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Abstract Images of an object under different illumination
are known to provide strong cues about the object surface.
A mathematical formalization of how to recover the normal
map of such a surface leads to the so-called uncalibrated
photometric stereo problem. In the simplest instance, this
problem can be reduced to the task of identifying only three
parameters: the so-called generalized bas-relief (GBR) ambi-
guity. The challenge is to find additional general assumptions
about the object, that identify these parameters uniquely. Cur-
rent approaches are not consistent, i.e., they provide differ-
ent solutions when run multiple times on the same data. To
address this limitation, we propose exploiting local diffuse
reflectance (LDR) maxima, i.e., points in the scene where
the normal vector is parallel to the illumination direction
(see Fig. 1). We demonstrate several noteworthy properties
of these maxima: a closed-form solution, computational effi-
ciency and GBR consistency. An LDR maximum yields a
simple closed-form solution corresponding to a semi-circle
in the GBR parameters space (see Fig. 2); because as few
as two diffuse maxima in different images identify a unique
solution, the identification of the GBR parameters can be
achieved very efficiently; finally, the algorithm is consistent
asitalways returns the same solution given the same data. Our
algorithm is also remarkably robust: It can obtain an accu-
rate estimate of the GBR parameters even with extremely
high levels of outliers in the detected maxima (up to 80 % of
the observations). The method is validated on real data and
achieves state-of-the-art results.
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1 Introduction

In this paper, we consider images captured under unknown
distant point source illumination and satisfying the Lam-
bertian model, i.e., where surface brightness looks the same
from any viewing direction. We show that locations of max-
imal diffuse brightness in the captured images carry very
useful geometrical information about shape (in the form of a
unit normal field) and light. We demonstrate their potential in
the case of uncalibrated photometric stereo, where no prior
knowledge about the illumination, geometry, and reflectance
albedo is available. In the most general formulation of this
problem, the normal field of the object can be obtained from
the Lambertian reflectance model only up to a nine-parameter
linear ambiguity (Hayakawa 1994). This ambiguity can be
further reduced to three parameters, the so-called generalized
bas-relief ambiguity (GBR) (Belhumeur et al. 1999), via the
integrability constraint, which enforces that a valid surface
can be reconstructed from the estimated normal field.
Finding a way to fix the GBR parameters with assumptions
as realistic as possible is still an open research problem. We
make the assumption that one can detect! and exploit maxima
of the Lambertian diffuse reflectance (LDR) component (as
opposed to the specular reflectance component (Drbohlav
and Chantler 2005; Drbohlav and Sara 2002; Lagger and
Fua 2008; Oren and Nayar 1997) or the temporal maxima
(Koppal and Narasimhan 2006)). We show that each of these

! Ideally, our detection would require a uniform albedo. However,
because of its robustness, our algorithm can handle spatially varying
albedos (see Sect. 6.4 and 6.5).
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Fig. 1 Some Lambertian diffuse reflectance (LDR) maxima on the
surface of a face in one input image. The lighting direction is shown at
the very top with gray arrows. For illustration purposes, we look only
at a 1D profile (blue solid line) of the 3D surface. Along this profile we
show some of the normals to the surface as blue arrows. Those normals
that are parallel to the illumination direction are shown as red arrows
and their corresponding point (shown in red) on the surface is an LDR
maximum (Color figure online)
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Fig. 2 GBR ambiguity solved via LDR constraints. The integrability
constraint alone allows the GBR parameters (i, v, A) to take any value
in the 3D space. A single LDR maximum constrains the GBR parame-
ters to a semi-circle (which can be written in closed-form). Two different
LDR maxima are sufficient to generate a unique solution. Indeed, two
maxima correspond to two semi-circles, and these intersect at one point
(whose calculation is very efficient). All LDR maxima define other
semi-circles all intersecting at the true GBR parameters (which shows
the consistency of this constraint)

maxima restricts the space of GBR ambiguities to a semi-
circle in 3-D space, and that as few as two maxima from
differently illuminated images yield a unique solution for
the GBR parameters (see Fig. 2). Moreover, the semi-circles
can be efficiently computed in closed-form (see Sect. 6.1).
The most fundamental challenge that we address in this
paper is the consistency of the assumptions, i.e., when the
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assumptions uniquely identify the same solution. We show
that there is a limited choice of constraints that satisfy the
consistency property. As we argue in the next sections, our
proposed solution is one such choice. Consistency is not only
needed to guarantee that the solution is reliable, but also to
make the algorithm fast. Indeed, current inconsistent state-
of-the-art methods obtain a stable estimate by running their
algorithms several times with different initial conditions and
by averaging all the estimates, a process that may take several
minutes and yield a solution with low confidence. In contrast,
our algorithm needs to be run only once and yields a reliable
estimate in about 14 s with non optimized code, as we show
in Sect. 6.

2 Prior Work and Contributions

Photometric stereo (Woodham 1980) is a method for estimat-
ing shape and reflectance of an object, using three (Woodham
1980) or more (Wu and Tang 2005) images of a static object
taken from a fixed viewpoint and under different lighting
conditions. When the illumination directions and intensities
are known, the problem can be solved via a linear system.?

When no prior knowledge about the illumination, geome-
try, and reflectance is available, the problem is called uncal-
ibrated photometric stereo (UPS). UPS has been addressed
with a variety of techniques that make explicit or implicit use
of the GBR ambiguity (Belhumeur et al. 1999):

2.1 Explicit GBR Disambiguation Methods

In (Alldrin et al. 2007), the GBR ambiguity is solved by
minimizing the entropy of the albedo distribution follow-
ing the argument that incorrect GBR parameters result in
spreading albedo values. This approach relies on the assump-
tion that albedos are based on a few intensity values. A
similar philosophy is to group the normal-albedo distribu-
tion based on intensity-color appearance (Shi et al. 2010).
The use of color, when available, allows albedo clustering
based on the chromaticity. Another example is to introduce
additional constraints to determine the GBR ambiguity by
exploiting specularities of glossy surfaces (Drbohlav and
Chantler 2005; Drbohlav and Sara 2002; Tan et al. 2007).
These methods rely on the ability to correctly detect specu-
larities and on the assumption that objects in the scene have a
non-negligible specular component. In other investigations,
the GBR ambiguity has been eliminated by exploiting inter-
reflections (Chandraker et al. 2005) or by considering the Tor-
rance and Sparrow reflectance model (Georghiades 2003).

2 This result holds under the Lambertian image formation model, ortho-
graphic projection, by considering distant point light sources and when
shadows and interreflections can be ignored.
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Lagger and Fua (2008) notice that both specular and diffuse
maxima provide useful information about the illumination
direction. However, they discard diffuse maxima and focus
only on specular ones.

2.2 Implicit GBR Disambiguation Methods

Other approaches instead exploit shadows (Okabe et al. 2009;
Sunkavalli and Zickler 2010), dimensionality reduction (Sato
et al. 2007), the bilateral symmetry of isotropic bidirectional
reflectance distribution function (BRDF) (Alldrin and Krieg-
man 2007) or consider changing the viewpoint and exploit the
Helmoltz reciprocity principle (Zickler et al. 2002). Hertz-
mann and Seitz (2005) use a reference object in the scene
to generate intensity-normal look-up tables, and can han-
dle fairly general reflectance functions (more precisely, all
materials of a single object must be a linear combination of
a given basis of materials). A recent work of Chandraker et
al. (2011) exploits a particular image acquisition setup and
spatial and temporal image derivatives to obtain an uncal-
ibrated photometric invariant that can deal with a general
isotropic BRDF. Other methods generalize the lighting envi-
ronment and implicitly extend the Lambertian model so that
different normals see a different portion of the illumination
hemisphere (Basri and Jacobs 2001).

2.3 Contributions

We introduce LDR maxima (Favaro and Papadhimitri 2012)
to solve the GBR ambiguity in UPS explicitly. Our main
contributions are:

— A closed-form solution given an LDR maximum;

— A robust estimator to find the GBR parameters that tol-
erates up to 80 % incorrect LDR maxima;

— A proof that the solution is GBR-consistent.

Finally, we experimentally demonstrate that our method han-
dles a wide range of real-world scenes (with varying albedo
distribution), is the most computationally efficient UPS algo-
rithm, and achieves state-of-the-art results.

3 Photometric Stereo

Photometric stereo is the task of recovering the surface of an
object with normal field n, given K inputimages taken from a
fixed viewpoint, and illuminated by known distant point light
sources with direction 1. We denote the unit-normal to the sur-
face at the pixel index p withn, € $? for p=1...,P,
where P is the total number of pixels in an image. Similarly,
we denote with 1y € S? the unit-normal corresponding to
the k-th illumination direction. Now, let us call Ly = el

the light vector, where ej denotes the light intensity. Also,
let N, = ppn, represent the generic normal vector and
pp be the albedo coefficient (i.e., the intensity of the sur-
face texture). Then, the intensity measured at a pixel index
p with illumination k£ for the Lambertian case (and under
the assumption of a linear response of the camera and ortho-
graphic projection) is:

Ipi = pp(np, hyer =N, Lg (1)

where (-, -) denotes inner product and (-) " the transpose of a
vector (or of a matrix). By sorting the pixels in lexicograph-
ical order we can rearrange all the generic normal vectors
in a matrix N = [N} ... Np] € R¥*?, which we call nor-
mal matrix; similarly we can rearrange the light vectors into
amatrix L = [L; ... Lg] € R¥>X which we call light
matrix. Then, we can write Eq. (1) in the following compact
matrix form

I=N'L (2)

where {I}, r = I, .If light directions and intensities are
given, solving photometric stereo is equivalent to solving the
linear system (2) in the unknown normal matrix N. Finally,
extracting the albedo p, from the generic normal vectors N,
can be done via p, = [[Np|l2, where || - |2 denotes the £
norm.

4 Uncalibrated Photometric Stereo

If the light matrix is unknown, N and L can be obtained up
to a linear ambiguity G € G L(3) (Hayakawa 1994), where:

identity

—_——
I=N"G'GL. (3)

It can be shown (Belhumeur et al. 1999) that if we impose the
integrability constraint, then the ambiguities take the form

100
010 (4)
LA

G =

where the three parameters A # 0, u, v € R represent the
group of GBR transformations. In this formulation it is appar-
ent that solving UPS amounts to fixing these three parame-
ters. For 51mphclty, we also fix the sign of A to be positive.
Define N = G~ "N, the pseudo normals, and L = GL, the
pseudo-lights. An initial pair (N, L) can be computed with
the algorithm of Yuille and Snow (1997). Our task is to find
A, fi, and D such that GTN = N and G~'L = L where

@ Springer



142

Int J Comput Vis (2014) 107:139-154

104 1 0 0
G'=|010]| and G'=[0 1 0 5)
7 D1
00 2 7iG

5 Reconstruction Consistency

As mentioned in the introduction and in the discussion on
prior work, the main unsolved challenge in uncalibrated pho-
tometric stereo is that most proposed solutions do not yield a
unique estimate for the normal matrix. In this section we
define this issue more formally and show how it can be
addressed.

Given the pseudo-normals N and a GBR solution &, D
and 5\, the reconstructed normal matrix N can be written as
follows

1oafio-4
N=G'G 'N=|01d|[01-2
N 1
00i]l00 ;
10 5k
N=1[0152 IN (6)
002

When the estimated GBR parameters match the true ones,
the vector [“ © ” v A]—r isequal to [00 1]" and N = N. In
general, however we might have some error in our estimate
of the parameters. Let us define such error as

n=| 5| - lol=5]0-v | )
% 1 A—A

Current algorithms return an error vector 1 that depends on
the true GBR parameters u, v, and A. Hence, for any pseudo-
normal N one obtains a different N estimate. This is a highly
undesirable behavior of a UPS algorithm, and to obtain a
stable result, the current strategy is to average several esti-
mates obtained with different pseudo-normals. The implicit
assumption is that the error n is zero-mean. Current pub-
lished results on real data (Alldrin et al. 2007; Shi et al. 2010),
however, show relatively large average angular errors, which
indicate that these assumptions are unfounded.

We therefore argue that one should only introduce con-
straints that result in estimates that do not change with the
GBR parameters. We formalize this in the next definition.

Definition 1 Given a pseudo-normals and pseudo lights pair
(N L) we define a constraint on [, D and A, to be GBR-
consistent when the error 1 is independent of the true para-
meters /&, v, and A.

The next question is then: Given the pseudo-normals and the
pseudo-lights, what type of GBR-consistent constraints in
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the estimated GBR parameters can one devise? In general,
an algorithm will introduce M constraints that can be written
as

fi(, v, N L)=0 Vj=1,..., M. )

We can then see how the constraints depend on the true
GBR parameters by explicitly writing the pseudo-normals
at a pixel p and the pseudo-lights in the k-th image as

ni,p n,p — %”3,17
Ao | = | n2p— 513,
A~ n3 p
| 13,p L x
— 9)
Ik Ik
bhirl|= Ik
3.1 L ply g + vl + Al3 g

Then, according to the GBR-consistency definition, it must
be possible to write the constraints such that the estimates /i,
D, and A are in the form

A=+ A (10)
D=v+ A (11)
A=A +n3) (12)

where n = [ 2 173]—r and V, ,3n = 0 (i.e., the error is
independent of the true GBR parameters). Therefore, we can
conclude that the constraints will be GBR-consistent if there
exists an 1 such that forany u, v,and A, andVj =1,..., M

f; (M A1, v+ A, 1+ ng),

I v n3,p}
ni.p,— —N3.p, N2 — —N3.p, —— , (13
{ Lo = 5 B By = o e o P (13)

{lik, bk, mlix + vl g + Als,k}k_l,___,K) =0.

We will show in the next sections that the constraints based
on LDR maxima are indeed GBR-consistent. However, as an
illustration of the analysis presented so far, let us introduce
a simple example of a GBR-consistent constraint. Suppose
that a novel algorithm for UPS can reliably detect a pixel p
where the true normal is [0 0 — 1]7. Then, one could devise
the constraint

(i, ﬁ,?\,N,ﬁ):K—ﬁ],p:o (14)
i.e., that { and A are linearly related through /i, p- By substi-
tuting the expression of (i and A and 711, above, one obtains

w n w

—ni,+ —n3,=0 15
M+ Tgs PR (>
which is verified for any A and u witherror ny = —ny ,/n3
and n3 = —1 — 1/n3 p. Finally, notice that the estimators
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would achieve n = 0 because n, = [00 — 117. Of course,
this example is not sufficient to uniquely determine all the
GBR parameters and also it is not clear how one can detect
such pixels directly from images. Indeed, this shows how the
design of an algorithm that is feasible, robust, and satisfying
the GBR-consistency, is challenging.

6 Lambertian Diffuse Reflectance Maxima

We assume that the scene contains curved objects such that
there exists a nonempty set .#% of spatial maxima (where
“spatial” refers to the image domain) of the inner product
(np, Ig), for a given k-th illumination. Geometrically, we
assume that there exist points in the scene where both princi-
pal curvatures are positive. We call such points Lambertian
diffuse reflectance maxima. Notice that we have a maximum
only when n,, and I point in the same direction. Since both
vectors are unit-normal, they must also coincide.

In the next sections we introduce the LDR maxima con-
straints. We first impose them by looking for the maximum of
the inner product between normals and lights (see Sect. 6.1).
Then, we show that this formulation fully represents all the
constraints by carrying out analysis imposing that at LDR
maxima normals and lights must be parallel (see Sect. 6.2).
Our proof is based on the fact that both approaches yield
the same set of solutions (i.e., semi-circles), albeit through
different calculations.

6.1 A Closed-Form Solution

For each k, an LDR maximum at p € .% constrains the GBR
ambiguity to the following set

6N, &L
<A 2 A">. (16)
IGTN,|I G~ Ll

Notice the use of the symbol €, as the solution of the above
maximization problem is not unique given a single LDR max-
imum. The entire set of solutions can be fully characterized
in closed-form. First, by using 1, x = (GTN s (A}’lf,k), let
us rewrite the above problem as

(i, D, M) € arg max
1,0,

(7,5.%) € arg min [GTN, G Lal. (A7)
D,

Next, we are ready to state the main result in this manu-
script:

Theorem 1 The set of minima

(1, v, 1) € arg min [GTN,[IG™'Lk]l, Vpe A  (18)
4,0,

lies on a segment between the 2-D points [uo vol " and
[1 v1]T, where

l n
MO=H1+%9 H1=—#
llA,k+l2,k "’
vo =i+ =20 v = - 19
V ilz,k+lg,k "s.p (19)
A
PR 11

N )
3. p\/ ko g

and we defined L, = [lAl,k lAzyk lA3,k]T and Np = [A1,p
fiz,p 13, p1". Givena 2-D point [ D17 = [0 vo] T + (1 — )
({1 vi1" = [io vol") onto the segment, where a € [0, 1],
the third GBR parameter is uniquely determined via

A= JVad =)o (20)

and the trajectory of the 3-D point [ D A17 in the parameter
a € [0, 1] forms a semi-circle of diameter |6|.

Proof See Appendix. O

The next result tells us how many LDR maxima we need
to solve the GBR ambiguity.

Lemma 1 If two Lambertian diffuse reflectance maxima
correspond to two different pseudo-normals i ,, and i ,, with

~

Lo 4 B, @

ﬁZ,pa
then there exists a unique solution in the GBR parameters.
Proof See Appendix. O

To illustrate the results, we show in Figs. 2 and 3 how LDR
maxima constrain the GBR parameters segments in the (x, v)
plane and to semi-circles in the (u, v, A) space. All segments
or semi-circles intersect at the same point, which corresponds
to the correct solution.

Next, we prove a remarkable property of LDR maxima:
The GBR parameters obtained from the LDR maxima are
GBR consistent. In practice, this means that our method
yields the same solution every time it is run, unlike com-
peting methods (see Sect. 7).

Proposition 1 The constraints on the GBR parameters intro-
duced by an LDR maximum are GBR-consistent.

Proof See Appendix. O
6.2 Using Pseudo-Normals as Pseudo-Lights

In the previous section, given an LDR we have defined a
single equation based on the inner product between a nor-
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Fig. 3 GBR ambiguity solved via LDR constraints. Each segment is
the set of solutions in the parameters f and U for one LDR maximum.
Segments must intersect at the correct GBR solution

mal vector and a light. However, from the definition of LDR
one can derive up to 3 equations in 4 unknowns. The ques-
tion is then of whether LDRs carry any extra constraint in
the GBR solution beyond what has been already presented
in Theorem 1. As we will find out, the answer is negative:
All the constraints of an LDR point are fully captured in
Theorem 1.

Suppose that the set .%% is given and that one is also given
N= G TN, the pseudo-normals, and I= GL, the pseudo-
lights. We now impose that the LDR constraint corresponds
to having N, parallel to Ly when p € %:

&N, 6L
-_Pr _ - * (22)
IGTNLI G Lll
We can write the above equation as
Cp,kflk = GGTNP (23)
.
where ¢, = ‘ll‘gfll\::p ll‘l' Notice that although the scalar
k

¢p.k depends on the GBR parameters, it also depends on
the (unknown) albedo and (unknown) light intensity. There-
fore, it can be considered as a free variable. Then, we can
finally solve these equations in the 4 unknowns i, v, A
and ¢ .

One can verify that these equations are satisfied by the
solution in Theorem 1 for any « € [0, 1] with

Ons

V l?,k +i§,k

Hence, Eq. (22) does not provide any additional constraints
to the solution in Theorem 1.

(24)

Cpk =«
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6.3 Existence of LDR Maxima

One may wonder whether LDR maxima are commonly found
in images. Indeed, surfaces that do not generate LDR max-
ima do exist. These are surfaces whose normals are never
parallel to any light direction; for example, this can easily
occur with slopes or cylinders. In these cases it is not possi-
ble to detect LDR maxima reliably. Similarly, more general
surfaces can also have no LDR maxima. However, in practice
this is rarely a problem for general surfaces of interest with
a sufficiently uniform sampling of illumination directions.
Indeed, we experimentally find an average of 251 LDR max-
ima per dataset, among those used in Sect. 7. These statistics
are very favorable as only 2 LDR maxima are sufficient to
solve UPS.

6.4 Detection and Localization of LDR Maxima

In this section we describe a procedure to detect LDR max-
ima. The main idea is that we can do so by detecting local
intensity maxima. In general, however, intensity maxima do
not correspond to LDR maxima. In fact, detection of the
maxima of I, ; requires

VI, =VppN ler + ppVN e =0, (25)
while the LDR maxima are determined by
VN, I, =0. (26)

Thus, even small variations of the albedo could result in a dis-
placement of the detected maximum. However, we show that
an LDR maximum can be found within a small disc around
the detected intensity maximum, whose radius A depends
on the albedo gradient magnitude and the curvature of the
surface.

We approximate the surface of the object around an inten-
sity maximum with a hemisphere. Let

P=[p; p2JR2—p?—p3]" e R, (27)

with p% + p% < R% bea point on the hemisphere with
radius R € R;. If a pixel index p corresponds to the pixel
coordinates [ p; pz]T, then the normals to this surface region
can be directly defined as N, = P/|P||. Notice that in this
case the correct LDR maximum lies at the pixel coordinates
Rl x I, AT IF[ P1 pz]T denotes the detected intensity max-
imum, we are interested in finding an estimate of the disc
radius A via the distance

a=[e ][]

‘ . (28)
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Suppose that the surface is Lambertian and we capture an
image with illumination direction Iy, where /3 ; > 0, then the
measured intensity is I, y = p, (P/||P||, It) ex. Detection of
the maxima of I, ; requires

PTI vPT PP’
VIka = Vppmek + ,Opm Id - lkek =0

Pl
(29)
where Ig denotes the identity matrix. Notice that since
10 ——2
vpT = 01 Rz—plz’%—l’% (30)

JR*=pi=p3

we have VPTP = 0, which, combined with Eq. (25), yields
the constraint

Vo,P I+ p, VP, = 0. (31)

Assume that the ratio between the albedo gradient and the
albedo magnitude is bound by a constant B > 0, i.e.,

v .
H % < B. Then, we can write
P

v v
H VPl H - Hﬂpﬁk H < H 2Prl < BR,  (32)
Pp

Pp

where we used the identity ||P|| = R. Finally, we obtain

[
B“‘} - [pl} — 2kl <BR. (3
2.k P2 /Rz _ p% _ p%
For a reliable detection and localization we consider LDR
maxima that are not too far off the detected maxima. This

means that locally, we can approximate P with the hemi-
sphere tangent plane at RLj. This means that

VR?—p}—p3~Riz (34)

and we obtain

s=[efii]- (7]

bk P2

Therefore, the correct localization of LDR maxima will be

a tradeoff between the curvature of the local surface and the

albedo gradient: Surfaces with high curvature can tolerate

high albedo gradients and, vice versa, surfaces with small

curvature can tolerate little albedo variation. We experimen-
tally find that A = 1 is a good tradeoff.

As done in Lagger and Fua (2008), we improve the selec-
tion of LDR maxima by discarding maxima that appear at

< BR>. (35)

the same spatial location under different illuminations (two
are sufficient to decide) as they are most likely generated by
the albedo texture. Third, we discard maxima with low pixel
intensities, e.g., maxima from the k-th inputimage with inten-
sity less than (max, I, y —min, I, x)/2. We experimentally
found that such maxima tend to be less reliable than those
with high intensity.

6.5 Dealing with Outliers

In practice, the sets {.%% }x=1,... x contain many outliers. We
take outliers into account by using a robust estimation pro-
cedure.

To simplify the notation, let us definey = [p v AT, the
vector of GBR parameters. Let S be the sum of the cardi-
nalities of the sets {-% }x=1,... k- Also, let {y;}i=1,...s(5—1)2
be the set of all the intersections between any two semi-
circles defined by two detected maxima lying in one
of the sets {“}k=1...x. We consider the intersections
{¥i}i=1,...s(5—1),2 as samples of a random variable Y defin-
ing the GBR parameters. We can obtain an approximation to
the distribution fy of the random variable Y via the empirical
distribution

SS—-1
2

2
O~ 557 ; 5y —vi)- (36)

Then, the GBR parameters can be chosen as the median y of
the empirical distribution, i.e.,

(i, 9, %) =§ = arg min Ery (|5 —¥l] (37)

where Eg, denotes the expectation with respect to the dis-
tribution fy. This formalization makes it possible to further
improve this outlier rejection method by using other approxi-
mations for fy (for example, with a Kernel density estimator).

Remark 1 As we have seen in the previous section, the local-
ization of an LDR maximum via a local brightness maximum
is affected by the albedo of the surface. However, as long
as the albedo introduces a small random error, the likeli-
hood of distinguishing the correct LDRs via the median is
high. That is because with high likelihood only the correct
detected LDR maxima will agree on the same correct GBR
solution. It is however possible to find albedos that introduce
a non-random error leading to agreement on an incorrect
GBR solution. Fortunately, although these cases are possi-
ble, they are extremely rare: Such albedos must be a function
of the normal components so as to consistently introduce the
same error at corresponding normals. One artificial example
of such albedos can be built by taking the ratio between two
images captured under different illumination (see right image
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Fig. 4 Detected image brightness maxima are shown as green dots.
The image regions where the normals are almost parallel to the light
direction are shown in red. We show the detection of LDR maxima in
the original image (left) and in the ratio image (right). Notice that as
the albedo is no longer independent of the normal map, the ratio may
cause the LDR maxima to vote with strong consensus for one or many
incorrect GBR solutions. In this illustration the detected LDR maxima
in the ratio image (right) are quite far from the correct ones (Color figure
online)

in Fig. 4). In this case the albedo becomes the inverse of a
linear combination of the normals. Let us briefly analyze the
ratio of two images k and i. The detection of LDR maxima on
these “image ratios” relies on the brightness maxima, which
can be found at pixels p where

Il Nleek
v (”—") vl L—)=0=
Ip,i Npliei

Notice that LDR maxima would instead require VN;lk =0,

VN;1,~
NI
(38)

VN;lk
NI -

but the above equation may instead impose that VN;lk #0
as LDR maxima are typically not shared across different input
images.

6.6 Robustness

Because the proposed algorithm can compute the GBR para-
meters very efficiently, we can evaluate how well it can tol-
erate several levels of outliers and errors in the detected
LDR maxima. We show that the algorithm can tolerate very
high levels of outliers, while it is more sensitive to persistent
misalignments between normals and lights. We synthetically
generate a set of K = 12 light directions. Then, we generate
P = 500 maxima by matching each normal to one of the light
directions. With reference to Fig. 5, to simulate outliers in
the detected LDR maxima, we corrupt outliers ratio
normals every 100 normals. To simulate errors in the detected
LDR maxima, we add to all the normals uniform noise in the
range uniform noise ratio x[—0.1 + 0.1] (notice
that the normals have magnitude equal to 1). Uniform noise
corresponds to persistent misalignment. The performance is
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Fig. 5 Color coding of the estimation error against outliers and noise
ratios. Error levels are shown with solid green lines and the correspond-
ing values are indicated in the cyan box (Color figure online)

computed as the relative error € = “3[';{2”2 , Where y is the

correct vector of GBR parameters and y the estimated one.
In Fig. 5 we show the results for several outlier and noise
ratios. To ease visualization we smooth the error map and
then quantize it. The outlier ratio is shown in the abscissa
and ranges from 0 % (left) to 100 % (right). Similarly, the uni-
form noise ratio is shown in the ordinate axis and ranges from
0% (bottom) to 100 % (top). Notice that the darkest region
(bottom-left) denotes no more than 0.3 % relative error and
it allows up to 75 % outliers even when the remaining 25 %
of the maxima have around 10 % uniform additive noise.

7 Experiments

To validate our method we use nine real object datasets:
Redfish and Octopus of 5 images each (courtesy of Neil
Alldrin3); Cat, Buddha, Owl, Horse and Rock of 12 images
each (courtesy of Dan Goldman and Steven Seitz*); Puppet
of 15 images taken in our lab with a Canon 5D Mark II,
Face of 64 images (Yale Face Database (Georghiades et al.
2001)). All the experiments were run with Matlab on a Mac
(2.66 GHz CPU, Intel Core Duo) platform.

7.1 Image Acquisition of the Puppet

To take the photos of the Puppet, we used a Canon 5D Mark I1
camera and a 30-watt incandescent light source attached on
a tripod. We placed the light source in 15 different positions

3 http://neilalldrin.com/research

4 http://www.cs.washington.edu/education/courses/csep576/05wi/pro
jects/project3/project3.htm
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http://www.cs.washington.edu/education/courses/csep576/05wi/projects/project3/project3.htm

Int J Comput Vis (2014) 107:139-154

147

(far enough from the object in order to satisfy the distant point
light source assumption) and took three photos for each posi-
tion. The three photos were then averaged to reduce noise.
Ambient image subtraction was also performed. Because the
light source has constant intensity, we scaled each image with
a random scalar between 0.5 and 1.5 (this was done for the
face dataset as well). An object mask was also created by
simple thresholding.

7.2 Image Pre-processing

Equation (2) dictates that the intensity matrix I should have
rank 3. Because real world data are affected by noise, shad-
ows, specularities and other non/Lambertian effects, the rank
will be different, typically bigger, than 3. Hence, we perform
a pre-processing step based on a recent convex optimization
approach (Lin et al. 2009; Wu et al. 2011) that recovers the
low-rank intensity matrix without having any information
about what entries are corrupted:

I£i£||A||*+V||E|I1 st T=A+E (39)

where A is the noise-free low-rank data and E is a sparse
matrix with the outliers. || - ||« and || - ||; denote the nuclear
and L' norm respectively. y > 0 is a weighting parameter
that defines the amount of outliers in the data. This parameter
depends on the input images and, as suggested in Wright
et al. (2009), we fix it to y = LP where k is a constant
and P is the total number of pixels of a single input image.
We fixedk = 1.7 forall datasets having atleast 12 images and
k = 3 for the others. Figure 6 shows how the pre-processing
algorithm removes shadows and specularities in the case of
the Face dataset.

7.3 Implementation Details

We impose the integrability constraint as described in Yuille
and Snow (1997) and the surface pseudo-normals N and
pseudo-lights L are obtained up to the GBR ambiguity. The
initial group of all the LDR maxima is detected by using

Fig. 6 Removal of non Lambertian effects. On the left we show one
of the input images. In the middle image we show the detected non
Lambertian components (shadows and specularities) via the low-rank
matrix recovery pre-processing step. Finally, on the right image we
show the low-rank and noise-free data used in our algorithm

the built-in Matlab function “imregionalmax’ after applying
a small Gaussian smoothing to all the input images. This
function gives as output a set of single pixels for each image
corresponding to the intensity local maxima. As described
in Sect. 6.4 we select as local maxima all pixels in a disc
neighborhood of radius 1 pixel. Then, we discard all local
maxima that appear (at least twice) at the same spatial loca-
tion for different illumination conditions and those that have
low intensity values.

7.4 Results

Because no ground truth data is available for these datasets,
we consider as ground truth for the normal maps the ones
obtained from the calibrated photometric stereo method. We
compare our experimental results with the state-of-the-art
in uncalibrated photometric stereo (Shi et al. 2010; Alldrin
et al. 2007). For the accuracy evaluation we consider the

Table1 Performance comparison with the entropy minimization (EM)
method (Alldrin et al. 2007) and the self calibrating photometric stereo
(SCPS) method (Shi et al. 2010)

K =12 A/E Rock Buddha Horse Cat Owl
EM e 22.16 15.05 20.65 15.39  18.48
o 188 2.19 3.85 3.78 5.58
SCPS € 2488 13.58 21.01 6.15 10.47
o 742 4.93 9.57 2.83 4.75
LDR e 11.61 4.98 4.80 5.37 6.63
o 0 0 0 0 0
LDR with € 2.67 3.11 2.27 2.72 5.76
GT
o 0 0 0 0 0
LDR without
preprocessing €  14.30 5.97 17.03 10.16 6.91
o 0 0 0 0 0
K=5 A/E Octopus Red fish K =15 Puppet
EM € 9.03 8.63 EM 26.36
o 0.76 1.14 2.39
SCPS e 13.23 7.60 SCPS NA
o 985 4.32 NA
LDR € 6.64 5.60 LDR 12.15
o 0 0 0

LDR with GT € 2.87 4.47 LDR with 5.63

GT
o 0 0 0
LDR without
preprocessing €  11.39 10.82 LDR with 20.15
GT
o 0 0 0

We show the mean (¢) and standard deviation (o) of the angular error
of the estimated normal maps
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mean angular error of the estimated normals with respect to
the calibrated case. In Table 1 we show the performance com-
parison of all methods in the case of datasets with 12 input
images (top) and in the case of datasets with 5 and 15 input
images (bottom). Notice that o < 1072 in all the recon-
structions via LDR maxima as predicted by our analysis (see
Proposition 1). Since our method provides a GBR-consistent
solution, we always get the same estimate no matter what
pseudo-normals and pseudo-lights we start from. This is a
major advantage over prior work.

Figure 7 shows the comparison of the obtained normal
and depth maps for the methods (Shi et al. 2010; Alldrin

Fig. 7 Comparison of reconstructed normal and depth maps. From
left to right, each column corresponds to the first (x axis), second
(y axis), and third (z axis) components of the normal map n and the
depth map, respectively. We show the results obtained from the cali-
brated photometric stereo method (top row), the results obtained from
our method (second row), the results obtained from the entropy min-
imization method (third row) and the results obtained from the SCPS
method (bottom row)

@ Springer

et al. 2007) in the case of the Buddha dataset. The depth
map is obtained by integrating the normal map with a Poisson
solver (Agrawal and Raskar 2006). Figure 8 shows all the
depth maps obtained by our method across all the datasets
(bottom row) and the depth maps obtained from the calibrated
photometric stereo method (middle row).

All datasets yield visually reasonable surface reconstruc-
tions. However, in the Owl dataset one might notice an arti-
fact (a spike) of the reconstructed surface on the left eye. This
artifact is caused by specular highlights (probably because
the eye is made of glass) that were not removed by the pre-
processing step. Notice that this artifact is present also in the
calibrated reconstruction. One possible explanation for the
failure of the preprocessing algorithm (Lin et al. 2009; Wu
et al. 2011) is that the outliers in this case have very low
intensities that can be confused with small Gaussian noise.
In Fig. 9 we show an enlargement of that region in one of
the input images. To demonstrate that outliers are the cause
of the artifact, we mask out these pixels (by using some sim-
ple thresholding) before reconstructing the surface. In Fig. 9
one can also see the comparison of the surface reconstruction
around the eye with and without outliers. The reconstruction
without outliers is much smoother and looks qualitatively
correct.

Finally, the average time > to run our method, implemented
in non/optimized Matlab code, on all the datasets is 13.5 s (we
also include the preprocessing step). Notice that the average
time for Alldrin et al. (2007) is 62 s, while for Shi et al. (2010)
is 10 min. Moreover, since our standard deviation is zero, we
only need to run the algorithm once, while the other methods
need to be run several times. To appreciate the fine details of
the reconstructed surfaces, in Fig. 10 we show two views of
the surfaces obtained for all datasets. The first and the third
columns are the results obtained with photometric stereo.
The other two columns are obtained with our method. We
also tested our method on face reconstruction by using data
from Yale’s face database and the reconstructed depth map
and surfaces are shown in Fig. 11.

7.5 Discussion

In the second row (from the bottom) of each table in Table 1,
we also show the performance when the LDR maxima are
guaranteed to be true LDR maxima (as they are selected from
the ground truth normal map—obtained with calibrated pho-
tometric stereo). The performance based on the ground truth
shows that the algorithm would not achieve 0 error even if
the detected maxima were correct. As the theory is exact,
this limitation can only be due to non Lambertian compo-

> Notice that the running time of our algorithm depends mostly on the
number of detected local maxima and much less on the size of the input
images.



Int J Comput Vis (2014) 107:139-154

149

Fig. 8 Reconstructed depth maps. One of the input images (fop row). Graylevel-coded depth map reconstructed with calibrated photometric stereo
(middle row). Graylevel-coded depth map obtained with our method (bottom row)

nents still present in the model. Indeed, the pre-processing
step (Lin et al. 2009; Wu et al. 2011) may not fully remove
specularities and shadows as already observed in the case of
the Owl dataset. Finally, in the last row we show the mean
angular errors without the pre-processing step. Although we
still achieve lower error rates compared to prior methods on
many datasets, the reconstruction accuracy degrades. This
is true especially for datasets (e.g., Horse) where there is a
non-negligible specular component.

7.6 Limitations and Future Work

Our method is entirely based on the diffuse component of
the images. Even though the detection of maxima is very
robust, their estimation degrades in the presence of shadows,
noise, interreflections and specularities. We found the latter
ones particularly important. Thus, a possible suggestion of
future work is to find a way to detect/model specularities
and use them (at the moment we just discard them) together
with the LDR maxima to better disambiguate the uncalibrated
photometric stereo problem.

8 Conclusion

In this paper we presented a simple and fast method for solv-
ing the generalized bas relief (GBR) ambiguity of the uncal-
ibrated photometric stereo problem. Our method makes no
stringent assumptions about the distribution of lights, only
that they are sufficiently different, and can handle a wide
variety of albedos and surfaces. We introduce a novel Lam-

bertian constraint for the distribution of lights and normals,
which can be computed in closed-form. We use this new
constraint to design a very robust algorithm that achieves the
best results to date and provides the same estimate regard-
less of the GBR ambiguity. Key to our approach is a reliable
detection of Lambertian diffuse reflectance maxima in the
input images and a robust formulation of the GBR estima-
tion process.

Appendix

In this section we provide the detailed proofs for the LDR
solutions, how a unique solution can be identified given 2
LDR maxima, and that these solutions satisfy the GBR con-
sistency property. First, we need to introduce a simple tech-
nique to obtain analytical solutions in a minimization prob-
lem.

Lemma 2 Let ¢ be a function of two variables and ¢z, be
its derivative with respect to the first argument &1. Then, if

¢, (81,6) = O if and only if & = f(&) for any &, the

following two minimization problems yield the same extrema

(P1) ming (&1, 42) (40)
&1.62

(P2) Hgimb(f(éz), &) with & = f(&).

Proof Problem P; gives the following conditions on the gra-
dients of ¢:

b5 (61,62 =0 ¢5(81,86) =0 (41)
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Fig. 9 On the rop we show one of the input images of the Owl dataset.
In red we show the selected patch. In the second row—Ieft image we
show the selected patch where some outliers are visible inside the pupil.
In the second row—right image we show the reconstructed depth map
without outlier rejection. Notice that the outliers cause sharp discontinu-
ities in the depth map. In the bottom—Ieft image we show the detected
specular highlights (simple thresholding based on the standard devi-
ation across different illumination settings). Finally in the bottom—
right image we show the reconstructed depth map after rejection of the
detected specular highlights. Notice that, unlike in the previous case, the
recovered depth map does not have sharp discontinuities (Color figure
online)

since ¢, (&1, &2) = 0 implies that §; = f (&), we must have

b, (f(82),62) =0 ¢ (f(82).52) =0  (42)

Problem P; gives the following condition on the gradients of

¢:

Pe, (f(52), £2) X [, (82) + ¢, (f(§2),62) = 0. (43)

@ Springer

Fig. 10 Surface reconstructions. Rendered surfaces obtained with the
calibrated photometric stereo method (first and third column). Rendered
surfaces obtained with our method (second and fourth column)
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Fig. 11 Results on Yale’s Face database. One of the input images (lef?).
Reconstructed depth map (second from the left). Two views of the recon-
structed surface (third and fourth from the left)

Since ¢¢, (f(§2), &2) = 0 by definition of f, the first term in
the above equation disappears and we have exactly the same
set of equations as problem P;. Notice that the same result
can be easily extended to more than 2 variables. O

We intend to use the above lemma in the Theorem 1 to derive
an analytic solution.

Proof of Theorem 1 Firstly, rather than minimizing Eq. (17)
we can equivalently minimize the cost function

min, 5 IGTN,IPIGT'Li|?, Vpe s @4

Now, recall that

04 1 0 0
G'=|010| and G'=|0 1 0]; @5
5 _fa_v1
004 171

then, Vp € .7 the cost function can be explicitly written as

min — ((i1,p + iz p) + Gia,p + Diis,p)? + 3203 )
a0 A A
R R . . N2
X (AZ (ilzk 4 lgk) + (—/:Lll’k — v+ l3,k) ) .
(46)

Notice that the cost is a convex function in the parameter
P= (0, 00). Consider the case l?’k + i%,k = 0, then, the
minimization problem has infinite solutions with A= o0
and any 1,0 € R. This is a degenerate case not only for
the LDR constraint theory, but also for photometric stereo in
general. Notice that the first two components of the normal-
ized pseudo-lights always coincide with the first two com-
ponents of the true lights. Then, in this case, the true light
direction can be immediately obtained from the pseudo-light.
Notice that with this type of illumination the normals can
never be retrieved from the Lambertian model. Now, sup-
pose that l? T lg « 7 0and the values of /i and ¥ are given;
then, a necessary condition for a minimum is that the first
order derivative of the cost with respect to A is Zero,

i3 54 (B + B = (G prtiviin, ) + Gz, p+ i3, )?)

. » N2
X (—ﬂll,k — Dk + l3,k) 47)

which immediately yields the unique solution (in (0, 00))

. .\
4 I:(;l],p+ﬂﬁ3,p)2+(ﬁ2,p+ﬁﬁ3,p)2](7llll,1<7"'12,k+13,k)

2 (2 12
n3,p(ll,k+12,k)

i =
(48)

Now, let us use Lemma 2, substitute the above solution in the
cost (46) and solve the minimization in the two remaining
unknowns /& and D; one obtains the equivalent problem

argmin, 72, + 3, [Ginp + i, + (G + 9
Qb
Vs pl |~ adi k= o+ Bk (49)

which is a convex function in both /& and ¥ (as each energy
term is convex in the unknowns). Let us assume that /1, D are
such that —lllAl,k - f)l},k + lA3,k # 0. Then, we can compute
the first order derivatives of the cost in Eq. (49) in both 1 and
; by equating them to zero we obtain

o ba (s Lo i
D= =2 (g, + A3 pR) — 222 (50)

I k3, p n3p’

Now suppose that 2, § are such that — il ; — iy 413 1 = 0;
then, we have

p = Bahle (51)
bk

To find the minimum we plug both solutions in the cost and
look for ji yielding the smallest value among the two cases.
In the first case, we can simplify the minimization to

. l?k+12k A A A ~ A A il,kNT]:k

in S e A | |y =+ i = TR

i 1.k Lk 2.k
(52)

and, in the second case, we have
. 72 72
mﬁm Ve T+

A . 2
A . ; I3 — g o
2.k

(53)

In the first case, the solutions in [t are readily obtained as
€ [min(fo, f11), max(fo, ft1)] where

N i, N i],ki2,kﬁ2,p*i%'kﬁl,p+i3.kil,k;l3,p
M1 = T MO = ~ o>
P "3.P(11,k+lz,k)

(54)
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The gradient of the second cost gives

A —i%.k;ll,p+[l.kiZ,kﬁ2,p+il.ki3,kﬁ3,p
Wsx = ~ P
”3vp(11‘k+12,k)

which is identical to j1. Hence, we only need to substitute (1o
in both costs. A few calculations show that the value of both
Egs. (52) and (53) is |N[T,I:k| and, therefore, the solutions are
€ [min(fo, f£1), max(iig, i1)]. Now, given all the solu-
tions in (i we can substitute in the previous expressions and
obtain an explicit solution for ¥ and for A By using the rela-
tionship in Eq. (50), we have b € [min(Dg, Dy), max(Dg, V)]
where

(55)

Gl — _rAlZ.p ‘/}0 _ il,klAZ,k’All,p—l?’kﬁz,p-kig,kl},kﬁlp (56)
" ’33,17(121.1(""[%,1()

- . NI o

Notice also that given 6 = %’ the following iden-
s Rt

tities hold

o = g 4 0 P Y.

Mo = p1 + Do =11 + (57)

P P
Vit VIt g

Equation (20) can be readily obtained by direct substitution of
the point [/ D]7 = [0 vol " + (1 —a) ({1 vi]1" —[mo vol ")
in Eq. (48). Finally, we show that the solution in « is a semi-
circle by computing its center and diameter. Firstly, define
(i, v, 0) as the center of the circle. By using Eq. (57), we
obtain

lAlka l‘\zykﬁ

f=pd 2 = 2 (sg)
2\/ilz,k+i%,k 2y B+3,
and
N 2 2,62
( _ )2 = (o — l 1,k
poH ( 2) i%,k'HNZZ,k
~ - 2 2,02
D —0)2 = (a0 — 1) 2
( 2) l?,k“?,k
M=o —a)o?. (59)

By summing the above equations and by taking the square
root, one can immediately draw the conclusion that the diam-
eter is the constant 6.

Proof of Lemma 1 If two Lambertian diffuse reflectance
maxima correspond to two different pseudo-normals 71, and
1 p, With

N1, pa

AL
P P (60)
n2,pq

n2,py

then there is a unique solution in the GBR parameters.

@ Springer

Proof Suppose that two LDR maxima with pixel indices p,
and pp, obtained with illumination k, and k; respectively,
correspond to two pseudo-normals with different directions;
then, by using the LDR maxima constraint, the pseudo-nor-
mals will have the same direction as the pseudo-light direc-
tions, and therefore the corresponding pseudo-lights will be
different and satisfy an inequality corresponding to the one
above. Now, to find the explicit intersection between the two
segments identified by these two LDR maxima, we need to
solve

[Ml,a] +a (|:M0,a:| . [Ml,a:|)
Vl,a V0,a Vl,a
M1,b Mo,b M1,b
= T+ = ’ 61
ot (6 o
in the unknown o and S. Let us define

6, = NITFaLka
a = 3 .3
13 o0 Wi k)

.
Np, Ly

S R RS R
13,y sy, Hig,)

Op = (62)

Then, the intersection can be computed by solving the fol-
lowing linear system

IO —la,0 | [ [H1s — Hi1a
A A = . (63)
14,00 —12.4,6b | LB Vi,b — Vl,a
To have a unique solution the determinant of the 2 x 2 matrix
on the left hand side must be nonzero. Hence, we find

It 1 D200, 0aO + 11 1 121, 06 # 0 (64)

which can be simplified as

Lk, , Nk

= —. (65)
bhr, I

The latter constraint is satisfied due to the inequality on the
pseudo-normals in the assumptions. O

Proof of Proposition 1 The transformation GTG_T, where
I, v, and A have been estimated via the LDR constraints is
GBR-consistent.

Proof When we estimate the unit normals from the pseudo-
normals we compute

N=G'N/|G'N|=G"G "N/IGTG'N|. (66)

Hence, if GTGTisGBR consistent, then the recovered nor-

mals N do not depend on the GBR parameters. By computing
GG~ we obtain

1011/\;#
GG T = 01%;“ . 67)
A
00%
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Thus, we need to show that £5, ”}\;“

and % do not depend on
the GBR parameters , v, and A, when fi, D, and J are com-
puted from the LDR constraints. By direct substitution and
by using L = GL and N = G'N we obtain the following

equalities, which depend only on the data and «,

la Y Lolpk ny,
m = = 5 £ TN m—p (68)
A n3,p (ll.k"‘lz.k) ’
vV—v boalpx n,
=t — gl _mp ()
A ”&p(ll,k"‘lz,k) ’

h
M= = Vel - ) — (70)

|”3,p|(112,k+l§,k)

To conclude the proof we need to show that o does not depend
on the GBR parameters. To this purpose, consider the inter-
section between the segments generated by two LDR maxima
as in Eq. (61). Then, by direct substitution we obtain

_nlvpa)‘ ;
n3 p )‘Ipu-ka 1,kq
_M_l_v +a|n;p |(12 +12 ) [lzk
3. pa 3.0a '\ kg T2,k »Ka
nl’l’b)‘
_ n3,pp Mpy Ik,
o _M + v * 2 2 bk
n3, p, |n31[7b| (ll,kb + lz,kb) "
(71)
this is equivalent to
_”lvPa 7 l
3, p, Ppaka 1,kq
~ M +a|n I(l2 +12 ) |:12k
n3,pa 3.pa\\"1 kg T 2,kq »Ka
n1,pp
iy Ipy.i I
ns, Pb-kp 1,k
=|_nn |+ e
"3.pp n3,p, | (ll,k;, +12,k;,) "
which is independent of the GBR parameters. Therefore, «
and B are also independent of the GBR parameters. O
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