
Int J Comput Vis (2014) 107:1–19
DOI 10.1007/s11263-013-0659-3

Hough Pyramid Matching: Speeded-Up Geometry Re-ranking
for Large Scale Image Retrieval

Yannis Avrithis · Giorgos Tolias

Received: 11 September 2012 / Accepted: 7 September 2013 / Published online: 12 October 2013
© Springer Science+Business Media New York 2013

Abstract Exploiting local feature shape has made geome-
try indexing possible, but at a high cost of index space, while
a sequential spatial verification and re-ranking stage is still
indispensable for large scale image retrieval. In this work
we investigate an accelerated approach for the latter prob-
lem. We develop a simple spatial matching model inspired
by Hough voting in the transformation space, where votes
arise from single feature correspondences. Using a histogram
pyramid, we effectively compute pair-wise affinities of cor-
respondences without ever enumerating all pairs. Our Hough
pyramid matching algorithm is linear in the number of cor-
respondences and allows for multiple matching surfaces or
non-rigid objects under one-to-one mapping. We achieve re-
ranking one order of magnitude more images at the same
query time with superior performance compared to state of
the art methods, while requiring the same index space. We
show that soft assignment is compatible with this matching
scheme, preserving one-to-one mapping and further increas-
ing performance.

Keywords Image retrieval · Spatial verification · Relaxed
spatial matching · Hough pyramid matching · Geometric
re-ranking

Y. Avrithis · G. Tolias (B)
National Technical University of Athens,
Iroon Polytexneiou 9, Zografou, Greece
e-mail: gtolias@image.ntua.gr

Y. Avrithis
e-mail: iavr@image.ntua.gr

1 Introduction

Sub-linear indexing of appearance has been possible with the
introduction of discriminative local features and descriptor
vocabularies (Sivic and Zisserman 2003). Despite the success
of the bag of words model, spatial matching is still needed
to boost performance, especially at large scale. Geometry
indexing is still in its infancy, either being limited to weak
constraints (Jégou et al. 2010), or having high index space
requirements (Avrithis et al. 2010). A second stage of spatial
verification and geometry re-ranking is the de facto solution
of choice, where RANSAC approximations dominate. Re-
ranking is linear in the number of images to match, hence its
speed is crucial.

Exploiting local shape of features (e.g. local scale, orien-
tation, or affine parameters) to extrapolate relative transfor-
mations, it is either possible to construct RANSAC hypothe-
ses by single correspondences (Philbin et al. 2007), or to
see correspondences as Hough votes in a transformation
space (Lowe 2004). In the former case one still has to count
inliers, so even with fine codebooks and almost one corre-
spondence per feature, the process is quadratic in the number
of (tentative) correspondences. In the latter, voting is linear in
the number of correspondences but further verification with
inlier count appears unavoidable.

Flexible spatial models are more typical in recognition;
these are either not invariant to geometric transformations,
or use pairwise constraints to detect inliers without any rigid
motion model (Leordeanu and Hebert 2005). The latter are
at least quadratic in the number of correspondences and their
practical running time is still prohibitive if our target for re-
ranking is thousands of matches per second.

We develop a relaxed spatial matching model, which,
similarly to popular pyramid match approaches (Grau-
man and Darrell 2007), distributes correspondences over

123

2 Int J Comput Vis (2014) 107:1–19

Fig. 1 (Top) Inliers found by 4-dof FSM and affine-model LO-
RANSAC for two images of Oxford dataset. (Bottom) HPM matching,
with all tentative correspondences shown. The ones in cyan have been
erased. The rest are colored according to strength, with red (yellow)
being the strongest (weakest) (Color figure online)

a hierarchical partition of the transformation space. Using
local feature shape to generate votes, it is invariant to sim-
ilarity transformations, free of inlier-count verification and
linear in the number of correspondences. It imposes one-to-
one mapping and is flexible, allowing non-rigid motion and
multiple matching surfaces or objects. This model is com-
patible with soft assignment of descriptors to multiple visual
words, preserving one-to-one mapping and further increas-
ing performance.

Figure 1 compares our Hough pyramid matching (HPM)
to fast spatial matching (FSM) (Philbin et al. 2007). Both the
foreground object and the background are matched by HPM,
following different motion models; inliers from one surface
are only found by FSM. We show experimentally that flex-
ible matching outperforms RANSAC-based approximations
under any fixed model in terms of precision. But our major
achievement is speed: in a given query time, HPM can re-
rank one order of magnitude more images than the state of the
art in geometry re-ranking. We give a more detailed account

of our contribution in Sect. 2 after discussing in some depth
the most related prior work.

2 Related Work

Given a number of correspondences between a pair of
images, RANSAC (Fischler and Bolles 1981), along with
various approximations, is still one of the most popu-
lar spatial verification methods. It uses as evidence the
count of inliers to a geometric model (e.g. homography,
affine, similarity). Hypotheses are generated on random
sets of correspondences, depending on model complex-
ity. However, its performance is poor when the ratio of
inliers is too low. Philbin et al. (2007) generate hypotheses
from single correspondences exploiting local feature shape.
Matching then becomes deterministic by enumerating all
hypotheses. Still, this process is quadratic in the number of
correspondences.

Consistent groups of correspondences may first be found
in the transformation space using the generalized Hough
transform (Ballard 1981). This is carried out by Lowe (Lowe
2004), but only as a prior step to verification. Tentative corre-
spondences are found via fast nearest neighbor search in the
descriptor space and used to generate votes in the transfor-
mation space. Correspondences are single, exploiting local
shape as in Philbin et al. (2007). Using a hash table, mapping
to Hough bins is linear in the number of correspondences and
performance depends on the number rather than the ratio of
inliers. Still, multiple groups need to be verified for inliers
and this may be quadratic in the worst case.

Leibe et al. (2008) propose a probabilistic extension of
the generalized Hough transform for object detection. In
their voting scheme, observed visual words vote for object
hypotheses based on their position relative to the object cen-
ter. Votes in this case come from a number of training images,
rather than a single matched image. Feature orientation is not
taken into account so the method is not rotation invariant, but
the principle is the same.

Jégou et al. (2010) use a weaker geometric model whereby
groups of correspondences only agree in their relative scale
and—independently—orientation. Feature correspondences
are found using a visual vocabulary. Scale and orientation of
local features are quantized and stored in the inverted file.
Hence, geometric constraints are integrated in the filtering
stage of the search engine. However, because constraints are
weak, this model does not dispense with geometry re-ranking
after all.

In an attempt to capture information on the neighborhood
of local features, MSER regions are employed to group fea-
tures into bundles in Wu et al. (2009). Consistency between
orderings of bundled features is used for geometric match-
ing. However, the reference frame of the MSER regions is

123

Int J Comput Vis (2014) 107:1–19 3

not used and features are projected on image axes instead,
so rotation invariance is lost. The same weakness applies to
Zhou et al. (2010), who binarize spatial relations between
pairs of local features. Similarly, Cao et al. (2010) order fea-
tures according to linear and circular projections, but rely on
a training phase to learn the best spatial configurations.

Global feature geometry is integrated in the indexing
process by Avrithis et al. (2010). A feature map is constructed
for each feature, encoding positions of all other features in a
local reference frame, similarly to shape context (Belongie et
al. 2000). Re-ranking is still used, though it is much faster in
this case. The additional space requirements for each feature
map are reduced by the use of hashing, but it is clear that this
approach does not scale well.

Closely related to our approach is the work of Zhang et
al. (2011), who set up a 2D Hough voting space based on
relative displacements of corresponding features. Fixed size
bins incur quantization loss, while the model supports trans-
lation invariance only. Likewise, Shen et al. (2012) apply
several scale and rotation transformations to the query fea-
tures and produce a 2D (translation) voting map for each
database image. Queries are costly, both in terms of time and
space needed for voting maps.

Whenever a single hypothesis may be generated by a sin-
gle correspondence, Hough-based approaches are preferable
to RANSAC-based ones, because they are nearly indepen-
dent of the ratio of inliers and need to verify only a subset of
hypotheses. However, both share the use of a fixed geometric
model and need a parameter in verifying a hypothesis, e.g. bin
size for Hough, or inlier threshold for RANSAC. Although
there are attempts for parameter-free methods (Raguram and
Frahm 2011), an entirely different approach is to use flexible
models, which is typical for recognition. In this case con-
sensus is built among hypotheses only, operating on pairs of
correspondences.

For instance, multiple groups of consistent correspon-
dences are identified with the flexible, semi-local model of
Carneiro and Jepson (2007), employing pairwise relations
between correspondences and allowing non-rigid deforma-
tions. Similarly, Leordeanu and Hebert (2005) build a sparse
adjacency (affinity) matrix of correspondences and greed-
ily recover inliers based on its principal eigenvector. This
spectral model can additionally incorporate different feature
mapping constraints like one-to-one.

One-to-one mapping is maybe reminiscent of early corre-
spondence methods on non-discriminative features, but can
be very important when vocabularies are small, under the
presence of repeating structures, or e.g. with soft assignment
models (Philbin et al. 2008). Enqvist et al. (2009) form a
graph with correspondences as vertices and inconsistencies
as edges. One-to-one mapping is easily incorporated by hav-
ing multiple matches of a single feature form a clique on the
graph. In contrast, we form a graph with features as vertices

and correspondences as edges. Multiple matches then form
a connected component of the graph.

Other solutions include for instance the early spectral
approach by Scott and Longuet-Higgins (1991), the quadratic
programming approximation by Berg et al. (2005), the con-
text dependent kernel by Sahbi et al. (2008), and the linear
programming formulation by Jiang and Yu (2009). Most flex-
ible models are iterative and at least quadratic in the number
of correspondences. They are invariant to geometric transfor-
mations and resistant to ambiguous feature correspondences
but not necessarily robust to outliers.

Relaxed matching processes like the one of Vedaldi and
Soatto (2008) offer an extremely attractive alternative in
terms of complexity by employing distributions over hierar-
chical partitions instead of pairwise computations. The most
popular is by Grauman and Darrell (2007), who map fea-
tures to a histogram pyramid in the descriptor space, and
then match them in a bottom-up process. The benefit comes
mainly from approximating similarities by bin size. Lazebnik
et al. (2006) apply the same idea to image space but in such
a way that geometric invariance is lost. Attempts to handle
partial similarity usually resort to optimization methods like
Lin and Brandt (2010).

It should be noted that although a pyramid is a way to
increase robustness over flat histograms, it is still approxi-
mate as correspondences may be lost at quantization bound-
aries, even at coarse levels. The effect has been analyzed
in Indyk and Thaper (2003), where it has been shown that
empirical distortion is substantially lower than the theoretical
upper bound.

3 Contribution

While the above relaxed methods apply to two sets of fea-
tures, we rather apply the same idea to one set of corre-
spondences (feature pairs) and aim at grouping according to
proximity, or affinity. This problem resembles mode seeking
(Cheng 1995; Vedaldi and Soatto 2008), but our solution is a
non-iterative, bottom-up grouping process that is free of any
scale parameter. We represent correspondences in the trans-
formation space exploiting local feature shape as in Lowe
(2004), but we form correspondences using a vocabulary as
in Philbin et al. (2007) and Jégou et al. (2010) rather than
nearest neighbors in descriptor space. Like pyramid match
Grauman and Darrell (2007), we approximate affinity by bin
size, without actually enumerating correspondence pairs.

We impose a one-to-one mapping constraint such that each
feature in one image is mapped to at most one feature in
the other. Indeed, this makes our problem similar to that of
Leordeanu and Hebert (2005), in the sense that we greed-
ily select a pairwise compatible subset of correspondences
that maximize a non-negative, symmetric affinity matrix.

123

4 Int J Comput Vis (2014) 107:1–19

However we allow multiple groups (clusters) of correspon-
dences. Contrary to Enqvist et al. (2009) and Leordeanu and
Hebert (2005), our voting model is non-iterative and linear
in the number of correspondences.

To summarize our contribution, we derive a flexible spatial
matching scheme whereby all tentative correspondences con-
tribute, appropriately weighted, to a similarity score between
two images. What is most remarkable is that no verification,
model fitting or inlier count is needed as in Lowe (2004),
Philbin et al. (2007) or Carneiro and Jepson (2007). Besides
significant performance gain, this yields a dramatic speed-up.
Our result is a very simple algorithm that requires no learning
and can be easily integrated into any image retrieval process.

Our Hough pyramid matching has been introduced in
Tolias and Avrithis (2011). In this work, we extend our match-
ing algorithm to account for soft assignment of visual words
on the query side, providing an alternative solution to enforce
one-to-one mapping. We further study the distribution of
votes in the transformation space and derive a non-uniform
space quantization scheme turning out to a speed-up while
leaving performance almost unaffected. We give more details
on the matching processing itself, more examples, and a num-
ber of additional experiments and comparisons.

4 Problem Formulation

In a nutshell, we are looking for one or more transformations
that will make parts of one image align to parts of another. A
number of transformation models is possible, but we choose
to develop our method for similarity, i.e. a four parameter
transformation consisting of translation, rotation and scale.
Starting with our image representation, we formalize our goal
as an optimization problem below.

We assume an image is represented by a set P of local fea-
tures, and for each feature p ∈ P we are given its descriptor,
position and local shape. We restrict discussion to scale and
rotation covariant features, so that the local shape and posi-
tion of feature p are given by the 3× 3 matrix

F(p) =
[

M(p) t(p)

0T 1

]
, (1)

where M(p) = σ(p)R(p) and σ(p), R(p), t(p) stand for
isotropic scale, orientation and position, respectively. R(p)

is an orthogonal 2×2 matrix with det R(p) = 1, represented
by an angle θ(p). In effect, F(p) specifies a similarity trans-
formation with respect to a normalized patch e.g. centered at
the origin with scale σ0 = 1 and orientation θ0 = 0.

Given two images P, Q, an assignment or correspondence
c = (p, q) is a pair of features p ∈ P, q ∈ Q. The relative
transformation from p to q is again a similarity transforma-
tion given by

F(c) = F(q)F(p)−1 =
[

M(c) t(c)
0T 1

]
, (2)

where M(c) = σ(c)R(c), t(c) = t(q) − M(c)t(p); and
σ(c) = σ(q)/σ (p), R(c) = R(q)R(p)−1 are the relative
scale and orientation respectively from p to q. This is a
4-dof transformation represented by a parameter vector

f (c) = (x(c), y(c), σ (c), θ(c)), (3)

where [x(c) y(c)]T = t(c) and θ(c) = θ(q) − θ(p). Hence
assignments can be seen as points in a d-dimensional trans-
formation space F ; d = 4 in our case, while affine-covariant
features would have d = 6.

An initial set C of candidate or tentative corresponden-
ces is constructed according to proximity of features in the
descriptor space. There are different criteria, e.g. by nearest
neighbor search given a suitable metric, or using a visual
vocabulary (or codebook). Here we consider the simplest
vocabulary approach where two features correspond when
assigned to the same visual word:

C = {(p, q) ∈ P × Q : u(p) = u(q)}, (4)

where u(p) is the visual word (or codeword) of p. This is
a many-to-many mapping; each feature in P may have mul-
tiple assignments to features in Q, and vice versa. Given
assignment c = (p, q), we define its visual word u(c) as the
common visual word u(p) = u(q).

Each correspondence c = (p, q) ∈ C is given a weight
w(c) measuring its relative importance; we typically use the
inverse document frequency (idf) of its visual word. Given
a pair of assignments c, c′ ∈ C , we assume an affinity score
α(c, c′) measures their similarity as a non-increasing func-
tion of their distance in the transformation space. Finally, we
say that two assignments c = (p, q), c′ = (p′, q ′) are com-
patible if p �= p′ and q �= q ′, and conflicting otherwise. For
instance, c, c′ are conflicting if they are mapping two features
of P to the same feature of Q.

Our problem is then to identify a subset of pairwise com-
patible assignments that maximizes the sum of the weighted,
pairwise affinity over all assignment pairs. This subset of C
determines an one-to-one mapping between inlier features of
P, Q, and the maximum value is the similarity score between
P, Q. It can be easily shown that this is a binary quadratic
programming problem (Olsson et al. 2007) and we only target
a very fast, approximate solution. In fact, we want to group
assignments according to their affinity without actually enu-
merating pairs.

The spectral matching (SM) approach of Leordeanu and
Hebert (2005) is an approximate solution where the binary
constraint is relaxed and optimization is reduced to eigenvec-
tor computation. Note that being compatible does not exclude
assignments from having low affinity. This is a departure of
our solution from that of Leordeanu and Hebert (2005), as

123

Int J Comput Vis (2014) 107:1–19 5

it allows multiple groups of assignments, corresponding to
high-density regions in the transformation space. Spectral
matching is a method we compare to in our experiments.

5 Hough Pyramid Matching

We assume that transformation parameters are normalized or
non-linearly mapped to [0, 1] (see Sect. 7). Hence the trans-
formation space is F = [0, 1]d . While we formulated our
problem with d = 4, matching can apply to arbitrary trans-
formation spaces (motion models) of any dimension (degrees
of freedom).

We construct a hierarchical partition

B = {B0, . . . , BL−1} (5)

of F into L levels. Each B� ∈ B is a partition of F into
2kd bins (hypercubes), where k = L − 1 − �. The bins are
obtained by uniformly quantizing each transformation para-
meter, or partitioning each dimension into 2k equal intervals
of length 2−k . B0 is at the finest (bottom) level; BL−1 is at
the coarsest (top) level and has a single bin. Each partition
B� is a refinement of B�+1. Conversely, each bin of B� is the
union of 2d bins of B�−1.

Starting with the set C of tentative correspondences of
images P, Q, we distribute correspondences into bins with
a histogram pyramid. Given a bin b, let

h(b) = {c ∈ C : f (c) ∈ b} (6)

be the set of correspondences with parameter vectors falling
into b, and |h(b)| its count. We use this count to approximate
affinities over bins in the hierarchy, making greedy decisions
upon conflicts to compute a similarity score of P, Q. This
computation is linear-time in the number of tentative corre-
spondences n = |C |.

5.1 Matching Process

We recursively split correspondences into bins in a top-down
fashion, and then group them again recursively in a bottom-up
fashion. We expect to find most groups of consistent corre-
spondences at the finest (bottom) levels, but we do go all the
way up the hierarchy to account for flexibility.

Large groups of correspondences formed at a fine level are
more likely to be true, or inliers. Conversely, isolated corre-
spondences or groups formed at a coarse level are expected
to be false, or outliers. It follows that each correspondence
should contribute to the similarity score according to the size
of the groups it participates in and the level at which these
groups are formed. We use the count of a bin to estimate a
group size, and its level to estimate the pairwise affinity of
correspondences within the group: indeed, bin sizes (hence

distances within a bin) are increasing with level, hence affin-
ity is decreasing.

In order to impose a one-to-one mapping constraint, we
detect conflicting correspondences at each level and greedily
choose the best one to keep on our way up the hierarchy. The
remaining are marked as erased. Let X� denote the set of all
erased correspondences up to level �. If b ∈ B� is a bin at
level �, then the set of correspondences we have kept in b is
ĥ(b) = h(b) \ X�. Clearly, a single correspondence in a bin
does not make a group, while each correspondence links to
m − 1 other correspondences in a group of m for m > 1.
Hence we define the group count of bin b as

g(b) = [|ĥ(b)| − 1]+, (7)

where [x]+ = max{0, x}.
Now, let b0 ⊆ · · · ⊆ b� be the sequence of bins containing

a correspondence c at successive levels up to level � such that
bk ∈ Bk for k = 0, . . . , �. For each k, we approximate the
affinity α(c, c′) of c to any other correspondence c′ ∈ bk

by a fixed quantity. This quantity is assumed a non-negative,
non-increasing level affinity function of k, say α(k). We focus
here on the decreasing exponential form

α(k) = 2−λk, (8)

where λ controls the relative importance between successive
levels, i.e. how relaxed the matching process is. For λ = 1,
affinity is inversely proportional to bin size, which is in fact
an upper bound on the actual distance between parameter
vectors. For λ > 1, lower levels of the pyramid become more
significant and the matching process becomes less flexible.

Observe that there are g(bk) − g(bk−1) new correspon-
dences joining c in a group at level k. Similarly to standard
pyramid match (Grauman and Darrell 2007), this gives rise
to the following strength of c up to level �:

s�(c) = g(b0)+
�∑

k=1

α(k){g(bk)− g(bk−1)}. (9)

We are now in position to define the similarity score between
images P, Q. Indeed, the total strength of correspondence
c is simply its strength at the top level, s(c) = sL−1(c).
Then, excluding all erased assignments X = X L−1 and tak-
ing weights into account, we define the similarity score by
the weighted sum

s(C) =
∑

c∈C\X
w(c)s(c). (10)

On the other hand, we are also in position to choose the best
correspondence in case of conflicts and impose one-to-one
mapping. In particular, let c = (p, q), c′ = (p′, q ′) be two
conflicting assignments. By definition (4), all four features
p, p′, q, q ′ share the same visual word, so c, c′ are of equal
weight: w(c) = w(c′). Now let b ∈ B� be the first (finest)

123

6 Int J Comput Vis (2014) 107:1–19

Fig. 2 Matching of nine assignments on a 3-level pyramid in 2D space. Colors denote visual words, and edge strength denotes affinity. The dotted
line between c6, c9 denotes a group that is formed at level 0 and then broken up at level 2, since c6 is erased (Color figure online)

Fig. 3 Assignment labels, features and scores referring to Fig. 2. Here
vertices and edges denote features (in images P, Q) and assignments,
respectively. Assignments c5, c6 are conflicting, being of the form
(p, q), (p, q ′). Similarly for c7, c8. Assignments c1, . . . , c5 join groups
at level 0; c8, c9 at level 2; and c6, c7 are erased (Color figure online)

bin in the hierarchy with c, c′ ∈ b. It then follows from (9)
and (10) that their contribution to the similarity score may
only differ up to level �−1. We therefore choose the strongest
one up to level �−1 according to (9). In case of equal strength,
or at level 0, we pick one at random.

5.2 Examples and Discussion

A toy 2D example of the matching process is illustrated in
Figs. 2, 3, and 4. We assume that assignments are conflicting
when they share the same visual word, as denoted by color.
As shown in Fig. 2, three groups of assignments are formed
at level 0: {c1, c2, c3}, {c4, c5} and {c6, c9}. The first two are
then joined at level 1. Assignments c7, c8 are conflicting, and

Fig. 4 Affinity matrix equivalent to the strengths of Fig. 3 according
to (9). Assignments have been rearranged so that groups appear in con-
tiguous blocks. Groups formed at levels 0, 1, 2 are assigned affinity
1, 1

2 , 1
4 respectively. Assignments are placed on the diagonal, which is

excluded from summation (Color figure online)

c7 is erased at random. Assignments c5, c6 are also conflict-
ing, but are only compared at level 2 where they share the
same bin; according to (9), c5 is stronger because it partici-
pates in a group of 5. Hence group {c6, c9} is broken up, c6

is erased and finally c8, c9 join c1, . . . , c5 in a group of 7 at
level 2.

Apart from the feature/assignment configuration in images
P, Q, Fig. 3 also illustrates how the similarity score of (10)
is formed from individual assignment strengths, where we
have assumed that λ = 1, so that α(k) = 2−k . For instance,
assignments c1, . . . , c5 have strength contributions from all
3 levels, while c8, c9 only from level 2. Fig. 4 shows how
these contributions are arranged in a (theoretical) n × n

123

Int J Comput Vis (2014) 107:1–19 7

affinity matrix A. In fact, summing affinities over a row of
A and multiplying by the corresponding assignment weight
yields the assignment strength, as illustrated in Fig. 3—note
though that the diagonal is excluded due to (7).

Finally, observe that the upper triangular part of A, respon-
sible for half the similarity score of (10), corresponds to
the set of edges among assignments shown in Fig. 2, the
edge strength being proportional to affinity. This reveals the
pairwise nature of the approach (Carneiro and Jepson 2007;
Leordeanu and Hebert 2005), including the fact that one
assignment cannot form a group alone.

Another example is that of Fig. 1, where we match two real
images of the same scene from different viewpoints. All ten-
tative correspondences are shown, but colored according to
the strength they have acquired through the matching process.
There are a few mistakes, which is expected since HPM
is really a fast approximation. However, it is clear that the
strongest correspondences, contributing most to the similar-
ity score, are true inliers. There may be no non-rigid motion
or relative motion of different objects like two cars, yet the
3D scene geometry is such that not even a homography can
capture the motion of all visible surfaces. Indeed, the inliers
to an affine model with RANSAC are only a small percentage
of the ones shown here.

In analogy to the toy example of Figs. 2 and 5 illustrates
matching of assignments in the Hough space. Observe how
assignments get stronger and contribute more by grouping
according to proximity, which is a form of consensus. HPM
takes no more than 0.6 ms to match this particular pair of
images, given the features, visual words, and tentative corre-
spondences.

5.3 The Algorithm

The matching process is outlined more formally in Algorithm
1. It follows a recursive implementation: code before the
recursive call of line 12 is associated to the top-down splitting
process, while after that to bottom-up grouping. For brevity,
variables or functions that are used in some block of code
without definition or initialization are considered global. For
instance weights w(c) are global to hpm, strengths s(c) are
global to hpm- rec and erase, and so on e.g. for B, L , X . On
the other hand, C is redefined locally. In fact, |C | is decreasing
as we go down the hierarchy.

Assignment of correspondences to bins is linear-time in
|C | in line 11, though equivalent to (6). B� partitions F for
each level �, so given a correspondence c there is a unique
bin b ∈ B� such that f (c) ∈ b. We then define a constant-
time mapping β� : c �→ b by uniformly quantizing para-
meter vector f (c) at level �. Storage in bins is sparse and
linear-space in |C |; complete partitions B� are never really
constructed.

Fig. 5 Correspondences of the example in Fig. 1 as votes in 4D trans-
formation space. Two 2D projections are depicted, separately for trans-
lation (x, y) (above) and log-scale/orientation (log σ, θ) (below). Trans-
lation is normalized by maximum image dimension. Orientation is
shifted by 5π/16 (see Sect. 7). There are L = 5 levels and we are
zooming into the central 8 × 8 (16 × 16) bins above (below). Edges
represent links between assignments that are grouped in levels 0, 1, 2
only. Level affinity α is represented by three tones of gray with black
corresponding to α(0) = 1 (Color figure online)

Computation of strengths in lines 17–18 of Algorithm 1
is equivalent to (9). In particular, substituting (8) into (9) and
manipulating similarly to Grauman and Darrell (2007) yields

s(c) = g(b0)+
L−1∑
k=1

2−λk(g(bk)− g(bk−1)) (11)

= a
L−2∑
k=0

2−λk g(bk)+ 2−λ(L−1)g(bL−1), (12)

where a = 1− 2−λ.
Given a set of assignments in a bin, optimal detection

of conflicts can be a hard problem. In function erase of

123

8 Int J Comput Vis (2014) 107:1–19

Algorithm 1 Hough Pyramid Matching
1: procedure hpm(assignments C , levels L)
2: X ← ∅; B← partition(L)
 erased; partition
3: for all c ∈ C do s(c)← 0
 strengths
4: hpm- rec(C, L−1)
 recurse at top
5: return score

∑
c∈C\X w(c)s(c)
 see (10)

6: end procedure
7:
8: procedure hpm- rec(assignments C , level �)
9: if |C | < 2 ∨ � < 0 return
10: for all b ∈ B� do h(b)← ∅
 histogram
11: for all c ∈ C do h(β�(c))← h(β�(c))∪c
 quantize
12: for all b ∈ B� do hpm- rec(h(b), �−1)
 recurse down
13: for all b ∈ B� do
14: X ← X∪ erase(h(b))
15: h(b)← h(b) \ X
 exclude erased
16: if |h(b)| < 2 continue
 exclude isolated
17: if � = L − 1 then a← 1 else a← 1− 2−λ

18: for all c ∈ h(b) do s(c)← s(c)+ a2−λ�g(b)
 (9)
19: end for
20: end procedure

Algorithm 2, we follow a very simple approximation whereby
two assignments are conflicting when they share the same
visual word. This avoids storing features; and makes sense
because with a fine vocabulary, features are uniquely mapped
to visual words, e.g. 92 % in our test sets—see Sect. 8 for
details.

Algorithm 2 Erase using visual word classes
1: procedure erase(assignments C)
2: x ← ∅; U ← ∅;
3: for all c ∈ C do U ← U ∪ u(c)
 common visual words
4: for all u ∈ U do e(u)← ∅
 visual word classes
5: for all c ∈ C do e(u(c))← e(u(c)) ∪ c
6: for all u ∈ U do x ← x ∪ e(u) \ arg maxc∈e(u) s(c)
7: return erased assignments x
 all but strongest
8: end procedure

For all assignments h(b) of bin b we first construct the
set U of common visual words. This is done in line 3, where
u(c) is the visual word assigned to c. Then, in lines 4–5, we
define for each visual word u ∈ U the visual word class e(u),
that is, the set of all assignments mapped to u. According
to our assumption, all assignments in a class are (pairwise)
conflicting. Therefore, we keep the strongest assignment in
each class, erase the rest and update X .

It is clear that all operations in each recursive call on bin
b are linear in |h(b)|. Since B� partitions F for all �, the total
operations per level are linear in n = |C |. Hence the time
complexity of hpm is O(nL).

6 Matching Under Soft Assignment

The use of a vocabulary always incurs quantization loss. A
common strategy for partially recovering from this loss is

Algorithm 3 Erase using connected component classes
1: procedure Erase- CC(connected components Z)
2: x ← ∅;
3: for all z ∈ Z do e(z)← E(z)
 component classes
4: for all z ∈ Z do x ← x ∪ e(z) \ arg maxc∈e(z) s(c)
5: return erased assignments x
 all but strongest
6: end procedure

(a) (b)

Fig. 6 Detection of conflicts based on a visual word classes and b com-
ponent classes, under soft assignment. Vertices on the left (right) rep-
resent query (database) features. Labels denote assigned visual words,
which are multiple for the query features. Same color denotes assign-
ments in conflict (Color figure online)

to assign descriptors to multiple visual words, in practice a
small number of nearest neighbors in the vocabulary (Philbin
et al. 2008). This soft assignment is preferably applied on the
query image only, since inverted file memory requirements
are left unaffected (Jégou et al. 2010). We explore here the
use of soft assignment with HPM, following the latter choice
both in the filtering and re-ranking phase.

In the case of hard assignment, the detection of conflicting
assignments has been based on the observation that a high
percentage of features are uniquely mapped to visual words.
Unfortunately, this is not the case with soft assignment: the
percentage of uniquely mapped features drops significantly,
e.g. 85 % (80 %) for 3 (5) nearest neighbors in our test sets—
see Sect. 8 for details.

Figure 6a illustrates the detection of conflicts using visual
word classes under soft assignment. The database image has
three features in this example, assigned to three different
visual words u1, u2, u3 respectively, while the query image
has two features soft-assigned to u1, u2 and u2, u3 respec-
tively. There are three visual word classes in this case, and
keeping one assignment from each class according to Algo-
rithm 2 leads to a one-to-many mapping, with one of the
query features mapping to two database features.

We therefore introduce an alternative solution which can
always preserve one-to-one mapping, without significant
increase in complexity. Given two images P, Q, the union of
features V = P∪Q and the set of assignments C can be seen
as an undirected graph G = (V, C), where each feature is a
vertex and each assignment is an edge. In fact, the graph is
bipartite, as each edge always joins a vertex of P to a vertex
of Q.

123

Int J Comput Vis (2014) 107:1–19 9

Under this representation, we compute the set Z of con-
nected components (maximally connected subgraphs) of G.
In practice, using the union find algorithm with a disjoint-set
data structure, this task is quasi-linear in the number of edges
(assignments), hence in the number of vertices (features). The
assignments of each component are used to define a compo-
nent class. Component classes replace the visual word classes
of Algorithm 2. In particular, all assignments in the same
component are considered pairwise conflicting, and only one
is kept. Observe that isolated vertices are features participat-
ing in no assignments, implying that their components have
no edges and are ignored.

Figure 6b illustrates conflicts using this scheme for the
example of Fig. 6a. There is only one connected component
in this case, only one assignment is kept, and one-to-one map-
ping is preserved. This holds in general: all assignments of
one feature always belong to the same component, so keep-
ing one assignment from each component yields at most one
assignment per feature. Of course, the scheme of Fig. 6b is
more strict than necessary; for instance, it misses one second
assignment that may be valid. On the other hand, this is ben-
eficial in reducing additional votes of background features
due to soft assignment.

The modified function Erase- CC is summarized in Algo-
rithm 3, where visual word classes e(u) are replaced by com-
ponent classes e(z) and E(z) in line 3 stands for the set of
edges of z (which is a graph itself). Both kinds of classes
are treated as equivalence classes with one representative
only selected from each. As in the example of Fig. 6, this
scheme can be too strict, especially when the vocabulary is
not fine enough. On the other hand, it is applicable even in
the absence of a vocabulary, for instance when feature cor-
respondences are determined by direct computations in the
descriptor space.

Matching of two real images under different assignment
and Erase schemes is shown in Fig. 7. It is clear that HPM
can work perfectly well when descriptors are not quantized
and visual words are not available. In fact, this yields the
best matching quality. Hence HPM is not limited to image
retrieval and can be applied to different matching scenaria,
although finding correspondences from descriptors is much
more expensive than matching itself. The use of a vocab-
ulary with soft assignment yields fewer ‘inliers’ (assign-
ments with significant strength contribution); hard assign-
ment yields even less.

7 Implementation

7.1 Indexing and Re-ranking

HPM turns out to be so fast in practice that we integrate
it into a large scale image retrieval engine to perform geo-

metric verification and re-ranking. We construct an inverted
file structure indexed by visual word and for each feature in
the database we store quantized location, scale, orientation
and image id. Given a query, this information is sufficient to
perform the initial, sub-linear filtering stage either by bag of
words (BoW) (Sivic and Zisserman 2003) or weak geometric
consistency (WGC) (Jégou et al. 2010).

A number of top-ranking images are marked for re-rank-
ing. For each query feature, we retrieve tentative assignments
from the inverted file once more, but now only for marked
images. For each assignment c found, we compute the para-
meter vector f (c) of the relative transformation and store it
in a collection indexed by marked image id. Given all assign-
ments and parameter vectors, we match each marked image
to the query using HPM. Finally, we normalize scores by
marked image BoW �2 norm and re-rank.

7.2 Quantization

We treat each relative transformation parameter x , y, σ , θ

of (3) separately. Translation t(c) in (2) refers to the coor-
dinate frame of the query image, Q. If r is the maximum
dimension of Q in pixels, we only keep assignments with
horizontal and vertical translation x, y ∈ [−3r, 3r]. We also
filter assignments such that σ ∈ [1/σm, σm], where σm = 10
is above the range of any feature detector, so anything above
that may be considered noise. We compute logarithmic scale,
normalize all ranges to [0, 1] and quantize parameters uni-
formly.

We also quantize local feature parameters of the database
images: with L = 5 levels, each parameter is quantized into
16 bins. Our space requirements per feature, as summarized
in Table 1, are then exactly the same as in Jégou et al. (2010).
On the other hand, query feature parameters are not quan-
tized. It is therefore possible to have more than 5 levels in
our histogram pyramid.

7.3 Orientation Prior

Because most images on the web are either portrait or land-
scape, previous methods use prior knowledge for relative ori-
entation in their model (Philbin et al. 2007; Jégou et al. 2010).
We use the prior of WGC in our model by incorporating the
weighting function of Jégou et al. (2010) in the form of addi-
tional weights in the sum of (10). Before quantizing, we also
shift orientation by 5π/16 because most relative orientations
are near zero and we need them to group together early in the
bottom-up process. In particular, this shift includes (a) π/4,
so that the main mode of the distribution in (−π/4, π/4] fits
in one bin at pyramid level 2, plus (b) π/16, so that the peak
around θ = 0 fits in one bin at level 0.

123

10 Int J Comput Vis (2014) 107:1–19

Fig. 7 Examples of HPM matching. (Top) hard assignment, visual
word classes. (Middle) Soft assignment with 3 nearest neighbors, com-
ponent classes. (Bottom) direct descriptor matching with ratio test

(Lowe 2004), component classes. The color scheme is the same as in
Fig. 1 (Color figure online)

Table 1 Inverted file memory usage per local feature, in bits

Image id x y log σ θ Total

16 4 4 4 4 32

We use delta encoding for image id, so 2 bytes are sufficient

8 Experiments

In this section we evaluate HPM against state of the art fast
spatial matching (FSM) (Philbin et al. 2007) in pairwise

matching and in re-ranking in large scale search. In the latter
case, we experiment on two filtering models, namely base-
line bag-of-words (BoW) (Sivic and Zisserman 2003) and
weak geometric consistency (WGC) (Jégou et al. 2010).

8.1 Experimental Setup

8.1.1 Datasets

We experiment on three publicly available datasets, namely
Oxford Buildings (Philbin et al. 2007) and Paris (Philbin

123

Int J Comput Vis (2014) 107:1–19 11

et al. 2008), Holidays (Jégou et al. 2008) and on our own
World Cities dataset.1 Oxford buildings comprises a test set
of 5K images and a distractor set of 100K images; the for-
mer is referred to as Oxford 5K or just Oxford, while the
use of the latter is referred to as Oxford 105K. World Cities
is downloaded from Flickr and consists of 927 annotated
photos taken in Barcelona city center and 2 million images
from 38 cities used as a distractor set. The annotated photos,
referred to as Barcelona dataset, are divided into 17 groups,
each depicting the same building or scene. We have selected 5
queries from each group, making a total of 85 queries for eval-
uation. We refer to Oxford 5K, Paris, Holidays and Barcelona
as test sets. In contrast to Oxford 105K, the World Cities dis-
tractors set mostly depicts urban scenes exactly like the test
sets, but from different cities.

8.1.2 Features and Vocabularies

We extract SURF features and descriptors (Bay et al. 2006)
from each image, setting strength threshold to 2.0 for the
detector. We build vocabularies with approximate k-means
(AKM) (Philbin et al. 2007). In most cases we use a generic
vocabulary of size 100K constructed from a subset of the 2M
distractors, which does not include the cities of the annotated
test sets. This is close to the situation in real retrieval system.
The imbalance factor (Jégou et al. 2010) of this vocabulary
is 1.22. However, for comparison purposes, we also employ
specific vocabularies of different sizes constructed from the
test sets. Unless otherwise stated, we use the generic vocabu-
lary below. Our measurements of features uniquely mapped
to visual words refer to the Barcelona dataset with the 100K
generic vocabulary, where the average number of features
per image is 594.

8.2 Matching Experiment

Enumerating all possible image pairs of the Barcelona test
set, there are 74, 075 pairs of images depicting the same
building or scene. The similarity score should be high for
those pairs and low for the remaining 785, 254; we therefore
apply different thresholds to classify pairs as matching or
non-matching, and compare to the ground truth. We match
all possible pairs with 6-dof RANSAC, 8-dof RANSAC,
4-dof FSM (translation, scale, rotation), SM (Leordeanu and
Hebert 2005) and HPM.

We use pairs of correspondences to estimate 4-dof (sim-
ilarity) transformations in our implementation of FSM. In
the cases of RANSAC and FSM we perform a final stage of
LO-RANSAC as in Philbin et al. (2007) to recover an affine
(homography) transform, and use the sum of inlier idf values
as a similarity score. On the other hand, SM and HPM do

1 http://image.ntua.gr/iva/datasets/world_cities

Fig. 8 Precision-recall curves over all image pairs of Barcelona test
set with no distractors (Color figure online)

not need model fitting or inlier count. The similarity score of
HPM is given by (10), with parameter λ (8) and number of
levels L set according to our experiments in Sect. 8.3.1. We
do not use soft assignment in this experiment.

SM works on the affinity matrix A containing pairwise
affinities between assignments. These are exactly the quanti-
ties that we approximate in HPM without enumerating them.
In our implementation of SM, pairwise affinity is determined
by proximity in the transformation space. In particular, para-
meters of relative transformations are initially non-linearly
mapped to [0, 1], as described in Sect. 8.3. Then, given
two assignments c and c′ with normalized parameter vec-
tors f (c), f (c′) respectively, their affinity is computed as

α(c, c′) =
{

w(c)+w(c′)
|| f (c)− f (c′)||2 , if|| f (c)− f (c′)||2 < τ

0, otherwise,
(13)

where parameter τ is set to 0.15 in practice. The similarity
score of SM is the sum over all affinities of the submatrix
of A chosen by the optimization process of Leordeanu and
Hebert (2005).

Given the above settings, we rank pairs according to score
and construct the precision-recall curves of Fig. 8. On the
other hand, Fig. 9 compares matching time versus number of
correspondences over all tested image pairs. We use our own
C++ implementations for all algorithms. Times are measured
on a 2 GHz QuadCore processor, but our implementations are
single-threaded.

HPM clearly outperforms all methods in terms of preci-
sion-recall performance, at the same time being linear in the
number of correspondences and faster than all other methods.
It is remarkable that this is achieved in a 4-dof transforma-
tion space only. This is attributed to the fact that its relaxed

123

http://image.ntua.gr/iva/datasets/world_cities

12 Int J Comput Vis (2014) 107:1–19

Fig. 9 Matching time versus number of correspondences over all
image pairs of Barcelona test set with no distractors (Color figure online)

matching process does not assume any fixed model. SM is
second in performance, but is quite slow, while FSM is the
second choice in terms of speed. We adaptively estimate the
inlier ratio and the target number of trials for RANSAC, but
we also enforce a limit of 1,000 on the number of trials, which
explains the saturation effect in Fig. 9. Both 6-dof and 8-dof
RANSAC are outperformed by other methods, while 8-dof
RANSAC is the slowest.

8.3 Re-ranking

We experiment on retrieval using BoW and WGC with �2

normalization for filtering. Both are combined with HPM
and 4-dof FSM for geometry re-ranking. We measure perfor-
mance via mean Average Precision (mAP). We also compare
re-ranking times and total query times, including filtering. All
times are measured on a 2 GHz QuadCore processor with our
own C++ single-threaded implementations. We do not follow
any early aborting scheme as in Philbin et al. (2007).

8.3.1 Tuning

Parameter λ. To quantify the effect of the level affinity para-
meter λ (8), we measure mAP on the Barcelona test set with
2M distractors, using BoW for filtering and re-ranking the
top 1000 images using HPM with L = 5 levels. The latter
choice is justified below. Table 2 presents mAP performance
for varying λ. The performance is maximized for λ = 1.8,
boosting the contribution of lower levels. Observe however
that the effect of the parameter above λ = 1.2 is not signifi-
cant.

Table 2 mAP for varying λ on Barcelona test set with 2M World Cities
distractors

λ 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Map 0.532 0.546 0.553 0.556 0.557 0.558 0.557

Filtering is performed with BoW and re-ranking on the top 1K images
Bold value indicates the best score for each column

Table 3 mAP for pyramid and flat matching at different levels L on
Barcelona with 2M World Cities distractors

L 2 3 4 5 6

Pyramid 0.473 0.498 0.536 0.556 0.559

Flat 0.448 0.485 0.524 0.534 0.509

Filtering is performed with BoW and re-ranking on the top 1K images
Bold values indicate the best score for each column

Levels. Quantizing local feature parameters at 6 levels in
the inverted file, we measure HPM performance versus pyra-
mid levels L , as shown in Table 3. We also perform re-ranking
on the single finest level of the pyramid for each L . We refer
to the latter as flat matching; this is still different than Lowe
(2004) in the sense that it enforces one-to-one matching under
a fine vocabulary and aggregates votes over the entire trans-
formation space according to (9), even if L = 1.

Observe that the benefit of HPM in going from 5 to 6 levels
is small, while flat matching actually drops in performance.
Our choice for L = 5 then makes sense, apart from saving
space—see Sect. 7. For the same experiment, mAP is 0.341
and 0.497 for BoW and BoW+FSM respectively. It is thus
interesting to observe that even the flat scheme yields con-
siderable improvement. This is due to the flexibility of the
model and its ability to handle multiple groups, which are
a departure from Lowe (2004). Relaxed matching with the
Hough pyramid further improves performance. Suggestively
we report that re-ranking time for HPM with 3, 4 and 5 levels
takes 391, 559 and 664 ms respectively, while flat matching
takes around 230 ms.

8.3.2 Results

Retrieval examples. Real retrieval examples along with com-
parisons for one query are available in our research page
online.2 In particular, for the same query image, positive
images appearing within the top 20 retrieved images are 1, 8
and 11 for BoW, BoW+FSM and BoW+HPM respectively,
with query time being respectively 282, 5,054 and 976 ms.
Most impressive is the fact that when re-ranking 10K images
with HPM, all top 20 images are positive.

Distractors. Figure 10 compares HPM to FSM and base-
line, for a varying number of distractors up to 2M. Both BoW

2 http://image.ntua.gr/iva/research/relaxed_spatial_matching/

123

http://image.ntua.gr/iva/research/relaxed_spatial_matching/

Int J Comput Vis (2014) 107:1–19 13

Fig. 10 mAP comparison for varying database size on Barcelona with
up to 2M World Cities distractors. Filtering is performed with BoW or
WGC and re-ranking on the top 1K images with FSM or HPM, except for
HPM10K where BoW and WGC curves coincide (Color figure online)

Table 4 mAP comparison on Barcelona with and without 2M World
Cities distractors, with and without prior

Method No distractors 2M distractors

No prior Prior No prior Prior

WGC+HPM10K − − 0.599 0.612

BoW+HPM10K − − 0.601 0.613

WGC+HPM 0.832 0.851 0.573 0.599

BoW+HPM 0.832 0.837 0.558 0.565

WGC+FSM 0.826 0.846 0.536 0.572

BoW+FSM 0.827 − 0.497 −
WGC 0.811 0.843 0.355 0.447

BoW 0.808 − 0.341 −
Re-ranking on top 1K images, except for HPM10K
Bold values indicate the best score for each column

and WGC are used for the filtering stage and as baseline.
HPM turns out to outperform FSM in all cases. We also re-
rank 10K images with HPM, since this takes less time than
1K with FSM. This yields the best performance, especially in
the presence of distractors. Interestingly, filtering with BoW
or WGC makes no difference in this case. In Table 4 we
summarize results for the same experiment with orientation
priors for WGC and HPM. When these are used together,
prior is applied to both. Again, BoW and WGC are almost
identical in the HPM10K case. Using a prior increases per-
formance in general, but this is dataset dependent. The side
effect is limited rotation invariance.

Timing. Varying the number of re-ranked images, we mea-
sure mAP and query time for FSM and HPM. Once more, we
consider both BoW and WGC for filtering. A combined plot
is given in Fig. 11. HPM appears to re-rank ten times more
images in less time than FSM. With BoW, its mAP is 10 %

Fig. 11 mAP and total (filtering + re-ranking) query time for a varying
number of re-ranked images. The latter are shown with text labels near
markers, in thousands. Results on Barcelona with 2M World Cities
distractors (Color figure online)

Table 5 mAP comparison on Oxford dataset for specific vocabularies
of varying size, without distractors

Method Vocabulary size

100K 200K 500K 700K

BoW+HPM+P 0.640 0.683 0.701 0.690

BoW+HPM 0.622 0.669 0.692 0.686

BoW+FSM 0.631 0.642 0.677 0.653

BoW 0.545 0.575 0.619 0.614

Filtering with BoW and re-ranking top 1K images with FSM and
HPM. P: prior
Bold values indicate the best score for each column

higher than FSM for the same re-ranking time, on average.
At the price of 7 additional seconds for filtering, FSM even-
tually benefits from WGC, while HPM is clearly unaffected.
Indeed, after about 3.3 s, mAP performance of BoW+HPM
reaches saturation after re-ranking 7K images, while WGC
does not appear to help.

Specific vocabularies. Table 5 summarizes performance
on the Oxford dataset for specific vocabularies of varying
size, created from all Oxford images. HPM again has superior
performance in all cases except for the 100K vocabulary.
Our best score without prior (0.692) can also be compared
to the best score (0.664) achieved by 5-dof FSM and specific
vocabulary in Philbin et al. (2007), though the latter uses a 1M
vocabulary and different features. The higher scores achieved
in Perdoch et al. (2009) are also attributed to superior features
rather than the matching process.

More datasets. Switching back to our generic vocabu-
lary, we perform large scale experiments on Oxford and
Paris test sets and present results in Table 6. We consider
both good and ok images as positive examples. We have
shown the capacity of HPM to be one order of magnitude

123

14 Int J Comput Vis (2014) 107:1–19

Table 6 mAP comparison on Oxford and Paris datasets with 100K
generic vocabulary, with and without 2M distractors

Method Oxford Paris

0 2M 0 2M

BoW+HPM10K+P − 0.418 − 0.419

BoW+HPM10K − 0.403 − 0.418

BoW+HPM+P 0.546 0.381 0.595 0.402

BoW+HPM 0.522 0.372 0.581 0.397

BoW+FSM 0.503 0.317 0.542 0.336

BoW 0.430 0.201 0.539 0.282

Filtering performed with BoW only. Re-ranking 1K images with FSM
and HPM, as well as 10K with HPM. P: prior
Bold values indicate the best score for each column

higher than that of FSM, so it makes sense again to also
re-rank up to 10K images with HPM. Furthermore, focusing
on practical query times, we limit filtering to BoW. HPM
clearly outperforms FSM, while re-ranking 10K images sig-
nificantly increases the performance gap at large scale. Our
best score without prior on Oxford (0.522) can be compared
to the best score (0.460) achieved by FSM in Philbin et al.
(2008) with a 1M generic vocabulary created on the Paris
dataset.

Comparison to other models. In order to be more compa-
rable to previously published methods, we conduct an exper-
iment using the modified version of Hessian-Affine detector
of Perdoch et al. (2009), where the gravity vector assump-
tion is used to estimate the dominant orientation of features
for descriptor extraction. Similarly to Perdoch et al. (2009)
and Shen et al. (2012), we switch off rotation for spatial
matching and perform our voting scheme in a pyramid of 3
dimensions. We use a 1M specific vocabulary trained on all
images of Oxford 5K, when we test on Oxford 5K or Oxford
105K. Similarly, we use a 1M specific vocabulary for Paris.
We further conduct experiments on Holidays dataset. Since
this includes rotated images, the gravity vector assumption
does not hold and we switch back to the use of SURF fea-
tures as in our previous experiments. A specific vocabulary
of 200K visual words is used in this case as in Shen et al.
(2012).

Table 7 presents mAP performance for a number of spa-
tial matching or indexing models on the Oxford 5K, Oxford
105K, Paris and Holidays test sets. HPM achieves state of
the art performance on all datasets, in fact outperforming all
methods except for Paris, where it is outperformed by Shen
et al. (2012), and Oxford 5K, where Perdoch et al. (2009)
achieve the same performance. Our query time for re-ranking
1,000 images is 210 ms on a single threaded implementation,
while the one reported in Perdoch et al. (2009) is 238 ms on 4
cores. This time of HPM is without the early aborting scheme
of Philbin et al. (2007) or Perdoch et al. (2009). The reported

Table 7 mAP comparison to other spatial models on Oxford 5K, Oxford
105K, Paris and Holidays test sets

Method Ox 5K Ox 105K Paris Holidays

HPM (this work) 0.789 0.730 0.725 0.790

Shen et al. (2012) 0.752 0.729 0.741 0.762

Zhang et al. (2011) 0.696 − − −
Zhang et al. (2011)+RANSAC 0.713 − − −
Cao et al. (2010) 0.656 − 0.632 −
Cao et al. (2010)+RANSAC 0.661 − − −
Perdoch et al. (2009) 0.789 0.726 − 0.715

FSM (Philbin et al. 2007) 0.647 0.541 − −
Both for our method and all other methods a specific vobulary of size
1M is created from images of Oxford 5K
Bold values indicate the best score for each column

query time in Shen et al. (2012) is 89 ms on Oxford 5K. Both
time and space per query are (in the worst case) linear in the
dataset size for this method, as voting maps are allocated for
all images having common visual words with the query.

Non-uniform quantization. Relative transformation votes
are not uniformly distributed in Hough space. Apart from
orientation where we use a prior, this is true also for transla-
tion and scale. For instance, the distribution of relative log-
scale and x parameter of translation appears experimentally
close to the Laplacian distribution, as shown in Figs. 12 and
13 respectively. If we quantize Hough space uniformly, bins
will not be equally populated and votes in sparse areas will
not form groups as easily as in dense ones; and when they do
so, their affinity will be lower.

We therefore investigate normalizing distributions, i.e.,
non-linear mapping of relative transformation parameters
prior to quantization, so that vote distributions become uni-
form. In particular, we model translation x , y and log-scale
log σ by Laplacian distributions, estimate their parameters
via maximum likelihood on experimental data and use the
learned CDFs to non-linearly map x , y and log σ to [0, 1].
We discard assignments outside interval [0.05, 0.95], that
is assignments exhibiting extreme displacement or scale
change compared to the population of our dataset. Finally,
we uniformly quantize each parameter, which is equivalent
to non-uniform quantization in the original voting space.

We report results only for the combination of translation
and scale normalization, since we have seen that there is no
apparent benefit in other cases (e.g., when each parameter
is alone. Rotation θ of the relative transformation follows a
similar distribution to the one shown in Jégou et al. (2010),
which we do not normalize; we rather use the orientation
prior in this case.

Figure 14 shows mAP as measured on Barcelona test set
for uniform and non-uniform quantization. Quite unexpect-
edly, non-uniform quantization slightly reduces performance

123

Int J Comput Vis (2014) 107:1–19 15

Fig. 12 (Left) Distribution of relative log-scale over all pairs of images
of the Barcelona test set. Maximum likelihood estimation of Laplacian
distribution yields location parameter μ = 0.003 and scale parameter

γ = 0.323. (Right) Normalized distribution after non-linearly mapping
log σ to [0, 1] via the Laplacian CDF (Color figure online)

Fig. 13 (Left) Distribution of relative x over all pairs of images of the
Barcelona test set. Maximum likelihood estimation of Laplacian distri-
bution yields location parameter μ = 139 and scale parameter γ = 251.

(Right) Normalized distribution after non-linearly mapping x to [0, 1]
via the Laplacian CDF (Color figure online)

but it also accelerates matching considerably. Votes in sparse
areas appear to increase for distractor images as well, and
this may explain why mAP is not improved. On the other
hand, matching is faster because there are more single votes
in lower levels of the pyramid, and single votes do not form
groups. Non-uniform quantization is therefore a good choice
for further speed-up. However, we still use uniform quanti-
zation in the remaining experiments, seeking maximum per-
formance.

Effect of one-to-one-mapping. Our similarity score is a
weighted sum over all correspondences between two images.
Correspondences with transformations falling out of bounds
(out of the HPM voting space) are discarded, as described
in Sect. 7. Results of Table 8 show that, by just removing

such correspondences, there is a small improvement in per-
formance. In this case, set X of (10) includes only out-of-
bounds correspondences, while strength w(c) is set equal to
1.0. We further enforce one-to-one mapping with our erase
procedure, but still keep strengths equal to 1.0. One-to-one
mapping appears to impressively improve performance since
many false matching correspondences are not accounted in
the similarity score. Finally, using strengths as provided by
HPM (9) there is further significant improvement.

8.4 Re-ranking with Soft Assignment

We experiment on retrieval using soft assignment for visual
words (Philbin et al. 2008) on the query side only (Jégou et

123

16 Int J Comput Vis (2014) 107:1–19

Fig. 14 Average re-ranking time versus number of re-ranked images
for uniform and non-uniform quantization. mAP is shown with text
labels near markers. Results on Barcelona test set with 2M World Cities
distractors. Filtering with BoW (Color figure online)

Table 8 mAP comparison on Barcelona with 2M World Cities dis-
tractors, illustrating the incremental effect of enforcing voting space
bounds, enforcing one-to-one mapping, and using level-dependent cor-
respondence strengths

Method Strength mAP

BoW only – 0.341

Out-of-bounds removed 1.0 0.373

One-to-one only 1.0 0.503

HPM as in (9) 0.558

The latter is exactly HPM

al. 2010). We perform large scale experiments and compare
HPM to FSM using soft assignment with both. We use BoW
for filtering in all remaining experiments.

Conflict detection. We compare the two methods of con-
flict detection, namely based on visual word classes (Erase)
and component classes (Erase- CC). The results are shown
in Fig. 15 versus number of nearest neighbors used in soft
assignment. Component classes seem to outperform visual
word classes in all cases, despite the fact that correct assign-
ments may be discarded. In fact, the performance of the latter
drops eventually, which is attributed to one-to-one mapping
not being preserved. In the remaining soft assignment exper-
iments we only use component classes for conflict detection.

Nearest neighbors. We compare HPM to FSM in terms
of mAP performance and re-ranking time per query versus
number of nearest neighbors, as shown in Fig. 16. The two
methods appear to converge to the same mAP as nearest
neighbors increase when re-ranking 1K images. However,
HPM is clearly superior when re-ranking 10K images, even
more so with orientation prior. HPM remains roughly one

Fig. 15 Comparison of HPM conflicting assignment detection based
on visual word classes (Erase) and component classes (Erase- cc).
mAP is given versus number of nearest neighbors in soft assignment,
as measured on Barcelona test set with 2M World Cities distractors.
Filtering with BoW and re-ranking top 1K images (Color figure online)

order of magnitude faster and this is much more significant
under of soft assignment than in the baseline, because re-
ranking time for FSM exceeds reasonable query times above
three nearest neighbors. The number of tentative correspon-
dences is nearly linear in the number of nearest neighbors
when soft assignment is performed on one side only (Philbin
et al. 2008), so it is confirmed once again that HPM is linear
in the number of correspondences.

Distractors, timing. Similarly to the hard assignment case,
we compare HPM and FSM for a varying number of distrac-
tors up to 2M. mAP is shown in Fig. 17 where we apply
soft assignment with three nearest neighbors for all meth-
ods. Again, the benefit of HPM over FSM is higher when
re-ranking 10K images especially with prior, in which case
the gain is nearly 10 %. mAP versus re-ranking time for a
varying number of re-ranked images is shown in Fig. 18.
Similarly to hard assignment, HPM can re-rank one order of
magnitude more images than FSM in the same amount of
time with 10 % higher mAP. In general, all methods ben-
efit by 7–13 % by the use of soft assignment compared
to baseline BoW, but query times become unrealistic for
FSM.

Specific vocabularies. Table 9 summarizes mAP perfor-
mance for specific vocabularies on Oxford test set. We use
the same vocabularies as in the hard assignment experiments.
Our best score achieved on Oxford with hard assignment
(0.701) now increases to 0.730. However, without distrac-
tors, the gain of HPM over FSM is not as high as in the hard
assignment case.

More datasets. Finally, large scale soft assignment exper-
iments with a generic vocabulary and 2M distractors on
Oxford and Paris test sets are summarized in Table 10. This

123

Int J Comput Vis (2014) 107:1–19 17

Fig. 16 mAP (left) and average re-ranking time per query (right) versus number of nearest neighbors in soft assignment, measured on Barcelona
test set with 2M World Cities distractors. SA: soft assignment, P: prior (Color figure online)

Fig. 17 mAP comparison versus database size on Barcelona with up
to 2M World Cities distractors. SA: soft assignment, with three nearest
neighbors for all methods (Color figure online)

time the gain of HPM over FSM in mAP is roughly 5 %,
which becomes 7 % with the prior.

9 Discussion

Clearly, apart from geometry, there are many other ways in
which one may improve the performance of image retrieval.
For instance, query expansion (Chum et al. 2007) increases
recall of popular content, though it takes more time to query.
The latter can be avoided by offline clustering and scene
map construction (Avrithis et al. 2010), also yielding space
savings. Methods related to visual word quantization like
soft assignment (Philbin et al. 2008) or hamming embedding
(Jégou et al. 2010) also increase recall, at the expense of
query time and index space. Vocabulary learning (Mikulik
et al. 2010) transfers this problem to the vocabulary itself,

Fig. 18 mAP versus re-ranking time for a varying number of re-
ranked images. The latter are shown with text labels near markers,
in thousands. Results on Barcelona with 2M World Cities distrac-
tors, using soft assignment with 2 and 3 nearest neighbors for both
methods (Color figure online)

given large amounts of indexed images. Other priors like the
gravity vector (Perdoch et al. 2009) also help, usually at the
cost of some invariance loss.

Experiments in the literature have shown that the effect
of such methods is additive. Comparing to our prior work
(Tolias and Avrithis 2011), we have investigated here the
case of soft assignment and we have confirmed this finding.
In fact, integrating soft assignment has been maybe the most
interesting among other methods because it is a non-trivial
problem and it has a considerable impact on query times in
general. Improving or learning a vocabulary, query expansion
or other priors are straightforward to integrate with HPM and
expected to yield further gain.

123

18 Int J Comput Vis (2014) 107:1–19

Table 9 mAP comparison on Oxford test set for specific vocabularies,
without distractors

NN 500K 700K

FSM HPM HPM+P FSM HPM HPM+P

1 0.677 0.692 0.701 0.653 0.686 0.690

2 0.699 0.714 0.723 0.692 0.715 0.719

3 0.707 0.716 0.724 0.701 0.721 0.724

4 0.709 0.716 0.726 0.711 0.726 0.730

5 0.716 0.719 0.724 0.716 0.726 0.729

6 0.712 0.713 0.724 0.718 0.725 0.729

Filtering with BoW and re-ranking on the top 1K images with soft
assignment using a varying number of nearest neighbors
Bold values indicate the best score for each column

Table 10 mAP comparison on Oxford and Paris datasets with 100K
generic vocabulary, with 2M distractors

Method Oxford Paris

BoW+HPM10K+SA+P 0.461 0.456

BoW+HPM10K+SA 0.445 0.434

BoW+HPM+SA+P 0.426 0.427

BoW+HPM+SA 0.414 0.414

BoW+FSM+SA 0.391 0.389

BoW+SA 0.251 0.316

Filtering with BoW and re-ranking on the top 1K images with FSM
and HPM, also 10K with HPM. Using soft assignment with three
nearest neighbors
Bold values indicate the best score for each column

We have developed a very simple spatial matching algo-
rithm that requires no learning and can be easily implemented
and integrated in any image retrieval engine. It boosts per-
formance by allowing flexible matching and matching of
multiple objects or surfaces. Matching is not as parameter-
dependent as in other methods: λ is a relative quantity and
there is no such thing as absolute scale, fixed bin size, or
threshold parameter. Ranges and relative importance of trans-
formation parameters are fixed so that they apply to most
practical cases, while fitting the voting grid to true distribu-
tions does not influence performance much.

By dispensing with the need to count inliers to geometric
model hypotheses, HPM also yields a dramatic speed-up in
comparison to RANSAC-based methods. It is arguably the
first time a geometry re-ranking method is shown to reach
saturation in as few as three seconds, which is a practical
query time. The practice so far has been to stop re-ranking at
a point such that queries do not take too long, without study-
ing further potential improvement using graphs like those in
Fig. 11.

One limitation of HPM that is shared with e.g. Lowe
(2004), Philbin et al. (2007), Perdoch et al. (2009) is that

matching depends on the precision of the local shape (e.g.
scale, orientation) of the features used, apart from their posi-
tion. On the other hand, without this information, matching
is typically either not invariant (e.g. Zhang et al. (2011) is
only invariant to translation) or more costly (e.g. RANSAC
uses combinations of more than a single correspondence,
and Shen et al. (2012) resorts to searching for a number of
scales/rotations on a discrete grid).

Another limitation may be that matching of small objects
is influenced by background features through the aggregation
of votes in (9), which is exactly what gives HPM its flexibility.
We expect this influence to be higher than RANSAC-like
methods that rather seek a single hypothesis that maximizes
inliers. In fact, seeking for modes in the voting space is still
possible under our pyramid framework and, at an additional
cost, may give precise object localization and support partial
matching.

It is a very interesting question whether there is more to
gain from geometry indexing. Experiments on larger scale
datasets or new methods may provide clearer evidence. Either
way, a final re-ranking stage always seems unavoidable, and
HPM can provide a valuable tool. In fact, our first objective
with HPM has been for indexing and although this is too
expensive for an online query, HPM can indeed perform an
exhaustive re-ranking over our entire 2M distractor set in a
few minutes. Further scaling up is a very challenging task we
intend to investigate.

Another far-fetched prospect is to apply HPM to recog-
nition problems. Our very assumption of inferring trans-
formations from local feature shape makes this prospect
rather limited for object category recognition, but not nec-
essarily for specific objects. Whenever feature matching
becomes increasingly ambiguous, e.g. with coarser vocab-
ularies, repeating or ‘bursty’ patterns (Jégou et al. 2009),
HPM clearly favors low complexity over optimality. It
would be interesting to explore this trade-off. Affine covari-
ant features and geometric models more complex than
similarity can be another subject of investigation, though
flexibility of our model may not leave much space for
improvement.

More can be found at our project page,3 including the
entire 2M World Cities dataset.

References

Avrithis, Y., Kalantidis, Y., Tolias, G., & Spyrou, E. (2010). Retrieving
landmark and non-landmark images from community photo collec-
tions. Firenze, Italy: ACM Multimedia.

Avrithis, Y., Tolias, G., & Kalantidis, Y. (2010). Feature map hashing:
Sub-linear indexing of appearance and global geometry. Firenze,
Italy: ACM Multimedia.

3 http://image.ntua.gr/iva/research/relaxed_spatial_matching

123

http://image.ntua.gr/iva/research/relaxed_spatial_matching

Int J Comput Vis (2014) 107:1–19 19

Ballard, D. (1981). Generalizing the hough transform to detect arbitrary
shapes. Pattern Recognition, 13(2), 111–122.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded up
robust features. In ECCV.

Belongie, S., Malik, J., & Puzicha, J. (2000). Shape context: A new
descriptor for shape matching and object recognition. NIPS, 12, 827–
831.

Berg, A., Berg, T., & Malik, J. (2005). Shape matching and object
recognition using low distortion correspondences. In CVPR.

Cao, Y., Wang, C., Li, Z., Zhang, L., & Zhang, L. (2010). Spatial-bag-
of-features. In CVPR (pp. 3352–3359).

Carneiro, G., & Jepson, A. (2007). Flexible spatial configuration of
local image features. PAMI, 29(12), 2089–2104.

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. PAMI,
17(8), 790–799.

Chum, O., Philbin, J., Sivic, J., Isard, M., & Zisserman, A. (2007). Total
recall: Automatic query expansion with a generative feature model
for object retrieval. In ICCV.

Enqvist, O., Josephson, K., & Kahl, F. (2009). Optimal correspondences
from pairwise constraints. In ICCV.

Fischler, M., & Bolles, R. (1981). Random sample consensus: A para-
digm for model fitting with applications to image analysis and auto-
mated cartography. Communications of the ACM, 24(6), 381–395.

Grauman, K., & Darrell, T. (2007). The pyramid match kernel: Effi-
cient learning with sets of features. Journal of Machine Learning
Research, 8, 725–760.

Indyk, P., & Thaper, N. (2003). Fast image retrieval via embeddings. In
Workshop on Statistical and Computational Theories of Vision.

Jégou, H., Douze, M., & Schmid, C. (2008). Hamming embedding and
weak geometric consistency for large scale image search. In ECCV.

Jégou, H., Douze, M., & Schmid, C. (2009). On the burstiness of visual
elements. In CVPR.

Jégou, H., Douze, M., & Schmid, C. (2010). Improving bag-of-features
for large scale image search. IJCV, 87(3), 316–336.

Jiang, H., & Yu, S. X. (2009). Linear solution to scale and rotation
invariant object matching. In CVPR.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In CVPR (Vol. 2, p. 1).

Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection
with interleaved categorization and segmentation. IJCV, 77(1), 259–
289.

Leordeanu, M., & Hebert, M. (2005). A spectral technique for corre-
spondence problems using pairwise constraints. In: ICCV, (Vol. 2,
pp. 1482–1489).

Lin, Z., & Brandt, J. (2010). A local bag-of-features model for large-
scale object retrieval. In ECCV (pp. 294–308).

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. IJCV, 60(2), 91–110.

Mikulik, A., Perdoch, M., Chum, O., & Matas, J. (2010). Learning a
fine vocabulary. In ECCV.

Olsson, C., Eriksson, A., & Kahl, F. (2007). Solving large scale binary
quadratic problems: Spectral methods vs. semidefinite program-
ming. In CVPR.

Perdoch, M., Chum, O., & Matas, J. (2009). Efficient representation of
local geometry for large scale object retrieval. In CVPR.

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007).
Object retrieval with large vocabularies and fast spatial matching. In
CVPR.

Philbin, J., Chum, O., Sivic, J., Isard, M., & Zisserman, A. (2008). Lost
in quantization: Improving particular object retrieval in large scale
image databases. In CVPR.

Raguram, R., & Frahm, J. M. (2011). Recon: Scale-adaptive robust
estimation via residual consensus. In ICCV.

Sahbi, H., Audibert, J. Y., Rabarisoa, J., & Keriven, R. (2008). Context-
dependent kernel design for object matching and recognition. In
CVPR.

Scott, G., & Longuet-Higgins, H. (1991). An algorithm for associat-
ing the features of two images. Proceedings of the Royal Society of
London, 244(1309), 21.

Shen, X., Lin, Z., Brandt, J., Avidan, S., & Wu, Y. (2012). Object
retrieval and localization with spatially-constrained similarity mea-
sure and k-nn re-ranking. In CVPR. IEEE.

Sivic, J., & Zisserman, A. (2003) Video Google: A text retrieval
approach to object matching in videos. In: ICCV (pp. 1470–1477).

Tolias, G., & Avrithis, Y. (2011). Speeded-up, relaxed spatial matching.
In ICCV.

Vedaldi, A., & Soatto, S. (2008). Quick shift and kernel methods for
mode seeking. In ECCV.

Vedaldi, A., & Soatto, S. (2008). Relaxed matching kernels for robust
image comparison. In CVPR.

Wu, Z., Ke, Q., Isard, M., & Sun, J. (2009). Bundling features for large
scale partial-duplicate web image search. In CVPR.

Zhang, Y., Jia, Z., & Chen, T. (2011). Image retrieval with geometry-
preserving visual phrases. In CVPR. IEEE (pp. 809–816).

Zhou, W., Lu, Y., Li, H., Song, Y., & Tian, Q. (2010). Spatial coding
for large scale partial-duplicate web image search. Firenze, Italy:
ACM Multimedia.

123

	Hough Pyramid Matching: Speeded-Up Geometry Re-ranking for Large Scale Image Retrieval
	Abstract
	1 Introduction
	2 Related Work
	3 Contribution
	4 Problem Formulation
	5 Hough Pyramid Matching
	5.1 Matching Process
	5.2 Examples and Discussion
	5.3 The Algorithm

	6 Matching Under Soft Assignment
	7 Implementation
	7.1 Indexing and Re-ranking
	7.2 Quantization
	7.3 Orientation Prior

	8 Experiments
	8.1 Experimental Setup
	8.1.1 Datasets
	8.1.2 Features and Vocabularies

	8.2 Matching Experiment
	8.3 Re-ranking
	8.3.1 Tuning
	8.3.2 Results

	8.4 Re-ranking with Soft Assignment

	9 Discussion
	References

