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Abstract Recently, a number of cross bilateral filtering
methods have been proposed for solving multi-label prob-
lems in computer vision, such as stereo, optical flow and
object class segmentation that show an order of magnitude
improvement in speed over previous methods. These meth-
ods have achieved good results despite using models with
only unary and/or pairwise terms. However, previous work
has shown the value of using models with higher-order terms
e.g. to represent label consistency over large regions, or
global co-occurrence relations. We show how these higher-
order terms can be formulated such that filter-based inference
remains possible. We demonstrate our techniques on joint
stereo and object labelling problems, as well as object class
segmentation, showing in addition for joint object-stereo
labelling how our method provides an efficient approach to
inference in product label-spaces. We show that we are able
to speed up inference in these models around 10–30 times
with respect to competing graph-cut/move-making methods,
as well as maintaining or improving accuracy in all cases. We
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1 Introduction

Many computer vision problems, such as object class seg-
mentation, stereo and optical flow, can be formulated as
multi-labelling problems within a Markov Random Field
(MRF) or Conditional Random Field (CRF) framework.
Although exact inference in such models is in general
intractable, much attention has been paid to developing fast
approximation algorithms, including variants of belief prop-
agation, dual decomposition methods, and move-making
approaches ( Kolmogorov 2006; Komodakis et al. 2011;
Boykov et al. 2001). Recently, a number of cross bilateral
Gaussian filter-based methods have been proposed for prob-
lems such as object class segmentation ( Krahenbuhl and
Koltun 2011), denoising (Kornprobst et al. 2009), stereo and
optical flow (Rhemann et al. 2011), which permit substan-
tially faster inference in these problems, as well as offering
performance gains over competing methods. Our approach
builds on such filter-based approaches and shows them to
outperform or perform equally well to the previously dom-
inant graph-cut/move-making approaches on all problems
considered.

A problem with filter-based methods as currently formu-
lated is that they can only be applied to models with limited
types of structure. In Rhemann et al. (2011), dependencies
between output labels are abandoned, and the filtering step is
used to generate unary costs which are treated independently.
In Krahenbuhl and Koltun (2011), filtering is used to per-
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form inference in MRF models with dense pairwise depen-
dencies taking the form of a weighted mixture of Gaussian
kernels. Although allowing fully connected pairwise models
increases expressivity over typical 4 or 8-connected MRF
models, the inability to handle higher-order terms is a disad-
vantage.

The importance of higher-order information has been
demonstrated in all of the labelling problems mentioned.
For object class segmentation, the importance of enforc-
ing label consistency over homogeneous regions has been
demonstrated using Pn-Potts models (Kohli et al. 2007), and
co-occurrence relations between classes at the image level
have also been shown to provide important priors for seg-
mentation (Ladickỳ et al. 2010). For stereo and optical flow,
second-order priors have proved to be effective (Woodford
et al. 2009), as have higher-order image priors for denoising
(Potetz and Lee 2008).

In this paper, we propose a number of methods by which
higher-order information can be incorporated into MRF mod-
els for multi-label problems so that, under certain model
assumptions, using efficient bilateral filter-based methods
for inference remains possible. Specifically, we show how
to encode (a) a broad class of local pattern-based potentials
(as introduced in Komodakis and Paragios (2009), Rother et
al. (2009)), which include Pn-Potts models and second-order
smoothness priors, and (b) global potentials representing co-
occurrence relationships between labels as in Ladickỳ et al.
(2010); Gonfaus et al. (2010). We assume a base-layer MRF
with full connectivity and weighted Gaussian edge potentials
as in Krahenbuhl and Koltun (2011). Our approach allows
us to apply bilateral filter-based inference to a wide range of
models with complex higher-order structure. We demonstrate
the approach on two such models, first a model for joint stereo
and object class labelling as in Ladickỳ et al. (2010), and sec-
ond a model for object class segmentation with co-occurrence
priors as in Ladickỳ et al. (2010). In the case of joint stereo
and object labelling, in addition to demonstrating fast infer-
ence with higher-order terms, we show how cost-volume fil-
tering can be applied in the product label-space to generate
informative disparity potentials, and more generally how our
method provides an efficient approach to inference in such
product label-spaces. Further, we demonstrate the benefits
for object-stereo labelling of applying recent domain trans-
form filtering techniques (Gastla and Oliveira 2011) in our
framework. In both joint stereo-object labelling and object
class segmentation, we are able to achieve substantial speed-
ups with respect to graph-cut based inference techniques and
improvements in accuracy with respect to the baseline meth-
ods. In summary, our contributions are:

• A set of efficient techniques for including higher-order
terms in random fields with dense connectivity, allowing
for mean-field filter-based inference,

• An adaptation of our approach to product label-space
models for joint object-stereo labelling, again permitting
efficient inference,

• An investigation of the advantages/disadvantages of
alternative filtering methods recently proposed (Korn-
probst et al. 2009; Gastla and Oliveira 2011; Adams et
al. 2010) within our framework.

We briefly give details about some of the related work
in Sect. 2. In Sect. 3 we review the method of Krahen-
buhl and Koltun (2011). Sections 4 and 5 provide details on
how we encode higher-order terms and product label spaces
respectively, Sect. 6 gives experimentation on joint stereo
and object labelling, and object class segmentation. Finally
Sect. 7 analyses the mean-field method and Sect. 8 concludes
with a discussion.

2 Related Work

Over the last few years many different methods have been
proposed for the problem of object class segmentation, which
assigns an object label such as road or building to every pixel
in the image.

First we briefly review some of the interactive algorithms
before going into the automatic algorithms. In the interactive
segmentation case, the algorithms are guided by the user-
defined seed pixels corresponding to different labels for seg-
menting out the objects of interest. Rother et al. (2004))
and Boykov and Jolly (2001) proposed graph-cuts based
approaches to do interactive segmentation. But graph-cuts
based methods generally suffer from the problem of the
shrinkage bias (bias towards shorter boundaries). In order
to overcome this issue, Leo Grady proposed a random walk
based method (Grady 2006) for multilabel interactive image
segmentation. They analytically determine the probability
that an unlabelled pixel would reach one of the labelled pixel
which helps them to decide the label of each unlabelled pixel.
But the random walk approach suffers from the problem of
sensitivity to location of pixels labelled by the users. Sin-
garaju et al. (2008) proposed a continuous MRF based formu-
lation, a hybrid of the graph-cuts based approach and the ran-
dom walker, to recover from these issues. Another interesting
approach for segmentation is based on the geodesic distance
of each pixel to the user-provided seed pixels (Criminisi et
al. 2008; Bai and Sapiro 2007). While these approaches effi-
ciently solved the problem of interactive segmentation, in
this work we focus on automatic segmentation.

Over the years several interesting algorithms have also
been developed for automatic object class segmentation.
Many of these algorithms integrate information from vari-
ous sources such as top-down object-specific knowledge and
bottom-up pixel level knowledge to improve the accuracy
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(Borestein and Malik 2006; Kumar et al. 2005). Though these
approaches work well on some challenging dataset, they gen-
erally fail while dealing with large number of classes. Shot-
ton et al. (2009) proposed TextonBoost approach to over-
come this issue. While this approach produce good results
for the object class segmentation problem, they fail to cap-
ture/enforce higher order constraints on the output label
space.

Many works have shown the importance of incorporating
higher order constraints on the label space. In order to solve
CRF with the higher order constraints, there are two broad
classes of methods: graph-cuts based methods and message
passing approaches. Lan et al. (2009) proposed approxi-
mate belief propagation for efficient inference in higher order
MRFs. Following this, Potetz (Potetz and Lee 2008) showed
how belief propagation can be efficiently performed in graph-
ical models containing moderately large cliques. However,
as these methods were based on BP, they were quite slow
and took minutes or hours to converge. Kohli et al. 2007
designed graph-cuts based efficient method to incorporate
higher order potential in their CRF framework, and showed
how certain classes of higher order potentials can be min-
imized using move making algorithm such as α-expansion
method (Boykov et al. 2001). This is followed by the work
of Ladickỳ et al. (2009, 2010) who showed how context and
detector based higher level knowledge can be incorporated in
the CRF framework. These approaches have produced excel-
lent results, but they typically involve high time complexity
to be applicable for any real-time object class segmentation
and recognition.

The second part of our work deals with efficiently solv-
ing the problem of jointly estimating the object-stereo labels
at the pixel level. This problem has also been studied in the
past and some of the previous research has tried to develop
efficient algorithms for this problem. The most related is the
work of Ladickỳ et al. (2010) who formulated the problem
in a CRF framework and used graph-cuts based range-move
approaches (Veksler 2007; Pawan Kumar and Torr 2008) to
solve the problem efficiently. Further, Bleyer et al. (2011)
also proposed method to jointly estimate the object and dis-
parity labels at the pixel level. The main difference between
these two works is that the previous work requires already
trained models of different object classes, while the later one
performs an unsupervised segmentation approach (Comani-
ciu and Meer 2002) to extract a set of object segments. Bleyer
et al. (2012) further improved the object-stereo output by
incorporating the scene-consistent 3D prior knowledge to
improve the stereo output. While these approaches work in
discrete label space, Goldlucke and Cremers (2010) proposed
a convex relaxation approach which allows to cast the joint
object-stereo problem in terms of convex optimization prob-
lems. Though these approaches have produced good results,
they still suffer from high time complexity.

While most of these related works have focussed on lim-
ited 4 or 8 connectivity, several works in the past have incor-
porated dense pairwise connections to capture context infor-
mation. In this paper, we follow such line of research where
we have fully connected CRF that allows to enforce pair-
wise costs on all pairs of pixels in the image. Such fully
connected CRFs have been used for semantic image labeling
in the past (Rabinovich et al. 2007; Toyoda and Hasegawa
2008; Galleguillos et al. 2008; Payet and Todorovic 2010).
Though these approaches motivate us to incorporate dense
pairwise connections, the complexity of their inference in
such fully connected models restricted their applications to
small sets of pixels/regions/variables. Finally, there is an
interesting work by Krahenbuhl and Koltun (2011) who pro-
posed a highly efficient algorithm to perform inference in the
fully connected pairwise CRF for certain kind of pairwise
potentials. We give detailed description of their approach
below.

3 Filter-Based Inference in Dense Pairwise CRFs

We begin by reviewing the approach of Krahenbuhl and
Koltun (2011), which provides a filter-based method for
performing fast approximate maximum posterior marginal
(MPM) inference1 in multi-label CRF models with fully con-
nected pairwise terms, where the pairwise terms have the
form of a weighted mixture of Gaussian kernels. We define a
random field over random variables X = {X1, ...X N } condi-
tioned on an image I. We assume there is a random variable
associated with each pixel in the image N = {1...N }, and the
random variables take values from a label set L = {l1, ..., lL }.
We can then express the fully connected pairwise CRF as:

P(X|I) = 1

Z(I)
exp(−E(X|I)) (1)

E(X|I) =
∑

i∈N
ψu(xi )+

∑

i< j∈N
ψp(xi , x j ) (2)

where E(X|I) is the energy associated with a configura-
tion X conditioned on I, Z(I) = ∑

X′ exp(−E(X′|I)) is the
(image dependent) partition function, and ψu(.) and ψp(., .)

are unary and pairwise potential functions respectively, both
implicitly conditioned on the image I. The unary potentials
can take arbitrary form, while ( Krahenbuhl and Koltun 2011)
restrict the pairwise potentials to take the form of a weighted
mixture of Gaussian kernels:

ψp(xi , x j ) = μ(xi , x j )

M∑

m=1

w(m)k(m)(fi , f j ) (3)

1 For exact MPM inference, the solution satisfies xMPM
i ∈

argmaxl
∑

{x|xi =l} P(x|I ).
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where μ(., .) is an arbitrary label compatibility function,
while the functions k(m)(., .), m = 1...M are Gaussian ker-
nels defined on feature vectors fi , f j derived from the image
data at locations i and j (where ( Krahenbuhl and Koltun
2011) form fi by concatenating the intensity values at pixel
i with the horizontal and vertical positions of pixel i in the
image), andw(m), m = 1...M are used to weight the kernels.

Given this form of CRF, ( Krahenbuhl and Koltun 2011)
show how fast approximate MPM inference can be performed
using cross bilateral filtering techniques within a mean-field
approximation framework. The mean-field approximation
introduces an alternative distribution over the random vari-
ables of the CRF, Q(X), where the marginals are forced to
be independent, e.g. Q(X) = ∏

i Qi (xi ). The mean-field
approximation then attempts to minimize the KL-divergence
D(Q||P)between Q and the true distribution P . By consider-
ing the fixed-point equations that must hold at the stationary
points of D(Q||P), the following update may be derived for
Qi (xi = l) given the settings of Q j (x j ) for all j �= i (see
Koller and Friedman (2009) for a derivation):

Qi (xi = l) = 1

Zi
exp{−ψu(xi )

−
∑

l ′∈L

∑

j �=i

Q j (x j = l ′)ψp(xi , x j )} (4)

where Zi = ∑
xi =l∈L exp{−ψu(xi )−∑

l ′∈L
∑

j �=i Q j (x j =
l ′)ψp(xi , x j )} is a constant which normalizes the marginal
at pixel i . If the updates in Eq. 4 are made in sequence across
pixels i = 1...N (updating and normalizing the L values
Qi (xi = l), l = 1...L at each step), the KL-divergence
is guaranteed to decrease (Koller and Friedman 2009). In
Krahenbuhl and Koltun (2011), it is shown that parallel

updates for Eq. 4 can be evaluated by convolution with a
high dimensional Gaussian kernel using any efficient bilat-
eral filter, e.g. the permutohedral lattice method of Adams et
al. (2010) (which introduces a small approximation). This is
achieved by the following transformation:

Q̃(m)
i (l) =

∑

j �=i

k(m)(fi , f j )Q j (l)

= [Gm ⊗ Q(l)](fi )− Qi (l) (5)

where Gm is a Gaussian kernel corresponding to the m’th
component of Eq. 3, and ⊗ is the convolution operator.
Since

∑
j �=i Q j (x j = l ′)ψp(xi , x j ) in Eq. 4 can be writ-

ten as
∑

m w
(m) Q̃(m)

i (l ′), and approximate Gaussian convo-
lution using (Adams et al. 2010) is O(N ), parallel2 updates
using Eq. 4 can be efficiently approximated in O(M N L2)

time (or O(M N L) time for the Potts model), thus avoid-
ing the need for the O(M N 2L2) calculations which would

2 Although the updates are conceptually parallel in form, the permuto-
hedral lattice convolution is implemented sequentially.

be required to calculate these updates individually. Since the
method requires the updates to be made in parallel rather than
in sequence, the convergence guarantees associated with the
sequential algorithm are lost (Koller and Friedman 2009).
However, ( Krahenbuhl and Koltun 2011) observe good con-
vergence properties in practice. The algorithm is run for a
fixed number of iterations, and the MPM solution extracted
by choosing xi ∈ argmaxl Qi (xi = l) at the final iteration.

Although Krahenbuhl and Koltun (2011) use the per-
mutohedral lattice (Adams et al. 2010) for their filter-based
inference, we note that other filtering methods can also be
used for the convolutions in Eq. 5. Particularly, the recently
proposed domain transform filtering approach (Gastla and
Oliveira 2011) has certain advantages over the permutohe-
dral lattice. Domain transform filtering approximates high-
dimensional filtering, such as 5-D bilateral filtering in 2-D
spatial and 3-D RGB range space, by alternating horizon-
tal and vertical 1-D filtering operations on transformed 1-D
signals which are isometric to slices of the original signal.
Since it does not sub-sample the original signal, its complex-
ity is independent of the filter size, while in Adams et al.
(2010) the complexity and filter size are inversely related. In
Sect. 6, we show that for the filter sizes needed for accurate
object/stereo labelling, the domain transform approach can
allow us to achieve even faster inference times than using
Adams et al. (2010).

4 Inference in Models with Higher-order Terms

We now describe how a number of types of higher-order
potential may be incorporated in fully connected models of
the kind described in Sect. 3, while continuing to permit effi-
cient mean-field updates. The introduction of such higher-
order terms not only greatly expands the expressive power
of such densely connected models, but also makes efficient
filter-based inference possible in a range of models where
other techniques are currently used. We show in our exper-
imentation that filter-based inference generally outperforms
the best alternative methods in terms of speed and accuracy.

We first give a general form of the models we will be deal-
ing with. In place of Eq. 2, we consider the general energy:

E(V|I) =
∑

c∈C
ψc(vc|I) (6)

where V is a joint assignment of the random variables
V = {V1, ..., VNV }, C is a set of cliques each consisting of
a subset of random variables c ⊆ V , and associated with a
potential function ψc over settings of the random variables
in c, vc. In Sect. 3 we have that V = X , that each Xi takes
values in the set L of object labels, and that C contains unary
and pairwise cliques of the types discussed. In general, in
the models discussed below we will have that X ⊆ V , so
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that V may also include other random variables (e.g. latent
variables) which may take values in different label sets, and
C may also include higher-order cliques.

The general form of the mean-field update equations (see
Koller and Friedman (2009)) is:

Qi (vi = ν) = 1

Zi
exp{−

∑

c∈C

∑

{vc|vi =ν}
Qc−i (vc−i ) · ψc(vc)}

(7)

where ν is a value in the domain of random variable
vi , vc denotes an assignment of all variables in clique c,
vc−i an assignment of all variables apart from Vi , and
Qc−i denotes the marginal distribution of all variables in
c apart from Vi derived from the joint distribution Q. Zi =∑
ν exp{−∑

c∈C
∑

{vc|vi =ν} Qc−i (vc−i ) · ψc(vc)} is a nor-
malizing constant for random variable vi . We note that the
summations

∑
{vc|vi =ν} Qc−i (vc−i ) ·ψc(vc) in Eq. 7 evaluate

the expected value ofψc over Q given that Vi takes the value
ν. The updates for the densely connected pairwise model in
Eq. 4 are derived by evaluating Eq. 7 across the unary and
pairwise potentials defined in Sect. 3 for vi = x1...N and
ν = 1...L . We describe below how similar updates can be
efficiently calculated for each of the higher-order potentials
we consider.

4.1 Pattern-Based Potentials

In Komodakis and Paragios (2009), a pattern-based poten-
tial3 is defined as:

ψ
pat
c (xc) =

{
γxc if xc ∈ Pc

γmax otherwise
(8)

where Pc ⊂L|c| is a set of recognized patterns (i.e. label con-
figurations for the clique) each associated with an individual
cost γxc , while a common cost γmax is applied to all other
patterns. We assume |Pc| << L |c|, since when |Pc| ≈ L |c|
the representation approaches an exhaustive parametrization
of ψc(xc).

Given higher-order potentials ψpat
c (xc) of this form, the

required expectation for the mean-field updates (Eq. 7) can
be calculated:

∑

{xc|xi =l}
Qc−i (xc−i ) · ψpat

c (xc)

=
∑

p∈Pc|i=l

⎛

⎝
∏

j∈c, j �=i

Q j (x j = p j )

⎞

⎠ γp

+
⎛

⎝1 −
⎛

⎝
∑

p∈Pc|i=l

⎛

⎝
∏

j∈c, j �=i

Q j (x j = p j )

⎞

⎠

⎞

⎠

⎞

⎠ γmax (9)

3 The class of such sparse higher-order potentials is also considered in
Rother et al. (2009).

where we write Pc|i=l for the subset of patterns in Pc

for which xi = l. Since the expectation in Eq. 9 can
be calculated in O(|Pc||c|) time, such terms contribute
O(maxc(|Pc||c|)|Cpat|) to each parallel update, where Cpat

is the set of pattern-based clique potentials.4 If we assume
each pixel belongs to at most Mpat cliques, and each clique
has at most Pmax patterns, this complexity reduces to
O(Mpat N Pmax).

A particular case of the pattern-based potential is the Pn-
Potts model (Kohli et al. 2007):

ψ
potts
c (xc) =

{
γl if ∀i ∈ c, xi = l
γmax otherwise

(10)

where implicitly we have set P to be the L configurations
with constant labellings. The required expectations here can
be expressed as:

∑

{xc|xi =l}
Qc−i (xc−i ) · ψpotts

c (xc)

=
⎛

⎝
∏

j∈c, j �=i

Q j (x j = l)

⎞

⎠ γl

+
⎛

⎝1 −
⎛

⎝
∏

j∈c, j �=i

Q j (x j = l)

⎞

⎠

⎞

⎠ γmax (11)

which contribute O(L maxc(|c|)|Cpotts|) to each parallel
update. Assuming each pixel belongs to at most Mpat cliques,
we can reexpress this as O(Mpat N L), which effectively
preserves the O(M N L2) complexity of the dense pairwise
updates of Sect. 3 (assuming Mpat ≈ M), and further pre-
serves the O(M N L) complexity when the pairwise terms
also use Potts models. Further potentials which can be cast
as pattern-based potentials are discussed in Komodakis and
Paragios (2009), including second-order smoothness priors
for stereo, as in Woodford et al. (2009).

4.2 Co-occurrence Potentials

Co-occurrence relations capture global information about
which classes tend to appear together in an image and which
do not, for instance that busses tend to co-occur with cars, but
tables do not co-occur with aeroplanes. A recent formulation
(Ladickỳ et al. 2010) which has been proposed attempts to
capture such information in a global co- occurrence poten-
tial defined over the entire image clique cI (generalization to

4 Equation 9 requires evaluation of the joint probability of c − 1 vari-
able assignments for each of the |Pc| patterns, leading to the com-
plexity O(|Pc||c|) for a single evaluation. If Q is prevented from tak-
ing the values 0 and 1, the joint pattern probabilities

∏
j∈c Q j (x j =

p j ) can be calculated once for each clique, and the conditional
forms

∏
j∈c, j �=i Q j (x j = p j ) needed for parallel updates can then

be derived by dividing by Qi (xi = pi ), leading to the overall
O(maxc(|Pc||c|)|Cpat|) complexity.
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arbitrary cliques is also possible) as:

ψcooc
cI

(X) = C(�(X)) (12)

Here, �(X) ⊆ L returns the subset of labels present in con-
figuration X, and C(.) : 2L → R associates a cost with
each possible subset. In Ladickỳ et al. (2010) the restric-
tion is placed on C(.) that it should be non-decreasing with
respect to the inclusion relation on 2L, i.e. �1,�2 ⊆ L and
�1 ⊆ �2 implies that C(�1) ≤ C(�2). We will place the
further restriction that C(.) can be represented in the form:

C(�) =
∑

l∈L
Cl ·�l +

∑

l1,l2∈L
Cl1,l2 ·�l1 ·�l2 (13)

where we write �l for the indicator [l ∈ �], where [.] is 1
for a true condition and 0 otherwise. Equivalently, �l is the
l’th entry of a binary vector of length |L| which represents
� by its set-indicator function, and C(�) is a second degree
polynomial over these vectors. Equation 13 is the form of
C(.) investigated experimentally in Ladickỳ et al. (2010), and
is shown perform well there on object class segmentation.

We consider below two approximations to Eq. 12 which
give rise to efficient mean-field updates when incorporated in
fully connected CRFs as discussed in Sect. 3. Both approx-
imations make use of a set of new latent binary variables
Y = {Y1, ...,YL }, whose intended semantics are that Yl = 1
will indicate that label l is present in a solution, and Yl = 0
that it is absent. As discussed below though, both approxi-
mations enforce this only as a soft constraint.

4.2.1 Model 1

In the first, we reformulate Eq. 12 as:

ψcooc-1
cI

(X,Y) = C({l|Yl = 1})
+K ·

∑

l

[Yl = 1 ∧ (
∑

i

[xi = l]) = 0]

+K ·
∑

l

[Yl = 0 ∧ (
∑

i

[xi = l]) > 0] (14)

We consider constructing two CRF distributions P1(V1|I)
and P2(V2|I) over the variables sets V1 = X and V2 =
{X ,Y} respectively, where the clique structure is the same
in both distributions, except that a potential ψcooc

cI
in P1 has

been replaced by ψcooc-1
cI

in P2. If we set K = ∞ in Eq.
14, the marginals across X in P2 will match P1: P1(X|I) =∑

Y P2(X,Y|I), since the only joint configurations with non-
zero probability in P2 have identical energies. In general this
will not be the case; however, for high K , we can expect that
these distributions to approximately match, and hence to be
able to perform approximate MPM inference using Eq. 14 in
place of Eq. 12.

With this approximation, the relevant expectations over
the latent variables Y1, ..., YL can be calculated as:

∑

{V|Yl=b}
QV−Yl (V − Yl) · ψcooc-1

cI
(V)

=
⎧
⎨

⎩

K · (1 − ∏
i (1 − Qi (xi = l)))+ κ if b = 0

Cl + ∑
l ′ �=l Ql ′(Yl ′ = 1)Cl,l ′

+K · ∏
i (1 − Qi (xi = l))+ κ if b = 1

(15)

leading to the following mean-field updates for the latent
variable distributions:

Ql(Yl = 0) = 1

Zl
exp

{
−K ·

(
1 −

∏

i

(1 − Qi (xi = l))

)}

Ql(Yl = 1) = 1

Zl
exp

⎧
⎨

⎩−Cl −
∑

l ′ �=l

Ql ′(Yl ′ = 1)Cl,l ′

−K ·
∏

i

(1 − Qi (xi = l))

⎫
⎬

⎭ (16)

where the expectations can be calculated in O(N + L) time.
Further, the expectations for variables Xi can be expressed:

∑

{V|Xi =l}
QV−Xi (V − Xi ) · ψcooc-1

cI
(V)

= K · Ql(Yl = 0)

+K ·
∑

l ′ �=l

Ql ′(Yl ′ = 0)

⎛

⎝1 −
∏

j �=i

(1 − Q j (x j = l ′))

⎞

⎠

+K ·
∑

l ′ �=l

Ql ′(Yl ′ = 1)
∏

j �=i

(1 − Q j (x j = l ′))+ κ (17)

which require O(N L) time. This would seem to imply a
contribution of O(N L2) for the cooc-1 terms towards the
full parallel update. However, by computing the full products∏

i (1 − Qi (xi = l)) once for each l, and then dividing by
the relevant terms to calculate the partial products in Eq. 21
(we must ensure Q does not take the extreme values 0 and 1
during updates to do this) a complexity of O(N L + L2) is
achieved.

4.2.2 Model 2

An alternative, looser approximation to Eq. 12 can be given
as:

ψcooc-2
cI

(X,Y) = C({l|Yl = 1})+ K ·
∑

i,l

[Yl = 0 ∧ xi = l]

(18)

using the same latent binary variables Y1, ..., YL introduced
in Eq. 14. Setting K = ∞ in Eq. 18 does not result in
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matching marginals in the CRF distributions P1(V1|I) and
P2(V2|I) (see above) as it did with Eq. 14. Since the con-
straint Yl = 1 ⇒ ∑

i [xi = l] > 0 is not enforced by Eq. 18,
the marginalization for a given X configuration in P2 will
be across all settings of Y that include �(X). Since there
are more of these for configurations when |�(X)| is small
than when it is large, this will tend to make configurations
with smaller label sets more probable, and those with larger
label sets less so, thus accentuating the minimum descrip-
tion length (MDL) regularization implicit in the original cost
function, C(�(X)) (see Ladickỳ et al. (2010)). For large K
(i.e. K �= ∞), we can thus expect similar distortions. Thus,
for the latent variables Yl the required expectations are:

∑

{V|Yl=b}
QV−Yl (V − Yl) · ψcooc-2

cI
(V)

=
{

K · ∑
i Qi (xi = l)+ κ if b = 0

Cl + ∑
l ′ �=l Ql ′(Yl ′ = 1)Cl,l ′ + κ if b = 1

(19)

where we write V−Yl for a setting of all random variables V
apart from Yl (i.e. {X,Yl ′ �=l}), QV−Yl for the marginalization
of Q across these same variables, b ∈ {0, 1} is a boolean
value, and κ is a constant which can be ignored in the mean-
field updates since it is common to both settings of Yl .

Substituting these into Eq. 7, we have the following latent
variable updates:

Ql(Yl = 0) = 1

Zl
exp{−K ·

∑

i

Qi (xi = l)}

Ql(Yl = 1) = 1

Zl
exp{−Cl −

∑

l ′ �=l

Ql ′(Yl ′ = 1)Cl,l ′ } (20)

For the variables Xi , we have the expectations:
∑

{V|Xi =l}
QV−Xi (V − Xi ) · ψcooc-2

cI
(V)

= K · Ql(Yl = 0)+ κ (21)

where κ is again a common constant. Evaluation of each
expectation in Eq. 20 requires O(N + L) time, while each
expectation in Eq. 21 is O(1). The overall contribution to the
complexity of parallel updates for ψcooc-2

cI
is thus O(N L +

L2), as can also be shown forψcooc-1
cI

. This does not increase
on the complexity of O(M N L2) for fully connected pairwise
updates as in Sect. 3.

5 Inference in Models with Product Label Spaces

Now we discuss how we provide an efficient inference
method for jointly estimating per-pixel object class and
disparity labels. Before going into the details of the joint
inference, we briefly describe the specific forms of the

energy functions we use, which are based on the model of
Ladicky et.al. (Ladickỳ et al. 2010) for joint object and stereo
labelling.

For object class segmentation, we define a CRF defined
over a set of random variables X = {X1...X N } ranging over
pixels i = 1...N in image I1, where Xi takes values in
L = {1...L} representing the object present at each pixel. The
energy function for the object variables includes the unary,
pairwise and higher order terms as described in Sect. 4 as
follows:

E O(x) =
∑

i

ψO
u (xi )+

∑

i j

ψO
p (xi , x j )

+
∑

c

ψO
c (xc|I) (22)

Similarly, we express the stereo CRF by a set of variables
U = {U1...UN } ranging over pixels i = 1...N in the image
I1 and each random variable Ui takes a label in D = {1...D}
representing the disparity between pixel i in I1 at a fixed
resolution, and a proposed match in I2. We define a multi-
class CRF framework for disparity labels using the unary and
pairwise energy function as:

E D(u) =
∑

i

ψD
u (ui )+

∑

i j

ψD
p (ui , u j ) (23)

5.1 Joint Formulation for Object and Stereo Labelling

Now we describe our model for jointly estimating per-pixel
object and stereo labels. In this model, we define a CRF over
two sets of variables V = {X ,U} conditioned on the images,
P(V|I1, I2). Each random variable Vi = [Xi ,Ui ] takes a
label vi = [xi , ui ] from the product label space of object and
stereo labels L × D corresponding to the variable Vi taking
object label xi and disparity label ui . In this framework, we
define our joint energy function as:

E J (v) =
∑

i

ψ J
u (vi )+

∑

i j

ψ J
p (vi , v j )+

∑

c

ψ J
c (vc|I)

(24)

whereψ J
u andψ J

p are the joint unary and pairwise terms. We
represent the joint unary potential as sum of the object and
disparity unary terms, and a connecting pairwise term as:

ψ J
u (vi ) = ψO

u (xi )+ ψD
u (ui )+ ψp(xi = l, ui = d) (25)

As discussed, for our mean-field model we replace the 8-
connected pairwise structure on X and U with dense connec-
tivity. We disregard the joint pairwise term over the product
space ψp(xi = l1, ui = d1, x j = l2, u j = d2) proposed in
Ladickỳ et al. (2010). Further, we define a set of Pn-Potts
higher order potentials over X , as described in Sect. 4.
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5.2 Mean-Field Updates

Within this model, the mean-field updates for the object vari-
ables, QO

i (xi = l) are calculated as in Eq. 4, with additional
terms for the Pn-Potts model expectation (Eq. 11) and pair-
wise expectations for the joint potentials ψp(xi , ui ) as fol-
lows:

QO
i (xi = l) = 1

Zi
exp{−ψO

u (xi )−
∑

l ′∈L

∑

j �=i

QO
j (x j = l ′)ψO

p (xi , x j )

−
∑

xc|xi =l

QO
c−i (xc−i ).ψ

potts
c (xc)

−
∑

d ′∈D
Q D

i (ui = d ′).ψp(xi , ui )} (26)

The updates for Q D
i (ui = d) are similar, but without higher-

order terms, take following form:

Q D
i (ui = d) = 1

Zi
exp{−ψD

u (ui )

−
∑

d ′∈D

D∑

j �=i

Q j (u j = d ′)ψD
p (ui , u j )

−
∑

l ′∈L
QO

i (xi = l ′).ψp(ui , xi )} (27)

5.3 Cost Volume Filtering

In addition to the model as described above, we also investi-
gate an approach to updating the unary potentials for the dis-
parity variables based on the cost-volume filtering framework
of Rhemann et al. (2011). This approach involves building a
cost-volume of labels, performing edge-preserving filtering
in each of the label slices, and then finally estimating the per-
pixel labels based on winner-take all label selection strategy.
They achieve good speed-ups without loosing much accuracy
on challenging problems such as stereo correspondence and
optical flow. We leverage cost-volume filtering techniques to
improve our stereo unary potentials by extending this work
to operate in the product label space L × D. First, we define
a CRF at each of the disparity label slices d ∈ D = {1...D}
in the cost volume including variables by Vd = {V d

1 ...V
d
N },

where each variable V d
i takes a disparity label d and object

labels in L = {1...L}. The energy function at each of the
disparity label slice in the cost volume takes following form:

Ed(vd) =
∑

i

ψO
u (xi = l)+

∑

i

ψD
u (ui = d)

+
∑

i

ψp(xi = l, ui = d)+
∑

i j

ψO
p (xi , x j )

(28)

We then introduce mean-field distributions Qt
i (l, d), which

represent the probability of assigning pair of object-disparity
combination at pixel i over a series of update steps t = 0...T .
These updates take following form:

Qt+1
i (l, d) = 1

Zi
exp{−ψO

u (xi = l)− ψD
u (ui = d)

−ψp(xi = l, ui = d)

−
∑

l ′∈L

∑

j �=i

Qt
j (l, d) · ψO

p (xi , x j )} (29)

Further, we set Q0
i (l, d) = 1/L for all i, l, d. At each step, we

can derive costs λt
i (l, d) for each object-disparity assignment

to the pixel i which takes the form as:

λt
i (l, d) = − log(Qt+1

i (l, d)) (30)

We update Qt
i (l, d) and λt

i (l, d) at each iteration via indepen-
dent mean-field updates across the D cost-volumes λ(., d),
d = 1...D, using the same kernel and label compatibil-
ity function settings as described above. The final output
costs are then given by λT

i (l, d). We form enhanced dispar-
ity unary potentials for the full model by adding the maxi-
mum across the output costs to the original potential output:
ψ ′D

u (ui = d) = maxl λ
T
i (l, d)+ ψD

u (ui = d).

6 Experiments

We demonstrate our approach on two labelling problems
including higher-order potentials, joint object-stereo labelling
and object class segmentation, adapting models which have
been proposed independently. Details of the experimental
set-up and results are provided below. In all experiments, tim-
ings are based on code run on an Intel(R) Xeon(R) 3.33 GHz
processor, and we fix the number of full mean-field update
iterations to 5 for all models. In addition, we also evaluate the
convergence of our mean-field algorithm after inclusion of
Potts and co-occurrence based higher order terms. We show
the KL-divergence values between Q and P distributions
after each iteration of our mean-field update.

6.1 Implementation Details

The parameters of the model are set as follows. As in Ladickỳ
et al. (2010), for the joint object-stereo model we use Joint-
Boost classifier responses to form the object unary poten-
tials ψO

u (xi = l) (Torralba et al. 2007). A truncated l2-
norm of the intensity differences is used to form the dis-
parity potentials ψD

u (ui = d) (using the interpolation tech-
nique described in Boykov et al. (2001)), while the potentials
ψp(xi = l, ui = d) are set according to the observed distrib-
utions of object heights in the training set (see Ladickỳ et al.
(2010) for details). For Pascal VOC-10 dataset, we use the
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unary potentials provided by Krahenbuhl and Koltun (2011).
Further, for both of these datasets, we use densely connected
pairwise terms where we use kernels and weightings identi-
cal to Krahenbuhl and Koltun (2011) and an Ising model for
the label compatibility function, μ(l1, l2) = [l1 �= l2].

For Pn-Potts higher-order potentials over X for the joint
object-stereo problem, as described in Sect. 4, we first run
meanshift segmentation (Comaniciu and Meer 2002) over
image I1 at a fixed resolution, and create a clique c from
the variables Xi falling within each segment returned by the
algorithm. However, on the PascalVOC dataset, we generate
a set of 10 layers of segments where each layer corresponds to
one application of unsupervised segmentation with different
parameters of mean-shift and KMeans algorithms. This way
of generating multiple segments have been found to be useful
in dealing with the complex object boundaries (Ladickỳ et al.
2009). Once we have generated these higher order cliques,
we train the higher-order potentials in a piecewise manner.
We first train a classifier using Jointboost (Torralba et al.
2007) to classify the segments associated with the Pn-Potts
cliques, and set the parameters γl in Eq. 10 to be the negative
log of the classifier output probabilities, truncated to a fixed
value γmax set by cross validation. An additional set of Pn-
Potts potentials is also included based on segments returned
by grabcut initialized to the bounding boxes returned from
detectors trained on each of the L classes (see Ladickỳ et al.
(2010)).

A co-occurrence potential is also included for the Pas-
calVOC dataset, which takes the form of either ψcooc-1 or

ψcooc-2 as in Sect. 4. The parameters of the co-occurrence
cost Eq. 13 are set as in Ladickỳ et al. (2010), by fit-
ting a second-degree polynomial to the negative logs of the
observed frequencies of each subset of labels L occurring in
the training data. Finally, individual weights on the potentials
are set by cross-validation.

6.2 Joint Object and Stereo Labelling

We evaluate the efficiency offered by our mean-field update
for joint object-stereo estimation to the Leuven dataset
(Ladickỳ et al. 2010). The dataset consists of stereo images of
street scenes, with ground truth labelling for 7 object classes,
and manually annotated ground truth stereo labellings quan-
tized into 100 disparity labels. We use identical training and
test sets to Ladickỳ et al. (2010).

We compare results from the following methods. As our
baseline, we use the method of Ladickỳ et al. (2010), whose
CRF structure is similar to ours, but without dense connec-
tivity over X , and with a truncated L1-prior on the disparity
labels U . Inference is performed by alternating α-expansion
on X with range moves on U (forming projected moves,
see Ladickỳ et al. (2010)). Since the speed and accuracy
are affected by the size of range moves considered, we test
3 settings of the range parameter, corresponding to moves
to disparity values d ± 1, d ± 2 and d ± 3, for a fixed d
at each iteration (see Kumar et al. (2011)). We also con-
sider a baseline based on the extended cost-volume filtering

Table 1 Quantitative comparison on Leuven dataset

Algorithm Time (s) Object Stereo(1) Stereo(2) Stereo(3) Stereo(4) Stereo(5)
(% corr) (% corr) (% corr) (% corr) (% corr) (% corr)

GC+Range(1) (Ladickỳ et al.
2010)

24.6 95.94 43.45 56.67 65.44 72.53 76.97

GC+Range(2) (Ladickỳ et al.
2010)

49.9 95.94 44.12 56.98 65.84 72.97 77.31

GC+Range(3) (Ladickỳ et al.
2010)

74.4 95.94 44.14 57.06 65.94 73.03 77.46

Extended CostVol ((Adams et
al. 2010) filter)

4.2 95.20 43.53 56.44 65.51 72.86 77.26

Dense+HO ((Adams et al.
2010) filter)

3.1 95.24 43.58 56.18 65.89 74.08 78.89

Dense+HO ((Gastla and
Oliveira 2011) filter)

2.1 95.06 43.65 56.11 65.47 73.54 78.21

Dense+HO+CostVol ((Gastla
and Oliveira 2011) filter)

6.3 94.98 43.21 56.54 66.07 73.91 79.00

The table compares the average time per image and performance (Object and Stereo(δ) labelling accuracy) of joint object and stereo labelling
algorithms. δ corresponds to the allowed error such that the disparity for i th pixel is considered correct if it satisfies ‖di − dg

i ‖ ≤ δ where di

and dg
i are the disparity label for i th pixel and its corresponding ground truth label respectively. We compare following approaches: graph-cut

+ range-moves (GC+Range(x), where range moves to disparity values d ± x are allowed for fixed d at each iteration) Ladickỳ et al. (2010), an
extension of cost-volume filtering (see text), and our dense CRF with higher-order terms and filter-based inference (with and without cost-volume
filtered unaries, and using different filtering approaches, see text). Our Dense+HO approach achieves comparable accuracies to Ladickỳ et al.
(2010), and is an order of magnitude faster. The best stereo accuracies occur when our model is combined with cost-volume filtered unaries for
disparity. Here ‘% corr’ corresponds to the total proportion of correctly labelled pixels
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Table 2 Quantitative comparison on Leuven dataset

Algorithm Time (s) Oveall(% corr) Av. Recall Av. I/U

GC+Range(1) (Ladickỳ et al. 2010) 24.6 95.94 72.79 68.72

GC+Range(2) (Ladickỳ et al. 2010) 49.9 95.94 72.79 68.72

GC+Range(3) (Ladickỳ et al. 2010) 74.4 95.94 72.79 68.72

Extended CostVol ((Adams et al. 2010) filter) 4.2 95.20 70.43 65.69

Dense+HO ((Adams et al. 2010) filter) 3.1 95.24 70.83 66.08

Dense+HO ((Gastla and Oliveira 2011) filter) 2.1 95.06 70.62 65.75

Dense+HO+CostVol ((Gastla and Oliveira (2011)) filter) 6.3 94.98 70.60 65.63

The table compares the average time per image and performance in terms of ‘% correct’, average recall and intersection-union scores for object
labelling task of our joint object and stereo labelling algorithms, using graph-cut + range-moves (GC+Range(x), where range moves to disparity
values d ± x are allowed for fixed d at each iteration) Ladickỳ et al. (2010), an extension of cost-volume filtering (see text), and our dense CRF
with higher-order terms and filter-based inference (with and without cost-volume filtered unaries, and using different filtering approaches, see text).
Our Dense+HO approach achieves comparable accuracies to Ladickỳ et al. (2010), and is an order of magnitude faster. Here ‘% correct’ measure
corresponds to the total proportional of correctly labelled pixels, per class recall measure is defined as T P

T P+F N and intersection versus union (I/U)

measure is defined as T P
T P+F N+F P

Fig. 1 Qualitative results on Leuven dataset. From left to right: input
image, ground truth, object labelling from Ladickỳ et al. (2010) (using
graph-cut + range-moves for inference), object labelling and stereo out-

puts from our dense CRF with higher-order terms and extended cost-
volume filtering (see text)

Fig. 2 Convergence analysis for the joint object-stereo problem: these
figures show the KL-divergence values of the mean-field approxima-
tion after each iteration when CRF consists of only unary and pairwise
terms for the different neighbour-hood sizes. Each column shows the

affect of using different neighbour-hood sizes, i.e. when standard spa-
tial deviation is varied from 1 to 20 to 60 pixels. We observe that in
practice the KL-divergence values always decrease even though we are
using parallel updates

approach outlined above where we simply select (xi , ui ) =
argmax(l,d) λ

T
i (l, d) as output. We compare these with our

basic higher-order model with full connectivity as described

above, and our model combined with extended cost-volume
filtered disparity unary termsψ ′

u as described in Sect. 5. Fur-
ther, using our basic model we compare two alternative filter-
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Fig. 3 Qualitative results on PascalVOC-10 dataset. From left to
right: input image, ground truth, output from Ladickỳ et al. (2010)
(AHCRF+Cooccurrence), output from Krahenbuhl and Koltun (2011)

(Dense CRF), output from our dense CRF with Potts and Co-occurrence
terms

ing methods for inference, the first using the permutohedral
lattice, as in Krahenbuhl and Koltun (2011); Adams et al.
(2010), and the second using the domain transform based
filtering method of Gastla and Oliveira (2011). We evalu-
ate the average time for the joint inference for object and
stereo estimation. Further we evaluate the overall percentage
of pixels correctly labelled, the average recall and intersec-
tion/union score per class (defined in terms of the true/false
positives/negatives for a given class as TP/(TP+FP+FN))

over non void pixels. For dense stereo reconstruction, we
measure the number of pixels satisfying ‖di −dg

i ‖ ≤ δ, where
di is the disparity label for i th pixel, dg

i is its corresponding
ground truth label and δ is the allowed error. It means a dispar-
ity is considered correct if it is within δ pixels of the ground
truth.

In Table 1 we compare the %-correct pixels for object
and stereo labelling for different values of the allowed error
δ. Further, we also show the average recall and intersec-
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Table 3 Quantitative results on PascalVOC-10

Algorithm Time (s) Overall
(%-corr)

Av. Recall Av. I/U

AHCRF+Cooc (Ladickỳ
et al. 2010)

36 81.43 38.01 30.9

DenseCRF ( Krahenbuhl
and Koltun 2011)

0.67 80.39 35.47 28.44

Dense+Potts 4.35 80.13 40.49 30.27

Dense+Potts+Det 4.35 80.14 44.42 32.66

Dense+Potts+Cooc 4.4 80.52 44.46 33.19

The table compares timing and performance of our approach (final 2
lines) against two baselines. The importance of higher-order informa-
tion is confirmed by the better performance of all algorithms compared
to the basic dense CRF of Krahenbuhl and Koltun (2011). Further,
our filter-based inference is both able to improve substantially on the
inference time and class-average performance of the AHCRF Ladickỳ
et al. (2010), with Pn-Potts and co-occurrence potentials each giving
notable gains. Here ‘% correct’ measure corresponds to the total propor-
tional of correctly labelled pixels, per class recall measure is defined
as T P

T P+F N and intersection versus union (I/U) measure is defined as
TP/TP+FN+FP

tion/union (I/U) scores for object labelling in Table 2. We
note that the densely connected CRF with higher-order terms
(Dense+HO) achieves comparable accuracies to Ladickỳ et
al. (2010), and that the use of domain transform filtering
methods (Gastla and Oliveira 2011) permits an extra speed
up, with inference being almost 12 times faster than the
least accurate setting of Ladickỳ et al. (2010), and over
35 times faster than the most accurate. The extended cost-
volume filtering baseline described above also performs
comparably well, and at a small extra cost in speed, the
combined approach (Dense+HO+CostVol) achieves the best
overall stereo accuracies. We note that although the improved
stereo performance appears to generate a small decrease in
the object labelling accuracy in our full model, the former
remains at an almost saturated level, and the small drop could
possibly be recovered through further tuning or weight learn-
ing. Some qualitative results are shown in Fig. 1.

We now highlight the convergence properties of our mean-
field algorithm for the joint object-stereo problem. In Fig. 2,

we show the KL-divergence values between Q and P distri-
butions after each iteration of our mean-field update under
different conditions, specially after varying the neighbour-
hood size. In practice, we consistently observe that the KL-
divergence values always decrease, and in few iterations we
reach the local optima even when we vary the density of the
CRF.

6.3 Object Class Segmentation

We also test our approach on object class segmentation,
adapting the Associative Hierarchical CRF (AHCRF) model
with a co-occurrence potential proposed in Ladickỳ et al.
(2010). We compare both the timing and performance of four
algorithms. As our two baselines, we take the AHCRF with a
co-occurrence potential (Ladickỳ et al. 2010), whose model
includes all higher-order terms but is not densely connected
and uses α-expansion based inference, and the dense CRF (
Krahenbuhl and Koltun 2011), which uses filter-based infer-
ence but does not include higher-order terms. We compare
these with our approach, which adds first Pn-Potts terms
to the dense CRF, and then Pn-Potts and co-occurrence
terms. We use the permutohedral lattice for filtering in all
models. We assess the overall percentage of pixels correctly
labelled, the average recall and intersection/union score per
class (defined in terms of the true/false positives/ negatives
for a given class as TP/(TP+FP+FN)).

Qualitative and quantitative results are shown in Fig. 3
and Table 3 respectively. As shown, our approach is able to
outperform both of the baseline methods in terms of the class-
average metrics, while also reducing the inference time with
respect to the AHCRF with a co-occurrence potential almost
by a factor of 9. Additional per-class quantitative results for
object-class segmentation on Pascal-VOC-10 are given in
Table 4. We compare the performance of the AHCRF model
with co-occurrence potentials of Ladickỳ et al. (2010) with
our full model, i.e. a Dense-CRF model with higher-order
Potts and co-occurrence potentials, using per-class inter-
section/union scores. As shown, there is an almost 1.5 %

Table 4 Per-class Quantitative results on PascalVOC-10 (bkg background, dtb dining table, m’bike motor-bike, p’son person, and av. average)

Algorithm bkg Plane Cycle Bird Boat Bottle Bus Car Cat Chair Cow

AHCRF+Cooc
(Ladickỳ et al. 2010)

82.5 43.2 4.9 17.4 27.1 31.3 49.4 51.0 29.3 7.1 26.7

Dense+Potts+Cooc 82.9 44.6 15.8 18.9 26.3 31.7 48.9 55.2 33.3 7.9 27.0

dtb Dog Horse m’bike p’son Plant Sheep Sofa Train TV av.

AHCRF+Cooc
(Ladickỳ et al. 2010)

8.3 17.0 24.0 37.1 41.9 21.8 25.2 16.4 43.8 43.4 30.9

Dense+Potts+Cooc 16.1 16.8 23.4 43.8 38.4 21.1 30.9 15.5 44.0 36.8 32.35

Shown are the intersection/union scores per class as a %-age defined as T P
T P+F N+F P , for Ladickỳ et al. (2010) and our full model
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Fig. 4 Convergence analysis on PascalVOC-10 dataset: these figures
show the KL-divergence values of the mean-field approximation after
each iteration when CRF consists of only unary and pairwise terms
under different decision choices, i.e. varying neighbour-hood sizes
(each column) and using noisy unary terms (2nd row). Each column
shows the affect of using different neighbour-hood sizes, i.e. when stan-

dard spatial deviation is varied from 1 to 20 to 60 pixels. While first
row consists of noiseless unary terms, we added some noise to the unary
terms in the second row to show the convergence of the mean-field when
the unary terms are noisy. We observe that in practice the KL-divergence
values always decrease even though we are using parallel updates

improvement in the average score across classes. We do well
on some of the difficult classes such as cycle, dinning-table
and motor-bike where the relative improvement is almost
6–10 % against Ladickỳ et al. (2010). We also improve on
many classes which had high scores like sheep, train, aero-
plane, and see a slight dip in certain classes, e.g. boat, person,
TV. Since Ladickỳ et al. (2010) includes similar higher-order
potentials to ours, the improved performance of our model
can be attributed to its dense connectivity and/or our use of
mean-field filter-based inference as opposed to graph-cuts
(see below Sect. 7).

The results shown are only for our approach with the
ψcooc-2 potential, since we found theψcooc-1 potential to suf-
fer from poor convergence properties, with performance only
marginally better than Krahenbuhl and Koltun (2011). We
note that our aim here is to assess the relative performance of
our approach with respect to our baseline methods, and we
expect that our model will need further refinement to com-
pete with the current state-of-the-art on Pascal (our results
are ∼ 9 % lower for average intersection/union compared to
the highest performing method on the 2011 challenge, see
Everingham et al. (2011)). We also note that Krahenbuhl
and Koltun (2011) are able to further improve their average
intersection/union score to 30.2 % by learning the pairwise

label compatibility function, which remains a possibility for
our model also.

In addition, we also evaluate the convergence of our mean-
field algorithm after inclusion of Potts and co-occurrence
based higher order terms. We show the KL-divergence val-
ues between Q and P distributions after each iteration of
our mean-field update under different decision choices, i.e.
varying the neighbour-hood sizes and use of noisy unary
terms. We first briefly provide analysis for the CRF with
only uanry and pairwise terms before going into the CRFs
with the higher order terms. In practice, we consistently
observe that the KL-divergence values always decrease when
the energy functions consist of only unary and pairwise
terms even though we are using parallel updates shown
in Fig. 4 under all the different decision choices men-
tioned earlier. However, they can oscillate for some itera-
tions when we include the higher order terms, although we
observe a convergence to a local minima overall as shown
in Fig. 5. Further, Fig. 6 visually shows the convergence
of our mean-field method with higher order terms across
iterations, and how the confidence of car pixels increases
after inclusion of higher order terms. In all these cases,
we observe that the mean-field method reaches very close
to the local optima in few iterations.
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Fig. 5 Convergence analysis on PascalVOC-10 dataset: these figures
show the KL-divergence values after each iteration of the mean-field
approximation for two cases. First row shows the affect of varying the
density of the CRF when the CRF consists of co-occurrence terms, and
the second row shows the affect when the CRF also includes the Potts

potentials. Each column shows the affect of using different neighbour-
hood sizes, i.e. when standard spatial deviation is varied from 1 to 20
to 60 pixels. We observe that in practice the KL-divergence oscillates
after inclusion of Potts and co-occurrence potentials

Fig. 6 It shows the Q distribution values across different iterations of
the mean-field method for car class on PascalVOC-10 dataset before
(1st row) and after (2nd row) inclusion of higher order terms. We can

observe how the confidence of car pixels increases after inclusion of
higher order terms

7 Mean-Field Analysis

7.1 Mean-Field Versus Graph-Cuts Inference

The results shows that the mean-field methods perform
equally well or outperform graph-cut methods on all prob-
lems we consider. Since the mean-field methods allow us to
perform inference in densely connected CRF models, while
we restrict attention to models with 8-connected pairwise

terms for graph-cuts (with/without higher-order terms in both
cases), the question arises as to whether the performance
gains are due to the models used or the optimization technique
(or both). To investigate this, we rerun our object-class seg-
mentation experiments on PascalVOC-10 using mean-field
and graph-cuts (α-expansion (Boykov et al. 2001)) inference
in CRF models with matching forms of pairwise potential
based on Gaussian kernels as in Krahenbuhl and Koltun
(2011) (see Sect. 2 of the main paper), using as default stan-
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Fig. 7 Qualitative improvement in α-expansion output Boykov et al. (2001) on gradually increasing neighbourhood sizes for each pixel. From left
to right: input image, ground truth, α-expansion output with 8, 24 and 48 neighbours respectively

Fig. 8 Comparison of inference algorithms on PascalVOC-10 using
matched energies with pairwise terms only. The left plot shows the per-
formance of mean-field inference as the spatial standard deviation of
the Gaussian pairwise term is varied. The centre plot shows the perfor-
mance of graph-cut inference (α-expansion) as the pairwise neighbour-

hood size is varied (maintaining a constant spatial standard deviation
of 40 pixels). On the right are shown the inference times per image
associated with the centre plot. The inference time for all mean-field
settings is ∼ 0.7 s

dard deviations of 40 and 6 for the spatial and range ker-
nels respectively. Since it is infeasible in terms of time to
run α-expansion on a fully connected model, we run it on
graphs with gradually increased connectivity, where for a
neighbourhood size n, we have that each pixel is connected
to all others whose x and y positions differ from it by no
more than n (for n = 1 this is 8-connectivity). Some qual-
itative results on increasing the neighbourhood size for α-
expansion are shown in Fig. 7. For mean-field inference, we
use full connectivity throughout. We compare models with
pairwise terms only, pairwise with Pn-Potts higher-order
potentials, and pairwise with Pn-Potts and co-occurrence
terms.5 For graph-cuts inference, we begin with n = 1,

5 In fact we use slightly different co-occurrence potentials with graph-
cuts and mean-field, since for graph-cuts we use ψcooc while for

and test n = 1, 2, 3, 4, 5, 10, 15, stopping when the inter-
section/union score ceases to increase (/does not increase).
We also test mean-field inference on pairwise only models
with varying kernel standard deviations, for the spatial ker-
nel settingσs = 1, 5, 10, 15...70, 80, 90 pixels, and the range
kernel σr = 1, 2, 3, 4...15, 18, 20.

In Fig. 8 we compare performance of the inference meth-
ods on the model with pairwise terms only. From the left
plot, we see that the best results achieved on the dense model
by mean-field occur when the spatial standard deviation is

Footnote 5 continued
mean-field we use ψcooc-2, although we set the costs C(�) identically.
We view the latter as an approximation of the former, and thus view this
as a slight handicap for mean-field inference; however, further experi-
ments would be needed to determine if the different forms of this poten-
tial lead to better/worse models.
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Table 5 Comparison of inference algorithms on PascalVOC-10 using
matched energies with pairwise, pairwise and Pn-Potts higher-order
potentials, and pairwise, Pn-Potts and co-occurrence potentials

Algorithm Model Time (s) Av. I/U

α-exp (n=10) Pairwise 326.17 28.59

Mean-field Pairwise 0.67 28.64

α-exp (n=3) Pairwise+Potts 56.8 29.6

Mean-field Pairwise+Potts 4.35 30.11

α-exp (n=1) Pairwise+Potts+Cooc 103.94 30.45

Mean-field Pairwise+Potts+Cooc 4.4 32.17

For the α-expansion results, we fix the standard deviation of the
Gaussian kernels to the same values as for mean-field (spatial deviation
σs=40 pixels, range deviation σr =6), and optimize over the pairwise
neighbourhood size n, where n denotes that each pixel is connected to
all others with horizontal/vertial offsets of up to n pixels. Shown are
intersection versus union (I/U) measure defined as T P

T P+F N+F P aver-
aged across all the classes

around ∼ 40 pixels (and corresponding range standard devi-
ation ∼ 6). These are the kernel parameters we use with
graph-cuts in all models. The central plot shows that graph-
cuts is able to achieve approximately the same performance
with a neighbourhood connectivity n = 10. This seems to
indicate that for pairwise only models, increased connectiv-
ity leads to improved performance up to a point, and both
graph-cuts and mean-field inference are able to achieve sim-
ilar results in such models in terms of accuracy. However,
as shown on the right plot, substantially longer inference
times are needed for graph-cuts at the required connectivity
to equal the accuracy of mean-field methods (where the infer-
ence time remains around ∼ 0.7 s for all settings). We high-
light here how our approach fits with some of the previous
studies (Turner and Sahani 2011; Weiss 2001) which sug-
gest that the inference based on the mean-field approxima-
tion provide relatively poor marginal posteriors. Our exper-
imental results suggest that the dense pairwise connection
is important to achieve good accuracy with the mean-field
approach.

Results in Table 5 compare the performance of both algo-
rithms on models with higher-order terms, and dense con-
nectivity of various neighbourhood sizes for graph-cut infer-
ence, where we quote only the setting at which the optimal
accuracy is achieved using the protocol described above. The
intersection/union scores quoted here are similar to the one
in the Table 3 for some settings, but with slight differences
caused by the fact that we are ensuring that the potentials
in all models take matching forms so that the contributions
of model and inference method can be separated. As shown,
although both mean-field and graph-cuts inference are able
to achieve similar accuracies with dense models using pair-
wise terms only, when higher-order terms are added the α-
expansion accuracies are consistently lower than mean-field,

even when we allow the former to use models with larger
neighbourhood sizes (in fact, for the full model with Pn-
Potts and co-occurrence terms, nothing is gained by running
graph-cuts with neighbourhood sizes of n > 1 as shown).
These results imply that, unlike the pairwise only case, when
such higher-order terms are included not only is mean-field
inference faster than graph-cuts, but it is able to optimize
these energies substantially better in terms of accuracy than
graph-cuts. We thus claim that the performance gains we
observe in the experiments of the main paper are due to both
the densely connectivity of the models we use, and the mean-
field techniques we use to optimize these models.

7.2 Sensitivity to Initialization

It is also worth noting that the mean-field inference meth-
ods are sensitive to initialization and can thus get stuck in
local minima (Weiss 2001). Thus, estimating a good starting
point is critical to the mean-field methods. Here, we show
how SIFT-flow based label transfer method can be used in
providing a good starting point based on the work of Ce Liu
et.al. (Liu et al. 2009, 2008). Suppose we have a large train-
ing set of annotated ground truth images with per pixel class
labels. Given a test image, we first find the K-nearest neigh-
bour images from the training set using GIST features (Oliva
and Torralba 2001). In general, we restrict our set to 30 near-
est neighbours. We then compute a dense correspondence
using the SIFT-flow method from the test image to each of
30 nearest neighbours. We re-rank those nearest neighbours
based on the flow values, and pick the best nearest neighbour.
Once we have recovered our best candidate, we warp the cor-
responding ground truth of the candidate image to the current
test image. We use these warped labels to initialize the mean-
field inference method which acts as a soft constraint on our
solutions. We re-weight the unary potential of each pixel
based on the label transferred as ψ̃u(xi ) = λ∗ψu(xi ), where
λ is set through cross-validation. We perform experiments
with this initialization method on the PascalVOC dataset,
and observe both quantitative and qualitative improvement
in the accuracy. Figure 9 shows some of query images, their
nearest neighbours, and qualitative results before and after
SIFT-flow based initialization. Quantitatively, with the better
initializations we observe an improvement of almost 2.5 %
over the baseline methods with unary and pairwise terms,
and almost 0.6 % over the model with unary, pairwise and
higher order terms (see Table 6).

8 Discussion

We have introduced a set of techniques for incorporat-
ing higher-order terms into densely connected multi-label
CRF models. As described, using our techniques, bilateral
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Fig. 9 Qualitative results on PascalVOC-10 before and after better initialization. From left to right: input image, ground truth, warped ground
truth of the nearest neighbour, output from our dense CRF without better initialisation, and with better initialization

Table 6 Quantitative results on PascalVOC-10 before and after better
initialization

Algorithm Time (s) Overall
(%-corr)

Av. Recall Av. U/I

Ours (U+ dense
P)

0.67 80.39 35.47 28.44

Ours (U+ dense
P+Init)

0.9 79.65 41.84 30.95

Ours (U+ dense
P+HO)

4.4 80.52 44.46 33.19

Ours (U+ dense
P+HO+Init)

4.7 80.65 44.8 33.9

Though the improvement is significant with unary and pairwise terms,
we observe slight improvement in accuracy after inclusion of higher
order terms and better initialization compared to the model with higher
order terms. Here ‘% corr’ measure corresponds to the total propor-
tional of correctly labelled pixels, per class recall measure is defined
as T P

T P+F N and intersection versus union (I/U) measure is defined as
T P

T P+F N+F P

filter-based methods remain possible for inference in such
models, effectively retaining the mean-field update com-
plexity O(M N L2) as in Krahenbuhl and Koltun (2011)
when higher-order Pn-Potts and co-occurrence models are
used. This both increases the expressivity of existing fully
connected CRF models, and opens up the possibility of
using powerful filter-based inference in a range of mod-
els with higher-order terms. We have shown the value
of such techniques for both joint object-stereo labelling
and object class segmentation. In each case, we have
shown substantial improvements in inference speed with
respect to graph-cut based methods, particularly by using
recent domain transform filtering techniques, while also
observing similar or better accuracies. Future directions
include investigation of further ways to improve efficiency
though parallelization, and learning techniques which can
draw on high speed inference for joint parameter opti-
mization in large-scale models. Code for our method is
available for download at http://cms.brookes.ac.uk/staff/
VibhavVineet/.
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