed. If
the registration error is greater than zero, the pixel is assumed
to be part of rain. The rain affected pixel is then replaced by
the estimate of the pixel intensity from its temporal neigh-
bors, Ik(x, y, t). Ik(x, y, t) is computed as the median of k
temporal neighbors of the rain affected pixel. The size of the
neighborhood forms a parameter for the algorithm. In the
case of rapid changes in the scene, only one temporal neigh-
bor can be considered for compensation. The rain removed
intensity is denoted as Irr (x, y, t).

5 Experimental Results

The previous sections described the framework for detec-
tion of rain streaks and a method to reconstruct video to
remove rain streaks. The end goal of this process has two
perspectives: (1) increase the quality of video in terms of
visual perception of the actual scene, and (2) increase the

effectiveness of other higher intelligence operations like
object/face/pedestrian detection and recognition.

This section presents details of various experiments per-
formed on different kinds of videos that contain rain. Videos
from previously published research have been used to prop-
erly evaluate the performance of the proposed technique. The
selected videos contain rain in varying complexities along
with a variety of scene content.

5.1 Evaluation Strategies

The following techniques are adopted to verify the perfor-
mance of the algorithm to remove rain.

1. Qualitative analysis - One of the main objectives of the
algorithm to remove rain is to increase the quality of the
video in terms of visual perception. This would demand
some constraints on the output like no edge artifacts and
better temporal smoothness. This is based on the visual
assessment of the reconstructed video with respect to the
original video with rain.

2. Quantitative analysis - The main technique for quantita-
tive evaluation is the computation of no-reference image
quality measure on the videos where rain is removed. A
quality measure based on natural scene statistics called
Blind Image Quality Index (BIQI) by Moorthy and Bovik
(2010) is used in this research. The method uses wavelet
analysis to extract features from the image, try to detect
the kind of distortion present in the image using a trained
classifier and then predict the distortion score using sup-
port vector regression. The prediction is based on the
images that have been used to train the system. In the
case of BIQI, a higher score indicates more distortion
and therefore, a lower quality. The final score for image
quality is on a scale of 0-100 with 100 indicating an image
with the most distortion. In the context of removing rain
from video, the reconstruction process should be capable
of reducing spatial distortions.
In the work by Barnum et al. (2010), rain streaks are
considered to be a two dimensional Gaussians. It was
illustrated in the work about how the assumption would
be a good basis to detect and remove rain streaks in video.
Following the same assumption, it can be assumed that
the presence of rain streaks cause Gaussian blurring on
images. The amount of Gaussian blur can be estimated
using BIQI. However, the technique would be a good
measure of the quality of reconstructed video only in the
presence of a large number of rain streaks.
In some cases, advanced image analysis algorithms can
also be used for evaluation. In one of the videos, a person
is walking towards the camera in rain. In this case, a
face detection algorithm by Viola and Jones (2004) is
employed to evaluate the performance of the algorithm.
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5.2 Results and Discussion

This section provides experimental results along with some
discussion. The performance of the proposed framework to
remove rain is compared with the results of other state of the
art research present in literature.

5.2.1 Removing Rain from Static Video

Static videos are videos where the only dynamic component
in a scene is rain. Since the intensity variations are completely
due to rain, the difference image computation and phase con-
gruency calculations result in all the rain streaks in the frame.
In this section, video provided by Zhang et al. (2006) is used
for experimental evaluation. A qualitative comparison of the
result using the proposed algorithm with the results of Zhang
et al. (2006) is shown in Fig. 10.

It can be observed from Fig. 10 that the result using the
proposed technique is similar to the result obtained by Zhang
et al. (2006).

In terms of visual quality assessment by manual inspec-
tion of the reconstructed video, it was observed that the result
by Zhang et al. (2006) tends to have lesser dynamic content
in comparison with the output of the proposed technique.
Thus the visual quality is higher for the output of Zhang
et al. (2006). This difference can be attributed to the num-
ber of frames that are used to reconstruct a scene. In the
method by Zhang et al. (2006), presence of rain streaks is
detected from the construction of a temporal histogram for
every pixel in the scene. The histogram is constructed for
all the frames in the video. The intensity for scene recon-
struction is also estimated from the histogram. The proposed
technique uses only five neighboring frames for reconstruc-
tion. It is also observed that the proposed algorithm removes
all the significant streaks with lesser number of frames for
reconstruction.

The results of the proposed technique is compared with
that of Zhang et al. (2006) quantitatively in terms of the dis-
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Fig. 11 Quantitative comparison for static videos containing rain.
Comparison of quality measures of reconstructed video from proposed
method with the output of method by Zhang et al. (2006)

tortion score for individual frames. The comparison is shown
in Fig. 11.

The distortion score of the output of Zhang et al. (2006)
is more than that of the proposed technique. This is due to
the fact that the reconstructed scene from Zhang et al. (2006)
suffers from blur induced by the rain streak removal process.
The variation in distortion score of the output of Zhang et al.
(2006) is very less. This can be attributed to the large number
of frames used for reconstruction. The proposed technique
used five temporal neighbors to remove rain from the video.

5.2.2 Removing Rain from Video with Dynamic Texture

The effectiveness of rain streak detection can be evalu-
ated effectively when the algorithm is tested on video with
dynamic textures. In this test, video provided by Garg and
Nayar (2004) is used, in which the scene consists of rain
falling on a pool. Rainfall causes variations in the pool that are

Fig. 10 Qualitative comparison for static video containing rain: a original frame with rain, b frame with rain removed using the method by Zhang
et al. (2006), c frame with rain removed using proposed technique
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to be segmented out from the rain streaks detected, thereby
preserving the characteristics of the dynamic texture in video,
which is the appearance of the pool. A qualitative compari-
son of the output of the proposed technique with the output
of Garg and Nayar (2004) is shown in Fig. 12.

On visual examination of the resultant videos, it was
observed that the output of the proposed technique is as good
as the output from Garg and Nayar (2004) in preserving the
dynamic content in the scene while removing rain streaks
from the video.

A quantitative comparison of algorithms in terms of the
distortion score to measure image quality is shown in Fig. 13.
In this experiment, quality assessment is performed on the
region containing rain streaks and not the pool region. It can
be observed that the performance of the proposed technique
is better for most frames in comparison with the technique
by Garg and Nayar (2004). The method by Garg and Nayar

Fig. 12 Qualitative comparison for videos with dynamic texture: a
original frame with rain, b frame with rain removed using method by
Garg and Nayar (2004), c frame with rain removed using proposed
technique
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Fig. 13 Quantitative comparison for videos with dynamic texture.
Comparison of quality measure of reconstructed video from proposed
method with the output of method by Garg and Nayar (2004)

(2004) reduces the rain content in the scene. However, it is
not successful in removing the dynamic content due to rain
entirely. This could be due to the strict photometric con-
straints that are applied in the procedure for detection. The
significant dips in distortion score for the result of proposed
technique is due to the absence of any significant rain com-
ponent in that particular frame or in its neighborhood.

5.2.3 Removing Rain from a Video Containing Global
Motion

The presence of global motion component increases the com-
plexity of the processing to remove rain. The proposed tech-
nique consists of a step to determine the difference between
consecutive frames. In order to prevent an increase in incor-
rect rain affect pixels, phase correlation is used to align the
frames. The technique for phase correlation mentioned ear-
lier assumes that the movement of camera from one frame
to the next is purely translational. This assumption might not
be true for all videos. However, the reconstruction technique
is robust enough to handle such variations. The experiment
presented in this sub-section verifies the robustness of the
algorithm to remove rain when camera is moving. The key
challenge of the reconstruction algorithm would be to pre-
serve edge information.

In this set of experiments, a video provided by Barnum et
al. (2010) is used. The video is of a man sitting in rain. Every
frame contains vertical edges that need to be preserved along
with the outline of the person. A sample frame where rain is
removed is shown in Fig. 14.

In the magnified section of the reconstructed frame, it can
be observed that the rain streaks are absent. It can also be
observed in the complete image that the vertical edges on
the building and the outline of the person are completely
preserved in the reconstructed frame when compared with
the frame from original video.

Fig. 14 Sample frame where rain is removed from video when camera
is moving. a The original frame with rain, b the frame with rain removed
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Fig. 15 Qualitative comparison for video with global motion. a Original frame with rain, b frame with rain removed by Barnum et al. (2010), c
frame with rain removed using proposed technique
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Fig. 16 Quantitative comparison on video with global motion. Com-
parison of quality measure of reconstructed video from proposed
method with the quality measure of the original video with rain and
the result by Barnum et al. (2010)

The output from the proposed technique is compared with
the output from Barnum et al. (2010) in Fig. 15.

It can be observed that the results of the method by Barnum
et al. (2010) and that of the proposed technique are similar
in terms of visual quality. However, it was observed that the
amount of rain that was removed by the method of Barnum
et al. (2010) was lesser in comparison with the result of the
proposed technique. This is due to the limitation of the fre-
quency based model by Barnum et al. (2010) to detect streaks
that cause lesser intensity variations.

Quantitative analysis is performed on the reconstructed
video based on the distortion score of individual frames. The
results are shown in Fig. 16.

The complete reconstructed video by Barnum et al. (2010)
was not available. Therefore, the distortion score is calculated
for the available frame and that value is assumed to be a mean
representation of all the frames in the reconstructed video.
Since there are no significant changes in the scene content and

the duration of video considered for evaluation is very less,
this assumption is considered to be feasible. It is observed
that the output of the proposed technique causes a decrease
in distortion. The distortion score of the result by Barnum
et al. (2010) tends to remain the same as that of the original
video. One of the main reasons is that the amount of rain in
the frame is very less. Therefore, the changes in the scene
are not significant enough to cause a large variation in the
distortion score.

5.2.4 Removing Rain from Video Containing Moving
Objects

The most challenging part of removing rain is in the case
of videos that contain objects which move between frames.
The presence of local motion component is not canceled
during alignment of frame using phase correlation. Such
local motion causes an increase in false detections along
the edges of the objects that move. Since the framework
for detection of rain streaks did not address the problem
of local motion, this experiment is a verification of the
effectiveness of the algorithm for reconstruction. The video
provided by Garg and Nayar (2004) is used for testing
and analysis in this experiment. The video consists of a
person, holding an umbrella, moving towards the camera
in rain. There are multiple frames where the face of the
person is occluded by rain streaks. There are two objects
with motion components in this scene - the person and
the umbrella. Therefore, edges with varying velocities are
present in the same scene and need to be preserved during
reconstruction.

A qualitative comparison of the results using the proposed
technique with the original video and the reconstructed video
using the method from Garg and Nayar (2004) is shown in
Fig. 17.

It can be observed that the method in Garg and Nayar
(2004) removes rain without causing artifacts along edges. It
can also be observed that the proposed technique preserves
the edges as well while removing all the rain streaks.
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Fig. 17 Qualitative comparison for video containing moving objects.
a original frame with rain, b frame with rain removed in Garg and Nayar
(2004), c frame with rain removed using proposed technique
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Fig. 18 Quantitative comparison on video with moving objects in the
scene. Comparison of image quality measure of the reconstructed video
using proposed technique with that of the original video and result of
Garg and Nayar (2004)

In terms of quantitative analysis, the measures of image
quality are compared for the reconstructed video using pro-
posed technique, the original video and the result by Garg
and Nayar (2004). The comparison is shown in Fig. 18.

It can be observed that the proposed technique recon-
structed a video of much better quality than the original
video. The quality in terms of the distortion score of the
reconstructed video is not as good as the result by Garg and
Nayar (2004). The reason for the better performance of the
method by Garg and Nayar (2004) is that there is not a lot of
depth in the scene. The technique by Garg and Nayar (2004)
is robust when the streaks are completely in focus and narrow
and there is not a lot of depth in the scene, which is the case
in the video used for testing.

An automatic algorithm to detect faces by Viola and Jones
(2004) is applied on the reconstructed video to further ana-
lyze the performance of the proposed algorithm. It needed
to be verified whether the lesser quality in comparison with
Garg and Nayar (2004) was affecting the performance of fea-
ture extraction for advanced image analysis. A sample frame

Fig. 19 Improvement in face detection when rain is removed: a result
of detection on original frame with rain, b result of detection when rain
is removed using proposed algorithm

Table 1 Quantitative evaluation of rain removal based on face detection

Original
video

Result using
Garg and Nayar
(2004)

Result using
proposed
algorithm

No. of frames in
which face is
detected

82 90 90

Comparison using the performance of algorithm for detecting faces on
the video with moving person. The numbers are obtained for zero false
detections

showing the result of algorithm for face detection is shown
in Fig. 19.

Figure 19a shows the result of the algorithm for face detec-
tion on a frame from original video where a rain streak
obstructs the view of the face. It can be observed that the
algorithm fails to detect the face. In Fig. 19b, the result of
application of the algorithm for face detection on the recon-
structed frame using the proposed technique is shown. It is
observed that the face is detected, mainly because the rain
streak has been completely removed.

The algorithm for face detection was applied on the resul-
tant video from Garg and Nayar (2004) as well. The com-
bined results are tabulated in Table 1. The number of frames
where face is detected is more for the video with rain removed
than the original video with rain. The number of detections
of face is the same for the reconstructed video using pro-
posed algorithm and the rain removal algorithm from Garg
and Nayar (2004). This proves that even though the pro-
posed algorithm has lesser image quality than the method by
Garg and Nayar (2004) in terms of the distortion score, the
proposed technique is efficient in retaining all the necessary
features for advanced image analysis.

5.2.5 More Qualitative Results

Apart from the scenarios mentioned before, a qualitative
analysis was done on some other random videos as well.
One of the examples is shown in Fig. 20. The video is
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Fig. 20 Removing rain on a scene with moving pedestrian: a original frame with rain, b frame with rain removed using proposed algorithm, and
c rain component in the scene that was removed

Fig. 21 Removing rain on a scene with vertical edges: a original frame with rain, b frame with rain removed using proposed algorithm, and c rain
component in the scene that was removed

of a street with a pedestrian moving and rain is present.
The challenge is to preserve the shape of the pedestrian
while removing rain from the video. From the removed rain
component, it is observed that no part of the pedestrian is
altered.

Another example is of a video containing rain and the
camera capturing the video is moving considerably. Vertical
edges of high intensity are present in the frame that makes
the rain removal process particularly challenging. The result
of removing rain on the video is shown in Fig. 21.

In the scene with rain removed, there is no distortion to the
vertical edges in the scene. It is also observed that rain streaks
have been completely removed from the frame as well.

6 Conclusion

In this paper, a novel framework to remove rain from videos
was designed. The framework consisted of two parts—(1)
framework for detection based on phase congruency features
and (2) reconstruction of scene using optical flow estimation
from local phase information. The effectiveness of the entire
system was tested by applying the same on videos containing
rain with varying complexities. The underlying ideas, for the
algorithm to detect rain streaks, are derived from the spatio-
temporal and chromatic properties of rain.

The framework to detect the location of rain streaks in
frame starts with the computation of difference between two
consecutive frames. This results in three difference images
corresponding to the red, green and blue components. Phase
congruency features are extracted from the difference images
to get a set of candidate rain pixel. The directional property
of rain is incorporated in the design of the feature extraction
process. Chromatic constraint based on the strength of phase
congruency features is applied to eliminate false detections.
In order to check the effectiveness of the proposed frame-
work for rain streak detection, temporal neighbors were used
to compensate for the rain affected pixels and the scene was
reconstructed. It was observed that the framework was suc-
cessful in removing rain streaks where there is no motion
component associated with the scene, apart from the rain
streaks. The framework was modified to eliminate the pres-
ence of false detections arising due to global motion like
movement of the camera. Phase correlation was used as the
technique to align frames prior to the process of detection of
streaks. The second part of this research focused on recon-
structing the scene after detecting rain streaks. The main chal-
lenge was to make the technique robust enough to account for
movement of objects present in the scene. A key observation
was made that optical flow from phase information is mostly
resilient to the presence of rain streaks. Based on this idea,
optimization criteria were designed for robust reconstruc-
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tion of the scene. The minimization function was the regis-
tration error between neighboring frames. Detailed compar-
isons were made with state of the art techniques qualitatively
and quantitatively. The proposed technique was found to be
as good as the current state of the art techniques and in some
cases, even better. Quantitative evaluation was done using a
no-reference image quality index called Blind Image Quality
Index (BIQI).

The algorithm is being improved to include large displace-
ment optical flow for better reconstruction of videos contain-
ing large and rapid movements. Techniques for improving
the temporal consistency are also being designed. Going into
the future, it would be of great value if the algorithm could
be made to perform in real-time. In the age of autonomous
navigation, it would be really beneficial for post-processing
algorithms if the video input is devoid of rain. The current
algorithm would have to be ported to a suitable implementa-
tion platform for enhanced performance.
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