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Abstract We address the visual categorization problem
and present a method that utilizes weakly labeled data from
other visual domains as the auxiliary source data for enhanc-
ing the original learning system. The proposed method aims
to expand the intra-class diversity of original training data
through the collaboration with the source data. In order
to bring the original target domain data and the auxiliary
source domain data into the same feature space, we intro-
duce a weakly-supervised cross-domain dictionary learning
method, which learns a reconstructive, discriminative and
domain-adaptive dictionary pair and the corresponding clas-
sifier parameters without using any prior information. Such
a method operates at a high level, and it can be applied to dif-
ferent cross-domain applications. To build up the auxiliary
domain data, we manually collect images from Web pages,
and select human actions of specific categories from a dif-
ferent dataset. The proposed method is evaluated for human
action recognition, image classification and event recogni-
tion tasks on the UCF YouTube dataset, the Caltech101/256
datasets and the Kodak dataset, respectively, achieving out-
standing results.
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1 Introduction

In the past few years, along with the explosion of online
image and video data (Flickr1, YouTube2), the computer
vision community has witnessed a significant amount of
applications in content-based image/video search and
retrieval, human–computer interaction, sport events analy-
sis, etc. These applications are built upon the development
of several aspects of classical computer vision tasks, such as
human action recognition, object localization and image clas-
sification, which, however, remain challenging in real-world
scenarios due to cluttered background, view point changes,
occlusion, and geometric and photometric variations of the
target (Su and Jurie 2012; Yao et al. 2012; Wang and Mori
2011, 2009; Jégou et al. 2010; Junejo et al. 2011; Duchenne et
al. 2009; Marszalek et al. 2009). These issues result in either
imposing irrelevant information to the target introduced by,
e.g., cluttered background, or producing very different repre-
sentations for the same target caused by, e.g., geometric and
photometric changes. Many previous methods that manage
to deal with these issues are proposed and state-of-the-art
approaches include semantic attributes (Su and Jurie 2012),
estimated pose features (Yao et al. 2012), and mined hierar-
chical features (Gilbert et al. 2011). The conventional frame-
work applies a robust classifier using human annotated train-
ing data, but it makes the assumption that the testing data stay
in the same feature space or share the same distribution with

1 http://www.flickr.com/
2 http://www.youtube.com/
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the training data. However, in real-world applications, due to
the high price of human manual annotation and environmen-
tal restrictions, sufficient training data that stay in the same
feature space or share the same distribution with the testing
data cannot always be guaranteed, in which case insufficient
training data can limit the potential discriminability of the
trained model. Typical examples are Cao et al. (2013), Gao
et al. (2011), and Orrite et al. (2011), where only one action
template is provided for each action class for training, and Liu
et al. (2011), where training samples are captured from a dif-
ferent viewpoint. In these situations, obtaining more labeled
data is either impossible or expensive, while seeking for an
alternative way of using data from other domains as compen-
sation can be seen as a possible and economic solution.

Our work is inspired by two facts of the human vision
system. The first fact is that humans are able to learn tens
of thousands of visual categories in their life, which leads
to the hypothesis that humans achieve such a capability by
accumulated information and knowledge (Fei-Fei 2006), as
shown in Fig. 1. Another fact is human’s visual impressions
towards the same action or the same object comes from a
wide range, e.g., an action seen from 2D static images versus
the same action seen from 3D dynamic movies or an object
seen from real-world scenes versus the same object seen from
low-resolution online images. However, the human vision
system is still able to correctly distinguish such actions or
objects regardless of their visual diversities, which, in other
words, can be explained in the computer vision language that
the human vision system possesses the ability to span the
intra-class diversity of the original training data. In a similar
way, we argue that the computer-based visual categorization

system can also gain more discriminative power by spanning
the coverage of training samples’ intra-class variations, as
shown in Fig. 2.

Motivated by the above two facts, we introduce a new
visual categorization framework that utilizes weakly labeled
data from other domains as the source data (motivated by
the first fact) to span the intra-class diversity of the original
learning system (motivated by the second fact). Following
the classical single-task cross-domain learning setup (Pan
and Yang 2010), our aim is to complete the visual catego-
rization task in the target domain. In addition to the man-
ually labeled training data in the target domain, the source
domain data are utilized as extensions of category prototypes
in the target domain. Based on the recent success of dic-
tionary learning methods in solving computer vision prob-
lems, we present a weakly-supervised cross-domain dictio-
nary learning method to learn a reconstructive, discriminative
and domain-adaptive dictionary pair and an optimal linear
classifier simultaneously. In order to demonstrate the effec-
tiveness of our method, we gather supportive evidence by
evaluating our method on action recognition, image clas-
sification and event recognition tasks. The UCF YouTube
dataset (Liu et al. 2009), the Caltech101 dataset (Fei-Fei et
al. 2007), the Caltech 256 dataset (Griffin et al. 2007) and
the Kodak consumer video dataset (Loui et al. 2007) are used
as the target domain data in our experiments, while selected
actions in the HMDB51 dataset (Kuehne et al. 2011) and
some indexed Web images or YouTube videos are used as
the source domain data in our experiments. The preliminary
results of our method have been presented in Zhu and Shao
(2013).

Fig. 1 Illustration of how a
new object is accumulated to the
human visual system as prior
knowledge for future usage. The
given unknown object is a future
car, which is unacquainted to the
viewer. Since the viewer’s prior
knowledge towards cars spans a
wild coverage of target samples,
shared information (e.g., car
shape and wheels) between the
new object and prior knowledge
is easily discovered.
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Fig. 2 Illustration of how the categorization system can gain more
discriminative power through the collaboration with the source domain
data in the 2-dimensional feature space. The purple triangles, the orange
circles and the red squares denote the training samples from Classes
1, 2 and 3 respectively, and the corresponding hollow shapes denote
the auxiliary training samples from Classes 1, 2 and 3. Original deci-
sion boundaries are represented by the solid lines and the new decision

boundaries are represented by the dashed lines. The testing sample,
which is denoted as a red square with black borders, is misclassified as
Class 1 according to the original decision boundaries. Proper auxiliary
samples lead to more rational decision boundaries, so that the coverage
of Class 1 spans against the centre of Class 2. Thus, the testing sample
can be correctly labeled (Color figure online)

Fig. 3 Flowchart of the proposed approach. The target domain data
are split into the training part and the testing part, where the training
data are used as a set of queries to rank the source domain data within
selected categories. A pre-defined number of most relevant source sam-
ples are chosen to construct the transformation matrix, which describes
the connections between the source domain data and the target domain
data. With the label information of the target domain training samples,

weakly-supervised cross-domain dictionary learning is performed. A
reconstructive, discriminative and domain-adaptive dictionary pair is
learned together with the target classifier. The target domain testing
data can be encoded with the learned target domain dictionary, follow-
ing which the labels can be predicted by feeding the new representations
into the learned classifier

Our proposed method is illustrated in Fig. 3 and it offers
the following two main contributions. Firstly, it attempts to
make use of as much as possible existing knowledge by a
novel weakly-supervised visual categorization framework.
An efficient manifold ranking method is applied to the source
domain for the selection of a pre-defined number of most rel-
evant instances per category according to the target domain
training data, following which correspondences connecting
the source domain and the target domain are established
based on the selected source domain data and the target
domain training data. Secondly, we propose a new cross-
domain dictionary learning method to cope with the feature
distribution mismatch problem across the source domain and
the target domain. Specifically, we perform dictionary learn-
ing upon the correspondences built from both domains so
that the projections of data from different domains can obey
the same distribution when limited by the learning function.

In addition to the dictionary, classifier parameters are learned
jointly during the discriminative dictionary function learning
process. Thus, knowledge transfer of the proposed frame-
work is accomplished through both the feature level and
the classifier level. As the samples from the source domains
are weakly labeled rather than being manually (correctly)
labeled, we call our algorithm “Weakly-Supervised Cross-
Domain Dictionary Learning”(WSCDDL).

The remainder of this paper is organized in the fol-
lowing way. Related works are reviewed in Sect. 2. In
Sects. 3 and 4, we first extensively discuss related dic-
tionary learning techniques and then introduce the pro-
posed cross-domain dictionary learning method. Experimen-
tal results on human action recognition, image classifica-
tion and event recognition are comprehensively presented
in Sect. 5. Finally, the conclusion of this work is given in
Sect. 6.

123



Int J Comput Vis (2014) 109:42–59 45

2 Background Work

A considerable number of methods have been proposed to
address visual categorization problems (Maji et al. 2013; Ji et
al. 2013; Zafeiriou et al. 2012; Liwicki et al. 2012; Xiang et al.
2012; Liu et al. 2012). Reasonable results are achieved using
traditional machine learning approaches without consider-
ing the data distribution mismatch among the training data
and the testing data when training data are abundant. Trans-
fer learning (a.k.a., cross-domain learning, domain transfer,
domain adaptation) approaches begin to attract increasing
interests in the computer vision community in recent years
due to the data explosion on the Internet and the growing
demands for visual computational tasks. In Cao et al. (2010),
action detection is conducted across datasets from differ-
ent visual domains, where the KTH dataset (Schuldt 2004),
which has a clean background and limited viewpoint and
scale changes, is set as the source domain, and the Microsoft
Research Action Dataset3 and the TRECVID surveillance
data (Dikmen et al. 2008), which are captured from realistic
scenarios, are used as the target domain. Yang et al. (2007)
and Duan et al. (2012a) addressed the problem of video con-
cept detection using domain transfer approaches. The former
one utilized the Adaptive Support Vector Machine (A-SVM)
to adapt one or more existing classifiers of any type to a new
dataset, and the latter proposed a Domain Transfer Multiple
Kernel Learning (DTMKL) method to simultaneously learn
a kernel function and a robust SVM classifier by minimizing
both the structural risk function of SVM and the distribution
mismatch of labeled and unlabeled data in different domains.
Liu et al. (2011) and Li and Zickler (2012) constructed cross-
domain representations to cope with the cross-view action
recognition problem, where the divergences across domains
are caused by view-point changes. Liu et al. (2011) built
a bipartite graph via unsupervised co-clustering to measure
the visual-word to visual-word relationship across the tar-
get view and the source view so that a high-level seman-
tic feature that bridges the semantic gap between the two
vocabularies can be filled. Similarly, Li and Zickler (2012)
captured the conceptual idea of “virtual views”to represent
an action descriptor continuously from an observer’s view-
point to another. Duan et al. (2012b) considered to leverage
large amounts of loosely labeled web videos for visual event
recognition using the Adaptive Multiple Kernel Learning (A-
MKL) to fuse the information from multiple pyramid levels
and features and cope with the considerable variation in fea-
ture distributions between videos across two domains.

Recently, dictionary learning for sparse representation has
attracted much attention. It has been successfully applied
to a variety of computer vision tasks, e.g., face recogni-
tion (Wright et al. 2009) and image denoising (Zhou et al.

3 http://research.microsoft.com/~zliu/ActionRecoRsrc

2009). Using an over-complete dictionary, sparse modeling
of signals can approximate the input signal by a sparse lin-
ear combination of items from the dictionary. Many algo-
rithms (Lee et al. 2007; Wang et al. 2010; Wright et al. 2009)
have been proposed to learn such a dictionary according to
different criteria. The K-Singular Value Decomposition (K-
SVD) algorithm (Aharon et al. 2006) is a classical dictionary
learning algorithm that generalizes the K-means clustering
process for adapting dictionaries to efficiently learn an over-
complete dictionary from a set of training signals. The K-
SVD method focuses on the reconstructive ability, however,
since the learning process is unsupervised, the discrimina-
tive capability is not taken into consideration. Consequently,
methods that incorporate the discriminative criteria into dic-
tionary learning were proposed in Zhang and Li (2010), Yang
et al. (2010), Mairal et al. (2008a, 2008b, 2009), Boureau et
al. (2010). In addition to the discriminative capability of the
learned dictionary, other criteria designed on top of the proto-
type dictionary learning objective function include multiple
dictionary learning (Zhang et al. 2009), category-specific dic-
tionary learning (Yang et al. 2008), etc. Different from most
dictionary learning methods, which learned the dictionary
and the classifier separately, Zhang and Li (2010) and Jiang
et al. (2011) unified these two learning procedures into a sin-
gle supervised optimization problem and learned a discrimi-
native dictionary and the corresponding classifier simultane-
ously. Taking a step further, Qiu et al. (2012) and Zheng et al.
(2012) designed dictionaries for the situations that the present
training instances are different from the testing instances. The
former presented a general joint optimization function that
transforms a dictionary learned from one domain to the other,
and applied such a framework to applications such as pose
alignment, pose and illumination estimation and face recog-
nition. The latter achieved promising results on the cross-
view action recognition problem with pairwise dictionaries
constructed using correspondences between the target view
and the source view. To make use of some data that may
not be relevant to the target domain data, Raina et al. (2007)
proposed a method that applies sparse coding to unlabeled
data to break the tremendous amount of data in the source
domain into basic patterns (e.g., edges in the task of image
classification) so that knowledge can be transferred through
the bottom level to a high level representation.

Our approach differs from the above approaches in such
aspects that it more comprehensively learns pairwise dictio-
naries and a classifier while considering the capacity of the
dictionaries in terms of reconstructability, discriminability
and domain adaptability. Additionally, corresponding obser-
vations across the domains are not required in our framework.
While most previous knowledge transfer algorithm focus on
the situations where the target domain is incomplete, but have
not attempted to utilize other domain data as an aide for
enhancing present categorization systems, in our approach,
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the learned classifier in the target domain becomes more dis-
criminative against intra-class variations as a result of the
learning process that integrates with source domain data.

3 Dictionary Learning

3.1 Reconstruction

Let y ∈ �n denote an n-dimensional input signal, and sup-
pose it can be reconstructed by the linear transformation of an
N -dimensional projection coefficient x ∈ �N via a projec-
tion dictionary D ∈ �n×N . Considering the reconstruction
error, the transformation can be formulated as:

y = Dx + E(x). (1)

where we use E(x) to represent the reconstruction error, then
the optimal dictionary and coefficient can be obtained by
minimizing E(x). We quantitatively measure E(x) using:

E(x) = ‖y − Dx‖22. (2)

It is worth to point out that if the dimension of the projection
coefficient x is larger than the dimension of input signal y,
i.e., N > n, the solution to the unconstrained optimization
problem in Eq. (2) is not unique, thus it leads to the over-
fitting problem.

3.2 Sparsity Constraints

The sparsity constraints for dictionary learning attract more
attention recently, and applications that can benefit from spar-
sity include compression, regularization in inverse problems,
etc. The commonly used sparsity constraints are l0-norm and
l1-norm.

3.2.1 Dictionary Learning with l0-Norm

l0-norm is the lowest normalization form, and it indicates
the solution with fewest non-zero entries. When learning a
dictionary with the l0-norm sparse constraint, Eq. (2) can be
formulated as:

E(x) = ‖y − Dx‖22, s.t.‖x‖0 ≤ T, (3)

where T is the sparsity constraint factor that limits the number
of non-zero elements in the sparse codes, so that the num-
ber of items in the decomposition of each x is less than T .
Updating both x and D simultaneously is generally NP-hard;
however, we can manage to seek an improved D when fixing
x , or seek an optimal x when fixing D. Thus, the construction
of dictionary D is achieved through iteratively minimizing
the reconstruction error and learning a reconstructive dictio-
nary for sparse representations (Aharon et al. 2006). Given D,
the computation of the sparse code x is generally NP-hard

under the sparsity constraint, thus one has to seek alterna-
tive methods to approximate the solution, e.g., the greedy
algorithms Matching Pursuit (MP) (Mallat and Zhang 1993)
and Orthogonal Matching Pursuit (OMP) (Pati et al. 1993),
which sequentially select the dictionary atoms. More details
on optimizing the objective function under the l0-norm con-
straint are given in Sect. 3.3.

3.2.2 Dictionary Learning with l1-Norm

The Basis Pursuit (BP) (Chen et al. 1993) suggests an alter-
native sparse solution by relaxing the l0-norm with the higher
order l1-norm. The dictionary learning problem in Eq. (3) can
be reformulated as follows with the l1-norm constraint:

E(x) = ‖y − Dx‖22, s.t.‖x‖1 ≤ T . (4)

Again, such a problem can be solved iteratively by alternat-
ingly optimizing D or the sparse code x while fixing the
other. When the dictionary D is fixed, the optimization prob-
lem is equivalent to a linear regression problem with l1-norm
regularization on the coefficients, which can be solved by
the feature-sign search algorithm (Lee et al. 2006). When
the sparse code x is fixed, the problem is reduced to a Least
square problem with quadratic constraints, so that it can be
solved by the Lagrange dual as in Lee et al. (2006).

3.3 Classification via Dictionary Learning

A classifier f (x) can be directly employed to the sparse
representation x for classification, and the classifier can be
obtained by satisfying:

W = arg min
W

L{h, f (x, W )} + λ‖W‖2F , (5)

where L is the classification loss function, e.g., quadratic loss
function and hinge loss function, h indicates the label of x ,
W denotes the classifier parameters and λ is a regularization
parameter for preventing overfitting. However, separating the
dictionary learning stage from the classification procedure
might lead to a suboptimal D. Previous approaches (Zhang
and Li 2010; Yang et al. 2010; Mairal et al. 2008a,b, 2009;
Jiang et al. 2011) attempt to jointly learn a dictionary and a
classifier for classification tasks. In this case, the dictionary
learning problem can be formulated as:

< D, W, x > = arg min
D,W,x

‖y − Dx ‖22 + L{h, f (x, W )}
+ λ‖W‖22, s.t.‖x‖0 ≤ T .

(6)

An extra classification term can encourage the data to be
smooth. However, if we deal with data from two domains, the
classification term can only guarantee the local smoothness
in each respective domain. Thus, we introduce a new term to
seek the global smoothness across both domains.
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4 Domain Adaptation via Dictionary Learning

We denote Yt as L n-dimensional target domain instances,
and Ys as M source domain n-dimensional instances, i.e.,
Yt = [y1

t , . . . , yL
t ] ∈ �n×L and Ys = [y1

s , . . . , yM
s ] ∈

�n×M . Learning a reconstructive dictionary pair while pur-
suing the global smoothness can be accomplished by solving
the following optimization problems:

< Dt , Ds, Xt , Xs > = arg min
Dt ,Ds ,Xt ,Xs

‖Yt − Dt Xt‖22
+ ‖Ys − Ds Xs‖22 +Φ([Xt Xs])
s.t.∀i, [ ‖xi

t ‖0, ‖xi
s‖0 ] ≤ T, (7)

where Φ(·) is designed to measure the distances of sim-
ilar cross-domain instances of the same category, Dt =
[d1

t , . . . , d N
t ] ∈ �n×N is the learned target domain dictio-

nary, Xt = [x1
t , . . . , x L

t ] ∈ �N×L is the set of target domain
sparse codes, Ds = [d1

s , . . . , d N
s ] ∈ �n×N is the learned

source domain dictionary and Xs = [x1
s , . . . , x M

s ] ∈ �N×M

is the set of source domain sparse codes, respectively. The
number of dictionary items N is set to be larger than either
L or M to ensure that the dictionaries are over-complete. To
define Φ(·), we aim to force the sparse codes that possess the
same class label to be close to each other, and thus geometri-
cally simple decision boundaries are preferred. To this end,
Zheng et al. (2012) presented a strategy that manually sets
up a set of correspondence training instances for cross-view
action recognition, where the same action pair performed in
different views are encouraged to share the same representa-
tion when being projected onto the cross-view dictionary pair.
Inspired by such a strategy, we measure the cross-domain
divergence by constructing virtual correspondences across
both domains through a transformation matrix A. Given
Φ([Xt Xs]) = ‖X T

t − AX T
s ‖22, Eq. (7) can be written as:

< Dt , Ds, Xt , Xs > = arg min
Dt ,Ds ,Xt ,Xs

‖Yt − Dt Xt‖22
+‖Ys − Ds Xs‖22 + ‖X T

t − AX T
s ‖22

s.t.∀i, [ ‖xi
t ‖0, ‖xi

s‖0 ] ≤ T . (8)

However, in our case, rather than cross-view action pairs,
the data we are dealing with come from different datasets,
so that setting up correspondence instances is not possible.
We turn to seek an alternative solution to building up such
correspondences. For each category, we introduce a trans-
formation matrix Ac. The general sense of Ac is that it maps
the most similar source domain instance to a target domain
instance of the same category. We adopt a fuzzy category-
specific searching method to compute each Ac. Considering
that Y c

t and Y c
s are the c-th category data from both domains,

we first compute the Gaussian distances between each pair
of data between Y c

t and Y c
s , and store the result in a matrix

Gc. Then Ac can be computed by preserving the maximum

element in each column of Gc while discarding the remain
elements, i.e., we only ensure a one-to-one correspondence
for each source domain instance:

Ac(i, j) =
{

1, if Gc(i, j) = max(Gc(:, j))

0, otherwise.
(9)

Once the set of transformation matrices for all the C cate-
gories are computed, the global transformation matrix A ∈
�L×M can be obtained by filling all the category-specific
sub-matrices into A:

A =

⎛
⎜⎜⎜⎝

A1

A2
. . .

AC

⎞
⎟⎟⎟⎠, (10)

where all the blank elements are set to 0, so that A is a binary
matrix. Since A is computed in a category-specific manner,
target domain training samples can only be connected to
those source domain samples of the same category. Thus,
overall smoothness across both domains can be guaranteed
after such a transformation. Assuming A leads to a perfect
mapping across the sparse codes Xt and Xs and each matched
pair of samples in different domains possesses an identical
representation after encoding, then‖X T

t −AX T
s ‖22 = 0. Since

these two terms are computed with l2 normalization, if they
equal to zero, we can obtain X T

t = AX T
s , i.e., Xt = XsA

T .
By transforming the source domain data to match the target
domain data, we formulate the new objective function as:

< Dt , Ds, Xt , Xs >

= arg min
Dt ,Ds ,Xt ,Xs

‖Yt − Dt Xt‖22 + ‖(Ys − Ds Xs)A
T ‖22

= arg min
Dt ,Ds ,Xt

‖Yt − Dt Xt‖22 + ‖YsA
T − Ds XsA

T ‖22
= arg min

Dt ,Ds ,Xt
‖Yt − Dt Xt‖22 + ‖YsA

T − Ds Xt‖22
s.t.∀i, ‖xi

t ‖0 ≤ T . (11)

Following Zhang and Li (2010), Mairal et al. (2008a;
2008b, 2009), and Jiang et al. (2011), we include a label
consistency regularization term and the classification error
of a linear predictive classifier f (x) into the objective func-
tion to further enhance the global smoothness. Thus, the new
objective function for cross-domain dictionary learning is
updated as:

< Dt , Ds, Xt , A, W >= arg min
Dt ,Ds ,Xt ,A,W

‖Yt − Dt Xt‖22
+ ‖YsA

T − Ds Xt‖22 + α‖Q − ϑ Xt‖2 + β‖H −W Xt‖22
s.t.∀i, ‖xi

t ‖0 ≤ T, (12)

where W are the coefficients of the linear classifier f (x), H
are the class labels of target domain data, ϑ is a linear trans-
formation matrix that maps the the original sparse codes to be
in correspondence with the target discriminative sparse codes
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Q = [q1, q2, . . . , qL ] ∈ �L×L of the input signal Yt . Specif-
ically, qi = [q1

i , q2
i , . . . , q K

i ]T = [0, . . . , 1, 1, . . . , 0]T ∈
�L×1, and the non-zeros occur at those indices where yi

t ∈ Yt

and Xk
t ∈ Xt share the same class label. Given Xt =

[x1, x2, . . . , x6] and Yt = [y1, y2, . . . , y6], and assuming x1,
x2, y1 and y2 are from class 1, x3, x4, y3 and y4 are from
class 2, x5, x6, y5 and y6 are from class 3, Q is then defined
with the following form:⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

and H = [h1, h2, . . . , hL ] ∈ �C×L are the class labels of
Yt , where the non-zero element indicates the class of an input
signal within each column hi = [0, . . . , 1, . . . , 0]T ∈ �C×1.
Following the same example in (13), H can be defined as:⎛
⎝1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1

⎞
⎠ . (14)

Scalers α and β are set to control the relative contribution
of the terms ‖Q − ϑ Xt‖2 and ‖H − W Xt‖22. By solving
the optimization problem in Eq. (12), the reconstructive, dis-
criminative and domain-adaptive dictionary pair Dt and Ds

as well as the optimal classifier parameter W can be obtained.

4.1 Optimization

4.1.1 Solving WSCDD with the K-SVD algorithm

We rewrite Eq. (12) as:

< Dt , Ds, Xt , W >= arg min
Dt ,Ds ,Xt ,W

‖

⎛
⎜⎜⎝

Yt

YsA
T√

αQ√
β H

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

Dt

Ds√
αϑ√
βW

⎞
⎟⎟⎠ Xt‖22, s.t.∀i, ‖xi

t ‖0 ≤ T, (15)

To make it clear, we write the left side of Eq. (15) as
Y = (Y T

t , (YsA
T )T ,
√

αQT ,
√

β H T )T and the right side
of Eq. (15) as D = (DT

t , DT
s ,
√

(α)ϑT ,
√

(β)W T )T , where
column-wise l2 normalization is applied to D, so that opti-
mizing Eq. (15) is cast as optimizing Eq. (16):

< D, Xt >= arg min
D,Xt
‖Y − DXt‖22, s.t.∀i, ‖xi

t ‖0 ≤ T .

(16)

Such an optimization problem can be solved using the K-
SVD (Aharon et al. 2006) algorithm. Specifically, Eq. (16)
can be solved in an iterative manner through both dictionary

updating stage and sparse coding stage. In the dictionary
updating stage, each dictionary element is updated sequen-
tially to better represent the original data in both the source
domain and the target domain as well as the discriminative
property along with the training data. When pursuing a better
dictionary D, the sparse codes Xt are frozen, and each dictio-
nary element is updated through a straightforward solution
which tracks down a rank-one approximation to the matrix
of residuals. Following K-SVD, the kth element of the dic-
tionary D and its corresponding coefficients, i.e. the kth row
in the coefficient matrix Xt , are denoted as dk and xk respec-
tively. Let Sk = Y −∑

j �=k d j x j
t and we further denote x̃k

and S̃k as the results we obtain when all zero entries in xk

and Sk are discarded, respectively. Thus, each dictionary ele-
ment dk and its correspondingly non-zero coefficients x̃k can
be computed by

< dk, x̃k >= arg min
dk ,̃xk
‖S̃k − dk x̃k‖2F . (17)

The approximation in Eq. (17) is achieved through perform-
ing Singular Value Decomposition (SVD) on S̃k :

SV D(S̃k) = UΣV T

dk = U (:, 1)

x̃k = Σ(1, 1)V (1, :), (18)

where U (:, 1) indicates the first column of U and V (1, :)
indicates the first row of V .

At the sparse coding stage, we compute the “best match-
ing” projections Xt of the multidimensional training data
onto the updated dictionary D using an appropriate pursuit
algorithm. As introduced above, given the fixed D, the opti-
mization of Eq. (16) remains NP-hard under the l0-norm con-
straint. Therefore the OMP algorithm is adopted to approx-
imate the solution in a computationally efficient way. The
proposed cross-domain dictionary learning method is sum-
marized in Algorithm 1.

4.1.2 Initialization

To initialize Dt and Ds , we run the K-SVD algorithm several
times on both of them within each category, and then combine
all K-SVD outputs in each respective domain. To initialize ϑ

and W , we employ the multivariate ridge regression model
(Golub et al. 1999) with l2-norm regularization as follows:

ϑ = arg min
ϑ
‖Q − ϑ Xt‖2 + ϕ1‖ϑ‖22,

W = arg min
W
‖H −W Xt‖2 + ϕ2‖W‖22,

(19)

which yields the following solutions:

ϑ = Q X T
t (Xt X T

t + ϕ1 I )−1,

W = H X T
t (Xt X T

t + ϕ2 I )−1,
(20)

where Xt can be computed given the initialized Dt .
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Input : Input signals Yt and Ys , discriminative sparse code Q,
target domain class label H , sparsity constraint
parameter T , balancing parameters α and β, dictionary
size N and maximum iteration Max .i ter .

Output: Cross-domain dictionary pair D̃t and D̃s , transformation
matrixes A and ϑ̃ , and linear classifier parameter W̃ .

Compute A by combining each transformation matrix Ac for all1
C classes;
Initialize Dt , Ds , ϑ and W ;2

Reformulate Y =

⎛
⎜⎜⎝

Yt

YsA
T√

αQ√
β H

⎞
⎟⎟⎠ and D =

⎛
⎜⎜⎝

Dt
Ds√
αϑ√
βW

⎞
⎟⎟⎠;

3

D0← D;4
for i ← 1 to Max .i ter do5

Sparse coding stage:6

Compute Xt using OMP according to:7
8

E(x) = ‖Y − D(i−1) Xt‖22, s.t.∀i, ‖xi
t ‖0 ≤ T,

Dictionary updating stage:9

for k ← 1 to N do10

Compute Sk = Y −∑
j �=k d j x j

t ;11

Discard all zero entries in xk and Sk , and obtain x̃k and S̃k ;12
Apply a Singular Value Decomposition (SVD) operation13

on S̃k :
SV D(S̃k) = U	V T ,14
dk ← U (:, 1), x̃k ← 	(1, 1)V (1, :)15

end16

Di ← Dupdated17
end18
Decompose D to obtain Ds , Dt , ϑ and W ;19

Compute D̃t , D̃s , ϑ̃ and W̃ according to Equation (21).20

Algorithm 1: Weakly-Supervised Cross-Domain Dic-
tionary Learning.

4.1.3 Convergence Analysis

The convergence proof of the proposed WSCDD method
can be given similarly as the K-SVD algorithm (Aharon
et al. 2006). At the dictionary updating stage, each dictio-
nary element and its corresponding coefficients are updated
by minimizing quadratic functions, and the remaining dic-
tionary elements are updated upon the previous updates.
Consequently, the MSE of the overall reconstruction error
is monotonically decreasing with respect to the dictionary
updating iterations. At the sparse coding stage, computa-
tion of the “best matched” coefficients under the l0-norm
constraint also leads to a reduction in MSE conditioned
on the success of the OMP algorithm. Finally, since MSE
is non-negative, the optimization procedure is monotoni-
cally decreasing and bounded by zero from below, thus
the convergence of the proposed dictionary learning method
is guaranteed. The typical strategy to avoid the optimiza-
tion procedure getting stuck in a local minimum is to ini-

tialize the dictionary with a few different random matri-
ces in several runs. Such a strategy is applied in our
approach.

4.2 Classification

Since Dt , Ds , ϑ and W are jointly normalized in the opti-
mization procedure, they cannot be directly applied to con-
struct the classification framework. Also, since W is obtained
with the un-normalized D, simply re-normalizing D is not
applicable. According to the lemma in Zhang and Li (2010),
D̃t , D̃s , ϑ̃ and W̃ can be computed as:

D̃t =
{ d1

t

‖d1
t ‖2

,
d2

t

‖d2
t ‖2

, . . . ,
d K

t

‖d K
t ‖2

}

D̃s =
{ d1

s

‖d1
s ‖2

,
d2

s

‖d2
s ‖2

, . . . ,
d K

s

‖d K
s ‖2

}

ϑ̃ =
{ ϑ1

‖ϑ1‖2 ,
ϑ2

‖ϑ2‖2 , . . . ,
ϑ K

‖ϑ K ‖2
}

W̃ =
{ w1

‖w1‖2 ,
w2

‖w2‖2 , . . . ,
wK

‖wK ‖2
}

(21)

Given a target domain query sample yi
t , its sparse repre-

sentation xi
t can be computed through (D̃)t . With the linear

classifier f (x), the label l of yi
t can be predicted as:

l = arg min
j

(l j = W̃ xi
t ). (22)

5 Experiments

5.1 Experimental Data Preparation

To demonstrate the effectiveness of the proposed method,
we evaluate it on action recognition, image classification
and event recognition tasks. For event recognition and action
recognition, the source domain data are obtained from an
existing dataset or selected categories of an existing dataset.
For image classification, the source domains are constructed
by choosing 20 image categories (chosen according to the
ascending alphabetic order) and use the first 100 results
returned from Google Image Search for each chosen category
as the source domain data, where the indexing procedure is
performed by simply searching the category names. Since the
retrieved images are very noisy, we apply the manifold rank-
ing (Zhou et al. 2004a,b) algorithm as a pre-processing stage
for the source domain data. As the source domain data are
weakly labeled, we allow 5 samples per category as labeled
in the source domain. The average ranking scores of the unla-
beled source domain data are obtained by treating both the
target domain data and the labeled source domain data as
queries, and rank the unlabeled source domain data. We keep
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Fig. 4 Example images from
video sequences in the UCF
YouTube dataset

the first 20−30 % instances from the ranked source domain
data for each image category, and filter out the remaining
retrieved data. The same ranking procedure is applied to the
action recognition and the event recognition task, where we
keep the most highly ranked 30 instances from the source
domain dataset for the former, and the most highly ranked
80 % instances from the source domain dataset for the latter.
We denote both scenarios of the proposed WSCDDL method
when manifold ranking is utilized or not as WSCDDL-
MR and WSCDDL-EU respectively in image classification,
action recognition and event recognition experiments.

5.2 Action Recognition

The UCF YouTube dataset and the HMDB51 dataset are
used for the action recognition task, where the UCF YouTube
dataset is used as the target domain and the HMDB51 dataset
is used as the source domain. The UCF YouTube dataset
(shown in Fig. 4) is a realistic dataset that contains camera
shaking, cluttered background, variations in actors’ scale,
variations in illumination and view point changes. There are
11 actions including cycling, diving, golf swinging, soccer
juggling, jumping, horse-back riding, basketball shooting,
volleyball spiking, swinging, tennis swinging and walking
with a dog, and these actions are performed by 25 actors.
The HMDB51 dataset (shown in Fig. 5) contains video
sequences which are extracted from commercial movies as
well as YouTube, and it represents a fine multifariousness of
light conditions, situations and surroundings in which actions
can appear, different recording camera types and viewpoint
changes. Since the HMDB51 dataset is a more challeng-

ing dataset, our case closely resembles real-world scenarios,
where the source domain data can contain a wide range of
noise levels. In correspondence with the target domain action
categories, we choose 7 body movements from the HMDB51
dataset, including ride bike, dive, golf, jump, kick ball, ride
horse and shoot ball.

We adopt the dense trajectories (Wang et al. 2011) as
the low-level action video representation to distinguish the
motion of interest. To leverage the motion information in
the dense trajectories, a set of local descriptors are com-
puted within space-time volumes around the trajectories
at multiple spatial and temporal scales, and these features
include the HOGHOF (Laptev et al. 2008), the optical flow
(Ikizler-Cinbis and Sclaroff 2010) and the Motion Bound-
ary Histogram (MBH) (Dalal et al. 2006). Specifically, the
HOGHOF feature is a combination of appearance informa-
tion (captured by HOG Dalal and Triggs 2005) and local
motion probabilities (captured by Histogram of Optical Flow
(HOF)). Since motion is the most important cue for analyz-
ing actions, the optical flow works effectively by comput-
ing the relative motion between the observer and the scene.
MBH represents the gradient of the optical flow by sepa-
rately computing the derivatives for the horizontal and ver-
tical components of the optical flow, so that relative motion
between pixels is encoded. Changes in the optical flow field
being preserved and constant motion information being sup-
pressed, the MBH descriptor can effectively eliminate noise
caused by background motion compared with video stabiliza-
tion (Ikizler-Cinbis and Sclaroff 2010) and motion compen-
sation (Uemura et al. 2008) approaches (Wang et al. 2011).
Despite its powerful capability of describing action motions,
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Fig. 5 Example images from
video sequences in the selected
body movements of the
HMDB51 dataset

the dense trajectories come with two weaknesses: (1) trajec-
tories tend to drift from their initial locations during motion
tracking, which is a common problem in tracking; (2) the
large quantity of local trajectory descriptors leads to high
computational complexity and memory consumption for the
coding methods, such as VQ and SC. To cope with the first
issue, the length of a trajectory is limited to a pre-defined
number of frames. Taking the second issue into account,
a Locality-constrained Linear Coding (LLC) (Wang et al.
2010) scheme is adopted instead of VQ and SC. LLC rep-
resents the low-level dense trajectories by multiple bases.
In addition to achieving less quantization error, the explicit
locality adaptor in LLC guarantees the local smooth sparsity.

Dense trajectories are extracted from raw action video
sequences with 8 spatial scales spaced by a factor of 1/

√
2,

and feature points are sampled on a grid spaced by 5 pixels
and tracked in each scale, separately. Each point at frame t
is tracked to the next frame t + 1 by median filtering in a
dense optical flow field. To avoid the drifting problem, the
length of a trajectory is limited to 15 frames. HOGHOF and
MBH are computed within a 32× 32× 15 volume along the
dense trajectories, where each volume is sub-divided into a
spatio-temporal grid of size 2× 2× 3 to impose more struc-
tural information in the representation. Considering both effi-
ciency and the construction error, LLC coding scheme is
applied to the low-level local dense trajectories features with
30 local bases, and the codebook size is set to be 4,000 for
all training-testing partitions. To reduce the complexity, only

200 local dense trajectories features are randomly selected
from each video sequence when constructing the codebook.
We run our method on five different partitions of the UCF
YouTube dataset, where we randomly choose all action cat-
egories performed by the number of 5/9/16/20/24 actors as
the training actions while using the remaining actions as the
testing actions for each partition. 30 most relevant actions are
chosen from each of the 7 source domain categories using
manifold ranking, and they are represented in the same man-
ner as the target domain actions and coded with the same
codebook. The weight α on the label constraint term and the
weight β on the classification error term are set as 4 and
2 respectively, and 50 iterations of SVD decomposition are
executed during optimization (We use the same values of α,
β and K-SVD maximum iteration for the image classifica-
tion and event recognition tasks). To avoid over-fitting, the
dictionary size is set to be larger when more training data
are available at the training stage. The results are demon-
strated in Table 1 for all five partitions, where we use the size
of 200, 300, 500, 700 and 900 for each partition. We com-
pare the performance of the baseline LLC, sparse coding
methods K-SVD (Aharon et al. 2006) and LC-SVD (Jiang et
al. 2011), and transfer learning methods FR (Daumé 2007)
and A-SVM (Yang et al. 2007) with the proposed WSCDDL
method. Results are reported on both scenarios where the
source domain data are included or excluded in Tables 1 and
2 respectively. Comparing Tables 1 and 2, we can discover
that for many cases, brute-forcing the knowledge from the
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Table 1 Performance
comparison between the
WSCDDL and other methods on
the UCF YouTube dataset when
the source domain data are only
used by the WSCDDL

Best results are in bold

Algorithm LLC (Wang
et al. 2010)

K-SVD (Aharon
et al. 2006)

LC-KSVD (Jiang
et al. 2011)

WSCDDL-
EU

WSCDDL-MR

Dictionary learning N/A Unsupervised Supervised Supervised Supervised

Source data No No No Yes Yes

24 actors (%) 86.67 82.22 86.67 88.89 91.11

20 actors (%) 75.42 68.75 75.42 77.50 78.30

16 actors (%) 70.88 63.96 72.08 73.03 73.03

09 actors (%) 61.41 55.70 65.25 66.31 66.05

05 actors (%) 54.10 50.05 56.55 56.66 57.19

Table 2 Recognition results on the UCF YouTube dataset when using the HMDB dataset as the source domain

Algorithm LLC (Wang
et al. 2010)

K-SVD (Aharon
et al. 2006)

LC-KSVD (Jiang
et al. 2011)

FR (Daumé
2007)

A-SVM (Yang et
al. 2007)

WSCDDL-EU WSCDDL-MR

Dictionary learning N/A Unsupervised Supervised Supervised Supervised Supervised Supervised

Source data Yes Yes Yes Yes Yes Yes Yes

24 actors (%) 86.67 77.78 82.22 83.74 82.51 88.89 91.11

20 actors (%) 70.21 72.08 75.42 74.88 79.05 77.50 78.30

16 actors (%) 70.17 67.54 72.08 71.56 72.46 73.03 73.03

09 actors (%) 61.80 59.15 64.72 62.77 61.65 66.31 66.05

05 actors (%) 53.35 48.88 54.10 54.09 51.54 56.66 57.19

Best results are in bold

Table 3 Performance comparison of the WSCDDL with state-of-the-art methods under the leave-one-actor-out setting on the UCF YouTube dataset

Methods Liu et al. (2009) Ikizler-Cinbis and Sclaroff (2010) BoF WSCDDL-EU WSCDDL-MR

Results (%) 71.2 75.21 80.02 81.13 82.32

Best result is in bold

source domain into the target domain irrespective of their
divergence can cause certain performance degeneration. On
the other hand, the proposed WSCDDL method consistently
leads to the best performance over all the partitions. Figure 7
shows the convergence analysis and performance of vary-
ing dictionary size of the WSCDDL-MR method. Figure 10
shows the confusion matrix comparisons between the LLC
method and the WSCDDL-MR method for all five partitions.
In order to compare the WSCDDL method with state-of-the-
art methods, we further demonstrate its performance under
the leave-one-actor-out setting in Table 3.

5.3 Image Classification

We utilize the Caltech101 dataset as the target domain and
some collected Web images as the source domain for the
image classification task. The Caltech101 image dataset
(shown in Fig. 6) consists of 101 categories (e.g., accor-
dion, cannon, and chair), and each category contains 30–800
images. The source domain data of the Caltech101 dataset
are constructed by a set of images returned by Google Image
Search (shown in Fig. 6) (Fig. 7).

For image representations, we choose the dense SIFT
(Lowe et al. 2004) plus LLC (Wang et al. 2010) model. The
SIFT descriptors are extracted from 16 × 16 pixel patches
and densely sampled from each image on a grid with the step
size of 8 pixels. We evaluate our method with both dictio-
nary sizes 1024 and 4096. The same values of the weights
α, β and K-SVD iterations are adopted as in the action
recognition task. We compare the performance of the pro-
posed WSCDDL approach and state-of-the-art approaches
in Table 4. Results on six different numbers of training data
are reported, and all the results are averaged over 5 times
of different randomly selected training and testing images
to guarantee the reliability. For the LLC (Wang et al. 2010),
K-SVD (Aharon et al. 2006) and LC-SVD (Jiang et al. 2011)
methods, we consider both scenarios of whether the source
domain data are included. For fair comparisons, we choose
both dictionary size 1,024 and 4,096 to test the proposed
method. Figure 6 shows samples of 6 categories with high
classification accuracies when using 30 training images per
category. As shown in Fig. 8, the proposed WSCDDL method
results in larger improvements over others when fewer sam-
ples are used for training, which demonstrates its effective-
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Fig. 6 Example images from classes with high classification accuracy from the Caltech101 dataset

Fig. 7 Performance analysis on the UCF YouTube dataset when actions performed by 24 actors are used in the training data. a The optimization
process of the objective function for WSCDDL-MR with 50 iterations. b Performance when varying the dictionary size

ness in terms of utilizing the source domain data. Figure 9
demonstrates the performance of all the 101 image categories
(Fig. 10).

We further evaluate our method on the more challeng-
ing Caltech 256 dataset (Griffin et al. 2007), which con-
tains 30,607 images of 256 categories. Compared to the Cal-
tech101 dataset, it is much more difficult due to the large

variations on object location, pose, and size. Similar as the
strategy adopted in constructing the source domain for the
Caltech101 dataset, 400 images from 20 categories indexed
by Google Images are used as the source domain. We evaluate
our approach on both 15 and 30 training images per class,
and set the dictionary size to 1,024 or 4,096 respectively.
We compare our method with state-of-the-art approaches as
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Table 4 Comparison with the
state-of-the-art methods on the
Caltech101 dataset

Best results are in bold

Number of training samples 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%)

Malik (Zhang et al. 2006) 46.6 55.8 59.1 62.0 − 66.2

Griffin (Griffin et al. 2007) 44.2 54.5 59.0 63.3 65.8 67.6

SRC (Wright et al. 2009) 48.8 60.1 64.9 67.7 69.2 70.7

LLC (Wang et al. 2010) 51.15 59.77 65.43 67.74 70.16 73.44

LLC (Wang et al. 2010) (source) 21.43 36.37 51.11 60.02 67.55 72.17

K-SVD (Aharon et al. 2006) 39.63 50.30 58.82 64.73 67.92 71.04

K-SVD (Aharon et al. 2006) (source) 20.42 35.64 44.93 53.69 60.07 66.07

LC-KSVD (Jiang et al. 2011) 46.25 57.73 68.45 70.79 72.83 73.75

LC-KSVD (Jiang et al. 2011) (source) 48.95 62.71 67.14 70.17 73.39 75.05

WSCDDL-EU (N = 1,024) 60.62 67.81 70.09 72.98 76.17 77.30

WSCDDL-MR (N = 1,024) 61.31 68.69 71.59 74.73 76.82 78.44

CRBM (Sohn et al 2011) (N = 4,096) 56.7 66.7 71.3 74.2 76.2 77.8

WSCDDL-EU (N = 4,096) 63.47 68.90 70.88 74.01 77.54 78.68

WSCDDL-MR (N = 4,096) 64.05 69.31 72.39 75.22 78.40 79.02

Fig. 8 Performance analysis on the Caltech101 dataset. a The opti-
mization process of the objective function for WSCDDL-MR with 50
iterations. b Means and standard deviations of different methods when

the number of training samples per class varies from 5 to 30 (The dic-
tionary size of WSCDDL-MR is set to 1,024)

Fig. 9 Performance on all the categories of the Caltech101 dataset achieved by the WSCDDL-MR (The dictionary size of WSCDDL-MR is set
to 1,024) method when using 30 training images per category
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Fig. 10 Comparison of the
confusion matrixes between the
baseline ScSPM and the
WSCDDL on five different data
partitions of the UCF YouTube
dataset
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Table 5 Recognition results on the Caltech256 dataset

Number of training samples 15 (%) 30 (%)

Griffin et al. (2007) 28.3 34.10

Yang et al. (2009) 27.73 34.02

K-SVD (Aharon et al. 2006) 25.33 30.62

SRC (Wright et al. 2009) 27.86 33.33

WSCDDL-EU (N = 1,024) 29.68 35.78

WSCDDL-MR (N = 1,024) 31.89 36.86

LLC (Wang et al. 2010) (N = 4,096) 34.36 41.19

CRBM (Sohn et al 2011) (N = 4,096) 35.09 42.05

WSCDDL-EU (N = 4,096) 36.21 42.33

WSCDDL-MR (N = 4,096) 37.42 42.80

Best results are in bold

shown in Table 5, where our approach consistently leads to
the best performance. Figure 11 shows samples from 5 cat-
egories with high classification accuracies when using 30
images per category.

5.4 Event Recognition

We compare our proposed method WSCDDL with state-
of-the-art transfer learning methods on the event recogni-
tion task using the Kodak Consumer Videos and a set of
additional videos. The Kodak consumer video benchmark

dataset was collected by Kodak from about 100 real users
over the period of one year, and it includes two video sub-
sets from two different sources, where the first part contains
Kodak’s video data which includes 1,358 video clips con-
tributed by involved users and the second part contains 1,873
clips downloaded from the YouTube website after removing
TV commercial videos and low-quality videos. Similarly,
the additional videos collected by Duan et al. (2012b) con-
tain two parts, which are the self-collected consumer videos
and downloaded YouTube videos. To resemble the real-world
scenario, the downloaded YouTube videos are not addition-
ally annotated so that they can remain in a loosely labeled
setting. Thus, only the self-collected consumer videos from
the dataset used in Duan et al. (2012b) possess precise labels.
The total numbers of consumer videos and YouTube videos
are 195 and 906, respectively, and each video belongs to
only one event category. Following the settings in Duan et al.
(2012b), six events, namely “birthday”, “picnic”, “parade”,
“show”, “sports” and “wedding” are chosen for experiments.
The target domain is constructed using both the consumer
videos from the Kodak dataset and additional self-collected
consumer videos in Duan et al. (2012b). On the other hand,
the second part of the Kodak dataset and the loosely labeled
YouTube videos used in Duan et al. (2012b) constitute the
source domain. In the target domain, three consumer videos
from each event (18 videos in total) are randomly chosen
as the labeled training videos and the remaining videos are

Fig. 11 Example images of the categories with high classification accuracy from the Caltech256 dataset
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used as the test data. In order to set up a fair comparison
in correspondence with the experimental results in Duan
et al. (2012b), we use the same low-level features, which
are SIFT features and ST features. For each sampled frame,
which is sampled at the sampling rate of 2 frames per sec-
ond, the 128-dimensional SIFT features are extracted from
the salient regions, which are detected by the Difference-of-
Gaussians (DoG) interest point detector (Lowe et al. 2004).
The 162-dimensional local ST feature is the concatenation
of the 72-dimensional HOG feature and the 90-dimensional
HOF feature. We also conduct experiments in the same three
cases as in Duan et al. (2012b): (a) dictionaries and classi-
fiers are learned based on SIFT features, (b) dictionaries and
classifiers are learned based on ST features and (c) dictio-
naries and classifiers are learned on both SIFT and ST fea-
tures. Based on the same experimental settings as in Duan et
al. (2012b), we compare our method WSCDDL with SVM-
AT, SVM-T, FR (Daumé 2007), A-SVM (Yang et al. 2007),
MKL (Duan et al. 2009), DTSVM (Duan et al. 2009) and
A-MKL (Duan et al. 2012b), where SVM-AT denotes the
case that labeled training samples are obtained from both the
target domain and the source domain, and correspondingly
SVM-T denotes the case that labeled training samples are
only obtained from the target domain. Table 6 demonstrates
the recognition results of the proposed WSCDDL method
and other cross-domain methods. We can observe that SVM-
T consistently outperforms SVM-AT in both scenarios of
(b) and (c), which indicates that brutally including the ST
features of source domain videos may degrade the recogni-
tion performance. The proposed WSCDDL method consis-
tently outperforms other cross-domain methods in all three
cases.

6 Conclusion

In this paper, we have presented a novel visual categoriza-
tion framework using the weakly-supervised cross-domain
dictionary learning algorithm. Auxiliary domain knowledge
is utilized to span the intra-class diversities, so that the over-
all performance of the original system can be improved. The
proposed framework only requires a small set of labeled
samples in the source domain. By means of a transforma-
tion matrix, dictionary learning is performed on both the
source domain data and the target domain data while no
correspondence annotations between the two domains are
required. Promising results are achieved on action recogni-
tion, image classification and event recognition tasks, where
knowledge from either the Web or a related dataset is
transferred to standard benchmark datasets. The proposed
framework leads to an interesting topic for future investi-
gation when large scale source and target domain data are
available.
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