
Int J Comput Vis (2014) 108:97–114
DOI 10.1007/s11263-014-0721-9

Large-Scale Live Active Learning: Training Object Detectors
with Crawled Data and Crowds

Sudheendra Vijayanarasimhan · Kristen Grauman

Received: 24 February 2013 / Accepted: 19 March 2014 / Published online: 12 April 2014
© Springer Science+Business Media New York 2014

Abstract Active learning and crowdsourcing are promis-
ing ways to efficiently build up training sets for object recog-
nition, but thus far techniques are tested in artificially con-
trolled settings. Typically the vision researcher has already
determined the dataset’s scope, the labels “actively” obtained
are in fact already known, and/or the crowd-sourced collec-
tion process is iteratively fine-tuned. We present an approach
for live learning of object detectors, in which the sys-
tem autonomously refines its models by actively requesting
crowd-sourced annotations on images crawled from the Web.
To address the technical issues such a large-scale system
entails, we introduce a novel part-based detector amenable
to linear classifiers, and show how to identify its most uncer-
tain instances in sub-linear time with a hashing-based solu-
tion. We demonstrate the approach with experiments of
unprecedented scale and autonomy, and show it successfully
improves the state-of-the-art for the most challenging objects
in the PASCAL VOC benchmark. In addition, we show our
detector competes well with popular nonlinear classifiers that
are much more expensive to train.

Keywords Object detection · Active learning · Large-scale
learning · Hashing · Crowdsourcing · Image annotation

Communicated by Martial Hebert.

S. Vijayanarasimhan · K. Grauman (B)
University of Texas at Austin, Austin, TX, USA
e-mail: grauman@cs.utexas.edu

S. Vijayanarasimhan
e-mail: svnaras@cs.utexas.edu

1 Introduction

Object detection is a fundamental vision problem: given
an image, which object categories are present, and where?
Ongoing research is devoted to developing novel represen-
tations and classification algorithms in support of this task,
and challenge datasets encourage further progress (Dalal and
Triggs 2005; Felzenszwalb et al. 2009; Vedaldi et al. 2009;
Lampert et al. 2008; Everingham et al. 2010). Today’s best-
performing detection methods employ discriminative learn-
ing together with window-based search, and assume that a
large number of cleanly labeled training examples are avail-
able. For example, thousands of bounding box annotations
per category is standard.

Given the substantial human effort required to gather
good training sets—as well as the expectation that more data
is almost always advantageous—researchers have begun to
explore novel ways to collect labeled data. Both active learn-
ing and crowd-sourced labeling are promising ways to effi-
ciently build up training sets for object recognition. Active
learning work shows how to minimize human effort by focus-
ing label requests on those that appear most informative to
the classifier (Kapoor et al. 2007; Qi et al. 2008; Vijaya-
narasimhan and Grauman 2008; Joshi et al. 2009; Siddiquie
and Gupta 2010), whereas crowd-sourcing work explores
how to package annotation tasks such that they can be dis-
persed effectively online (von Ahn and Dabbish 2004; Rus-
sell et al. 2007; Sorokin and Forsyth 2008; Welinder and Per-
ona 2010; Deng et al. 2009). The interesting questions raised
in these areas—such as dealing with noisy labels, measur-
ing reliability, mixing strong and weak annotations—make
it clear that data collection is no longer a mundane necessity,
but a thriving research area in itself.

However, while ostensibly intended to distance algorithm
developers from the data collection process, in practice exist-

123

98 Int J Comput Vis (2014) 108:97–114

ing techniques are tested in artificially controlled settings.
Specifically, we see four limiting factors. First, previous work
uses “sandbox” datasets, where the vision researcher has
already determined the dataset’s source and scope, mean-
ing there is a fixed (and possibly biased) set of images that
will even be considered for labeling. In fact, active learning
methods have only been tested on sandbox data where the
true labels are really known, and merely temporarily with-
held from the selection algorithm. These common simula-
tions likely inflate the performance of both active and pas-
sive learners, since anything chosen for labeling is relevant.
Second, nearly all work targets the active image classifica-
tion problem—not detection—and so images in the unla-
beled pool are artificially assumed to contain only one promi-
nent object. Third, most crowd-sourced collection processes
require iterative fine-tuning by the algorithm designer (e.g.,
revising task requirements, pruning responses, barring unre-
liable Mechanical Turkers) before the data is in usable form.
Fourth, the computational complexity of the active selection
process is generally ignored, yet it is critical when running
a live system to avoid keeping the human annotators idle.
Thus, it is unknown to what extent current approaches could
translate to real settings.

Our goal is to take crowd-sourced active annotation out
of the “sandbox”. We present an approach for live learning
of object detectors, in which the system directly interacts
with human annotators online and iteratively poses annota-
tion requests to refine its models. Rather than fill the data pool
with some canned dataset, the system itself gathers possibly
relevant images via keyword search (we use Flickr). It repeat-
edly surveys the data to identify unlabeled sub-windows that
are most uncertain according to the current model, and gener-
ates tasks on an online crowd-sourcing service (Mechanical
Turk) to get the corresponding bounding box annotations.
After an annotation budget is spent, we evaluate the result-
ing detectors both on benchmark data, as well as a novel test
set from Flickr. Notably, throughout the procedure we do not
intervene with what goes into the system’s data pool, nor the
annotation quality from the hundreds of online annotators.

To make the above a reality requires handling some impor-
tant technical issues. Active selection for window-based
detection is particularly challenging since the object extents
(bounding boxes) are unknown in the unlabeled examples;
naively one would need to evaluate all possible windows
within the image in order to choose the most uncertain one.
This very quickly leads to a prohibitively large unlabeled
pool to evaluate exhaustively. Thus, we introduce a novel
part-based detector amenable to linear classifiers, and show
how to identify its most uncertain instances in sub-linear time
with a hashing-based solution.

We show that our detector strikes a good balance between
speed and accuracy, with results competitive with and even
exceeding the state-of-the-art on the PASCAL VOC. Most

importantly, we show successful live learning in an uncon-
trolled setting. The system learns accurate detectors with
much less human effort than strong baselines that rely on
human-verified keyword search results.

2 Related Work

Object detection has received various treatments in the lit-
erature; see Everingham et al. (2010) and references therein
for an overview. Currently window-based approaches based
on gradient features and subwindow parts provide state-
of-the-art results using discriminative classifiers. A known
limitation, however, is their fairly significant computational
expense, due both to the need to search exhaustively through
all windows in the image, as well as the classifiers’ com-
plexity (e.g., SVMs with nonlinear kernels or latent vari-
ables (Vedaldi et al. 2009; Felzenszwalb et al. 2009)).

Various ways to reduce detection time have been explored,
including cascades (Vedaldi et al. 2009; Viola and Jones
2001), branch-and-bound search (Lampert et al. 2008), or
jumping windows (Chum and Zisserman 2007). To reduce
classifier training and testing costs, simpler linear models
are appealing. While linear models tend to underperform the
state of the art with common representations (e.g., see the
experiments reported in (Vedaldi et al. 2009; Boureau et al.
2010)), recent work in image classification shows very good
results when also incorporating sparse coding and feature
pooling (Yang et al. 2009; Wang et al. 2010; Boureau et al.
2010). We propose a part-based object model that exploits
a related representation, and show it to be competitive with
state-of-the-art detection results. To our knowledge, no pre-
vious work considers sparse coding and linear models for
object detection.

An alternative way to improve detection time for a part-
based detector is to reduce the number of filter convolu-
tions it requires to run on a new image. Multi-task learn-
ing can encourage a set of object detectors to share features,
so that at detection time fewer local part features need to
be extracted (Torralba et al. 2007). With similar motivation,
recent work shows how to use a shared dictionary of part
filters to estimate filter responses in terms of sparse matrix-
vector products (Song et al. 2012; Pirsiavash and Ramanan
2012); this greatly reduces the computation time compared
to standard part filter convolutions.

While these efforts concentrate on limiting feature extrac-
tion time, the system of Dean et al. (2013) (introduced subse-
quent to our work) also pushes on reducing the standard lin-
ear run-time dependency on the number of object categories.
In that work, a hashing-based solution replaces convolution
dot products with hash-table probes, thereby sampling fil-
ter responses in time independent of the size of the filter
bank. The approach can run a simplified deformable part

123

Int J Comput Vis (2014) 108:97–114 99

model (with no root filter and equally sized parts) for 100K
object classes simultaneously on a single machine in just
20 seconds. Our approach also involves hashing, but for the
sake of scalable active learning. Using our hyperplane hash
functions (Jain et al. 2010; Vijayanarasimhan et al. 2014),
we search for uncertain data in sub-linear time, breaking the
linear-time dependence on the size of the unlabeled data pool
suffered by existing active learning methods methods.

Active learning has been shown to better focus annotation
effort for image recognition tasks (Kapoor et al. 2007; Qi
et al. 2008; Joshi et al. 2009) and region labeling (Vijaya-
narasimhan and Grauman 2008; Siddiquie and Gupta 2010).
However, no previous work uses active learning to train a
window-based detector. To do so introduces major scala-
bility issues, which we address with a new linear detector
combined with a hashing algorithm we developed (Jain et
al. 2010; Vijayanarasimhan et al. 2014) for sub-linear time
search of the unlabeled pool. Further, all previous work tests
active selection only in a sandbox, where the true labels are
already known for the data.

Researchers have investigated issues in annotation tools
and large-scale database collection for recognition. Keyword-
based search is often used for dataset creation, and several
recent efforts integrate crowd-sourced labeling (von Ahn and
Dabbish 2004; Russell et al. 2007; Deng et al. 2009) or
online and incremental learning (Li et al. 2007). Even with
a human in the loop, annotation precision varies when using
Web interfaces and crowds, and so some research explores
ways to automatically provide quality assurance (Sorokin
and Forsyth 2008; Welinder and Perona 2010). Other work
attempts to directly learn object models from noisy keyword
search (Fergus et al. 2005; Li et al. 2007; Vijayanarasimhan
and Grauman 2008); however, such methods assume a single
prominent object of interest per image, whereas for detection
we will have cluttered candidate images that require a bound-
ing box to identify the object of interest.

Overall, previous active learning methods focus on image
classification, and/or demonstrate results under controlled
settings on prepared datasets of modest scale. Ours is the
first complete end-to-end approach for scalable, automatic
online learning of object detectors.

This article expands the work we originally published in
Vijayanarasimhan and Grauman (2011). The primary addi-
tions are two new results sections analyzing the live annota-
tion consistency, variation among annotators, and our auto-
matic consensus procedure (Sect. 4.5, Figs. 13 and 14), and
analyzing why live active annotation requests have an advan-
tage over existing keyword search data collection strategies,
both quantitatively and qualitatively (Sect. 4.4, Table 4, and
Figs. 11, 12a, and b). In addition, we provide examples of
the proposed detector’s output to portray its strengths and
failure modes (Fig. 7), and we refine the overall text for
clarity.

3 Approach

Our goal is to enable online active crowd-sourced object
detector training. Given the name of a class of interest, our
system produces a detector to localize novel instances using
automatically obtained images and annotations. To make this
feasible, we first propose a part-based linear support vector
machine (SVM) detector, and then show how to identify its
uncertain examples efficiently using a hashing scheme.

3.1 Object Representation and Linear Classifier

We first introduce our part-based object model. Our goal is
to design the representation such that a simple linear clas-
sifier will be adequate for robust detection. A linear model
has many complexity advantages important to our setting:
(i) SVM training requires time linear in the number of train-
ing examples, rather than cubic (Joachims 2006), (ii) clas-
sification of novel instances requires constant time rather
than growing linearly with the number of training exam-
ples, (iii) exact incremental classifier updates are possible,
which makes an iterative active learning loop practical, and
(iv) hash functions enable sub-linear time search to map a
query hyperplane to its nearest points according to a linear
kernel (Jain et al. 2010; Vijayanarasimhan et al. 2014).

Inspired by recent findings in sparse coding for image clas-
sification (Yang et al. 2009; Wang et al. 2010; Boureau et al.
2010), we explore a detection model based on sparse coding
of local features combined with a max pooling scheme. Pre-
vious representations pool coded SIFT features in a single
global window or in a fixed class-independent hierarchy of
grid cells (i.e., a spatial pyramid (SP) structure). While suffi-
cient for whole-image classification, we instead aim to rep-
resent an object separately from its context, and to exploit its
part-based structure with class-dependent subwindow pool-
ing.

To this end, we propose an object model consisting of
a root window r , multiple part windows {p1, . . . , pP } that
overlap the root, and context windows {c1, . . . , cC } surround-
ing it. See Fig. 1. Let O = [r, p1, . . . , pP , c1, . . . , cC]
denote a candidate object configuration within an image,
and let φ(W) denote the sparse feature encoding for local
image descriptors extracted from a given subwindow W (to
be defined below). The detector scores a candidate configu-
ration as a simple linear sum:

f (O) = wT φ(O) (1)

= wT
r φ(r) +

P∑

i=1

wT
pi

φ(pi) +
C∑

i=1

wT
ci
φ(ci),

where w denotes the learned classifier weights, which we
obtain with SVM training. As reflected above, this weight
vector is comprised of the weights for the root, parts, and

123

100 Int J Comput Vis (2014) 108:97–114

Fig. 1 Our part-based object representation consists of a root window
for the entire object, a set of class-specific object part windows located
within the root, and a set of context windows surrounding the root. The
feature encoding φ(·) captures the maximum sparse coding coefficient
found among all local features within a window for a given visual word

context windows, respectively; that is,

w = [wr ,w p1 , . . . ,w pP ,wc1, . . . ,wcC]. (2)

We next flesh out the window descriptions and feature encod-
ing details, and then analyze how our model relates to existing
detectors. Section 3.2 will explain how we obtain candidate
root placements.

3.1.1 Window Descriptions

Given a novel test image, we first extract local image descrip-
tors; we use a dense multi-scale sampling of SIFT in our
implementation. Each window type (r, pi , or c j) uses these
features to create its encodingφ(·). The root window provides
a global summary of the object appearance, and is invariant
to spatial translations of features within it.

Similarly, each part window summarizes the local features
within it, discarding their positions; however, the location of
each part is defined relative to the current root, and depends
on the object class under consideration (i.e., bicycles and
cars each have a different configuration of the pi windows).
Thus, they capture the locations and spatial configurations
of parts of the object. We train with the part locations and
bounds learned by the detector in Felzenszwalb et al. (2009)
on an initial labeled set. While our implementation uses a
fixed number of parts per object (namely P = 6, follow-
ing Felzenszwalb et al. (2009)), it is possible some objects
would perform better with fewer or more parts. The para-
meter P could be adjusted per class with cross validation in
cases where sufficient initial labeled examples are available.

While the parts could alternatively be requested directly
from annotators, we prefer to use the automatic learning

approach both for ease and since human annotators need
not know which parts will be most discriminative. These
parts need not be nameable parts apparent to the human eye;
rather, they are those subwindows of the object that appear
consistently in the positive exemplars but not in the nega-
tive exemplars. For example, for a car detector, a useful part
might be where the bottom of the wheel meets the pavement,
as opposed to a patch on the entire wheel itself.

The context windows incorporate contextual cues sur-
rounding the object, such as the presence of “sky”, “ground”,
“road”, etc., and also help discard poorer candidate windows
that cover only parts of objects (in which case object fea-
tures spill into the context window). We create the context
windows using a 3 × 1 partition of the root window r ’s com-
plement, as shown in the top right of Fig. 1.

The intuition behind breaking the context windows only
vertically in image, as opposed to also dividing features in
bins across the horizontal axis, is that other objects appearing
relative to the root object window tend to appear with more
regularity from top to bottom. In contrast, from left to right
they are often interchangeable. For example, sky is above
the car and ground is below it, but a person standing beside
a car is equally likely on the left or right. In preliminary tri-
als, the 3 × 1 partition was more effective than variations
using fewer cells or horizontal splits, and so we simply fixed
this layout for all objects. We find that providing this con-
text strengthens certain categories, which agrees with recent
findings (Uijlings et al. 2009; Lee and Grauman 2010).

3.1.2 Feature Encoding

Each window is represented using a nonlinear feature encod-
ing based on sparse coding and max-pooling, which we refer
to as sparse max pooling (SMP). The SMP representation is
related to the well-known bag-of-features (BoF); however,
unlike BoF, each component local descriptor is first encoded
as a combination of multiple visual words, and the weights
are then pooled within a region of interest using the max
function.

Offline, we cluster a large corpus of randomly selected
features to obtain a dictionary of |V | visual words: V =
[v1, . . . , v|V |], where each column vi ∈ �128 is a cluster
center in SIFT space. For any window W (whether it is the
root, a part, or a context window), let F = { f i }|F |

i=1 be the
set of local features falling within it, where each f i ∈ �128

is a SIFT descriptor. We represent this window with a sparse
|V |-dimensional vector, as follows.

First, each feature f i is quantized into a |V |-dimensional
sparse vector si that approximates f i using some existing
sparse coding algorithm and the dictionary V , that is, f i ≈
si V . Taking this encoding for every f i as input, the SMP
representation of W is given by:

123

Int J Comput Vis (2014) 108:97–114 101

φ(W) = [φ1, . . . , φ|V |], where (3)

φ j = max (si (j)) , i = 1, . . . , |F |,
for j = 1, . . . , |V |, and si (j) is the j-th dimension of the
sparse vector encoding the i-th original feature, f i . In other
words, for a given subwindow W , for each dictionary word
j = 1, . . . , |V |, we record the maximum coefficient asso-
ciated with any of the |F | local SIFT descriptors appearing
in that window. This yields a |V |-dimensional descriptor for
that window. Finally, we normalize φ(W) by its L2 norm.1

The rationale behind the SMP window encoding is
twofold: the sparse coding gives a fuller representation of
the original features by reflecting nearness to multiple dic-
tionary elements (as opposed to BoF’s usual hard vector
quantization), while the max pooling gives better discrim-
inability amidst high-variance clutter (Boureau et al. 2010).
See (Boureau et al. 2010; Yang et al. 2009) for useful com-
parisons between various sparse coding approaches, which
shows their clear advantage when combined with a linear
kernel as compared to the popular BoF.

3.1.3 Relationship to Existing Detection Models

Our model intentionally strikes a balance between two recent
state-of-the-art detection models: (i) a nonlinear SVM with
a spatial pyramid (SP) in which each grid cell is a histogram
of unordered visual words (Vedaldi et al. 2009), and (ii) a
latent SVM (LSVM) with a deformable part model, in which
each part is a rigid histogram of ordered oriented gradi-
ents (Felzenszwalb et al. 2009). See Fig. 2.

On the one hand, the SP model is robust to spatial trans-
lations of local features within each grid cell. On the other
hand, its nonlinear kernels (required for good performance,
as shown by Vedaldi et al. (2009)) makes the classifier quite
expensive to train and test, and rigid class-independent bins
may fail to capture the structure of the best parts on an object
(see Fig. 2a). In contrast, the LSVM model can robustly cap-
ture the parts, since it learns multiple part filters that deform
relative to the root. However, its dynamic programming step
to compute parts’ alignment makes it expensive to train. Fur-
thermore, its use of the spatially dense gradient histograms
for both the root and parts make it less tolerant to internal
shifts and rotations (see Fig. 2b).

Our model attempts to incorporate positive aspects of the
above two models, while maintaining a much lower compu-
tational cost. In particular, we have class-specific part con-
figurations, like Felzenszwalb et al. (2009), but they are fixed
relative to the root, like Vedaldi et al. (2009). Our SMP-based
encoding is robust to shifts within the part and object win-

1 We use Locality-constrained Linear Coding (LLC) by Wang et al.
(2010) to obtain the sparse coding, though other algorithms could also
be used for this step.

Hard VQ
+avg pooling

local features,
discard locs per window

(a) Spatial pyramid model (SP)

root parts deformations

dense gradients at fixed locs within window

(b) Latent deformable part model (LSVM)

Sparse code
+max pooling

root parts

(p1) … (pP)(r)

local features,
discard locs per window

()

(c) Proposed model

Fig. 2 Sketch to illustrate contrasts with related existing models. See
text for details

dows, thereby tolerating some deformation to the exact part
placement without needing the additional dynamic program-
ming alignment step during detection. In short, by utilizing a
part-based representation and a linear classifier, our approach
provides a very good trade-off in terms of model complexity
and accuracy.

3.2 Generating Candidate Root Windows

So far we have defined a representation and scoring function
for any candidate window. Now we discuss how to gener-
ate the candidates, whether in novel test images or unlabeled
images the system is considering for annotation. A thorough
but prohibitively expensive method would be the standard
sliding window approach; instead, we use a grid-based vari-
ant of the jumping window method of Chum and Zisserman
(2007), Vijayanarasimhan and Kapoor (2010).

The jumping window approach generates candidate win-
dows with a Hough-like projection using visual word
matches, and prioritizes these candidates according to a mea-
sure of how discriminative a given word and coarse location
is for the object class (see Fig. 3). First, each root window
in the training images is divided into an N × M grid. Let
Wloc(r) denote a root window’s position and scale. Given a
training window r and a visual word v occurring at grid posi-

123

102 Int J Comput Vis (2014) 108:97–114

(v= , g=1)

(v= , g=4)
(a) Training images

P(v= , g=4)
indicates

lower priority

P(v= , g=1)
indicates

higher priority

(b) Novel test image

Fig. 3 Illustration of jumping window root candidates. Grid cells serve
to refine the priority given to each box (but do not affect its placement).
Here, location g = 1 has higher priority than g = 4 for visual word
v = � since it appears more consistently in the training images (a).
Therefore, at test time (b) we prioritize the object search to focus on
those windows that are more highly rated as candidate roots

tion g ∈ {1, . . . , N M}, we record the triplet (v, g, Wloc(r)).
We build a lookup table indexed by the v entries for all train-
ing examples. Then, given a test image, for each occurrence
of a visual word v, we use the lookup table to retrieve all
possible Wloc(r)’s, and project a bounding box in the test
image relative to that v’s position. Note, candidates can vary
in aspect ratio and scale.

The grid cell g in each triple is used to assign a priority
score to each candidate, since we may not want to examine all
possible candidates mapped from the lookup table. Specifi-
cally, we score a given pair (v, g) based on how predictive
it is for the true object bounding box across the training set:
P(v, g) is the fraction of the occurrences of word v that
appear at grid location g. This function gives a higher score
to bounding boxes where the visual word occurs consistently
across positive training examples at a particular position (see
Fig. 3).

Given a test image, we take the top K candidate jumping
windows based on their priority scores. The detector is run
only on these boxes. In experiments, we obtain 95 % recall
on most categories when taking just K = 3, 000 candidates
per test image. The same level of recall would require up to
105 bounding boxes if using sliding windows (see Vedaldi et
al. (2009)).

As discussed in Sect. 2, there exist other strategies to
restrict the search space for an object in an image, includ-

ing cascades that reject many negatives with simple tests
(e.g., Viola and Jones (2001)). However, whereas a cascade
entails applying a sequence of tests to a given window, the
jumping windows approach we take discovers a small set
of promising candidates as a single batch. This part of our
design is amenable to our hashing-based approach to per-
form efficient active learning, which we will discuss in the
next section. Essentially, having extracted all jumping win-
dows in all unlabeled images offline, we can precompute an
efficient data structure to index them for retrieval later in the
active learning loop.

3.3 Active Selection of Object Windows

We initialize our online active learning system with a linear
SVM trained with a small number of labeled examples for
the object. Then, it crawls for a pool of potentially relevant
unlabeled data using keyword search with the object name
(i.e., it downloads a set of images tagged dog when learning to
detect dogs). We want to efficiently determine which images
among those retrieved should be labeled next by the human
annotators. As an active learning criterion, we use the “simple
margin” selection method for SVMs (Tong and Koller 2000),
a widely used criterion that seeks points that most reduce the
version space. Given an SVM with hyperplane normal w

and an unlabeled pool of data UO = {φ(O1), . . . , φ(On}),
the point that minimizes the distance to the current decision
boundary is selected for labeling:

O∗ = arg min
Oi ∈UO

|wT φ(Oi)|. (4)

A naive application of this criterion entails computing the
classifier response on all unlabeled data, ranking them by
|wT φ(Oi)|. However, even with a linear classifier, exhaus-
tively evaluating all unlabeled examples at each iteration is
prohibitively expensive. Whereas previous active learning
work is generally unconcerned about the amount of time
it actually takes to compute the next labeling request, it
becomes a real issue when working out of the sandbox,
since we have live annotators awaiting the next labeling jobs
and massive unlabeled data pools. In particular, since we
need to apply the active selection function at the level of the
object, not the entire image, we have an enormous number of
instances—all bounding boxes within the unlabeled image
data. Even using jumping windows, thousands of images
yield millions of candidates. Thus, a simple linear scan of
all unlabeled data is infeasible.

Therefore, we adopt our hyperplane-hashing algorithm
(Jain et al. 2010; Vijayanarasimhan et al. 2014) to identify
the most promising candidate windows in sub-linear time.
The main idea of hyperplane hashing (H-Hash) is to prepare
a hash table in such a way that when a “query” hyperplane w

123

Int J Comput Vis (2014) 108:97–114 103

Positive
Negative
Unlabeled

Active learning iteration t+1Active learning iteration t

)1(tw
)(tw

Fig. 4 We use the hyperplane hashing algorithm (Jain et al. 2010;
Vijayanarasimhan et al. 2014) to map the linear classifier parameters
w directly to a set of unlabeled data points {φ(O)1, . . . , φ(O)k} that
are nearest the hyperplane decision boundary. After the actively selected
points are labeled by an annotator, the classifier parameters are updated,
and the process repeats

is hashed in, it maps directly to hash buckets containing data
points that are near its surface. Using such a data structure,
we can be assured of finding the unlabeled instances that are
most uncertain according to the margin criterion—without
exhaustively applying the classifier to every one of them.
It is important to distinguish this hashing formulation from
widely used hash functions for approximate nearest neighbor
search. Whereas work on large-scale similarity search offers
hash functions that will map a query point to its nearby points,
H-Hash provides hash functions that map a hyperplane to
nearby points anywhere along its surface.

Briefly, the H-Hash algorithm works as follows. Assuming
we have normalized data vectors, the instances that are near-
est to the surface of a hyperplane parameterized by the nor-
mal w are those that are close to perpendicular to w. There-
fore, H-Hash generates a randomized hash function that is
locality-sensitive for the angle between a database point and
the hyperplane normal. The closer their separation is to 90◦,
the more likely they are to collide in the hash table; that is,
they are more likely to be assigned the same hash bit. By con-
catenating the outputs of a series of such hash functions, we
obtain a binary key that indexes a single bucket in the hash
table. First, all the unlabeled data is hashed into the table.
Then, given a “query hyperplane” w, we can hash directly to
the uncertain points, with high probability. See Fig. 4.

Formally, let UI denote the set of unlabeled images, and
UO denote the pool of candidate object windows obtained
using the jumping window predictor on UI . Note that |UO | =
K × |UI |. The locality-sensitive hash family H generates
randomized functions with two-bit outputs:

hH(z) =
{

hu,v(φ(Oi), φ(Oi)), if z is a database vector,

hu,v(w,−w), if z is a query hyperplane,

where the component function is defined as

hu,v(a, b) = [sign(uT a), sign(vT b)]. (5)

The function sign(uT a) returns 1 if uT a ≥ 0, and 0 other-
wise, and u and v are sampled from a standard multivariate
Gaussian, u, v ∼ N (0, I). As the notation indicates, the
functions accommodate both hyperplane parameter vectors
and unlabeled data vectors as input. These functions guaran-
tee high probability of collision for a query hyperplane and
the points nearest to its boundary. The two-bit hash limits the
retrieved points’ deviation from the perpendicular by con-
straining the angle with respect to both w and −w. See Jain
et al. (2010), Vijayanarasimhan et al. (2014) for more details.

We use these functions to hash the crawled data into the
table. Then, at each iteration of the active learning loop, we
hash the current classifier as a query, and directly retrieve
examples closest to its decision boundary.2 We search only
those examples, i.e., we compute |wT φ(Oi)| = | f (Oi)| for
each one, and rank them in order of increasing value. At
this point, each unlabeled image is associated with the score
of its jumping window with the smallest margin criterion
value. Finally, the system issues a label request for the top
T images under this ranking. Since we only need to evalu-
ate the classifier for examples that fall into a particular hash
bucket—typically less than 0.1 % of the total number of unla-
beled examples—this strategy combined with our new detec-
tor makes online selection from large datasets feasible.

We stress that the unlabeled data is only hashed into the
table once, before any active learning iterations take place.
Then, during active learning, it is only the current classi-
fier hyperplane that is hashed in, and it is the only thing that
changes as learning proceeds. This property is essential to the
design of H-Hash, since it means the primary hashing over-
head is all paid up front. Only minimal overhead is incurred
during online live learning, namely, two inner products for
each hash bit to compute the hyperplane’s single hash key.

3.4 Online Annotation Requests

To automatically obtain annotations on the actively
selected examples, our system posts jobs on Mechanical
Turk, where it can pay workers to provide labels. The system
gathers the images containing the most uncertain bounding
boxes, and the annotators are instructed to use a rectangle-
drawing tool to outline the object of interest with a bounding
box (or else to report that none is present). We ask annotators
to further subdivide instances into “normal”, “truncated”, or
“unusual”, consistent with PASCAL annotations, and to flag
images containing more than three instances. Figure 5 shows
the annotation interface.

2 Hyperplane hashes can be used with existing approximate near-
neighbor search algorithms; we use the formulation by Charikar (2002),
which guarantees the probability with which the nearest neighbor will
be returned.

123

104 Int J Comput Vis (2014) 108:97–114

Fig. 5 Our Mechanical Turk interface used to obtain bounding boxes
on the actively selected examples. The worker is asked whether the
object of interest is present in the image (here, the object of interest is
bicycle), and if there is one, he/she must outline it with a bounding box.
Furthermore, we request the PASCAL-style qualifiers as to whether the
object instance is truncated or unusual

While MTurk provides easy access to a large number of
annotators, the quality of their labels varies. Thus, we design
a simple but effective approach to account for the variabil-
ity. We issue each request to 10 unique annotators, and then
cluster their bounding boxes using mean shift to obtain a con-
sensus. We keep only those clusters with boxes from more
than half of the annotators. Finally, we obtain a single repre-
sentative box from each cluster by selecting the one with the
largest mean overlap with the rest.

Note how each image consists of thousands of unlabeled
window instances, each of which serves as a candidate active
learning query. Once a single image annotation is obtained,
however, it tells us the labels for all windows within it.

3.5 Training the Detector

Training our detector entails learning the linear SVM weights
in Eq. 2 to distinguish windows that contain the object of
interest from all others. To limit the number of negative win-
dows used to train, we mine for “hard” negatives: at each
iteration, we apply the updated classifier to the newly labeled
images, and add the 10 top-scoring windows as negatives if
they overlap the target class by less than 20 %.

We can now actively train an object detector automatically
using minimal crowd-sourced human effort. To recap, the
main loop consists of using the current classifier to generate
candidate jumping windows, storing all candidates in a hash
table, querying the hash table using the hyperplane classifier,
giving the actively selected examples to online annotators,
taking their responses as new ground truth labeled data, and
updating the classifier. See Fig. 6 for a summary of the com-
plete system.

4 Results

There are six main components in our experiments. First, we
compare the proposed detector to the most closely related

Fig. 6 Summary of our system for live learning of object detectors

state-of-the-art techniques (Sect. 4.1). Second, we validate
our large-scale active selection approach with benchmark
data (Sect. 4.2). Third, we deploy our complete live learning
system with crawled images, and compare to strong base-
lines that request labels for the keyword search images in a
random sequence (Sect. 4.3). Fourth, we analyze the types of
requests made by the live active learning system, and try to
understand their advantage over the passive keyword-search
protocol (Sect. 4.4). Fifth, we analyze the live annotation
collection results (Sect. 4.5). Finally, we report compara-
tive run-times for our method and prior detectors in order to
emphasize how our contributions make live learning scalable
(Sect. 4.6).

We use two datasets in our experiments: the PASCAL
VOC 2007, and a new Flickr dataset. More details about the
datasets are given below.

Implementation Details We use dense SIFT at three scales
(16, 24, 32 pixels) with grid spacing of 4 pixels, for
30K features per image. We obtain |V | = 56, 894 visual
words with two levels of hierarchical k-means on a sam-
ple of training images. We use the fast linear SVM code
svm_perf (Joachims 2006), C = 100. We use the LLC
code (Wang et al. 2010), and set k, the number of non-zero
values in the sparse vector si to 5, following Wang et al.
(2010). We use P = 6 parts per object from each of a 2-
mixture detector from Felzenszwalb et al. (2009) trained on
PASCAL data, take T = 100 instances per active cycle, set
K = 3000, and N , M = 4. We fix Nρ = 500 and ε′ = 0.01
for the hash table (Jain et al. 2010). During detection we run
non-max suppression on top ranked boxes and select 10 per
image. We score all results with standard PASCAL metrics
and train/test splits.

4.1 Comparison to State-of-the-Art Detectors

First we compare our detector to the algorithms with the
current best performance on VOC 2007 benchmark of 20

123

Int J Comput Vis (2014) 108:97–114 105

Ta
bl

e
1

A
ve

ra
ge

pr
ec

is
io

n
co

m
pa

re
d

to
a

sp
at

ia
l

py
ra

m
id

B
oF

ba
se

lin
e

(B
oF

SP
),

a
sp

ar
se

co
di

ng
m

ax
po

ol
in

g
sp

at
ia

l
py

ra
m

id
ba

se
lin

e
m

od
el

ed
af

te
r

W
an

g
et

al
.

(2
01

0)
(L

L
C

SP
),

an
d

tw
o

st
at

e-
of

-t
he

-a
rt

ap
pr

oa
ch

es
(F

el
ze

ns
zw

al
b

et
al

.2
00

9;
V

ed
al

di
et

al
.2

00
9)

on
th

e
PA

SC
A

L
V

O
C

,w
he

re
al

lm
et

ho
ds

ar
e

tr
ai

ne
d

an
d

te
st

ed
on

th
e

st
an

da
rd

be
nc

hm
ar

k
sp

lit
s

C
la

ss
if

Pa
rt

s
Fe

at
s

C
an

ds
A

er
o.

B
ic

yc
.

B
ir

d
B

oa
t

B
ot

tl
B

us
C

ar
C

at
C

ha
ir

C
ow

D
in

in
.

D
og

H
or

se
M

ot
or

.
Pe

rs
on

Po
tte

.
Sh

ee
p

So
fa

T
ra

in
T

vm
on

.
M

ea
n

O
ur

s
L

in
ea

r
Y

es
Si

ng
le

Ju
m

p
48

.4
48

.3
14

.1
13

.6
15

.3
43

.9
49

.0
30

.7
11

.6
30

.3
13

.3
21

.8
43

.6
45

.0
18

.2
11

.1
28

.8
33

.0
47

.7
43

.0
30

.5

B
oF

SP
L

in
ea

r
N

o
Si

ng
le

Ju
m

p
30

.4
43

.1
6.

9
3.

5
10

.8
35

.8
45

.0
17

.7
11

.5
24

.6
3.

5
18

.0
43

.5
44

.0
15

.3
1.

5
19

.1
14

.7
35

.7
34

.9
23

.0

L
L

C
SP

L
in

ea
r

N
o

Si
ng

le
Ju

m
p

35
.9

46
.7

6.
4

6.
3

16
.5

45
.6

49
.8

26
.7

12
.5

27
.3

6.
8

18
.2

44
.9

45
.0

18
.2

4.
6

23
.2

22
.6

41
.3

42
.0

27
.0

L
SV

M
+

H
O

G
Fe

lz
en

sz
w

al
b

et
al

.(
20

09
)

N
on

lin
ea

r
Y

es
Si

ng
le

Sl
id

e
32

.8
56

.8
2.

5
16

.8
28

.5
39

.7
51

.6
21

.3
17

.9
18

.5
25

.9
8.

8
49

.2
41

.2
36

.8
14

.6
16

.2
24

.4
39

.2
39

.1
29

.1

SP
+

M
K

L
V

ed
al

di
et

al
.

(2
00

9)

N
on

lin
ea

r
N

o
M

ul
tip

le
Ju

m
p

37
.6

47
.8

15
.3

15
.3

21
.9

50
.7

50
.6

30
.0

17
.3

33
.0

22
.5

21
.5

51
.2

45
.5

23
.3

12
.4

23
.9

28
.5

45
.3

48
.5

32
.1

B
ol

d
va

lu
es

in
di

ca
te

th
e

be
st

pe
rf

or
m

in
g

m
et

ho
d

pe
r

cl
as

s

objects (as found at the time of these experiments), as well
as our own implementation of two other relevant baselines.
All methods are trained and tested with the same PASCAL-
defined splits.

Table 1 shows the results. The first three rows all use the
same original SIFT features, a linear SVM classifier, and the
same jumping windows in the test images. They differ, how-
ever, in the feature coding and pooling. The BoF SP baseline
maps the local features to a standard 3-level spatial pyramid
bag-of-words descriptor with L2-normalization. The LLC
SP baseline applies sparse coding and max pooling within
the SP cells. LLC SP is the method of Wang et al. (2010);
note, however, we are applying it for detection, whereas the
authors propose their approach for image classification.

The linear classifier with standard BoF coding is the weak-
est. The LLC SP baseline performs quite well in comparison,
but its restriction to a global SP structure appears to hinder
accuracy. In contrast, our detector improves over LLC SP
noticeably for most objects (compare rows 1 and 3), likely
due to its part windows.

Our detector is competitive with both of the state-of-the-
art approaches discussed in Sect. 3.1: SP+MKL (Vedaldi et
al. 2009), which uses a cascade of classifiers that culminates
with a learned combination of nonlinear SVM kernels over
multiple feature types, and LSVM+HOG (Felzenszwalb et
al. 2009), which uses the LSVM and deformation models for
parts. In fact, our detector outperforms all existing results for
six of the 20 objects, improving the state-of-the-art. At the
same time, it is significantly faster to train (about 50 to 600
times faster; see Table 5).

The classes where we see most improvements seem to
make sense, too: our approach outperforms the rigid SP rep-
resentation used in Vedaldi et al. (2009) for cases with more
class-specific part structure (aeroplane, bicycle, train), while
it outperforms the dense gradient parts used in Felzenszwalb
et al. (2009) for the more deformable objects (dog, cat, cow).

Figure 7 shows some example detections (high-scoring
true and false positives) by our detector for five representative
categories.

4.2 Active Detector Training on PASCAL

We next compare our active selection scheme to a passive
learning baseline that randomly selects images for bounding
box annotation. We select six representative categories from
PASCAL: we take two each from those that are “easier” (>40
AP), “medium” (25–40 AP) and “hard” (0–25 AP) according
to the state-of-the-art result (max of rows 4 and 5 in Table 1).
We initialize each object’s classifier with 20 examples, and
then let the remainder of the training data serve as the unla-
beled pool, a total of 4.5 million examples. At each iteration,
both methods select 100 examples, add their true bounding
boxes (if any) to the labeled data, and retrain. This qualifies

123

106 Int J Comput Vis (2014) 108:97–114

Fig. 7 Example detections on the PASCAL dataset obtained by our
detector for five representative categories (bicycle, car, cat, bottle,
chair). Our detector provides accurate localization despite large varia-
tions in appearance, pose, and the number of objects. Top scoring false

positives are mainly from similar categories (e.g. cat vs. dog, bicycle vs.
motorbike) or due to the presence of a large number of similar objects
(row 6 column 1, row 7 column 4) or inaccurate localization

123

Int J Comput Vis (2014) 108:97–114 107

Annotations added, out of 4.5 million examples

A
ve

ra
ge

 P
re

ci
si

on

0 2000 4000 6000
0

0.2

0.4

aeroplane

0 2000 4000 6000

0.2

0.4

0.6
bicycle

0 2000 4000 6000

0

0.1

0.2

boat

0 2000 4000 6000

0

0.1

0.2

0.3

bottle

0 2000 4000 6000

0.1

0.2

0.3

cat

0 2000 4000 6000
0.05

0.1

0.15

0.2

0.25

dog

Active (Ours) Passive SP−MKL [3] LSVM [2]

Fig. 8 Active detector training on PASCAL. Our large-scale active
selection yields steeper learning curves than passive selection, and
reaches peak state-of-the-art performance using only -30 % of the train-
ing data

as learning in the “sandbox”, but is useful to test our jumping
window and hashing-based approach. Furthermore, the nat-
ural cluttered images are significantly more challenging than
data considered by prior active object learning approaches,
and our unlabeled pool is orders of magnitude larger.

Figure 8 shows the results. We see our method’s clear
advantage; the steeper learning curves indicate it improves
accuracy on the test set using fewer labels. In fact, in most
cases our approach reaches state-of-the-art performance (see
markers above 5,000 labels) using only one-third of the avail-
able training data.

It is worth noting that in this sandbox testing scenario,
the passive learning baseline is much stronger than a method
that simply “randomly” labels images. Rather, the pool of
unlabeled examples is guaranteed to contain many relevant
images of the object of interest, and the passive learner will
uncover them in an arbitrary order.

4.3 Online Live Learning on Flickr

Finally, we deploy our complete live learning system, where
new training data is crawled on Flickr. We consider all object

Table 2 Number of images per category in the crawled dataset and the
new Flickr test set

Bird Boat Chair Dog Pottedplant Sheep

Flickr-crawled 2936 3138 2764 1831 1566 1570

Flickr-test 655 628 419 780 364 820

classes for which state-of-the-art AP is less than 25.0 (boat,
dog, bird, pottedplant, sheep, chair) in order to provide
the most challenging case study, and to seek improvement
through live learning where other methods have struggled
most. To form the Flickr test set, we download images tagged
with the class names dated in 2010; when running live train-
ing, our system is restricted to images dated in 2009. Table 2
shows the data statistics, in terms of the number of images
per category in the training and testing sets.

We compare to two baselines: (1) a Keyword+image
baseline that uses the same crawled image pool, but ran-
domly selects images to get annotated on MTurk, and (2)
a Keyword+window baseline that randomly picks jumping
windows to get labeled. These are strong baselines since most
of the images will contain the relevant object. In fact, they
exactly represent the status quo approach, where one cre-
ates a dataset by manually pruning keyword search results.
We initialize all methods with the PASCAL-trained models
(5000 training images), and run for 10 iterations.

4.3.1 Live Learning Applied to PASCAL Test Set

Figure 9 shows the live learning results on the PASCAL test
set. For four of the six categories, our system improves test
accuracy, and outperforms the keyword approaches. The final
AP also exceeds the current state-of-the-art for three cate-
gories (see Table 3, where we compare our method to the best
previous result between Felzenszwalb et al. (2009) or Vedaldi
et al. (2009)). This is an exciting result, given the size of the

Annotations added, out of 3 million examples

A
ve

ra
ge

 P
re

ci
si

on

5000 5500 6000

0.15

0.2

boat

5000 5500 6000

0.1

0.2

dog

5000 5500 6000

0.05

0.1

0.15

bird

5000 5500 6000

0.11
0.12
0.13
0.14
0.15

pottedplant

5000 5500 6000

0.2

0.25

0.3

sheep

5000 5500 6000

0.1
0.12
0.14
0.16
0.18

chair

Live active (ours) Keyword+image Keyword+window SP-MKL [3] LSVM [2]

Annotations added, out of 3 million examples

A
ve

ra
ge

 P
re

ci
si

on

5000 5500 6000

0.1

0.15

0.2

0.25

boat

5000 5500 6000

0.44
0.46
0.48
0.5

0.52

0.54 dog

5000 5500 6000

0.2

0.25

0.3

bird

5000 5500 6000
0.2

0.4

pottedplant

5000 5500 6000

0.2

0.25

0.3

0.35

sheep

5000 5500 6000
0.1

0.2

0.3

chair

Live active (ours) Keyword+image Keyword+window

(a) (b)

Fig. 9 Live learning results on (a) PASCAL test set and (b) Flickr test set

123

108 Int J Comput Vis (2014) 108:97–114

Table 3 Categories for which our method yields the best AP on
PASCAL VOC 2007, compared to any result we found in the litera-
ture

Aeroplane Bird Boat Cat Dog Sheep Sofa Train

Ours 48.4 15.8∗ 18.9∗ 30.7 25.3∗ 28.8 33.0 47.7

Previous best 37.6 15.3 16.8 30.0 21.5 23.9 28.5 45.3

∗Means extra Flickr data automatically obtained by our system was
used to train

unlabeled pools (∼3 million examples), and the fact that the
system refined its models completely automatically.

However, for two classes (chair, sheep), live learning
decreases accuracy. Of course, more data cannot guarantee
improved performance on a fixed test set. We suspect the
decline is due to stark differences in the distribution of PAS-
CAL and Flickr images, since the PASCAL dataset creators
do some manual preparation and pruning of all PASCAL
data. Our next result seems to confirm this.

4.3.2 Live Learning Applied to Flickr Test Set

Figure 9b shows the live learning results on the new Flickr
test set, where we apply the same live-learned models from
above. While this test set appears more challenging than
PASCAL, the improvements made by our approach are
dramatic—both in terms of its absolute climb, as well as its
margin over the baselines. The results indicate that our large-
scale live learning approach can autonomously build models
appropriate for detection tasks with realistic and unbiased
data.

The gains over the passive keyword-based methods are
noticeable and fairly consistent. Again, it is important to note
that the passive baselines are much stronger than truly “ran-
dom” selection of images to label. The baselines do not select
images at random from a generic pool of images. Rather, they
select among those that have the keyword tag for the object

of interest. This means there is great chance of at least the
object being present, if not somewhat useful to the classi-
fier. Furthermore, this procedure—keyword search followed
by manual pruning in some arbitrary order—is exactly the
status quo approach taken by researchers. The fact that live
learning can outperform this strong baseline is very encour-
aging.

4.4 Analysis of Active Selections

Next we analyze the selections made by the live active learn-
ing system, compared to those made by the traditional pas-
sive (Keyword+image) baseline. Since the active learner
typically outperforms the passive learner, we would like
to understand what it is about the images it selects that
makes them more informative. To this end, we first exam-
ine some qualitative examples, and then attempt to quantify
the differences between what each method chooses to have
labeled.

Figure 10 shows selections made by either method when
learning the object category boat. The red boxes shown on the
examples chosen by our method (see part (a)) illustrate the
typical quality of its jumping windows. While not perfectly
aligned with the tight ground truth bounding boxes, they have
sufficient overlap to appear as useful candidate positives to
the system.

Comparing the two sets of images, the examples in Fig. 10
also illustrate how our approach effectively focuses human
attention among the crawled tagged images. We see that the
first images our method selects (Fig. 10a) contain instances of
a boat with variable appearance, which are intuitively useful
to expand the learned model. In contrast, while the base-
line’s selections (Fig. 10b) often will contain a boat of some
kind—since the source images are all from keyword search
on Flickr—the instances it chooses to get labeled first are
unlikely to refine the boat detector well. For example, note

selected box selected box selected box selected box selected box

(a) First images our method actively selects for labeling when learning ‘boat’
selected box

(b) First images the Keyword+image baseline selects for labeling when learning ‘boat’

Fig. 10 Selections by (a) our live active approach and (b) the Keyword+image passive baseline. The red bounding boxes in (a) show the root
window among all candidate jumping windows in that image that led to the image’s selection

123

Int J Comput Vis (2014) 108:97–114 109

Fig. 11 Representative set of images selected for labeling by our approach (left) and the Keyword+image passive baseline (right), for six different
object categories. The yellow boxes denote the ground truth position of the object. See text for details

the closeup of a side of the boat, or the picture of a boy holding
a toy boat. This accentuates an important aspect of live learn-
ing. Its benefit is not solely in finding more examples of the
object category; even basic keyword search can accomplish
that. Rather, it helps the system identify useful examples of
the object category in the context of what the detector already
knows.

To examine this difference more closely, Fig. 11 shows
the first 10 unlabeled images selected for labeling by either
method, for each of six object categories. The bounding boxes
denote the ground truth object positions (which are unknown

to our algorithm during the selection process). Here we notice
that the live active learner finds more positive examples in its
first label requests. While more positive examples that con-
firm what the detector already knows would be redundant,
by definition these are positives that are most uncertain to the
current model, since they fall nearest to the decision bound-
ary. In contrast, the passive method yields fewer positives,
and so it is more susceptible to the noisy tags on the Flickr
images.

Figure 12 quantitatively confirms this observation. It
shows the percentage of positive examples in the selections

123

110 Int J Comput Vis (2014) 108:97–114

0

10

20

30

40

50

bir
d

bo
at

ch
air do

g

po
tte

dp
lan

t

sh
ee

p

P
er

ce
nt

ag
e

of
 p

os
iti

ve
 la

be
ls Active

Keyword+image passive

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ar

gi
n

D
is

ta
nc

e

random active

(b)

Fig. 12 (a) The percentage of positive examples selected by each
method for each object category in the first five rounds of learning. (b)
The distributions of the distances of selected examples to the classifier
hyperplane, for the Keyword+passive baseline (left) and our approach
(right). See text for details

made by each method, per object category. These percent-
ages correspond to all label queries made within five rounds
of learning, where each round accumulates T = 100 new
examples. Notably, for those categories where our active
approach is significantly better than the passive approach
(e.g., boat, sheep, pottedplant), our method selects twice as
many positive examples as the baseline. Furthermore, for
the one class where we underperform the passive baseline
(chair), our method’s positive ratio, while still a bit higher, is
much closer to the baseline’s. Therefore, we see that focusing
the annotations on probable positive instances is a benefit of
live learning.

Aside from finding more positives among the unlabeled
image pool, our method tends to select “cleaner” and more
varied instances of an object category. For example, in
Fig. 11, the images we select for dog have higher resolu-
tion views and dogs with some variety in textures (spots,

Table 4 Recall rate for the jumping windows as a function of the num-
ber of initial training examples. See text for details

#Examples Recall

Sheep (%) Chair (%)

20 46 28

40 64 48

60 63 51

80 63 51

100 69 49

solid). For sheep, we request labels for instances that vary in
size (baby and adult) as well as pose (facing left or right).
However, in the extreme, annotating highly diverse examples
can also be problematic, especially when the total amount of
labeled data is too low. For example, in the chair class, the
variable appearance and high occlusion among the selected
instances are not sufficiently representative and/or tend to
have different contexts than those found in PASCAL. In fact,
they are more in the vein of the chair examples the PASCAL
Challenge deems as “difficult” and thus does not include the
in standard evaluation.

To quantify the informativeness of the examples selected
by either method, we can look at how uncertain they are
under the simple margin criterion. Figure 12b plots the dis-
tance to the margin for the selected examples in the first itera-
tion. Compared to the passive Keyword+image baseline, our
active approach identifies instances significantly closer to the
decision boundary, which (as the learning curves above indi-
cate) tend to be more informative overall. While this is to
be expected—it is exactly the criterion our method aims to
optimize—it is nonetheless good evidence that the approx-
imation from hashing is strong enough to substantially out-
perform an arbitrary draw from the pool of images already
pruned by keyword search.

Finally, we analyze the sensitivity of active selection with
respect to the initial training data. The “cold start” problem is
well known in active learning: in order to start exploiting the
current model to choose informative things, the system has to
already know something about the classes! Our method had a
natural “warm” starting point in the live learning results pre-
sented above, since we could seed it with the labeled training
examples from PASCAL. We found that the initial detectors
trained with that data were good enough to achieve about
95 % recall in the jumping windows, which in turn means
that our hash table of unlabeled instances will have (at least
some) good positive candidate bounding boxes.

However, what if we have much less data to initialize?
How sensitive will the quality of candidates for active selec-
tion be? To test this, we analyze the sheep and chair classes,
as they represent a success and failure case for our method,
respectively. Using randomly selected initial training exam-

123

Int J Comput Vis (2014) 108:97–114 111

ples from the Flickr training data, we train models using a
varying number of examples ({20, 40, 60, 80, 100}). Note
that because these are “cold start” instances that are chosen
at random, they are likely to have a disproportionate num-
ber of negatives among them. Then, we apply each resulting
model to the PASCAL test set, and record the maximum
recall obtained by their jumping windows. The higher this
recall rate is, the better chance the active learner will have to
discover good candidates.

Table 4 shows the results. We observe two main outcomes.
First of all, the recall rates climb with more initial training
data, as expected. If the models are initialized with too few
examples, recall may be so low as to produce a weak set of
candidates in the hash table. Still, with only 40 instances,
recall is already at 64 % for the sheep category. Second of
all, we see another hint at why our method fails to outperform
standard passive learning on the chair category. Its recall even
with 100 labeled examples remains at about 50 %. There-
fore, its candidates in the hash table could be poorly focused,
leading the method to favor less informative examples in sub-
sequent iterations. This echoes the analysis above about the
chair class and the high intra-class appearance variation in
selected examples.

4.5 Annotation Collection

Next we analyze the live online annotation collection process
itself. Figure 13 shows some example annotations obtained
from multiple annotators on Mechanical Turk and the con-
sensus automatically obtained by our mean shift approach.
The bounding boxes obtained from the annotators have a
fairly large variability in their location and their tightness
with respect to the object of interest. In order to train accu-
rate detectors it is critical to obtain bounding boxes that

fit tightly around all the objects of interest in the image.
Our consensus approach is able to provide such accurate
tightly fitting bounding boxes in the majority of the cases.
The last columns for ‘boat’ and ‘chair’ show the most
common failure cases, where a majority of annotators pro-
vided a single bounding box surrounding all objects in the
image.

Having obtained consensus on all images, we can go
back and evaluate every annotator’s performance based
on how much they agree. We score a detection as cor-
rect if the bounding box provided by an annotator has an
intersection score of at least 80 % with the consensus.
Figure 14a shows the precision and recall of all the annota-
tors computed on all categories for “normal” instances of the
object.

We see that most annotators have a precision of at least
50 %, which suggests there were very few spammers and
most are competent for this task. However, the recall values
are fairly low, even among frequent annotators (those provid-
ing at least 25 bounding boxes). This could be because the
PASCAL division of the object of interest into {normal, trun-
cated, unusual} categories is subjective. However, despite
the low recall of most annotators, by using 10 annotators per
instance we are able to detect all the objects in most images.
Interestingly, there are clusters of annotators near the pre-
cision values of both 0 and 1. Perhaps these correspond to
annotators who were tasting the task and found it too easy or
hard to try more.

Figure 14b summarizes the number of jobs completed per
annotator who contributed to the live learning process. There
were in total 7,182 annotations (bounding boxes) collected
from all six categories, and 182 annotators provided them.
We see the graph follows an exponential shape, where a few
annotators provided large portions of annotations while the

Fig. 13 Representative examples of our annotation collection. In each
pair of images, the left image shows bounding boxes from 10 annota-
tors, and the right image shows the consensus computed automatically

by our method. In spite of the variability in precision between the anno-
tators, our consensus approach yields fairly accurate and tight bounding
boxes. Best viewed in color

123

112 Int J Comput Vis (2014) 108:97–114

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

All

>25 bboxes

(a) Annotator performance

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Annotator Index (sorted)

N
um

be
r

of
 A

nn
ot

at
io

ns

(b) Annotation statistics

Fig. 14 Analysis of annotations collected. (a) Precision-recall of all
annotators computed using the obtained consensus. Points in blue high-
light results of frequent annotators. (b) Number of annotations per anno-
tator, in sorted order

rest worked on very few (less than 25) annotations. In fact,
about one-sixth of the annotators provided more than 90 %
of the annotations. This suggests that one could target a
small group of annotators and further optimize the collec-
tion process based on their expertise.

4.6 Computation Time

Table 5 shows the time complexity of each stage, and illus-
trates our major advantages for selection and retraining com-
pared to existing strong detectors. Our times are based on
a dual-core 2.8 GHz CPU, comparable to Felzenszwalb et
al. (2009) and Vedaldi et al. (2009). Our jumping win-
dow+hashing scheme requires on average 2–3 s to retrieve
2,000 examples nearest the current hyperplane, and an addi-
tional 250 s to rank and select 100 images to query. In con-

Table 5 Run-time comparisons

Active selection Training Detection per image

Ours + active 10 min 5 min 150 s

Ours + passive 0 min 5 min 150 s

LSVM
Felzenszwalb
et al. (2009)

3 h 4 h 2 s

SP+MKL
Vedaldi et al.
(2009)

93 h > 2 days 67 s

Our detection time is mostly spent pooling the sparse codes. Active
times are estimated for Felzenszwalb et al. (2009),Vedaldi et al. (2009)
models based on linear scan. Our approach’s efficiency makes live learn-
ing practical

trast, a linear scan over the entire unlabeled pool would
require about 60 h.

The entire online learning process requires 45–75 min per
iteration: 5–10 min to retrain, 5 min for selection, and about
one hour to wait for the MTurk annotations to come back
(typically 50 unique workers gave labels per task). Thus,
waiting on MTurk responses takes the majority of the time,
and could likely be reduced with better payment. In compar-
ison, the same selection with the method of Felzenszwalb et
al. (2009) or Vedaldi et al. (2009) would require about 8 h to
1 week, respectively.

5 Conclusions and Future Work

Our contributions are (i) a novel efficient part-based linear
detector that provides excellent performance, (ii) a jumping
window and hashing scheme suitable for the proposed detec-
tor that retrieves relevant instances among millions of candi-
dates, and (iii) the first active learning results for which both
data and annotations are automatically obtained, with min-
imal involvement from vision experts. Tying it all together,
we demonstrated an effective end-to-end system on two chal-
lenging datasets.

Looking forward, there are a number of challenging issues
in active learning that will influence how successful future
live learners can be. As in any pool-based active learning
approach, the system’s model of what looks useful is inher-
ently tied to the particular classifier it employs. An interesting
challenge for future work is to identify images for labeling
that could benefit an array of competing approaches. Fur-
thermore, while our system does well working in a “myopic”
mode, where at each cycle of learning the top T most uncer-
tain images are chosen for labeling, a scalable solution for far-
sighted selection of jointly informative sets of images would
be interesting to consider. Similarly, while our pipeline does
some standard hard negative mining as new data is added,
sub-linear time strategies to find negatives far from the hyper-
plane across all data might better steepen learning curves.

123

Int J Comput Vis (2014) 108:97–114 113

Finally, while our system focuses on the “exploitation” aspect
by leveraging the current classifier to find useful exam-
ples, it could be useful to also incorporate an “exploration”
aspect that attempts to cover diverse areas of the feature
space.

Future work could also investigate applying language
models and word sense disambiguation methods to enhance
the way the images are crawled using keywords. For exam-
ple, rather than simply gather up candidate images that have a
keyword match, the system could automatically broaden the
queries to other nouns in the same synset, or use descriptive
phrases to isolate image content most likely aligned with the
target visual concept. In terms of the crowdsourcing aspect
of this work, we would like to investigate automated methods
for adjusting payments offered to workers according to the
marketplace dynamics and relative difficulty of the actively
selected annotation tasks.

Acknowledgments The authors thank the anonymous reviewers for
their helpful comments. This research is supported in part by NSF
CAREER IIS-0747356 and DARPA Mind’s Eye.

References

Boureau, Y.-L., Bach, F., LeCun, Y., Ponce, J. (2010). Learning mid-
level features for recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Charikar, M. (2002). Similarity estimation techniques from rounding
algorithms. In Symposium on Theory of Computing.

Chum, O., Zisserman, A. (2007). An exemplar model for learning object
classes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human
detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S.,
Yagnik, J. (2013). Fast, accurate detection of 100,000 object classes
on a single machine. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). A
large-scale hierarchical image database: Imagenet. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman,
A. (2010). The pascal visual object classes challenge. International
Journal of Computer Vision, 88(2), 303–338.

Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2009).
Object detection with discriminatively trained part based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
99(1), 5555.

Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A. (2005). Learning object
categories from Google’s image search. In Proceedings of the Inter-
national Conference on Computer Vision (ICCV).

Jain, P., Vijayanarasimhan, S., Grauman, K. (2010). Hashing hyperplane
queries to near points with applications to large-scale active learning.
In Advances in Neural Information Processing Systems (NIPS).

Joachims, T. (2006). Training linear SVMs in linear time. In Inter-
national Conference on Knowledge Discovery and Data Mining
(KDD).

Joshi, A., Porikli, F., Papanikolopoulos, N. (2009). Multi-class active
learning for image classification. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Kapoor, A., Grauman, K., Urtasun, R., Darrell, T. (2007). Active learn-
ing with Gaussian processes for object categorization. In Interna-
tional Conference on Computer Vision (ICCV).

Lampert, C., Blaschko, M., & Hofmann, T. (2008). Object localization
by efficient subwindow search: Beyond sliding windows. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (ICCV).

Lee, Y. J., Grauman, K. (2010). Object-graphs for context-aware cat-
egory discovery. In Proceedings of IEEE International Conference
on Computer Vision (CVPR).

Li, L., Wang, G., & Fei-Fei, G. (2007). Automatic online picture col-
lection via incremental model learning: Optimol. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Pirsiavash, H., Ramanan, D. (2012). Steerable part models. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Qi, G., Hua, X., Rui, Y., Tang, J., Zhang, H. (2008). Two-dimensional
active learning for image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Russell, B., Torralba, A., Murphy, K., & Freeman, W. (2007). Labelme:
A database and web-based tool for image annotation. International
Journal of Computer Vision, 77, 157–173.

Siddiquie, B., & Gupta, A. (2010). Modeling context for multi-class
active learning: Beyond active noun tagging. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Song, H., Zickler, S., Althoff, T., Girshick, R., Fritz, M., Geyer, C.,
Felzenszwalb, P., Darrell, T. (2012). Sparselet models for efficient
multiclass object detection. In Proceedings of the European Confer-
ence on Computer Vision.

Sorokin, A., Forsyth, D. (2008). Utility data annotation with Amazon
mechanical turk. In Workshop on Internet Vision.

Tong, S., Koller, D. (2000). Support vector machine active learning with
applications to text classification. In Proceedings of the International
Conference on Machine Learning (ICML).

Torralba, A., Murphy, K., & Freeman, W. (2007). Sharing visual features
for multiclass and multiview object detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(5), 854–869.

Uijlings, J., Smeulders, A., Scha, R. (2009). What is the spatial extent
of an object? In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A. (2009). Multiple
kernels for object detection. In International Conference on Com-
puter Vision (ICCV).

Vijayanarasimhan, S., & Grauman, K. (2008). Multiple-instance learn-
ing for weakly supervised object categorization: Keywords to visual
categories. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Vijayanarasimhan, S., & Grauman, K. (2011). Training object detectors
with crawled data and crowds: Large-scale live active learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Vijayanarasimhan, S., Grauman, K. (2008). Multi-level active predic-
tion of useful image annotations for recognition. In Advances in
Neural Information Processing Systems (NIPS).

Vijayanarasimhan, S., Kapoor, A. (2010). Visual recognition and detec-
tion under bounded computational resources. In Proceedings of IEEE
International Conference on Computer Vision (CVPR).

Vijayanarasimhan, S., Jain, P., & Grauman, K. (2014). Hashing hyper-
plane queries to near points with applications to large-scale active
learning. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 36(2), 276–288.

123

114 Int J Comput Vis (2014) 108:97–114

Viola, P., Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

von Ahn, L., Dabbish, L. (2004). Labeling images with a computer
game. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI).

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y. (2010). Locality-
constrained linear coding for image classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Welinder, P., & Perona, P. (2010). Rating annotators and obtaining cost-
effective labels: Online crowdsourcing. In Workshop on Advancing
Computer Vision with Humans in the Loop (ACVHL).

Yang, J., Yu, K., Gong, Y., Huang, T. (2009). Linear spatial pyramid
matching sparse coding for image classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

123

	Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds
	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Object Representation and Linear Classifier
	3.1.1 Window Descriptions
	3.1.2 Feature Encoding
	3.1.3 Relationship to Existing Detection Models

	3.2 Generating Candidate Root Windows
	3.3 Active Selection of Object Windows
	3.4 Online Annotation Requests
	3.5 Training the Detector

	4 Results
	4.1 Comparison to State-of-the-Art Detectors
	4.2 Active Detector Training on PASCAL
	4.3 Online Live Learning on Flickr
	4.3.1 Live Learning Applied to PASCAL Test Set
	4.3.2 Live Learning Applied to Flickr Test Set

	4.4 Analysis of Active Selections
	4.5 Annotation Collection
	4.6 Computation Time

	5 Conclusions and Future Work
	Acknowledgments
	References

