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Abstract Estimating the focus of attention of a person
highly depends on her/his gaze directionality. Here, we pro-
pose a new method for estimating visual focus of attention
using head rotation, as well as fuzzy fusion of head rotation
and eye gaze estimates, in a fully automatic manner, with-
out the need for any special hardware or a priori knowledge
regarding the user, the environment or the setup. Instead, we
propose a system aimed at functioning under unpretending
conditions, only with the usage of simple hardware, like a
normal web-camera. Our system is aimed at functioning in a
human-computer interaction environment, considering a per-
son is facing a monitor with a camera adjusted on top. To this
aim, we propose in this paper two novel techniques, based
on local and appearance information, estimating head rota-
tion, and we adaptively fuse them in a common framework.
The system is able to recognize head rotational movement,
under translational movements of the user towards any direc-
tion, without any knowledge or a-priori estimate of the user’s
distance from the camera or camera intrinsic parameters.
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1 Introduction

Estimating focus of attention in an human-computer inter-
action (HCI) environment has received a large amount of
attention in bibliography during the last years. There is an
abundance of methods, addressing the problem from various
points of views: estimation of the pose of the whole body
(Fathi and Mori 2007), eye gaze estimation (Wang 2003),
estimation of the head orientation (Murphy-Chutorian et al.
2007) or fusion of different methods (Weidenbacher et al.
2006), where head pose and eye gaze are combined. We
address here the problem of estimating the focus of atten-
tion of a person. Especially, we examine the problem in
conditions where only the head is visible or necessary to
infer his/her focus of attention. To this aim, a fully automatic
method for estimating head rotations is considered, attempt-
ing to overcome certain conventions and constraints usually
imposed on such systems (especially dedicated hardware,
headmounted or calibrated systems). Additionally, eye gaze
cues are also considered for the overall estimate of gaze direc-
tionality. The system is intended to function with the usage of
non-calibrated remote cameras, with the aim of maximizing
accessibility and easiness of use in HCI environments.

Numerous applications can take advantage of such a sys-
tem: estimating the orientation of the head, it is easy to esti-
mate the levels of attention of a driver (Murphy-Chutorian
et al. 2007) or enrich e-learning systems (Asteriadis et al.
2009c). Also, HCI systems with personalized virtual agents
are among near future applications of the field (Peters et al.
2009). Typical works on visual attention estimation, are the
methodologies presented in Voit and Stiefelhagen (2010);
Ba and Odobez (2011), where the authors estimate focus of
attention of participants in dynamic meeting scenarios, taking
advantage of information coming from speech and motion
activity of other participants, utilizing, in this sense, context-
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related information regarding social dynamics. Head pose in
Voit and Stiefelhagen (2010) is monitored by four far-field
views from the room’s upper corners, while (Ba and Odobez
2011) jointly track head position and pose, in a Bayesian
probabilistic framework solved with particle filtering tech-
niques. In Murphy-Chutorian et al. (2007), the authors pro-
pose a framework for drivers attention estimation. To this
aim, they use a camera sensitive to near-infrared wavelengths.
Authors in Asteriadis et al. (2009c) estimate attention levels
of children with learning difficulties during their interaction
with learning materials. In Peters et al. (2009), the authors
employ head pose to infer user’s attention towards objects
presented by a virtual seller and, through the above esti-
mated and different interaction scenarios, they analyze peo-
ple’s reactions to a variety of conditions in interaction. Apart
from estimating visual focus of attention, gaze estimation can
a play critical role at estimating cognitive states; recogniz-
ing such cues can be very important at estimating intentions
(e.g. head nods), interest (fixation), and facial expressions.
A typical example is the work in Shaker et al. (2011), where
head expressivity parameters and game interaction events are
correlated, with a view to game content adaptation and per-
sonalization.

2 Related Work

The estimate of head pose is usually related to calculating
the three degrees of freedom of the head rotation: yaw, pitch
and roll. Using these values (or, in cases, subsets of them),
one can get important clues regarding the gaze directionality
of a person, especially in conditions where eyes are not visi-
ble, or the resolution of the image/video is too low to extract
information regarding gaze, only from the eyes. We consider
here, as head pose, the ability to infer head rotation parame-
ters relative to the view of a camera (Murphy-Chutorian and
Trivedi 2009). More specifically, head rotation is considered
to be null when the face appears to be symmetrical around the
y axis, and the triplet formed by the eyes and mouth forms a
plane parallel to the image plane (Gee and Cipolla 1994a). In
practice, here, we employ the frontal face detector of Viola–
Jones (Viola and Jones 2001), followed by trained models in
order to infer frontal view. Horizontal and vertical rotation
(yaw and pitch rotation angles) refer to the angles formed by
the face plane with that of the camera and, in this paper, the
proposed algorithm employs 2-D techniques for extracting
the corresponding parameters, based on facial features spa-
tial positions, as well as face area information. Roll angle is
defined as the angle formed by the inter-ocular line segment
and the x-axis (Horprasert et al. 1996; Ma et al. 2008).

The methodologies presented in recent bibliography,
regarding the issue of head pose estimation, use different
approaches, varying in terms of hardware necessities or algo-

rithmic restrictions. Should someone want to make a cat-
egorization of the existing techniques, a major separation
would have to do with methods requiring specific hardware,
like helmets and magnetic sensors (intrusive methods) and
methods that do not require the user to attach any special
equipment on him or her (un-intrusive methods). In this
description, we will mainly concentrate on the second group
of approaches. Within the group of unintrusive methods,
the proposed methodologies—based on the principles they
use—may depend on different restrictions, such as special-
ized hardware or camera/lighting set-ups, alignment between
training and test data, exact and robust feature tracking, etc.
Furthermore, many systems require a priori knowledge of
camera parameters or/and multi-camera systems in order to
use stereo vision techniques for inferring head pose parame-
ters. In conditions where it is not possible to have knowl-
edge regarding camera parameters, these methods usually
fail to give accurate results when there is movement that
goes beyond the system assumptions (e.g. along the z-axis).

In terms of the algorithms used for head pose estimation,
mainly in monocular systems, the techniques can be further
classified in terms of the principles they use, each present-
ing different advantages and disadvantages. Although it is
not easy to classify methods in a strict manner, as each of
them has its own characteristics and specificities, a coarse
classification would be the following:

Holistic techniques According to these techniques, the
face is compared against certain models, each representing a
different pose. The most similar model, or a weighted fusion
of different models, is the final estimate of the pose. One of
the major disadvantages of the majority of these systems is
that they require that the detected facial area is aligned to
the training images facial contours (i.e. the amount of back-
ground allowed, or the amount of facial area not included
in the image should be standardized). Thus, although these
methods, theoretically, are alleviated from the problem of
finding exact facial feature positions, aligning the detected
facial regions with conditions met during training, does in
fact require detecting specific features. A typical work is the
one described in Stiefelhagen (2004), where neural networks
are used for head pose estimation. In Morency et al. (2010),
the authors use the generalized adaptive view-based appear-
ance model (GAVAM), which is an extension of the AVAM
(Morency et al. 2003). After segmenting the face region at the
current frame, according to the model, its pose is estimated
using the following modules: a static pose estimator for cur-
rent frame, a differential tracker between the current frame
and the previous one, and a set of keyframes of similar view to
the current frame are used, as well as a reference keyframe.
In the work in Osadchy et al. (2007), the authors employ
convolutional neural networks (CNNs), as a means to over-
come errors stemming from unprecise alignment between
training and testing data. Using the trained models, input
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images are mapped to low-dimensional manifolds, parame-
terized accordingly, to account for different head poses.

Local techniques This group of techniques uses specific
facial features positions in order to employ geometric proper-
ties for determining head pose. Although using geometrical
properties of landmark points is quite straightforward, effi-
cient and accurate facial feature detection and tracking over
a large series of images is crucial, and even small errors may
introduce large deviations from correct head pose estimates.
Another issue that arises, is that of occlusions, when positions
of facial points become, either un-available or arbitrary. An
example is the work presented in Gee and Cipolla (1994b),
where the authors use the ratio between the outer eye corners
distance and the distance of the mouth from the eyes middle
point as a face model, in order for the face plane orientation
to be calculated. Another typical work is the one reported
in Gourier et al. (2004), where the relative position of facial
characteristics with regards to the rest of the face is used. In
Nguyen et al. (2008), support vector machines (SVMs) are
employed for finding the location of the iris centers in approx-
imately detected eye regions. The authors report results on the
CMU (Sim et al. 2003) Face Dataset to distinguish between
frontal and looking-up head poses.

Facial motion recovery This set of methods relies on track-
ing the face area and estimating the movement between suc-
cessive frames of a sequence. The results yielded with these
methods are usually very accurate but, unless combined with
other techniques, either require knowledge of the camera
parameters or/and estimates of the distance of the user from
the camera, or pre-assume frontal pose at start-up. Typical
work is the one reported in Cascia et al. (2000), where the
authors model the head as a cylinder to recover its motion
parameters, considering the camera model to be known. Due
to perspective projection, not all pixels have the same confi-
dence value during registration. In the work described in Dor-
naika and Davoine (2008), the authors present a method for
solving the challenging problem of facial actions and expres-
sion recognition under head rotation. For head pose, they
employ a deterministic registration technique. This method
adopts a weak perspective approach and, thus, does not
depend on prior assumptions related to camera or environ-
ment parameters. The authors in Lefevre and Odobez (2009),
using the Candide model (Ahlberg 2001), jointly estimate
head pose and facial actions, even under challenging light-
ing and motion conditions. Here, also weak projection model
is hypothesized and no camera parameters are known. The
authors achieve very good results on the BU dataset, and also
cater for occlusion by assigning different weights according
to points orientation, but fixed patches around trained fea-
tures are considered.

Non-rigid model fitting Using a trained non-rigid model
for mapping on a face region allows multiple transforma-
tions of its nodes, so that to match the texture of an input

face. Such methods have drawn much attention in the recent
years. A major factor to be taken into account is that such
models require good initialization of their position and size,
as they are prone to falling into local minima when compared
to a face image. A typical example is the work proposed in
Cootes et al. (2000), where the authors use Active Appear-
ance Models (Cootes et al. 2001) for estimating the rotation
of a face around the vertical axis.

Fusion of methods There are also many hybrid techniques
that try to avoid the disadvantages of one method, using
advantages offered by the other. For example, in Sung et
al. (2008), the authors combine active appearance models
(AAMs) with cylinder head models (CHMs) (Xiao and Cohn
2003), in an attempt to combine the local character of AAMs
with the global motion properties of CHMs. Correct tracking
rates improve in comparison to AAMs. However, the “pose
coverage” (the spectrum of pose angles that can be detected)
does not outperform 45◦ for yaw angles.

Eye gaze estimation with the usage of simple, ordinary
cameras is a less studied issue. Authors in Kourkoutis et
al. (2007) compare the position of the face center with the
pupil centers, in order to distinguish among different eye
gaze directionalities. Holistic methods are utilized in Tan
et al. (2002), where manifolds, based on the eye area, are
created and different gaze directionalities are mapped to dif-
ferent points on the manifold. In the work described in Ji
and Yang (2002), the authors use an infrared light sensitive
camera in order to make use of the bright pupil effect. In
Magee et al. (2008), a template matching technique is used
for localizing the eyes and, subsequently, eye regions are
compared to each other in order to infer eye gaze direction-
ality.

The above methods on eye gaze directionality estimation,
either state or imply that head needs to be frontally rotated
towards the camera, in order for eye gaze to be effectively
reconstructed. Should this not be the case, dedicated hard-
ware (like infrared-sensitive cameras) are necessary, in order
to estimate gaze directionality. As a result, not a lot of works
exist in bibliography regarding the issue of combining head
pose and eye gaze, only with the usage of one ordinary cam-
era, due, mainly, to the challenging nature of the problem.
In the system described in Weidenbacher et al. (2006), the
authors use elastic graphs for the estimate of the horizontal
head rotation. For eye gaze estimation, they employ gabor
filters. Based on training data, they build lookup tables that
match the focus of attention with eye gaze and head pose
calculations. Typical work on eye gaze and head pose esti-
mation is the one described in Valenti et al. (2012), where the
authors model heads with cylindrical shapes and, using the
cylinder parameters, estimate the location of the eyes. These
positions are projected on a normalized model view and are
compared to reference positions in order to acquire eye gaze
directionality.
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3 Method Overview

Here, a system that functions in a monocular environment,
without any special needs in terms of hardware, or knowl-
edge of internal camera or set-up parameters is presented.
These properties constitute this work independent of intru-
sive mechanisms or environment-related parameters. The
system is designed to work in a HCI scenario, with a per-
son sitting in front of a computer monitor, with a common 1

camera adjusted on top of it. The proposed system can handle
large head translations, both parallel and perpendicular to the
camera plane: by employing holistic information, it uses the
appearance of the skin region, which is independent of its
size and, by re-starting at frequent intervals, the system can
re-initialize information related to local features in order to
avoid error accumulation. Furthermore, it uses a combination
of appearance information and local features, in order to use
properties of each of the two families of methods, that allevi-
ate the drawbacks of each other by fusing them in a common
framework. Distance vector fields (DVFs) have been used in
the past (Asteriadis et al. 2009a) for the purpose of detec-
tion, showing promising results in normal lighting and non-
pretending conditions. Here, we propose their use as a local
information flow (i.e. feature tracker), due to their property
to encode efficiently local structures in conditions of poor
lighting conditions. Furthermore, we propose a methodology
for mapping facial feature positions to actual head rotation
angles. More specifically, although our method introduces a
facial feature tracker that uses DVFs, it does not utilize strict
relationships among the positions of the features, but their
relative movements within the co-ordinate system extracted
from the face region of the user, at each frame. This makes
our system robust to small tracking errors of the positions
of features during tracking. Moreover, the system is able to
re-initialize when certain conditions are met, not allowing,
in this way, error accumulation due to tracking failure. For
holistic appearance information, here, we introduce the use of
a CNN architecture for head pose estimation, due to a series
of properties that CNNs have. CNNs have been extensively
used for digits recognition (LeCun et al. 1998a) and have
similar topology with the standard multi-layer perceptrons
(MLPs), but act as filters on the input image and subsequent
transformations. More specifically, they build the optimal fil-
ters in order to extract the appropriate features of an image,
necessary for the task of recognition in hand. Furthermore,
thanks to frequent sub-samplings of the image, CNNs are less
prone to image distortions and small shifts. This last prop-
erty is very useful for the problem we want to tackle: Since
it is our desire to create a system that would work under real
conditions, it is expected that not all input images can be

1 Here, the word ’common’ is used to distinguish from different types
of web-cameras, such as wide or narrow angle, or infrared.

aligned in the same manner during testing. Moreover, using
CNN’s as static pose estimators, they are employed here as
a refining step to infer frontal pose, before local information
is employed, and a reference frontal pose frame is labelled.
Fusion of the above two techniques has been shown to give
very good results at estimating yaw and pitch angle of the
head pose. Roll angle is more straightforward to detect. Fig-
ure 1 gives a brief overview of the methodology on head
pose estimation. The system overcomes as many as possible
of the common constraints met in bibliography, as described
above, although there do exist methodologies overcoming a
large amount of such limitations and, as will be seen in the
experimental results section, its ability to achieve accurate
results on non-posed datasets is grounded.

The perspective of combining estimates of Head Pose
with Eye Gaze is also considered in this paper, building on
the work presented in Asteriadis et al. (2011), where the
core components of a system for validating prior hypothe-
ses regarding user attention, were described. To this aim,
a dataset combining Head Pose and Eye Gaze, specifically
designed for the current research has been developed, in order
to test the system’s ability to infer gaze under large head trans-
lations. Furthermore, a commonly used dataset (Cascia et al.
2000) has been annotated regarding its participants’ over-
all gaze towards the camera. Within this framework, we did
not focus on inferring exact gaze estimation, but rather, we
were interested in detecting degrees of confidence, through
fuzzy logic, regarding hypotheses that a person is looking
towards a specific point. A frame sequence dataset with clear
annotations referring to focus of attention values, coming
from both head rotation and eye gaze, to the authors’ knowl-
edge, was not publicly available at the time of conducting our
experiments. However, a series of participants were asked to
gaze towards certain points within a limited field of view, in
order to test the ability of the overall system to generalize for
unknown users, requiring no specific calibration. Moreover,
the problem of combining the two cues in a common frame-
work, using non-calibrated remote and monocamera mecha-
nisms is not a thoroughly studied issue, due to the challenging
nature of the problem and high variability among different
subjects.

The structure of the rest of the paper is the following: In
Sect. 4, we briefly discuss the ideas behind DVFs for facial
feature detection, and we explain how we obtain personal-
ized facial chrominance models for successful face track-
ing. Next, we give details regarding facial feature tracking
and propose a model for estimating head rotation based on
feature positions with regards to face boundaries. Section
5 presents Convolutional Neural Networks (CNNs) and we
state the reasons why they were chosen for utilizing holistic
information. The proposed architecture is presented, as well
as the training and reasoning scheme. In Sect. 6, we explain
how we fuse the two types of information. Section 7 extends
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Fig. 1 Overview of the
method: face detection and
samples of skin are extracted at
start-up. Subsequently, the face
area is tracked and provides
input to a series of CNN. If head
pose vector is almost zero, facial
feature detection and tracking
are launched and provide local
information. The algorithm can
re-initialize at frequent intervals

the idea of visual focus of attention estimation by including
eye gaze directionality, while Sect. 8 presents experimental
results. A discussion and conclusions follow in Sects. 9 and
10, respectively.

4 Head Pose Estimation Using Distance Vector Fields

For the estimate of Head Pose using local information, we
present a novel technique for Facial Feature Tracking. Based
on tracking the face and facial areas (eyes and mouth), we
extract information regarding the head’s position, as well as
its size on the image. The positions of the tracked features
will be used for inferring head pose, as will be discussed in
Sect. 4.3.

4.1 Distance Vector Fields

Distance vector fields for facial feature localization in frontal
face images have been introduced in Asteriadis et al. (2007).

Their applicability as detectors has been evaluated on two
widely used datasets, the XM2VTS (Messer et al. 2003)
and the BioID (Jesorsky et al. 2001), showing promising
results on facial analysis. Specifically, the latter case consists
of images taken under normal lighting conditions, depicting
people posing various spontaneous expressions and, as the
authors report, facial feature detection was very successful.
To give an overview of the idea behind DVFs, they are image
representations that encode shape geometry. This is done by
attributing, to every image pixel, a vector pointing to the clos-
est edge pixel, rather than just a scalar value (its distance),
as is the case with distance maps. Considering a binary edge
map of an image containing edge and non-edge pixels, its
DVF is a vector field that is created by assigning to each
pixel (i, j) the vector v pointing to the closest edge pixel
(k, l) (Eqs. 1, 2).

vi j = [k − i, l − j]T , (i, j) ∈ B (1)

(k, l) = arg min
m,n∈E

D((i, j), (m, n)) (2)
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where D is some metric (here, we use the euclidean dis-
tance) and E, B are the sets of edge and non-edge pixels
respectively. From the above equations, it can be noticed that
every shape can be reconstructed by its corresponding DVF
and, in pattern recognition problems, every pixel is given a
2-D vector that characterizes its position with regards to the
closest edge pixels. The above has been utilized in Asteriadis
et al. (2009a) for facial feature detection. The above prop-
erties make DVFs insensitive to luminance variations and,
thus, appropriate for detection and tracking: what is encoded
is the feature’s shape geometry, which is not dramatically
altered due to lighting differences between training and test
data or throughout a frame sequence; eyes, eyebrows and
mouth provide geometrical structures where basic objects
(eye, eyebrow, mouth) are easily separable from the back-
ground (skin), at least to a certain degree, under variable
lighting conditions. Consequently, resulting DVF structures
have similarities even under different lighting circumstances,
providing high robustness to the problem of detection. The
situation during tracking is similar and can also cope with
changes in lighting conditions. Consequently, tracking will
not fail even if DVF structure changes due to lighting condi-
tions, as long as these changes do not occur abruptly.

4.2 Tracking Facial Features Using DVFs

4.2.1 Facial Feature Detection

Prior to tracking, the face is initially detected using the
Boosted cascade method (Viola and Jones 2001), followed
by ellipse fitting, as was done in Asteriadis et al. (2007), for a
more precise estimate of face boundaries. Subsequently, the
face bounding box is brought to certain dimensions (we used
H f = 130 for height and W f = 105 for width) and eye and
mouth areas are detected using DVFs.

After detection of the position of the eyes and the mouth,
the detected facial areas are brought back to their original
dimensions, that agree with those of the face in the current
image; the above is of high importance, since it constitutes
the basic element that renders the proposed method invariant
to face size (i.e. position of the user with regards to his/her
distance from the camera). More details regarding the detec-
tion step can be found in Asteriadis et al. (2009a).

4.2.2 Face Tracking

The ideas discussed above will be used for tracking the
detected facial features. To impose constraints on facial fea-
tures positions, the bounding box of the face area is used at
every frame, and the desired features are limited within this
area, at a minimum of 50 % of their size. To this aim, each
time a face is detected, a region of interest Cskin in the centre
of the detected face area is used as the skin color predicate of

the face, and the saturation2 values of its pixels are calculated.
Candidate facial pixels saturation values, for the subsequent
frames, are expected to be within certain limits with regards
to the mean sM of the saturation values of Cskin . In this way,
a binary image C f p is created, marking with 1 those pixels
x that satisfy the below hypothesis (face candidate pixels):

C f p = {x ∈ Ω : ‖sM − sx‖ < T } (3)

where Ω is the set of all pixels belonging to the frame,
x are candidate facial pixels, sx their corresponding satu-
ration values and T a threshold. Binary opening is subse-
quently applied to remove small areas, falsely attributed to
skin regions.

The threshold T is automatically selected for each user
separately, at the detection step (see Sect. 4.2.1), according
to Eqs. (4) and (5):

T = arg min
0.05<T <0.35

(∑
x∈Ω

δ(kx ) − Facesize

)
(4)

with

kx =
{

0, ‖sM − sx‖ ≤ T
1, ‖sM − sx‖ > T

(5)

with δ being the Kronecker delta function and Facesize the
size of the face as defined by the ellipse containing the face
at the detection step (see Sect. 4.2.1). The above procedure
resulted in selecting a threshold automatically for each user,
illumination conditions and face size with regards to the cam-
era, thus, helping the system to adapt to any conditions in
terms of lighting and user position. According to Eqs. (4)
and (5), T is chosen based on the hypothesis below: it was
expected that, at the first frame, the amount of pixels with
saturation values close to the mean of Cskin is close to the
amount of pixels that account for the real face region. The
above procedure is summarized in Fig. 2, where the optimum
threshold T to be used in Eq. (3) is based on the size of the
face at the face detection step. To reduce the number of candi-
date facial pixels, the rules defined in Kovac et al. (2003) are
used, in order for a map Csp, extracted based on these rules,
of candidate skin pixels to be built. According to these rules,
a model for segmenting face regions is proposed. However,
they are are quite relaxed, resulting to the inclusion of a lot
of background regions.

C f p and Csp are combined using the logical AN D opera-
tion, and binary closing (using a 10×10 structuring element,
accounting for a 0.13 % of the frame size of the images where
we conducted our experiments) is applied. This removes
small holes like the eyes. Finally, the proposed method uses
connected component labelling (Haralick and Shapiro 1992)
and chooses the largest component as the final face region,

2 Here, saturation is used, although different color channels (or combi-
nations) can be used
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Fig. 2 Overview of selection of threshold T for segmenting face regions based on Eq. 3: threshold T = 0.15 was decided in this sequence, as the
total number of pixels whose values are close to that of the initially selected skin region is close to the number of pixels belonging to the face region

Fig. 3 (a) Original image saturation values; (b) thresholded saturation
values; (c) face candidate pixels C f p, extracted after morphological
opening; (d) skin candidate pixels Csp; (e) face candidate pixels after
logical AN D between C f p and Csp; (f) final face mask after morpho-
logical operations

while objects suddenly appearing at a distance not close to
the position of the skin region of the previous frame, are also
discarded. This last step ensures that background objects,
falsely attributed to belonging to facial areas, are removed
and, thus, only the face skin region remains. An overview of
the steps of face tracking can be viewed in Figs. 2 and 3.

4.2.3 Facial Feature Tracking

Having defined the face region and having detected eye and
mouth areas at start-up, tracking of facial features follows.
In this paper, for local information, we introduce the use of

Distance Vector Fields for facial feature positions tracking,
thanks to the properties and analysis described in previous
sessions. For mouth tracking, further image transformations
have been employed.

Eye tracking For every eye, the DVF fk,i of its region Rk

is extracted in frame k and position i, and the new position
i+p of the feature in frame k+1, that minimizes the L2 norm
is extracted. The search region in frame k + 1 is an extended
area around the previous region in frame k. Here, we extended
the area by ±33.3 % of the eye region, both along the hori-
zontal and vertical axes. The motion vector p that gives the
new position of the eye with regards to the previous frame is
expressed by the following formula:

p = arg min
x

∑
i∈Rk

‖ fk,i − fk+1,i+x‖2 (6)

Every time an eye region is localized in a frame, the eye
center (Asteriadis et al. 2009a) is found and the region posi-
tion is updated so that it is centered around the eye cen-
ter. Through experiments, it was shown that employing this
update step of centering the eye area around the eye center
helps to avoid erroneous tracking as, even if the DVF shows a
tendency of slipping away from its correct trajectory, causing
it to get to a position around the eye center, brings it back to
the desired position. The advantage of using DVFs for eye
tracking is that, as DVFs function on a frame-by-frame basis,
eyes are tracked based on the geometrical similarity between
two consecutive frames. Consequently, even if there are light-
ing variations throughout the sequence, as long as two con-
secutive frames are not dramatically different, in terms of the
eye area shape, tracking would not fail.

Mouth tracking For mouth tracking, rapid lip movements,
especially in the case where skin color cannot be easily dis-
tinguished from lips, cause DVFs to change very quickly. To
tackle mouth tracking, a search area around the perpendicu-
lar bisector of the inter-ocular line segment is used to search
for regions with high hue values and high horizontal edges
concatenation. The combination of the two features maps is
achieved by multiplying the binary edge values with the hue
component values of the search area (see Fig. 4). The region
with the highest mean of the resulting map is denoted as the
new position of the mouth area. The mask used for checking
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Fig. 4 (a) Mouth search area; (b) Hue component of mouth search
area; (c) horizontal edge map of mouth search area; (d) Hue multiplied
with horizontal edge map;

the means is of equal dimensions to that of the mouth at the
detection step (brought back to real image dimensions).

Optimization of the tracker To further restrict the search
areas for eye tracking and push results to obey to anthro-
pometric measurements, it was assumed that the fraction
between the inter-ocular distance and the vertical distance
between the eyes and the mouth follows a normal distribu-
tion f (μ, σ 2) with μ and σ being the mean and standard
deviation respectively. To accommodate each user’s charac-
teristics, μ was considered as the inter-ocular distance to
eye–mouth distance at start-up, when the user is facing the
camera frontally, while σ was extracted from training data of
faces posing various head rotations [we used the dataset in
Gourier et al. (2004)]. Thus, the extra factor corresponding
to this distribution changes Eq. (6) as follows:

p = arg min
x

⎛
⎝∑

i∈Rk

‖ fk,i − fk+1,i+x‖2 f (dk+1,x;μ, σ 2)−1

⎞
⎠

= arg min
x

⎛
⎝∑

i∈Rk

‖ fk,i − fk+1,i+x‖2e
(dk+1,x−μ)2

2σ2

⎞
⎠ (7)

with dk+1,x standing for the fraction between the inter-ocular
distance and the distance between the eyes midpoint and the
mouth, at frame k+1, and translation x of the tracked eye with
regards to its position at frame k. The above equation is used
when tracking each eye separately and uses the coordinates
of the other two features in frame k for estimating dk+1,x .

4.3 Estimation of Yaw, Pitch, Roll Angles Based on DVF
Tracking

Facial features’ positions with regards to head pose con-
tour play a key role for human perception of head pose
(Gourier et al. 2004). Knowing the skin contour bound-
aries, as extracted from the face tracking process, the eye

Fig. 5 Head pose vector estimation explaining the process described
in Eqs. 8 and 9. Dark arrows on the right image are head rotation, as
defined by eyes and mouth, separately.

midpoint’s Ek = (Ex,k, Ey,k) and mouth centre’s Mk =
(Mx,k, My,k) positions at each frame k, we calculate the
yaw (pitch) angle as follows: it is modelled as the rela-
tive changes of the distance of E and M from the skin
region rightmost and leftmost Cr,x , Cl,x (uppermost and low-
ermost Cup,y, Clo,y) boundaries’ midpoint, with regards to a
frame where the subject is facing the camera frontally. Lin-
ear regression has been shown to give a sufficient modelling
mechanism for mapping the above measures to actual head
rotations.

The above are illustrated in Fig. 5 3 and Eqs. 8 and 9,
with yDV F,k and pDV F,k being the values of yaw and pitch
at frame k.

yDV F,k = b1y ×
[
(Ex,k −Cx,k)−(Ex,0−Cx,0)

deyes,0

]

+b2y ×
[
(Mx,k −Cx,k)−(Mx,0−Cx,0)

deyes,0

]
(8)

pDV F,k = b1p ×
[
(Ey,k −Cy,k)−(Ey,0−Cy,0)

deyes,0

]

+b2p ×
[
(My,k −Cy,k)−(My,0−Cy,0)

deyes,0

]
(9)

with Cx,k and Cy,k being the vertical and horizontal coordi-
nates of the face midpoint Ck at frame k, respectively, and
b1y, b2y and b1p, b2p the regression weights used for fusing
the information coming from the eye midpoint and mouth
centre for yaw and pitch angles, respectively. Normalization
with inter-ocular distance (as calculated at frame 0 where the
user was looking frontally) deyes,0 is done to cater for scale
variations between different subjects, while the inter-ocular

3 E ′
0 and M ′

0 are the coordinates of E0 and M0, translated on the second
frame so that C0 coincides with C1. This has been done, in order for a
visual explanation of Eqs. 8 and 9 to be given.
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Fig. 6 Examples of skin regions boundaries and relation with the used
features’ positions

distance is re-calculated when the face is facing the camera
frontally. By doing so, head rotation estimation is invariant
to head movements along the z axis. To suppress noisy data,
yDV F and pDV F can be convolved with a N th order FIR filter
(here, N = 12). In Eq. (8), the terms corresponding to frame
0 on the numerators are introduced as, in practice, the eyes
midpoint does not always coincide precisely with the face
midpoint when the user is facing the camera frontally. The
above methodology can be intuitively explained as shown in
Fig. 6.
Roll angle derives from the angle defined by the eye cen-
tres line segment and the horizontal axis (Horprasert et
al. 1996; Ma et al. 2008). Here, weak perspective projec-
tion model is adopted (ignoring, in this way, the perspec-
tive effect). The values are again filtered as is done for the
yaw and pitch angles. For maximizing robustness, the algo-
rithm restarts, at frequent intervals, if certain conditions are
met (here, when both horizontal and vertical rotations are
below 3◦).

4.4 Comparison Between DVF Tracking and Optical Flow

For evaluating the tracking performance described above,
we conducted an experiment on the first session of the
HPEG (Asteriadis et al. 2009b) dataset. The sequences were
recorded using a simple webcamera, while the background
is uncontrolled, with intense human action taking place in
many cases, and the length of each sequence is 200 frames. In
this session, participants were asked to move freely towards
any direction and speed they wanted. The lighting condi-
tions were those of an office environment. Examples from
the dataset can be seen in Fig. 7. To assess the effective-

Fig. 7 Examples from the HPEG dataset

ness of using DVFs for facial feature tracking, we compared
the tracker described in Sect. 4.2.3 with the optical flow
method.

After detecting the facial features, as described in Sect.
4.2.1, we used the standard Lucas–Kanade algorithm to track
the eyes’ positions, while, for mouth tracking, the same pro-
cedure was followed as the one described in Sect. 4.2.3. The
windows used for tracking were the same as the ones calcu-
lated at the detection step (after scaling to match their origi-
nal dimensions) and, similar to DVF tracking, search regions
were limited only in the face skin area bounding box. Fur-
thermore, here as well, we introduced the gaussian term used
in Eq. (7) [see Eq. (10)] in order to reinforce tracking of the
most possible positions of the eyes and, after each frame, the
tracked area was centered around the eye centre.

p= arg min
(u, v)

⎛
⎝∑

i∈Rk

‖(Ix · u+ Iy · v+ Ik)‖2e
(dk+1,v−μ)2

2σ2

⎞
⎠ (10)

with v = (u, v) being the feature’s translation between two
consecutive frames, Ix , Iy, Ik the image derivatives at coor-
dinates (x, y) and frame k. As before, dk+1,v stands for the
fraction between the inter-ocular distance and the distance
between the eyes midpoint and the mouth, at frame k + 1,
and translation (u, v) of the tracked feature.

Table 1 shows the RMS4 and MAE errors when using
Optical Flow tracking and DVF tracking on the HPEG
dataset. It can be seen that DVF—under the conditions con-
sidered in our experiments—is more appropriate for head
pose estimation using facial feature tracking, as optical flow
searches for similarities of chrominance between consecutive
frames (which might have more than one solutions), while

4 RMS is also calculated, here, as a stricter criterion than the mean
absolute error (MAE), since it ’punishes’ large errors
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Table 1 Head pose estimation using feature tracking with optical flow
and distance vector fields

Optical flow DVF

RMS MAE STD RMS MAE STD

Yaw 8.41◦ 6.65◦ 7.93◦ 6.65◦ 5.18◦ 5.41◦

Pitch 5.68◦ 4.42◦ 4.09◦ 5.59◦ 4.30◦ 4.04◦

Average 7.05◦ 5.53◦ 6.12◦ 4.74◦

Fig. 8 MAE error for horizontal (a) and vertical (b) rotations, with
regards to bounding box area, defined by LEDs positions

DVFs search for similar shapes, as the position of each pixel
and its relation with their neighboring shapes is encoded.

4.5 DVF Tracking and Scale Invarianvce

The HPEG dataset consists of a lot of variations in terms
of participants’ distances from the camera. Figure 8 shows

boxplots of medians depicting MAE at estimating horizontal
and vertical rotation for different sizes of facial areas5. It can
be seen that there is no evident relation between detected face
size and resulted error at estimating head rotations.

5 Head Pose Estimation Using Convolutional Neural
Networks

For utilizing holistic information for head horizontal and ver-
tical rotation estimation, in this paper, the use of a certain
type of Neural Networks, the so called CNNs, is proposed.
The main reason for this choice is that CNNs require a rel-
ative small number of parameters to be learnt, thanks to the
property of weight sharing. As it will be seen below, a large
number of classifiers was built, taking as input certain poses.
This limitation reduced the number of training images and,
thus, building neural classifiers with a limited number of free
parameters would help avoid the problem of overfitting. Sec-
ond, CNN are known for their ability to be trained on non-
aligned datasets (LeCun 1989); this property is ideal for not
posed environments, with complex background and intra-
person variability, where testing and training data are not
expected to be perfectly aligned. Third, CNNs take advan-
tage of spatial relations among features, by extracting local
features, restricting the receptive fields of hidden units to be
local (LeCun 1989; LeCun et al. 1998a).

Convolutional Neural Networks are bio-inspired net-
works whose applicability is known for character recogni-
tion (LeCun et al. 1990). Research on the potentiality of
Convolutional Neural Networks as face pose estimators is
presented in Osadchy et al. (2007), where the authors train
CNNs that map input images X to low-dimensional spaces.
The “face region” on these spaces is denoted with a manifold,
parameterized accordingly to account for different poses. In
our work, following a different architecture and reasoning
scheme, we create models that calculate the exact head rota-
tion angles by fusing a series of pre-trained CNNs. For train-
ing, a smaller amount of data is required, captured under a
finite number of head rotations. Moreover, the total number of
free parameters in our networks is less than 26,000, while the
architecture described in Osadchy et al. (2007) necessitates
training of 63,493 weights and kernel coefficients. A compar-
ison (on different datasets) of the two systems has shown that
the proposed work can approximate the head rotation angle
with better accuracy. In Osadchy et al. (2007) in 89 % of
cases horizontal rotation estimates is within 15◦ from the cor-
responding ground truth value, while, the proposed scheme
achieves an overall 93.1 % for the same criterion. In Osadchy

5 As, in HPEG dataset, no depth information is given, here, we approxi-
mated distance from camera through the area formed by LEDs positions
when the subject is facing frontally
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Table 2 Interconnection table of subsampling layer S2 (rows) with
convolutional layer C3 (columns)

0 1 2 3 4 5

0 X X X

1 X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X

Each X stands for a connection

et al. (2007), no results are reported regarding vertical head
rotations.

In a generic image recognition problem, an image is used
as input in the first layer of a CNN and filters’ parameters
are learnt for alternating layers of convolutions and subsam-
plings. The above guarantees the following: first, the abil-
ity of the network to learn robustly from a small amount of
training data, at reasonable time, is feasible, as the number
of the free parameters is significantly reduced, since feature
maps’ units share the same weights. Second, subsampling
renders the network more resisting to small distortions or
translations of the input image. Also, alternating convolu-
tional and subsampling layers, makes it easy to form layers
that start with detecting simple features (e.g edges, corners)
and end up to combining features with each other in sub-
sequent layers, to achieve information coming from spatial
combinations of them. A typical CNN is the one described in
LeCun et al. (1998a), where the authors have built an archi-
tecture with 60,000 free parameters for the purpose of digit
recognition.

5.1 Proposed CNN Architecture

The architecture employed in the proposed scheme, is a 6-
layer CNN, with the layers being in the order C1, S2, C3,
C4, F5, F6 (output), which is a 2-element vector. The con-
volutional layers use 7 × 7 kernels, while the sub-sampling
layer uses a downscale factor of 2. Layers F5 and F6 consist
of 10 and 2 (output) fully connected typical neurons, respec-
tively. We used 6 feature maps for layers C1 and C3, and 80
for layer C4. The main difference from a typical CNN, here,
is that, between the third and forth layers, we did not include
a subsampling layer. This gave better results, since the input
images’ resolution is 32×32 and, subsequent sub-samplings
has been shown to cause significant loss of information at dis-
criminating between similar poses, as will be explained later.
Furthermore, similar to (LeCun et al. 1998a), we used a non-
fully connected interconnection between layers S2 and C3
(Table 2). A schematic representation of the network can be
seen in Fig. 9. The total number of free parameters of the

Fig. 9 Convolutional neural network architecture for head pose esti-
mation

network is 25,779. More specifically, layer C1 consists of
300 free parameters (49 kernel weights per feature map and
a bias), layer S2 has 12 trainable weights (one multiplicative
and one additive bias per map) and, similar, C3 has 1035,
C4 has 23600, and layers F5 and F6 810 and 22, respec-
tively.

5.2 Training Procedure

Training was done using stochastic Levenberg–Marquardt
(LeCun et al. 1998b), and the hyperbolic tangent sigmoid
function was used as activation function throughout the net-
work. For training, the face dataset in Gourier et al. (2004)
was used. The dataset consists of static images of people
posing various head rotations in the yaw and pitch space,
at certain angles. In order to include more variability in
the trained models, we shifted the training images by one
until three pixels towards all directions, and included the
new images in the training dataset. To further increase train-
ing data, all images have been mirrored around the verti-
cal axis. For training, we created a pose space consisting
of classes centered at pitch angles {−60◦, 0, 60◦} and yaw
angles {−90◦,−45◦, 0, 45◦, 90◦}, thus, a total of 15 combi-
nations of yaw and pitch (Fig. 10) This coarse discretization
was preferred to a more thorough one, as, much different
poses are much easier to distinguish from each other. Further-
more, as will be discussed in the following subsection, using
a finer quantization in the classes space, would eliminate the
risk of jumping to erroneous classes. Each class contained
images with ±15◦ (or ±30◦ in the case of class centres with
±60◦ pitch angles) deviation from the corresponding class
centre. Thus, the total of training data, depending on the sub-
classifier and the position of the training classes on the pose
space, varied from 29,400 to 52,920 images, and we applied
early stopping at the training procedure, to avoid overtrain-
ing (Sarle 1995). We trained one CNN for each combination
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Fig. 10 Head Pose classes used
for training the convolutional
neural networks (CNNs). Each
trained CNN is denoted with a
dashed line

Fig. 11 (a) Extracted skin region, (b) cropped skin region, as used for
training

of neighboring classes, resulting in a total of 38 classifiers.
Consequently, at this stage, training was done using pairs
of images belonging to different, but adjacent points, in the
pose space, and the target values of the output were {−1, 1}
or {1,−1}, depending on the training pair. Prior to training,
all images were normalized to have zero means and standard
deviation equal to 1. Furthermore, to reinforce uniformity in
our data, all input face images were cropped so that the skin
region’s length is 1.3 times larger than width, before setting
them to 32 × 32 pixels (Fig. 11).

5.3 Estimation of Yaw and Pitch Rotation Using Trained
CNNs

For estimating head pose, solely based on the CNN classi-
fiers, the skin bounding boxes are cropped according to Fig.
11 and, after being downscaled to 32×32 pixels, they are nor-
malized in order to have zero means and standard deviation
equal to 1, handling, in this way, lighting variations through-
out sequences. Using yaw and pitch information from the
previous frame, all n networks considered include the class
Cc whose center is closer to the yaw and pitch values of the
previous frame. In this way, only a subset of CNNs is used
at each frame, constituting the system faster and more reli-

able, as the possibility of erroneous classification is reduced.
For example, if yaw and pitch values of the previous frame
are closer to the class C8 centre, the CNNs employed are
the C8–C3, C8–C2, C8–C4, C8–C7, C8–C9, C8–C12, C8–
C13, C8–C14. In the general case, let’s consider the first out-
put of each network as out1, and the second one, as out2.
Here, we have used the difference between the two outputs
to compare class Cc against neighboring classes and, thus,
after each frame is processed, the overall output is a vector
consisting of 8 elements (outup, outdown , outle f t , outright ,
outup,le f t , outup,right , outdown,le f t , outdown,right , depending
on the topological relation of class Cc against each class it
is compared against). If class Cc is at the boundaries of the
pose space, dummy classifiers giving output equal to 2 are
hypothesized (setting out1 = 1 and out2 = −1 for the exist-
ing Cc and non-existing class, respectively) for the missing
hypothesized classes. The final estimate of the yaw (or pitch)
angle is done by employing regression models including ele-
ments of the vector, as well as the centre of class Cc. At
estimating the yaw angle, outup and outdown were excluded
from the model. Similar, outle f t and outright were omitted
at estimating the pitch angle, thus, giving 6-element vectors
(as well as the centre of class Cc) at the regression model.
It should be noted here that, as faces rotated parallel to the
image plane have not been used during the training proce-
dure, all input faces’ bounding boxes have been rotated so
that the inter-ocular line is parallel to the horizontal axis.

6 Fusion of Holistic and Local Information for Head
Pose Estimation

Based on the observation that our local and holistic tech-
niques have different levels of reliability, depending on the
context of the interaction, in this paper, we take this para-
meter into account during fusion. For this reason, we used
Bayesian modality fusion, so that reliability of each cue is
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Fig. 12 Bayesian network
architecture used for fusing
local with holistic technique
(number of bins for
horizontal–vertical rotation)

modelled, according to the phase of the interaction. The pro-
posed architecture is explained in the next subsection.

6.1 Bayesian Networks for Head Rotation Estimation

In literature, the term Bayesian Network refers to a direc-
tional acyclic graph that represents the joint probability dis-
tribution for a set of random variables (Horvitz et al. 1988;
Jensen 1996). In such networks, nodes are random variables
and arcs stand for the statistical dependencies among pairs
of nodes. Such dependencies, in a bayesian network model
deterministic influences among the variables.

In this paper, estimated head rotation (horizontal or verti-
cal) has been considered to be a random, observable variable.
On a second level, true head rotation affects visual systems’
outputs (observable variables), which are also affected by
each modality’s reliability (hidden node). Reliability varies
depending on the context of the interaction. As modality
reliability cannot be observed during the sequence, an indi-
rect way to infer it, is through measurable variables, corre-
lated with it, namely modality reliability indicators. Figure 12
shows a schematic representation of the employed network,
which is an adaptation of the scheme proposed in Toyama and
Horvitz (2000). Graph nodes represent variables of interest,
with the white ones corresponding to observable quantities
and those with grey color corresponding to hidden variables.
Node Head rotation at frame k is the final output variable
(target node). The mean of the integral of the probability dis-
tribution of the target node gives the final estimate of head
rotation.

6.2 Local Information Reliability Indicator

As reliability indicator for local information, here is consid-
ered the fraction between vertical distance between mouth
and eyes with eye distance:

relDV F,k = ‖ Eyesmiddle,k − Mouthmiddle,k ‖
‖ Eyesright,k − Eyesle f t,k ‖ (11)

The values taken by this parameter are correlated with
expected rotations. For example, arbitrary values would be
linked with a low degree of reliability.

6.3 Holistic Information Reliability Indicator

For each instance of the estimate of horizontal and vertical
rotation with CNNs, at frame k, the confidence value mod-
elled as reliability indicator derives from Eqs. (12) and (13)
for horizontal and vertical rotations, respectively:

relC N N ,y,k = 1 − |yC N N ,k − my,k:k−n+1|
stdy,k:k−n+1

(12)

relC N N ,p,k = 1 − |pC N N ,k − m p,k:k−n+1|
stdp,k:k−n+1

(13)

with my,k:k−n , stdy,k:k−n and m p,k:k−n , stdp,k:k−n being
average values and standard deviation for horizontal and ver-
tical rotation, respectively, for temporal windows of the n pre-
vious frames (here, we used n = 5). The values of reliability
indicators, under normal circumstances, are within specific
values but, when the corresponding modality reliability is
low, they can take arbitrary values (Liu et al. 2003), due to
sudden peaks or valleys, usually attributed to face tracking

123



306 Int J Comput Vis (2014) 107:293–316

failure, resulting in arbitrary facial area and subsequent esti-
mates of rotation.

6.4 Network Parameters

Network training was based on learning conditional proba-
bility tables for the nodes which were learnt by quantizing
variables into bins. The discretization that gave the optimum
trade-off between variance and bias can be seen in Fig. 12.
Tables parameters are learnt by simply counting (and nor-
malizing) those frames where two events co-occur.

For maximizing the possibility of accurate facial feature
localization (Asteriadis et al. 2009a), during the first frames
of a video sequence, only CNNs are applied, and facial fea-
ture detection is applied only when CNN output for yaw

and pitch is below a certain threshold (thus, frontal face and
eye/mouth detection is more accurate—see Fig. 1).

7 Eye Gaze Estimation

For estimating eye gaze, we propose a technique that models
the face area around the eyes (Fig. 13) by a cylindrical shape
with pose parameters equal to p = [ωχ , ωy , ωz , tχ , ty , tz],
where ωχ , ωy , ωz the cylinder rotation angles and tχ , ty , tz
the translation parameters. As the input image is solely the
area around the eyes, we considered tχ and ty to be equal
to zero, while tz only needs to be approximated. Similar,
ωχ (pitch angle) is considered zero here, and ωz (roll angle)
is also considered to be null, since it can be eliminated by
rotating the image, as the eye positions are known (the image
is rotated so that both eyes lay on the same level). ωy is the
horizontal angle (yaw), as calculated from the head rotation
estimation methodology. In our experiments, we considered
that the camera focal length is f = 500 (in pixels), while
different considerations have also been made, as shall be seen
in the experimental results section, giving us similar results.

Fig. 13 Extraction of Eye Gaze
Vector. The eye position in the
warped image (bottom) is
compared to that of the frontal
position, after yaw angle has
been removed

Subsequently, the input image is warped so that ωy is zero
(Fig. 13), similar to (Begley et al. 2008; Valenti et al. 2012).
From the two new positions of the eye centers, the one used
is that of the eye that is closer to the camera, as the error
caused by perspective projection is smaller. Its position on
the horizontal axis is then compared to that of a frame when
the person is looking frontally, in order to estimate the gaze
vector. The resulting value is normalized with the inter-ocular
distance, as calculated at a frame when the person faces the
camera frontally, in order to handle scale variations.

8 Experimental Results

8.1 Estimating Head Pose: Results on the Boston
University Dataset

In order for the proposed scheme on head pose estimation to
be comparable with existing methodologies in bibliography,
experiments were carried out on the BU (Boston University)
dataset. It consists of 45 image sequences of 200 320 × 240
frames each, and contains 5 people, each of them appearing
in 9 videos. As they appear in the database, the participants
were allowed to move freely, along any direction. Typical
example frames of the database can be seen in Fig. 14. Three
types of experiments were conducted: head pose estimation
using DVFs and CNNs separately, as well as using fusion of
both modalities. Table 3 shows the RMS errors and standard
deviation when using DVF, CNNs and fusion of both. We also
compare results with other methods in literature, which use
the RMS error on the same dataset. Similar, Table 4 shows
the same errors using the MAE, as well as comparisons with
works considering the same criterion. Training of regression

Fig. 14 Example frames from the Boston University dataset
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Table 3 RMS error results on
the BU DVF CNN DVF+CNN Valenti et al. (2012) Sung et al. (2008)

Error STD Error STD Error STD Error STD Error

Yaw 5.72◦ 4.90◦ 7.07◦ 6.45◦ 5.66◦ 5.02◦ 6.10◦ 5.79◦ 5.40◦

Pitch 4.89◦ 4.04◦ 5.81◦ 5.13◦ 4.80◦ 4.2◦ 5.26◦ 4.67◦ 5.60◦

Roll 3.56◦ 3.05◦ − 3.56◦ 3.05◦ 3.00◦ 2.82◦ 3.10◦

Table 4 MAE error results on the BU

DVF CNN DVF+CNN Morency et al.
(2010)

Lefevre and
Odobez (2009)

Yaw 4.39◦ 5.63◦ 4.29◦ 4.97◦ 4.40◦

Pitch 3.87◦ 4.74◦ 3.74◦ 3.67◦ 3.30◦

Roll 2.61◦ – 2.61◦ 2.91◦ 2.00◦

models (see Sect. 4.3) and the bayesian network was done by
following a leave-one-subject-out cross-validation method
for each user.

It can be seen from the results, that our method on head
pose estimation is comparable and, in cases, performs even
better than published results. However, the advantage of the
proposed scheme is that no a priori knowledge regarding
camera parameters or distance of the user from the camera
is needed, or limitation that the user’s face bounding box
size is stable. Figure 15 shows boxplots of medians corre-
sponding to errors for horizontal, vertical and around z-axis
rotation estimation with regards to person’s distance from
the camera. The data were extracted using all image frames
in the database, along with depth information for each of
them. Although the vast majority of frames correspond to
people having distance from the camera between 32.5 and
34 in., there were cases when people would come closer or
move further from the camera, thus, resulting to movements
along the z-axis. From this figure, it can be concluded that
the impact of position of the subject on the z-axis does not
have a significant impact on the error at estimating yaw, pitch
and roll head rotations.

Methods in Valenti et al. (2012) and Sung et al. (2008) use
head models, making assumptions regarding, either camera
focal length or user-camera distance fixation (Aggarwal et al.
2005), while, in the method in Lefevre and Odobez (2009),
the authors use fixed windows around trained features to esti-
mate head pose (thus, scale variations due to translations
perpendicular to the image plane, are not handled), and the
head has to face the camera frontally at start-up. Here, using
CNNs at start-up, we do not limit the approach to function-
ing only after a frontal pose is detected but we can have
reliable estimates of arbitrary initial head rotation angles.
When CNN method declares very small head rotation, facial
feature detection and DVF tracking are launched and, only
then is frontal pose inferred. Also, as the proposed approach

takes, as input, face areas, and can re-initialize when certain
conditions are met, it can track with a high degree of reliabil-
ity head movements that employ translations perpendicular
to the image plane, leaving a lot of freedom for variability at
movements. Figure 16 shows typical examples of estimated
rotation angles, together with the ground truth data, on three
different video sequences.

Furthermore, the proposed system is designed to handle
effectively near profile poses: the tracked eye and mouth areas
are always forced to stay within the limits of the face region,
at least at a minimum of 50 % of their size. Consequently,
even if the eye centre is not visible and the method falsely
considers the eye centre outside the face area, the algorithm
uses its position in the previous frame, so that eye areas are
kept within the face area. Practically, this means that, when
the eye is occluded due to large rotational head movements,
its position will be considered to be the one corresponding
to the last frame, when it was not occluded. This should
introduce some error in the case of the local technique alone
but, it would only be evident in extreme poses. Using CNN
head pose estimation, trained classifiers did actually contain
cases of 90◦ of horizontal rotation.

The system relies a lot on re-initialization when cer-
tain conditions are met. Thanks to this, face tracking uses
new face chrominance samples each time the system is re-
initialized. In this way, the algorithm adjusts to possible
changes in lighting conditions. Furthermore, as demonstrated
in Sect. 4.2.2, expected face size is also used, catering for
changes in scale. This method of system recovery increases
robustness and contributes to eliminating error accumulation.
Also, all objects classified as skin regions, but at a distance
not close to the expected position of the face, are automati-
cally discarded to cater for background color noise (see Sect.
4.2.2). The above limitations and rules have been very essen-
tial for the robustness of the component of face tracking.
One issue that may arise during face tracking is that face
boundaries are not very strict from frame to frame. This is
one of the major reasons why CNN have been employed
for utilizing holistic information. System automatic recov-
ery is also essential for facial feature tracking, since every
time face detection occurs, facial features are re-detected and
tracking begins from the new positions. Furthermore, the
Gaussian model that describes the geometrical constraints
among the positions of the eyes and the mouth favours
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Fig. 15 MAE error for horizontal (a), vertical (b) and roll (c) rotations,
with regards to depth information on the Boston University dataset
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Fig. 16 Estimated head pose angles and corresponding ground truth

expected positions of the features. The impact of roll angle
is also explored in Fig. 17 where local, holistic and com-
bined information errors for horizontal and vertical rotations
against true roll angles of the face are shown. It can be seen
that, for almost the whole range of roll angles, estimation
errors are similar. It only fails for a given series of frames,
where face tracking was unsuccessful, leading to unsuccess-
ful estimates.
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Fig. 17 Mean absolute error at estimating horizontal and vertical rotation using fused (a, b), local (c, d) and holistic (e, f) information, against
true roll angles
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Fig. 18 The six gaze classes of the second session of the HPEG dataset

8.2 Estimating Visual Focus of Attention using Head Pose
and Eye Gaze

8.2.1 Estimating Visual Focus of Attention: Results
on the Head Pose and Eye Gaze dataset

Session B of the HPEG6 dataset consists of 10 frame
sequences where the participants pose pre-determined head
rotations combined with eye gaze directionality variations.
More specifically, volunteers were first asked to look directly
at the camera, then turn their eyes left and right, keeping their
head at a frontal position. Subsequently, the volunteers would
turn their heads to the right, with eye gaze directionality par-
allel to head rotation. Keeping the head stable, eyes were
rotated towards the camera and, finally, the eyes were turned
towards the other direction. The above instances resulted in
6 different classes. Figure 18 shows typical instances of the
above classes. To the authors’ knowledge, no publicly avail-
able dataset, including ground truth for both head rotation
and gaze directionality combined, existed during writing this
paper, while, the development of a dataset with spontaneous

6 The HPEG dataset is freely available at http://www.image.ece.ntua.
gr/~stiast/

Table 5 Eye Gaze directionality on HPEG session B

Frontal head rotation Right head rotation

PH R L PH R L

PH 10 0 0 6 0 4

R 0 10 0 1 8 1

L 0 0 10 0 0 10

Fig. 19 Overall focus of attention estimates for different eye gaze
thresholds T

movement of the two cues falls within the scope of near future
research.

For each sequence, the algorithms of Head Pose and Eye
Gaze estimation were applied and the ability of the system to
separate among the three different eye gaze directionalities,
with head turned frontally and head rotated was evaluated.
The threshold set for declaring whether eyes were rotated
right or left was chosen Tr = 0.05 and Tl −0.05, respec-
tively (Sect. 7). Results can be seen in Table 5, as the confu-
sion matrix of classes eye gaze Parallel to Head pose (PH),
Right eye gaze (R) and Left eye gaze (L) with overall accu-
racy equal to 90 %. Figure 19 shows accuracies obtained for
different thresholds Tr,l . It can be seen that, for absolute val-
ues between 0.03 and 0.055 (or 3–5.5 % of the inter-ocular
distance), results are almost stable, while, considering that
eye gaze is averted for larger thresholds mainly affects accu-
racy of overall focus of attention estimation for large head
rotations.

8.2.2 Estimating Visual Focus of Attention: Results
on the Boston University Dataset

The Boston University dataset has also been used, and was
annotated regarding the degree at which its participants are
focused on the camera. For each sequence, we used 14
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Fig. 20 Examples of annotated images with annotations equal to 0.53
and 0.6, respectively

images, taken at intervals of 15 frames resulting to a total of
630 images (the dataset contains 45 sequences of 200 frames
each). The extracted images were uploaded on a server and
102 people were asked to annotate up to 60 randomly selected
images, each, regarding the degree of attention towards the
camera they think the person in each image has (at a scale of
0–1, with 0 standing for complete distraction and 1 for gaze
in the camera). In this way, each image has been annotated
8.75 times on average, and has been assigned the average of
its annotations. Examples of images can be seen in Fig. 20.
The use of the Boston University dataset, here, as our work-
bench, is due to the dataset’s nature: the lighting conditions
are normal and participants move freely, with high degree
of spontaneity, changing both head rotations and their eye
directionality. Thus, although the dataset offers ground truth
regarding head pose only, here, during the annotation set up
for the current work, volunteers were expected to take into
account eye gaze directionality as well for declaring their
degree of confidence that someone is facing the camera or
not. Due to the nature of the annotation data, at this stage,
experiments were confined to extracting a degree of confi-
dence regarding participants’ attention towards certain areas
(in this case, the camera).

Head pose and eye gaze are used as inputs to a Sugeno-type
(Takagi and Sugeno 1985) fuzzy inference system to infer
confidence values regarding focus of attention towards the
camera, utilizing the annotation described above, as ground
truth data. Prior to training, our data were clustered using the
sub-cluster algorithm described in Chiu (1994). This algo-
rithm, instead of using a grid partition of the data, clusters
them and, thus, leads to fuzzy systems deprived of the curse
of dimensionality. For clustering, many radius values for the
clusters were tried and the ones that gave the best trade-off
between complexity and accuracy were 25◦ for head hori-
zontal rotation, 0.15 for gaze vectors, and 0.40 for the output
variable. The number of clusters created by the algorithm
determines the optimum number of the fuzzy rules. After
defining the fuzzy inference system architecture, its parame-
ters (membership function centers and widths), are acquired
by applying a least squares and back-propagation gradient
descent method (Jang 1993).

Training of regression models (Sect. 4.3), Bayesian net-
work, as well as the Fuzzy Inference System was done by
following a leave-one-subject-out cross-validation method
for each user, exempting all video sequences correspond-
ing to her/him and using only those belonging to the rest
of the participants. In this way, our system’s aim is to be
able to generalize and be used in applications where a user-
specific calibration phase is supposed to be avoided. Tak-
ing into account that the overall settings of the dataset are
not posed (every user moves in a personalized manner and
lighting is normal), experimental performance shows that the
system’s ability to generalize to unknown users is promising.
Testing for each user (with tz = 80 cm and f = 500) showed
that the overall system was capable to estimate ground truth,
as it was annotated by the raters, with an absolute error
Eatt = 0.162. Trying different combinations of the above
parameters would yield similar results [e.g. for {tz = 70 cm,
f = 500}, {tz = 90 cm, f = 500}, {tz = 80 cm, f = 700},
{tz = 120 cm, f = 300}, Eatt = 0.159, 0.163, 0.158 and
0.166, respectively].

To get a more precise picture of the system’s ability to
estimate those moments when the user is looking at spe-
cific points, raters’ annotation, when larger than a certain
threshold was considered to correspond to gaze patterns
on the camera. When annotations were smaller than this
threshold, it was considered that users were looking away
from the camera. Visual inspection of the annotations and
the corresponding images revealed that there was high vari-
ance when head would pose a high rotation with regards
to the camera plane, but the eyes were actually looking at
it. In such images, qualitative assessment of the annota-
tion showed that raters would consider users looking at the
camera at a degree around ∼0.5 out of 1 (Fig. 20). Thus,
setting a threshold at the fuzzy system’s output, equal to
T = 0.5 for declaring a user as looking at the camera, over-
all recall and precision were 89 and 75 %, respectively (f -
measure = 0.79).

In these experiments, enhancing head pose estimation
with eye gaze cues, the ability of the system to infer focus
of attention towards a task has been addressed. It was shown
that the estimates are reliable, indicating that the proposed
methodology on head pose and eye gaze combination for
a cumulative estimate of user focus of attention estimation
is promising, especially taking into account that not a lot
of work has been done towards fusing these two cues in a
non-calibrated, mono-camera environment. One of the main
difficulties of such a system consists mainly in discriminat-
ing between eye gaze directionalities in case of large head
rotations and, more in particular, in those cases when eyes are
totally averted of the camera. However, results show that a
combination of the two streams of information, using remot-
edly positioned systems is feasible, giving promising out-
come.
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8.2.3 Estimating Visual Focus of Attention Within Limited
Target Spaces

In Sect. 8.2.1, a dataset for estimating focus of attention under
large head rotations and eye gaze directionalities was tested.
For testing the validity of combining head pose and eye gaze,
in an overall framework, for estimating the focus of attention
in more detailed spaces, a dataset of 8 persons was developed.
More in particular, volunteers were asked to sit in front of a
web-camera, positioned above a computer monitor. Subse-
quently, they were asked to look at three specific points: first,
one on the camera and then, one on the right and one on the
left of it. The line connecting the head and the camera and the
lines connecting the head and the lateral points, formed ±19◦
angle, on average. This figure varied depending on the dis-
tance of the user from the camera (on average about 50cm).
Participants were asked to look freely, as they would do if
they were not recorded (head rotation or eye gaze were not
mentioned at all, in order to increase spontaneity - people
were simply asked to gaze at the points of interest). More-
over, they were expected to fixate at each point for as long
as they desired, something that resulted in a few seconds (or
hundreds of frames) for each user, which were enough for cre-
ating mappings among head rotation—eye gaze and fixation
points. Figure 21 shows typical instances of the data. It was
typical in the dataset, that participants, within only a few sec-
onds, would pose different combinations of the two cues for
looking at the pre-defined points (Fig. 21a–d). Thus, within
the dataset, people would pose different head rotational posi-
tions, small translations and eye movements, while looking
at the same point. Annotation was done separately for each
user, as they were allowed to fixate for as long as they desired
at each point.

Results have shown that, fusing the two cues, follow-
ing a linear regression scheme, high accuracy at estimat-
ing focus of attention was achieved. The fusion scheme fol-
lowed was the same for all participants, showing the abil-
ity of the proposed scheme to generalize for more per-
sons, without needing extra calibration. The overall accu-
racy at estimating gaze directionality using only eye gaze
was 8.16◦, using only head rotation, it was 8.42◦, while
the combination of the two gave an average error of 6.72◦.
In fact, out of the 8 participants, only for 2 would fusion
give lower accuracy than at least one of the two cues sepa-
rately.

Following a person-specific fusion scheme (learning dif-
ferent regression schemes per participant) results can be fur-
ther improved, with a mean error smaller than 3◦ for most of
the subjects, approaching the visual field of the human fovea,
which is about 2◦. These results are notable, if one takes into
account the fact that the proposed scheme does not depend
on exact hypotheses regarding camera internal parameters,
or exact knowledge of the head’s position in the 3D space.

Fig. 21 Participants moving freely both head and eyes for spotting
certain points in front of them

The above are indicative of the system’s capability of esti-
mating the overall focus of attention without forcing partici-
pants to keep their head stable, as most modern non-obtrusive
eye trackers require. Table 6 shows results, for each partici-
pant, with mapping schemes trained following a leave-one-
out protocol and following three different gaze estimation
approaches:

– Using head rotation, only Eye gaze directionality was
ignored, here, considering that head rotations are the
only cue from which visual focus of attention should be
extracted.

– Using eye gaze, only Contrary to the above scheme, an
exclusively eye gaze dependent scheme was followed,
considering that head would remain stable as participants
would stare at different points.

– Combining both head rotation and eye gaze Here, the over-
all focus of attention (from the point of view of the user)
was considered, as fusion of both cues.

The corresponding results, with head pose and eye gaze
fused following a person-specific protocol are shown in Table
7. Each frame was used as a test instance with regressors
trained using the rest in the user’s sequence.
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Table 6 Mean error for the limited target space experiment following
a leave-one-out protocol

Participant Head and eyes Head only Eyes only

1 6.46◦(4.51) 5.52◦(7.71) 8.42◦(5.19)

2 7.51◦(5.35) 10.76◦(6.59) 8.30◦(4.86)

3 3.80◦(3.87) 4.95◦(6.84) 4.49◦(3.42)

4 10.11◦(8.82) 11.42◦(10.81) 14.32◦(14.30)

5 5.03◦(5.46) 8.90◦(10.67) 5.45◦(5.49)

6 12.10◦(5.91) 13.85◦(8.24) 11.90◦(6.21)

7 5.20◦(6.69) 6.34◦(9.51) 7.69◦(5.58)

8 3.58◦(5.10) 5.66◦(7.70) 4.72◦(4.34)

Average 6.72◦(5.72) 8.43◦(8.51) 8.16◦(6.18)

Table 7 Mean error and standard deviation for the limited target space
experiment for personalized models

Participant Head and eyes Head only Eyes only

1 2.99◦(3.29) 3.77◦(5.80) 7.38◦(6.07)

2 4.60◦(7.00) 6.47◦(10.01) 7.16◦(6.26)

3 2.93◦(3.94) 3.38◦(4.45) 5.39◦(5.74)

4 6.85◦(6.53) 11.42◦(10.81) 12.08◦(8.53)

5 2.85◦(5.26) 6.42◦(8.45) 4.85◦(4.86)

6 7.02◦(7.01) 11.53◦(9.76) 8.68◦(8.02)

7 2.66◦(3.18) 3.75◦(5.57) 5.70◦(5.28)

8 2.85◦(5.72) 4.49◦(8.70) 4.43◦(4.39)

Average 4.09◦(5.24) 6.40◦(7.94) 6.96◦(6.15)

9 Discussion

The proposed methodology is a top-to-down approach for
estimating combinations of head and eye gaze directionality
for inferring user focus of attention. Automatic extraction
of face size and adaptation to different skin colors guarantee
that tracking of facial area is robust, while DVF tracking con-
tributes to the overall system’s invariance to different light-
ing conditions. Further filtering of extracted measurements
(Sect. 4.3) with a simple filter, smoothes out erroneous esti-
mates. Figure 22 shows resulted MAEs of DVF tracking for
different lengths of FIR filters. It can be seen that, practi-
cally, results do not differ significantly for various different
lengths, from 5 to 20. The contribution of exploiting holistic
information based on the proposed CNN architecture is also
important for the robustness of the system. Based on nor-
malized (and, thus, different lighting conditions invariant)
face inputs, CNNs can handle face misalignments, which
would be more than expected in a real scenario. Further-
more, using CNNs contributes to the overall capability of
the system to be launched from arbitrary angles, not depend-
ing, in this sense, on initially frontally detected faces. The
outcome of the fusion between the two modalities is dynam-

Fig. 22 Local horizontal and vertical head rotation estimation for var-
ious lengths of smoothing filters

ically updated, based on reliability indicators, that take into
account expected facial geometry (local cue), as well as his-
tory of rotations (holistic cue) in the n previous frames (Eqs.
12 and 13). Figure 23 depicts the impact of different values
for n. It can be seen, from this figure, that resulting error is
practically not influenced by using a large range of values for
n.

Frequent re-initializations of the system, when head rota-
tion is small enough, update metrics used for the estimates of
rotation using local information, rendering the system robust
to translations perpendicular to the camera plane. Facial fea-
ture detection is independent of detected face size, while
tracking, depending on frame-by-frame similarities, can han-
dle gradual variations in feature sizes, as projected on the
image plane. Similar, holistic information is scale indepen-
dent as well, since skin regions are brought to dimensions
that agree with those of the trained classifiers’ inputs.

One of the main reasons for failure of the system is cases
of fast movements and low video quality in terms of compres-
sion, as certain frames appear blurred. In this case, locally
tracking would not function but, as the main structure of
the face would be visible, the holistic nature of CNNs can
give better approximations of head pose. Combinations of
eye gaze and head pose would usually not give accurate
results at estimating overall focus of attention, in those cases
when head is highly rotated and eyes directionality would be
towards the same direction with it, but highly averted from
being parallel with head direction. However, as seen in Fig.
24, overall error at estimating raters’ annotations regarding
people’s focus of attention is not biased with regards to facial
angle, in general; this is a very promising element for creating
a system able to imitate people’s capability to infer others’
focus of attention, in a non-calibrated, user agnostic way.

123



314 Int J Comput Vis (2014) 107:293–316

Fig. 23 Fused horizontal (a) and vertical (b) head rotation estimation
for various lengths of windows in CNN’s confidence values

10 Conclusions

We have proposed a novel method for estimating head pose
rotation angles, using an adaptive combination of local and
holistic information. As local method, in this paper, we pro-
pose a facial feature tracker based on DVFs, due to their
robustness to various lighting conditions. The use of CNN
for estimating horizontal and vertical rotations is explored
in this paper, as an appearance-based source of information,
and a novel architecture is explored. The two methodologies
are fused following a dynamic and reliability-aware Bayesian
scheme. Our technique uses face tracking as preprocessing
step, in order for the exact boundaries of the face region to
be known at every frame. Accurate and stable face track-
ing is achieved by using personalized skin-color models,
extracted at frequent intervals, when the system detects a
face. The method was built in order to handle in and out-of-

Fig. 24 System’s ability of estimating overall attention, with regards
to true horizontal and vertical head rotations

plane face translational movements, and does not make any
prior assumptions regarding the distance of the user from the
camera, or camera internal parameters, although it is con-
sidered that the shape of the face does not look unnatural
due to perspective distortion (we assume we do not use wide
or narrow angle of view cameras). The proposed scheme
has achieved very promising and competitive results on a
widely used dataset, taking into account the aforementioned
challenging factors. The method was tested on the Boston
University Dataset and tracking was successful during all
videos. Our technique achieves high success rates as a result
of efficient facial boundaries tracking, adoption of a gaussian
model describing the triangle formed by the eyes and the
mouth, and continuous tracking of certain points, to ensure
that facial feature regions are correctly localized during large
sequences. Furthermore, the introduction of CNN, as a holis-
tic technique, insensitive to small distortions and shifts has
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improved the results and alleviated the demand that the user
is posed frontally to the camera at start-up.

The above constraints have also been imposed on the chal-
lenging task of inferring focus of attention combining head
pose and eye gaze directionality. Fusion of these two flows
of information is a challenging and not thoroughly studied
problem, especially under user independent and calibration-
free conditions. The proposed scheme has been tested on two
datasets: one involving large rotational movements, for infer-
ring focus of attention in and out of the camera area, and one
involving more detailed fields of view. The obtained results
are promising for further enrichment of the system. In par-
ticular, extracted information regarding gaze directionality
will be mapped to certain points of interest. To this aim, the
position of the user with regards to a target area (e.g. a com-
puter screen) should be known. Following a calibration and
user independent scheme, this is a challenging issue. Future
research will deal with this problem, taking advantage of the
herein presented results and conclusions, and will tackle the
issue of finding appropriate mappings between 2-D projec-
tions and head/eye gaze analysis to certain points on a target
plane.

The core idea of the presented work is encouraging users
in HCI installations to adopt spontaneous behaviours, while
modelling their degree of attentiveness towards the area of
interaction. Current systems are either obtrusive, or require
that the user keeps their head stable. Towards this direction,
the possibilities of fuzzy logic for modelling human attention,
engagement and cognitive state will be further exploited. Our
work is expected to support human-robot interaction environ-
ments, where the notions of shared attention and imitation are
vital for natural dialogues, and adaptation to human prefer-
ences.
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