
Int J Comput Vis (2013) 103:1–21
DOI 10.1007/s11263-012-0588-6

Structure-Sensitive Superpixels via Geodesic Distance

Peng Wang · Gang Zeng · Rui Gan ·
Jingdong Wang · Hongbin Zha

Received: 16 February 2012 / Accepted: 9 October 2012 / Published online: 9 November 2012
© Springer Science+Business Media New York 2012

Abstract Segmenting images into superpixels as support-
ing regions for feature vectors and primitives to reduce
computational complexity has been commonly used as a fun-
damental step in various image analysis and computer vision
tasks. In this paper, we describe the structure-sensitive super-
pixel technique by exploiting Lloyd’s algorithm with the geo-
desic distance. Our method generates smaller superpixels
to achieve relatively low under-segmentation in structure-
dense regions with high intensity or color variation, and pro-
duces larger segments to increase computational efficiency
in structure-sparse regions with homogeneous appearance.
We adopt geometric flows to compute geodesic distances
amongst pixels. In the segmentation procedure, the density of
over-segments is automatically adjusted through iteratively
optimizing an energy functional that embeds color homo-
geneity, structure density. Comparative experiments with the
Berkeley database show that the proposed algorithm out-
performs the prior arts while offering a comparable com-
putational efficiency as TurboPixels. Further applications
in image compression, object closure extraction and video

P. Wang · G. Zeng (B) · H. Zha
Key Laboratory on Machine Perception, Peking University,
Beijing, China
e-mail: g.zeng@ieee.org

P. Wang
e-mail: jerrywang@pku.edu.cn

H. Zha
e-mail: zha@cis.pku.edu.cn

R. Gan
School of Mathematical Sciences, Peking University,
Beijing, China
e-mail: raygan@ieee.org

J. Wang
Microsoft Research Asia, Beijing, China
e-mail: jingdw@microsoft.com

segmentation demonstrate the effective extensions of our
approach.

Keywords Superpixel segmentation · Geodesic distance ·
Iterative optimization · Structure-sensitivity

1 Introduction

Image over-segmentation has been widely applied in various
computer vision pipelines, such as segmentation
(Arbelaez et al. 2009; Xiao and Quan 2009; Wang et al. 2008;
Hoiem et al. 2005), recognition (Kaufhold et al. 2006), object
tracking (Wang et al. 2011; Rasmussen 2007), localization
(Fulkerson et al. 2009) and modeling (He et al. 2006; Nwogu
and Corso 2008; Micusík and Kosecká 2010).

In these applications, over-segments (aka superpixels)
represent small regions with homogeneous appearance and
conform to local image structures, and thus provide a better
support for region-based features than local windows. With
superpixels, the computational cost significantly decreases
especially for probabilistic, combinatorial or discriminative
approaches, since the underlying graph is greatly simplified
in terms of graph nodes and edges. Most superpixel meth-
ods have to face the following challenges: on one hand they
are required to reduce image complexity by locally grouping
pixels regarding intensity boundaries, and on the other hand
they should avoid under-segmentation and maintain a cer-
tain level of detailed structures. These two aspects conflict
with each other, and there have been various optimization
techniques proposed to make trade-offs in order to solve this
dilemma, for example, the mean shift algorithm (Comani-
ciu and Meer 2002), the normalized cuts (Shi and Malik
2000), the local viaration (Felzenszwalb and Huttenlocher
2004), the geometric flows (Levinshtein et al. 2009b) and

123

2 Int J Comput Vis (2013) 103:1–21

Fig. 1 Over-segmentations obtained with five algorithms: a Graph-
based method (Felzenszwalb and Huttenlocher 2004), b N-Cuts (Shi
and Malik 2000), c Superpixel Lattice (Moore et al. 2008), d TurboPix-
els (Levinshtein et al. 2009b), e GraphCut superpixel (Veksler et al.

2010) and f the method presented in this paper. The second row shows
the view which zooms in on the regions of interest defined by the white
rectangles

the watershed (Vincent and Soille 1991; Meyer and Maragos
1999; Tai et al. 2007).

As a visual and comparative illustration, Fig. 1 shows
the segmentation results obtained by using several state-
of-the-art superpixel methods: Graph-based method
(Felzenszwalb and Huttenlocher 2004), Lattice (Moore et al.
2008), N-Cuts (Mori 2005; Levinshtein et al. 2009a), Tur-
boPixels (Levinshtein et al. 2009b), GraphCut superpixel
(Veksler et al. 2010) and also by using our method. It is noted
by previous art (Levinshtein et al. 2009b) that the Graph-
based method could easily generate under-segmentation for
regions of irregular shapes and sizes due to the lack of com-
pactness constraints. While other methods employ compact-
ness constraints and markedly restrict under-segmentation.
The advantage of utilizing compactness has also been demon-
strated in Levinshtein et al. (2009b).

N-Cuts-based superpixel methods (Mori 2005;
Levinshtein et al. 2009a) are variations of the normalized cuts
algorithm (Shi and Malik 2000), in which the compactness is
guaranteed by normalizing the cut cost using edge weights.
However, the global optimization is computationally costly,
and the time complexity of the segmentation increases sig-
nificantly with the number of pixels and image size.

Lattice (Moore et al. 2008) generates superpixels by
detecting vertical or horizontal strips, and thus naturally
maintains a grid structure of regions. In order to achieve an
adaptive lattice, the scene shape prior is then combined into
the lattice framework (Moore et al. 2009). Their further inves-
tigation of lattice superpixels (Moore et al. 2010) is derived
from global optimization of a well-designed energy function.
The superpixel generation is initialized with a grid, and the
graph cut algorithm is adopted to optimize the vertical and
horizontal seams alternatively.

GraphCut superpixel (Veksler et al. 2010) over-segment
an image using roughly regularly-placed patches under a sin-
gle energy framework. Comparing with N-Cuts-based super-
pixel methods, this algorithm also keeps the character of

compactness and provides comparable results. However, by
using the graph-cut optimization method, it becomes much
more efficient.

The most related work with ours is proposed by
Levinshtein et al., namely a geometric flow based algorithm
(aka TurboPixels) for superpixel segmentation (Levinshtein
et al. 2009b). Starting from initial seeds regularly placed onto
the image, TurboPixels uses the level set method for super-
pixels’ evolution. It yields a lattice-like structure of compact
regions, and more importantly it is efficient especially when
compared with N-Cuts-based over-segmentation.

As shown in Fig. 1, a further observation is that given
a large diversity of scene layout, the prospective distortion
is unavoidably introduced by imaging process, and the den-
sity of image contents often varies in different parts of the
image. The over-segments of Lattice, N-Cuts, TurboPixels
and GraphCut superpixel in Fig. 1b–e are too large to rep-
resent image appearances and lead to under-segmentation
in regions near intensity boundaries, while the segments are
rather small in homogeneous regions resulting in unneces-
sary overhead in high-level applications. To this end, quasi-
uniform distribution or layout of superpixel on an image
raises a dilemma situation for over-segmentation, since
the number of superpixels is hard to choose. This has also
been proven by several methods that exploit multiple level
over-segments technique as a starting point for further scene
segmentation (Malisiewicz and Efros 2007; Russell et al.
2006).

In order to overcome the aforementioned problem and
maintain the intuitive consistency with the human vision
system, a better image representation could be achieved
by assigning the density of superpixels adaptively with
respect to the co-occurrence of image contents or the “den-
sity” of image structures. This motivates us to introduce a
structure-sensitive density function and to generate super-
pixels as regions with similar sizes in terms of this density
function.

123

Int J Comput Vis (2013) 103:1–21 3

Fig. 2 Geodesic distance versus Euclidean distance: Image contents
in-between could provide a crucial evidence for measuring the similarity
between two pixels

The density function is also driven by the following analy-
sis on the similarity measure among pixels. A commonly
used similarity measure is the Euclidean distance in a high-
dimensional space based on three color components and two
image coordinates. The main disadvantage of such measure-
ment is the irrelevance to the image contents in-between: the
measure remains the same no matter whether there is a path
along which the appearance transits smoothly (see Fig. 2).
It often leads to disconnection and irregularity on segments’
shape and size. In order to avoid the above flaws, the sim-
ilarity measure in the proposed algorithm is defined by the
geodesic distance (Peyré et al. 2010). The aforementioned
density function forms the basis of the geodesic distance,
namely the distance increment at a particular image point
becomes large if the local density is high, and vice versa.

Most recently, the geodesic distance has been taken in use
for interactive segmentation and matting in Bai and Sapiro
(2007), Criminisi et al. (2008), and Gulshan et al. (2010). To
the best of our knowledge, however, it has never been used
as criteria for determining the distribution and magnitude of
superpixels in over-segmentation.

In summary, the contributions of this paper includes the
following three aspects: (1) we propose an explicit energy
for superpixel segmentation which aims at developing com-
pact and structure-sensitive superpixels; (2) we introduce an
efficient iterative optimization technique which includes two
steps: over-segmentation with known superpixel centers and

center relocation given known over-segments; (3) the geo-
desic distance is induced for measuring the structure and
layout of superpixels, which is aware of the image contents.

1.1 Our Approach

Figure 3 shows an overview of our system. The proposed
algorithm resembles Lloyd’s algorithm (Lloyd 1982) but
with the geodesic distance defined in Eq. (7). It is based on
an energy functional (see Sect. 2) that integrates structure,
compactness and homogeneous constraints. The density and
placement of superpixels are required to be sensitive to image
structure and thus are adjusted adaptively during this iterative
algorithm.

Given a user-specified amount of superpixels, the algo-
rithm first puts some seeds along with small disturbance
in order to avoid the placement on strong intensity bound-
aries. The seeds are sampled based-on the “density” of the
image structure and serve as initial estimates of the superpixel
centers.

There are two key components in this iterative approach.
The first one generates over-segments from the current set
of centers. The fast marching method (Sethian 1996b) is
employed to compute the geodesic distance and thus to gen-
erate a Voronoi diagram based on the distance. It has high
computational efficiency and requires more restricted forms
of the underlying velocity function. Our velocity function is
based on the structure density with special care for satisfying
the required forms. The details of this part can be found in
Sect. 3.1.

The second component refines the locations of the centers
according to superpixels’ distribution and magnitudes. The
relocation is based on an energy minimization formulation
defined with the geodesic distance. Additional superpixels
are created by splitting existing ones when certain conditions
of their density are satisfied. The splitting strategy guarantees
a descent of the energy and accelerates the algorithm. The
description of this part is in Sect. 3.2.

Fig. 3 The procedure of our algorithm: Initial seeds (S1) grow with
the speed (S2) to form an over-segmentation (S3), and the centers are
relocated or split (S4) by certain criteria related by shape or size. In S4a
the red plus is the original places of center points and black cross is the

recalculated places. In S4b the red asterisk represents the seeds detected
to be split and the yellow cross is the newly generated seeds. The arrows
on graph illustrate the motion of particular seeds (Color figure online)

123

4 Int J Comput Vis (2013) 103:1–21

In addition, we further introduce an alternative optimiza-
tion strategy which includes merging scheme and discuss the
pros and cons. An efficient implementation for acceleration
is also proposed. The details are presented in Sects. 4.1, 4.2
and 4.3 respectively.

The paper is organized as follows: Sect. 2 introduces the
formulation of structure sensitive superpixels, and the opti-
mization method are presented in Sect. 3. For deeper under-
standing of our algorithm, we discussed two optimization
methods in Sect. 4. In Sect. 5, we introduce the implementa-
tion details and evaluation experiments. Section 6 discusses
some applications based on our algorithm and the conclusion
follows in Sect. 7.

2 Problem Formulation via Geodesic Distance

Given an input image I (x), where x indicates the pixel’s
position (x, y), the goal is to over-segment I (x) into dense
small regions representing superpixels at different locations.
We assign a unique label l to each superpixel and use L(x)

to denote the label of the current pixel x. The set of label is
represented as L . All pixels belonging to the lth superpixel
Sl can be represented by Sl = {x|L(x) = l}. To this end, the
over-segmentation problem belongs to a clustering problem
(aka unsupervised learning), in general.

As shown in Fig. 2, image contents in-between could pro-
vide crucial evidence for measuring the similarity between
two pixels. We exploit the geodesic distance Dg(xi , x j) to
define the similarity between two pixels xi and x j on an
image:

Dg(xi , x j) = min
Pxi ,x j

1∫

0

D(Pxi ,x j (t))‖Ṗxi ,x j (t)‖dt, (1)

where Pxi ,x j (t) is a path connecting the pixel xi , x j (for t = 0
and t = 1 respectively). The density function D(x) is used as
the distance increment, and we employ a similar definition
as Levinshtein et al. (2009b), because it performs well in
searching for the edges of the image. It takes the form as
follows:

D(x) = e
E(x)

ν , E(x) = ‖∇ I‖
Gσ ∗ ‖∇ I‖ + γ

, (2)

where ν is a scaling parameter. Notice that the color image I
here is slightly smoothed to avoid certain noisy edges. E(x)

is an edge measurement which provides normalization of
gradient magnitude ‖∇ I‖ of color image. This allows weak
but isolated edges to have a significant effect on density. Gσ

is the Gaussian function with its standard deviation being σ.

The parameter γ is set to guarantee that very weak intensity
boundaries do not effect the density computation too much.

Since D(x) is a monotonically increasing function of
gradient magnitude which is large on edges, the geodesic

(a) (b)

Points on the boundary

Fig. 4 Toy example of data points got through geodesic distance. a The
image and located two center points. b The geodesic distance plotted
based on the Euclidean coordination. As can be seen, the points on the
edge are floating far away from the two cluster

distance of a path across an intensity boundary is always
larger than that in a homogeneous region. In addition, we
can see the term D(x) produces a constant distance incre-
ment (i.e. D(x) = 1 ifE(x) = 0) in regions of homogeneous
appearance, and thus retains the minimum possible isoperi-
metric ratio. This also makes the superpixels compact so as
to avoid large under-segmentation when the image regions
contain little edge information.

With the distance measurements at hand, the problem
is to cluster the pixels into regions, yielding the superpix-
els. Recent geodesic-distance-based clustering methods use
K-means (Feil and Abonyi 2007), or Fuzzy C-means (Kim
et al. 2007).

However, using the geodesic distance, as showed in Fig. 4,
given a superpixel center close to a boundary, the pixels
in the boundary are floating away, and they are regarded
as noisy point, especially when the boundary has large
contrast. In such a case, we do not want to assign those
pixels into the cluster for certain. Thus, we consider the
soft-assign model, i.e. Soft K-means, to formulate the over-
segmentation, because such a kind of method is robust to the
noisy points.

2.1 Energy Minimization

2.1.1 Homogeneity Penalization

Formally, soft K-means is minimizing the weighted distance
between each point to each center:

Eimage =
∑

l

∫

I (x)

Wx,l D2
g(cl , x)dx, (3)

where cl is the center of lth cluster and Wx,l is a assign weight
measuring the membership that data point x belongs to the
cluster.

In previous works such as Fuzzy K-means, Wx,l is infer-
enced through lagrange dual function. We suppose that the

123

Int J Comput Vis (2013) 103:1–21 5

points in each cluster are the set of observations drawn inde-
pendently from a Gaussian distributions, formally:

p(x|cl) = 1

(2πε)1/2 exp

{−Dg(cl , x)2

2ε

}
. (4)

Then the Wx,l in Eq. (3) could be computed as:

Wx,l = p(x|cl)∑
l∈L p(x|cl)

. (5)

2.1.2 Structure Penalization

In addition, we further enforce the structure information
brought by the magnitudes of superpixels for better rep-
resenting local structures on the image, formally we wish
the area of different superpixels over the density map are
similar:

Structure : Al ≈ Al ′ ,∀l 	= l ′, with

Al =
∫

Sl

D(x)dx, (6)

where Al denotes the area of superpixel Sl .

From Eq. (2), the density function is high in the regions
with much intensity variation and thus leads to smaller Sl on
the image. This motivate us to penalize the image area Al

that is relatively large. Here we define an average area A,

which is calculated as
∑

l Al
N =

∫
x D(x)dx

N in which N is the
total number of superpixels specified by users.

We choose to penalize the geodesic distance Dg(cl , x)

increment when the area of the lth superpixel is larger than
the A to limit the area difference. The rectified distance is
defined as:

D′
g(cl , x) = f (Dg(cl , x), Al(cl , x);α) (7)

where Al(cl , x) is the current area encircled by the evolving
contour with the distance to the center cl being Dg(cl , x), f
is an implicit function that penalize Dg(cl , x) when Al(cl , x)

is larger than A, and α is the balancing factor for balancing
the influence brought by the area. We will give the detail of
the f in Sect. 3.

Using the rectified distance in Eq. (3), our problem is to
solve the minimization of the energy functional:

min
C

Etotal = min
C

∑
l

∫

I (x)

W ′
x,l D′2

g (cl , x)dx, (8)

where C = {cl}K
l=1 is the set of centers. W ′

x,l is the member-
ship in Eq. (4) with the rectified geodesic distance. In sum-
mary, we design an energy functional which embeds image
homogeneity and structure density. At last, the superpixels
{Sl} are generated based on optimized W ′

x,l by setting the

L(x) = maxl W ′
x,l which makes the final superpixels com-

pact with similar area.

3 Iterative Optimization

Due to the non-convex property of Eq. (8) and the induced
latent variable, we choose an iterative scheme to minimize
the energy functional Etotal , More precisely, our optimiza-
tion process is similar to Lloyd’s algorithm (Lloyd 1982)
as mentioned in Sect. 1.1, The convergence and robust-
ness of the Lloyd’s algorithm has been elaborated by Du
et al. (2006). During the iterative procedure, the weight
of soft K-means Wx,l , the centers {cl} are alternatively
updated.

The main difference to the traditional EM optimization
scheme is the usage of a top-down hierarchical optimiza-
tion strategy during the iteration for adaptively generating
new components through splitting. This strategy acceler-
ates the optimization which is also known as the bisecting
k-means (Li and Chung 2007). Moreover, we treasure
the efficiency of the algorithm and use approximations
to reduce the computational burdens during the iterative
optimization. Since superpixel segmentation is a preprocess-
ing step for many vision tasks, the computational effi-
ciency is essential for its capability in various applications.
The details about strategies and accelerations of the two
steps of our algorithm are described in Sects. 3.1 and 3.2
respectively.

3.1 Weight Estimation

Given a set of centers {cl}, the goal of this step is to compute
the Wx,l

3.1.1 The Geodesic Distance Computation

In order to generate the geodesic distances defined in Eq. (7),
we employed the fast marching method which is proposed
by Sethian (1996a) for better computational efficiency since
this over-segmentation step may get called several times dur-
ing the outer iterations. Moreover, in our configuration, the
front end of the evolving contour can only move in the out-
ward normal direction (i.e. the contour expands rather than
shrinking), which fits well with the restricted forms of the
underlying velocity functions of the fast marching.

The velocity function for calculating the geodesic distance
Dg in Eq. (7) is defined as follows:

V (x) = D(x)−1, (9)

where D(x) is the density function defined in Eq. (2).

123

6 Int J Comput Vis (2013) 103:1–21

With the above velocity function, we use the fast marching
method as the numerical solver for the boundary problems
of the Eikonal equation,

V (x)‖∇Dg(cl , x)‖ = 1, with Dg(cl , cl) = 0, ∀l. (10)

As stated in Sect. 2.1, we apply the f to the original dis-
tance in order to penalize the distance increment when the
A(cl , x) is larger than A. Here we use Al(d) for short to rep-
resent currently encircled area with distance being d. Intu-
itively, if Al(d) exceeds A, the speed of the evolving contour
should decrease such that any evolving contour of a nearby
cluster center cl ′ tends to cover a relative bigger (or smaller)
field on the image if A′

l(d) < Al(d) turns out to be true.
To make the computation of the distance robust against

image noise or cluster edges, we adopt a Gaussian function
to the velocity defined in Eq. (9):

Vl(x, d) = V (x) · G ′
σ ′(max{0, Al(d)/A − 1}),

with Al(d) =
∫

{x|x∈Sl ,D′
g(cl ,x)<d}

D(x)dx, (11)

where G ′
σ ′(·) denotes an un-normalized Gaussian function

with its standard deviation σ ′. For efficiency, Vl(x, d) is only
calculated with superpixels larger than A (due to the splitting
strategy in Sect. 3.2 the superpixels are generally larger than
A). Thus, the Gaussian is a weight function to reduce the
velocity when Al(d) exceeds A. In our experiments, the σ ′ =
1
α

for balancing the effect brought by the area. We set the α to
be

√
M/Niter , where M is the pixel number in an image and

Niter is the center number in current iteration. This makes the
superpixel respect gradient information when the superpixel
number is small at the beginning and consider the area more
when the superpixel number is sufficient.

With the new velocity, the D′
g(cl , x) can be calculated

through the following Eikonal equation:

Vl(x, d)‖∇D′
g(cl , x)‖ = 1, with D′

g(cl , cl) = 0, ∀l.

(12)

3.1.2 Weight Approximation for Acceleration

In this step, the main task is to compute the weight Wx,l

in Eq. (5). Nevertheless, using Eq. (5) needs to calculate
the geodesic distance between each pixel to each center,
which is extremely time costly and makes the practical usage
intractable. For efficiency, we consider to compute the geo-
desic distance as less as possible and approximate the Eq. (5).
From the equation, the weight is negative related with the
distance between the pixel x and the center vector cl in most
cases. In experiments, we observe that Wx,l is decreasing
with the increasing distance similar with the numerator of
the calculation equation.

Thus, we approximate Wx,l by:

Ŵx,l =
{

e−D′
g(cl ,x)2/ε if l = arg minl 0D′

g(cl , x)

0 otherwise
(13)

where ε is a scaling parameter. It helps balancing the effect
from the softness. As the ε goes larger, the algorithm goes
closer to simply K-means. With such approximation, the geo-
desic distance only needs to be computed once.

To validate that the Wx,l reasonably approximates the
probability, we have done two experiments. Firstly, we cal-
culate the statistic of a probability distribution of all pixels
belonging to a center cl with a real example. As shown by
Fig. 5, the probability is decreasing exponentially as we pre-
dicted.

Secondly, we run several toy examples by over-segmenting
images and show the relocated centers of one image in

Fig. 5 The approximation of the exponential function in W ′
x,l to the

real posterior probability

Fig. 6 Relocated centers (plus) from different segmentation strategy.
In the black circle of b, K-means locates the centers over the boundary
because of the boundary points. While in circle of c, soft k-means avoids
such defects. In d, our approximated weight could achieve the same
effect

123

Int J Comput Vis (2013) 103:1–21 7

Fig. 6a by K-means, soft K-means, and our approximated soft
K-means. As can be seen in Fig. 6b, K-means clustering does
not consider the membership, and easily locates the centers
over the image edges (due to the noisy points illustrated in
Fig. 4), which will negatively affect the results in our exper-
iments. In our experiments, because of the splitting strategy,
K-means would generate many useless centers near the clut-
tered edges. However, as in Fig. 6c, soft k-means locates
the center at more visually pleasing positions while it costs
huge computation time by computing the distance between
each pixel to each center. For efficiency, we use the weight in
Eq. (12) and adjust the ε through a validation set. In Fig. 6d,
though we did not perform the time costly normalization,
the approximation locates the centers well by avoiding the
edges. Moreover, in our experiments, combining with the
splitting strategy, we achieve close optimized results with
soft k-means.

3.2 Center Refinement

Given a set of superpixels L(x), the goal of this step is to
re-estimate the centers’ positions {cl} according to Etotal in
Eq. (8).

The location of each center should be updated by:

c′
l = arg min

x′∈I (x)

∫

I (x)

Ŵx,l D′
g(x

′, x)2dx. (14)

An exhaustive search as in Feil and Abonyi (2007) is com-
putational costly and infeasible for this iterative approach.
Based on calculus, c′

l is a stationary point where the deriva-
tive of Eimage equals to 0, which leads to:

∂ Eimage

∂c′
l

= 2
∫

Sl

Ŵx,l D′
g(c

′
l , x)∇D′

g(c
′
l , x)dx = 0. (15)

Nevertheless, it is intractable to solve the derivative equa-
tion to get an analysis solution because ∇D′

g(c
′
l , x) can not be

written explicitly. As a compromise, we use the approximate
solution to replace the exact solution for computational effi-
ciency. Similar to fixed point algorithm (Hyvärinen 1999), in
the current updating iteration, we use the result of cl from the
last updating iteration to compute the part Dg(c′

l , x). More-
over, to find the gradient of geodesic distance, ∇Dg(c′

l , x),

we substitute the Dg(c′
l , x) with the Euclidean distance

v‖x − c′
l‖ for a tractable solution. This is under the assump-

tion that the appearance within one superpixel in an image is
more likely to be homogeneous, i.e. with a constant velocity
being a small value v, which makes the geodesic distance
homogeneous with the Euclidean distance.

Then, the derivative with respect to cl becomes:

∂ Eimage

∂c′
l

∼= 2
∫

Sl

Ŵx,l D′
g(cl , x)∇‖x − c′

l‖dx

∼= −2
∫

Sl

Ŵx,l D′
g(cl , x)

(x − c′
l)

‖x − cl‖dx

= 0, (16)

where we additionally apply the trick of taking place of
‖x − c′

l‖ by ‖x − cl‖ computed in the previous iteration for
solving c′

l .

By solving the equation, the result has a similar form as
the computation of the centroid, i.e. the center of mass, of
the segment Sl with its center being c′

l and its mass equal to∫
Sl\{cl } Ŵx,l

D′
g(cl ,x)

‖x−cl‖ dx. The new center relocates to:

c′
l =

∫
Sl\{cl } m(x|L(x)=l)xdx

ml
,

with m(x|L(x)=l) = Ŵx,l
D′

g(cl , x)

‖x − cl‖ ,

ml =
∫

Sl\{cl }
m(x|L(x)=l)dx. (17)

Notice that v should be given a positive value to achieve
a distance increment, and here we set v = 0.01. To vali-
date the proximation of the distance, we conducted several
experiments to test the energy term from Etotal . The results
shown in Fig. 7 clearly demonstrate that the re-estimation of
the centers decreases the defined energy.

3.2.1 Center Splitting

As mentioned in Sect. 1, one of the main goals is to generate
superpixels that are sensitive to image structure (see Eq. (6)).

During the energy minimization process, given a super-
pixel Sl whose area Al is much larger than A while its center
cl shifts little from last iteration, the algorithm splits the cen-
ter cl into two since the later generated segments by the new
ones would produce a lower value of the energy functional
in Eq. (8). Such a process accelerates the process for finding
the optimal centers much quickly.

Divisive clustering algorithms has been well discussed
in Savaresi and Boley (2004). There are mainly two strategy
for splitting: the bisecting K-means algorithm and the prin-
cipal direction divisive partitioning (PDDP). Such schemes
increase one cluster each time and suffer from the defect of
propagation error from upper levels. In our case, increasing
one cluster at one time is inefficient and the propagation error
is also undesired. Considering both efficiency and accuracy,
we choose to bisect the superpixel whenever it meets our
splitting criteria which are heuristically generated based-on

123

8 Int J Comput Vis (2013) 103:1–21

0 10 20
7300

7400

7500

7600

7700

350 superpixels

Iteration

E
ne

rg
y

0 10 20
6400

6500

6600

6700

450 superpixels

Iteration

E
ne

rg
y

0 10 20
5800

5900

6000

6100

550 superpixels

Iteration

E
ne

rg
y

0 10 20
5300

5400

5500

5600

5700

650 superpixels

Iteration

E
ne

rg
y

0 10 20
5100

5200

5300

5400

5500

750 superpixels

Iteration

E
ne

rg
y

0 10 20
8100

8200

8300

8400

8500

8600

250 superpixels

Iteration

E
ne

rg
y

Fig. 7 The Etotal is dropping down by using our relocation strategy under different superpixels number

the human intuition and Etotal , and we propose to re-estimate
all the centers’ location after splitting during the optimiza-
tion.

Thus, we define criteria to distinguish superpixels’ centers
to be split and those to be relocated:

Cshape(cl) = 11

(
λ1,l

λ2,l
> Tc

)
;

Csize(cl) = 11

(
Al

A
> Ts

)
; (18)

where 11 is the indicator function and equals to 1 if the inside
criterion is true. The center l is marked as a splitting can-
didate if either of Cshape or Csize is positive. Tc and Ts are
thresholds, while λ1,l and λ2,l are the first and second eigen-
value obtained by the PCA (Jolliffe 1986) of the following
2 × 2 matrix:

∫

Sl\{cl }

D′
g(cl , x)2

‖x − cl‖2 (x − cl)(x − cl)
T dx. (19)

Furthermore, in color images, we make use of the color
homogeneity within a superpixel, which is also an impor-
tant factor for judging the splitting. In our experiments, we
limit the standard deviation of color within each superpixel
under normalized CIElab color space which is known for
having distance between colors similar to the human visual

system. In addition, CIElab color space is also widely applied
in many vision tasks such as Shotton et al. (2006) etc.

Specifically, our criterion for color variation is:

CV ar (cl) = 11(SDSl > SDI (x)/(εv Niter)), (20)

where SDSl and SDI (x) are the standard deviation of color
within superpixel Sl and on the whole image I (x) respec-
tively, εv is a constant and set to be 0.015 and Niter is
the center number in current iteration. Intuitively, we wish
the constraint is stricter at the beginning iterations making the
algorithm split the center having large variation, then handle
the rest having smaller variation latter.

With the splitting candidates, our algorithm performs the
splitting from the center that has a largest average normalized
score over the three criteria. In practice, this could lead to the
better dropping of the energy. After splitting of center cl , two
new centers c′

l,1 and c′
l,2 are generated to split and replace

the current one cl by calculating:

c′
l,1 =

∫
{x|x∈Sl ,(x−cl)·n>0}

Dg(cl ,x)

‖x−cl‖ xdx∫
{x|x∈Sl ,(x−cl)·n>0}

Dg(cl ,x)

‖x−cl‖ dx
,

c′
l,2 =

∫
{x|x∈Sl ,(x−cl)·n<0}

Dg(cl ,x)

‖x−cl‖ xdx∫
{x|x∈Sl ,(x−cl)·n<0}

Dg(cl ,x)

‖x−cl‖ dx
, (21)

where n denotes the corresponding eigenvector of λ1,l .

123

Int J Comput Vis (2013) 103:1–21 9

Fig. 8 The same image segmented into 250 superpixels using a only
relocation, b both relocation and splitting, and c only splitting. We
zoomed in the area of interest in the second row

Besides the rare cases in which no splitting criterion is
met while the demanding number of superpixels has not been
reached, we selected the largest few superpixels (10 in our
implementation) to do the splitting. In a nutshell, the energy
functional, i.e. Etotal , keeps decreasing.

Additionally, to validate the effectiveness of the split-
ting strategy, we conducted the superpixel segmentation by
only relocation, relocation and splitting, and only splitting
as shown in Fig. 8. The relocation finds more reasonable
positions of centers and the splitting makes the segmentation
structure-sensitive. This is also shown in the detail region
indicated by the black rectangle that we zoomed in. The
boundaries of the brown stick held by the person could hardly
be captured without the splitting operation, because it is too
thin for a center to be located inside. However, the result is
also undesired if the positions of centers are not relocated,
i.e. the centers are not well-distributed near the stick. Gener-
ally, in the comparison, our most pleasing result is achieved
by combining the splitting strategy with relocation.

3.3 Initialization and Termination

3.3.1 Initial Seeds Placement

One way to place the initial seeds is similar as TurboPix-
els in Levinshtein et al. (2009b), K initial seeds are placed
in a lattice formation such that the distance between neigh-
bor seeds is roughly equal to

√
M/K , where M is the total

pixel number of the image. They also perturb the seeds by
moving them away from the pixels with high gradient

magnitude to avoid strong intensity boundaries and bad ini-
tialization for later iterations. Different from TurboPixels
algorithm, we alternatively set K to be a portion of the total
number of superpixels N (specified by users). During the
optimization process, additional superpixels are generated
by splitting existing ones until the number of superpixels
reaches N .

The other available initialization scheme is to sample the
K seeds based on the density map D(x) on the image. This
would make the initial energy lower than lattice layout as
structure-sensitive layout, thus the functional would con-
verge faster. In practice, we sample the seeds from a special
designed distribution calculated from D(x). Mathematically,
a Gaussian kernel Gσs is combined as:

Dsample(x) = 1

Z D
(Gσs ∗ (D(x) + λD(x)), (22)

where D(x) is defined in Eq. (2), the σs of our Gaussian
kernel is set to be 2

√
M/K , which generally guarantees the

minimum area Al generated by the initial seeds larger than A
(Due to the splitting scheme, superpixels could not be merged
in later iterations). D(x) is the mean value of D(x), which
makes sure that there exists a certain density of initial seeds
placed on homogeneous regions. The Z D is a normalization
operator which makes the integral of Dsample equal to 1. Thus
Dsample(x) could be taken as a two dimensional probability
distribution.

Furthermore, for better formation of the initial seeds, our
sampling method generates a projection cs → ct between the
lattice placement of seeds cs = [xs, ys] from the first place-
ment scheme to the new placement ct = [xt , yt]. Formally,
the [xs, ys] and [xt , yt] are correlated by:
∫ xt

1 Dsample(x, yt)dx∫ w

1 Dsample(x, yt)dx
= xs

w
;

∫ yt
1 Dsample(xt , y)dy∫ h
1 Dsample(xt , y)dy

= ys

h
. (23)

From Eq. (23), when only looking at the first one, given any
yt , we can get a xt in response. Then a curve extending in y
direction could be generated. Similarly, the second equation
produces a curve in x direction. The ct is the intersection
point of the two curves. Notice that for the σs controls the
variety of the Dsample, and determines the tortuosity of the
curves, in most cases, only one solution could be found for
each cs . In the case that multiple solutions are existing, we
chose the one with the lowest density value.

As shown in Fig. 9, the seeds sampled by such scheme
generates a visually pleasing estimation of the final structure-
sensitive position of all the centers. Additionally, the initial
seeds are also well-separated to keep compactness of super-
pixels according to the lattice starting formation and our sam-
pling density.

123

10 Int J Comput Vis (2013) 103:1–21

(a) (b)

Fig. 9 Initial seeds sample scheme: a regular seeds placement with
perturbation and b sampled seeds based on the edge density distribution

3.3.2 Termination Conditions

We use the following termination conditions: (1) the change
of energy between two successive iteration steps is less than
a threshold εE ; (2) the total number of iterations exceeds the
predefined number Nmax .

In the final stage, very small superpixels are detected and
removed, which results in a small number of unassigned
pixels. The final superpixel result is generated by the over-
segmentation (in Sect. 3.1) with the remaining centers.

3.4 Algorithm Complexity and Convergence

As the algorithm iteratively performs two routines in turn, it
is easily known that the time complexity of our algorithm is
O((Tsegment + Tcenter)NI), where Tsegment and Tcenter are
the complexities of the over segmentation in Sect. 3.1 and
center refinement in Sect. 3.2 respectively. NI is the total
number of iterations.

Let M denote the number of pixels on an image. The
complexity of the fast marching can be decreased to roughly
O(M) (Yatziv et al. 2006). It can be also proven that Tcenter

is O(M), since the center refinement can be achieved by a
single scan of all pixels on an image. Thus, the complexity
of the whole algorithm becomes O(M NI).

Experiments show that the algorithm terminates within
30 iterations. The number of centers increases quickly over
the first several iterations when over-segments have larger
sizes, which makes the energy functional decrease rapidly.
Figure 10 shows the energy functional decreases with each
iteration of the algorithm. The number of iterations rarely
exceeds Nmax = 30. With such a constraint, the complexity
of the algorithm approaches O(M).

4 Alternative Strategy for Optimization

4.1 Center Merging

Merging adjacent superpixels with very similar appearance is
another strategy to make the superpixels’ area represent the
structure of image. Based on the structure term in Eq. (8),

Fig. 10 Algorithm convergence. The overall energy functional
decreases and the superpixels perform better with every iteration

Fig. 11 An example of the Splitting-Merging scheme: a the blue filled
circle represents the merged centers and the yellow cross means the split-
ting centers’ position. b The result from splitting and merging scheme
(Color figure online)

merging a pair of adjacent superpixels in low density regions
of image contents while split a superpixel in high density
drops the energy.

Previous art (Muhr and Granitzer 2009) combines the
splitting and merging together for searching the optimized
cluster number. We here adopt splitting and merging together
to search for better superpixel structure consistent with the
image density. In our attempting, we exploit a heuristic design
and propose to perform merging simultaneously with split-
ting during the iteration optimization.

Figure 11 illustrates an example of merging and splitting
procedure and the final segmentation result starting with 500
seeds sampled from the sampling density distribution defined
in Eq. (22). During the optimization procedure, merging
scheme should be designed to make sure that the optimiza-
tion will not fall into a loop or flip over, i.e. to avoid splitting
previously merged superpixels or merging any split ones.

Based on this consideration, two adjacent centers cp, cq

in one iteration are considered as candidates with potential
to merge according to the following criteria:

Cstable(cp, cq) = 11(‖cl − c′
l‖ < Tshi f t , ∀ l ∈ {p, q});

Carea(cp, cq) = 11

(
Ap + Aq

A
< 1

)
. (24)

123

Int J Comput Vis (2013) 103:1–21 11

Fig. 12 The optimization
process of Splitting scheme and
Splitting-Merging scheme

0 5 10 15 20

Iteration
E

ne
rg

y

163085

Splitting−Merging
Splitting

0 5 10 15 20

Iteration

E
ne

rg
y

170057

Splitting−Merging
Splitting

0 5 10 15 20

Iteration

E
ne

rg
y

109053

Splitting−Merging
Splitting

0 5 10 15 20

Iteration

E
ne

rg
y

126007

Splitting−Merging
Splitting

Similar to the splitting criterion in Eq. (20), we consider the
color homogeneity within the area covered by Sp and Sq for
color images. Formally, our color variation measurement is
defined as:

Cdis(cp, cq) = 11(Dis(cp, cq) < SDI (x)/εv N), (25)

where SDI (x) is the same as that in Eq. (20). We define that
AD J (Sp, Sq) is the adjacent boundary length of Sp and Sq

and C(Sl) is the contour length of Sl . The distance embed-
ded color homogeneity and adjacent length is calculated by

Dis(cp, cq) = exp
{ −AD J (Sp,Sq)

(C(Sp)+C(Sq)−AD J (Sp,Sq))

}
SD(Sp∪Sq).

We also regard cp, cq as merging candidates if Cdis(cp, cq)

is positive.
Then, we rank the distance (i.e.Dis(cp, cq)) in ascend-

ing order and greedily merge the adjacent superpixels while
keeps the number of superpixels larger than NM . We set
NM = 0.8N in our experiments. Though it is proven in Muhr
and Granitzer (2009) that merging clusters would always
increase the energy, we show in our experiments the energy
could keep decreasing in most cases in Fig. 12 because the
splitting and relocation strategy included could drop down
the energy much more than the little increment brought by
our merging strategy.

If two centers are merged, a new center is generated cm

and replaces the original two by computing the “centroid” of
the two superpixels:

cm = m pcp + mqcq

m p + mq
. (26)

Additionally, to keep the balance of area between different
superpixels, once two centers are merged, neither of the two
can merge again in the current iteration. To further avoid the
dead loop, the merged centers can not split for the next five
iterations.

Unlike the center splitting, for initialization, we directly
place N seeds according to the sampling scheme in Sect. 3.3.

4.2 Discussion Between Splitting and Splitting-Merging

Splitting-Merging scheme in Sect. 4.1 has three merits: (1)
with both splitting and merging, the algorithm could con-
verge in fewer iterations as shown in Fig. 12; (2) it makes
the algorithm less dependent on the initial fraction K of
seeds as required by the splitting strategy and thus cutting
down the number of user setting parameters; and (3) some
superpixels with small or tiny area are given a further possi-
bility to merge with nearby superpixels. On the other hand,

123

12 Int J Comput Vis (2013) 103:1–21

Fig. 13 An example of fixed
centers during the iteration, the
blue filled circle indicates the
fixed centers that need no
computation in the respective
iteration (Color figure online)

(a) 6th Iter. (b) 11th Iter. (c) 18th Iter.

Splitting-Merging scheme causes extra computational cost
at each iteration, while Splitting requires no computation
related to the relationship with neighborhood.

In general, the choices of superpixels that need to be split
are much fewer than the ones needs to be merged after few
iterations, which makes the Splitting more efficient than the
Splitting-Merging in single iteration. In our experiments,
though fewer iterations is needed by Splitting-Merging, the
Splitting achieves higher efficiency.

In addition, from the comparison by our experiment in
Sect. 5, the performance of Splitting (with K initialization
seeds) and Splitting-Merging (with N initialization seeds)
are very close under our parameters and experiment settings,
which is consistent with the energy comparison between
the two methods shown in Fig. 12. Actually, the energy
curves from Splitting and Splitting-Merging algorithm are
not always converging to the same value as the local mini-
mum of the energy functional. However, in our experiments,
we show that the performances of both algorithm are visually
close.

4.3 Acceleration Scheme for Optimization

There are some room to further accelerate the iterations when
taking a closer look at the algorithm. As indicated by the
blue points in Fig. 13, after a few iterations, many centers
shifted little and had no potential to split, and updating such
centers has little influence on the final results. Thus in our
implementation, it is meaningful to skip the calculation of
such superpixels. In other words, fixing certain superpixels’
center positions can reasonably increase computational effi-
ciency. Here we defined the following two rules for center
fixation:

1. The center cl itself shifts little from the position in last
iteration, i.e. ‖cl − c′

l‖ ≤ Tshi f t and does not meet the
splitting (or merging) criteria.

2. All of the center’s adjacent neighbor centers meet the first
rule.

Once a center is fixed, the geodesic distance and center refine-
ment of the superpixel will not be updated in later itera-
tions. Nevertheless, we wish that the fixed centers could be

Fig. 14 The percentage of pixels that needs to be computed during the
iterations

reactivated for optimization when their neighborhood super-
pixels changes significantly. Thus during the iterations, the
labels of the neighborhood of each fixed center would be
recorded, and the fixed center would be reactivated if any
of its neighborhood violates the first rule as defined. Fig-
ure 14 visualizes the fixed centers and percentage of pixels
included in calculation during the optimization process. As
can be seen, with the increasing of fixed centers, the amount
of pixels that are actually computed decreases rapidly, so is
the computational cost. In our experiments, by conducting
such acceleration, the computing time generally cuts down
from nearly 10 to 5–6 s for images of size 481 × 321.

5 Experimental Evaluations

5.1 Parameter Settings

In all experiments, our algorithm is not sensitive to most
of the parameters, such as the standard deviation σ and γ

in Eq. (2). We set the σ adaptively as
√

M/N
2 and the γ as

0.12, where M is the total number of pixels in the image
and N is the user-specified number of superpixels. For the
some sensitive parameters, we constructed a validation set
including 20 training images randomly chosen from BSD300
data set (Martin et al. 2001) and tune the parameters based

123

Int J Comput Vis (2013) 103:1–21 13

on the performance over these images. We set ε in Eq. (13)
to be 2, Ts = 2, and Tc = 4 for criteria in Eq. (18) and the
Tshi f t = 2 in Eq. (24).

In addition, we investigated an the initial seed number
place at initialization. By changing the initial placed seeds
fraction, i.e. the ratio of placed initial seeds number K to user-
request seeds number N , Fig. 15 shows the testing results
(using criteria in Sect. 5.2). We can see that neither a too
small nor too large fraction of initial seeds performs well,
for the reason that a too small fraction makes the superpixels
less compact and a too large fraction makes the superpix-
els’ layout less structure-sensitive and sub-optimal. Another
difference is that the larger the fraction, the less time our
algorithm needs to converge. In our experiment, we set the
initial seeds to N/3 for splitting, which generally ensures
the minimum area Al in the first iteration larger than A and
performs the best.

5.2 Quantitative Evaluation

We evaluated the performance of the proposed algorithm by
comparing its accuracy with several leading approaches: Tur-
boPixels (Levinshtein et al. 2009b), N-Cuts (Shi and Malik
2000), Graph-based method (Felzenszwalb and Huttenlocher
2004), Lattice (Moore et al. 2008), GraphCut superpixel
(Veksler et al. 2010) and SLIC superpixel (Radhakrishna
et al. 2010). We also show the evaluation of the Splitting-
Merging algorithm, in which we evaluate the performance
with N initial seeds. Finally, to explicitly illustrate the effect
of the iterative optimization, another baseline is constructed
by single fast-marching using the sampled N initial seeds
based-on Eq. (22), which we call “Sample Seeds”.

We use the Fast Marching Toolbox1 to compute geometric
flows. The Multi-scale Normalized Cuts Segmentation Tool-
box2 is applied for N-Cuts. We downloaded the TurboPixels
implementation3 for TurboPixels, the Graph-Based method
implementation4 online, the GraphCut superpixel implemen-
tation5 and the Lattice.6 In all testing, we use the author’s raw
implementation and tune their parameters on a small valida-
tion set.

All experiments are performed on a quad-core 3.2 GHz
computer, and the evaluation is based on the BSD300 data
set (Martin et al. 2001), which contains 100 test images and
200 training images with 481×321 (or 321×481) pixel res-
olution. The performance is averaged over a random subset

1 The Fast Marching Toolbox is written by Gabriel Peyre.
2 The Multi-scale Normalized Cuts Segmentation Toolbox is written
by Timothee Cour et al.
3 The TurboPixels toolbox is written by Alex Levinshtein.
4 The Graph-Based method toolbox is written by Felzensz.
5 The GraphCut superpixel implementation is written by Olga Veksler.
6 The Lattice superpixel is written by Alastair P. Moore.

(50 images) of the test set for the high computational cost of
N-Cuts.

All the above mentioned algorithms keep compactness
except Graph-based method. We compare ours with these
algorithms in following quantitative criteria.

5.2.1 Under-Segmentation Error

Intuitively, under-segmentation error penalizes the superpix-
els that do not overlap tightly with a ground truth segmen-
tation. Given a ground truth segmentation into segments
G = {G1, . . . , G K } and a superpixel segmentation into
superpixels S = {S1, . . . , SL}, we quantify the under-
segmentation error of a whole image as:

UG = 1

M

⎡
⎣ K∑

k=1

⎛
⎝ ∑

{Sl ||Sl∩Gk |>B}
Area(Sl)

⎞
⎠ − M

⎤
⎦ , (27)

where Area(Sl) is the area of the superpixel, and M is the
total number of pixels. B is the minimum area of overlapping,
and we follow Radhakrishna et al. (2010) setting B to be 5 %
of Area(Sl).

We averaged the value U across all our test images and
all ground-truth segments, and obtained a comparison result
in Fig. 16a. As can be seen, our algorithm outperforms other
methods, especially with small numbers of superpixels.

5.2.2 Boundary Recall

A standard boundary recall measurement is also adopted,
which computes what fraction of the ground truth edges fall
within ε-pixel length from at least one superpixel boundary.
Mathematically: the boundary recall is:

BG =
∑

p∈δG 11(minq∈δS ‖p − q‖ � ε)

| δG | , (28)

where δG and δS denote the union set of ground truth bound-
aries and superpixels boundaries respectively, and the indi-
cator 11 checks whether the nearest pixel is within distance ε.

We also follow previous art (Radhakrishna et al. 2010) and
set ε = 2 in our experiment.

The comparison of the boundary recall of some state-of-
the-art methods and our method is in Fig. 16b. From the
results, ours outperforms the competitors such as TurboPixels
and N-Cuts while remaining comparable to the Graph-based
method which has high boundary recall.

5.2.3 Achievable Segmentation Accuracy (ASA)

The ASA is a performance measurement which indicates
the upper bound of segmentation, which gives the highest

123

14 Int J Comput Vis (2013) 103:1–21

0 0.2 0.4 0.6 0.8 1
0

5

10

15
200 superpixels
500 superpixels

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25
200 superpixels
500 superpixels

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

200 superpixels
500 superpixels

(a) (b) (c)

Fig. 15 Performance related to initial fraction of seeds given by user: a under-segmentation error, b boundary recall, and c time cost

100 200 300 400 500 600 700
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of superpixels

U
nd

er
−

se
gm

en
ta

tio
n

E
rr

or

Splitting
Splitting−Merging
TurboPixels
N−cuts
Graph−Based Method
GraphCut superpixel
Lattice
Sample Seeds
SLIC

100 200 300 400 500 600 700
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Number of superpixels

A
ch

ie
va

bl
e

S
eg

m
en

ta
tio

n
A

cc
ur

ac
y

Splitting
Splitting−Merging
TurboPixels
N−cuts
Graph−Based Method
GraphCut superpixel
Lattice
Sample Seeds
SLIC

100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

Number of superpixels

B
ou

nd
ar

y
R

ec
al

l

Splitting
Splitting−Merging
TurboPixels
N−cuts
Graph−Based Method
GraphCut superpixel
Lattice
Sample Seeds
SLIC

(a) (b) (c)

Fig. 16 Performance comparison between Splitting scheme, Splitting-Merging scheme, TurboPixels, N-Cuts, Graph-based method, GraphCut
superpixel, Lattice, the Sample Seeds and SLIC: a under-segmentation error, b boundary recall, and c achievable segmentation accuracy

accuracy achievable for object segmentation that utilizes
superpixels as units. It is computed by:

AS AG =
∑

k maxi | Sk ∩ Gi |∑
i | Gi | . (29)

Such metric is also plotted against number of superpixels
in an image. The algorithm achieves a higher score when a
smaller number of superpixels is preferred.

Figure 16c shows the comparison result between our
approach and other algorithms, and we can see the proposed
method yields a better achievable segmentation upper-bound.

5.2.4 Time Cost

As demonstrated in Levinshtein et al. (2009b), TurboPix-
els is much faster than N-Cuts and also exploits geometric
flow for segmentation. We thus conducted time comparisons
with TurboPixels. In the meanwhile, we also include Graph-
based method, GraphCut superpixel and superpixel lattice
for providing a whole view of relative time comparison of
various superpixel methods. In our experiments, the running
time of the comparing algorithms is tested with respect to
image size and superpixel number.

The result in Fig. 17a shows that our algorithm terminates
within linear time with respect to the image size, which has
also been proven in Sect. 3.4. With the acceleration, our algo-
rithm outperforms the TurboPixels in time. Figure 17b shows
the running time when increasing superpixel density under a
constant image size (241×161) in our experiments. The run-
ning time of our algorithm slightly increases. This is mainly
because more iterations are required for minimization with a
larger number of superpixels. As demonstrated in Sect. 3.4,
the running time is a linear function with respect to number
of iterations.

5.3 Qualitative Results

Figure 18 shows a qualitative comparison of the superpixel
obtained by TurboPixels and our method in a variety of
images from BSD300. The number of superpixels generated
by TurboPixels and our method is almost the same. As can be
noticed, the density of superpixels provided by our method is
quite consistent with the image contents: the density is low in
the homogenous regions and high near high intensity bound-
aries. This makes the superpixel boundaries react to salient
edges better.

123

Int J Comput Vis (2013) 103:1–21 15

Fig. 17 Timing comparison
with TurboPixels. a running
time with respect to image size
and b running time with respect
to the density of superpixels

100 200 300 400 500 600

Number of superpixels

T
im

e(
se

cs
)

Our Method
TurboPixels
Graph−Based Method
GraphCut Superpixel
Lattice
SLIC

0 1 2 3 4

10
−1

10
0

10
1

10
−1

10
0

10
1

Image size(normalized # of pixels)
T

im
e(

se
cs

)

Our Method
TurboPixels
Graph−Based Method
GraphCut Superpixel
Lattice
SLIC

(a) (b)

5.3.1 Combination with Supervised LEARNT EDGE Maps

Similar to the prior arts (Levinshtein et al. 2009b; Moore
et al. 2008), our algorithm is not constrained to the image-
gradient-based density functions. Different kinds of refined
measures can be easily combined in the velocity function
for calculating the geodesic distance. Figure 19 shows the
performance of our algorithm when combined with the
Pb-based (Martin et al. 2004) boundaries. The edges between
the tiger and background are much better captured.

Furthermore, we investigate whether the segmentation
results can be further improved by using edge maps extracted
through learning methods. Then we collected various edge
detectors including gPb (Maire et al. 2008), ucm (Arbelaez
et al. 2009), BEL (Dollár et al. 2006), pb (Martin et al. 2004),
and compared the results with gradient-based edge and linear
combination of gradient and gPb edge map. Figure 20 shows
the results using the evaluation methods in Sect. 5.2. From
Fig. 20, the learned edge map performs better with smaller
superpixels number, however, with the number of superpix-
els increasing, the results from the gradient map improve
relatively faster and approximate the best when the number
of superpixels becomes 650. This is mainly because learnt
edges sometimes dismiss many local edges which may be
the true object boundaries, even though these edges could be
detected by image gradient.

5.3.2 Combination with Image Saliency

Additionally, our approach could naturally adapt to image
saliency and learnt image shape priori similar to Moore
et al. (2009). Image saliency detection is known to be an
important aspect of computer vision, which is closely con-
nected to human psychology. It has multiple applications in
image segmentation, compression, recognition, tracking, and
detection as well. Here we adopt the saliency of an image,
which is defined as the part of the image that attracts more
human attention, to help our segmentation. Heuristically, in
salient parts of an image, as in the center of Fig. 21, better

segmentation is desired and more detail should be preserved
around the region.

Here we update the velocity map V (x) in Eq. (9) by simply
integrating the saliency as:

V (x) = V (x)e−λS(x), (30)

where S(x) is the saliency value of image pixel x within
the range of [0, 1]. It is computed from GBVS (Harel et al.
2006) in our case. By unifying the saliency map with the
original velocity map as shown in Fig. 21a, our algorithm
could adaptively output more detailed segmentation to the
salient part of an image through splitting (Fig. 21b).

6 Applications

6.1 Image Compression

Besides the numerous applications mentioned, superpix-
els could be firstly considered as a compact representa-
tion for image compression. Our algorithm generates better
visual effects when compared with Levinshtein et al. (2009b)
due to the structure-sensitive distribution of superpixels. By
using the same density map, Fig. 22 shows comparative
results using 500 superpixels. The color of each superpixel is
approximated by three polynomials (one per channel). With a
limited number of superpixels, our algorithm produces better
details and approaches the quality of the original image.

For a solid comparison, we experimented over the 100
images of BSD300 test set to measure the compression qual-
ity of our approach and the TurboPixels. The comparison
results are also shown in Fig. 23, which indicate the superi-
ority of our approach.

6.2 Foreground Object Contour Closure and Segmentation

Our algorithm performs adaptively with image structure.
This is also very useful for generates better segmentation. In
the application of foreground segmentation, we adopted the

123

16 Int J Comput Vis (2013) 103:1–21

Fig. 18 Comparison between a our algorithm and b TurboPixels on a variety of images with a zoom in of regions of interest by the white rectangles
in column c and d respectively

Fig. 19 A qualitative result
of our method using
gradient-based (middle) and
combined with Pb-based (right)
affinity functions

123

Int J Comput Vis (2013) 103:1–21 17

Fig. 20 Quantitative
comparisons by combining
different learnt edge maps under
standard criteria. a under-
segmentation error and
b boundary recall

100 200 300 400

(a) (b)

500 600 700
0.1

0.12

0.14

0.16

0.18

0.2

Number of superpixels
U

nd
er

−
se

gm
en

ta
tio

n
E

rr
or

gradient
gPb
pb
bel
ucm
combine

100 200 300 400 500 600 700
0.6

0.65

0.7

0.75

0.8

0.85

Number of superpixels

B
ou

nd
ar

y
R

ec
al

l

gradient
gPb
pb
bel
ucm
combine

Fig. 21 Gradient-based
velocity map (a, left), the
computed saliency map (a,
middle) and the new velocity
map (a, right). The superpixels
results generated using the two
velocity maps are shown by (b,
left) and (b, right) respectively

Fig. 22 a The original image. Quadratic fit to the color of the image
within each superpixel given by b TurboPixels and c our method. d and
e show a zoom-in on interested region respectively

100 200 300 400 500 600 700

1500

2000

2500

3000
Our approach
TurboPixels

Fig. 23 Quantitative comparison of compression error between our
approach and Turbopixels

123

18 Int J Comput Vis (2013) 103:1–21

Fig. 24 Contour closure
comparison. a Example images,
b and c show the extracted
object contour based-on
TurboPixels (Levinshtein et al.
2009b) and our
structure-sensitive superpixels
respectively. The red contour
indicates the detected object
boundary (Color figure online)

contour closure extraction method from the work of Levin-
shtein et al. (2010). Specifically, the goal of contour closure
is to find a circle of connected contour fragments that sepa-
rates an object from its background. Previous art (Levinshtein
et al. 2010) transforms such a problem to finding subsets of
superpixels. In order to generate a better segmentation, the
algorithm requires the superpixel boundaries to better capture
the object edges, thus in their work, they apply the learned
Pb edge map (Maire et al. 2008) for generating the superpix-
els. The algorithm optimizes the edge difference between the
object and background and the edge homogeneous within the
object region.

To show that our approach better captures the object
boundary, Fig. 24 shows several comparisons of the best clo-
sure solutions generated under different number of super-
pixels segmentation using our algorithm and TurboPixels
based on the density edge map defined in Eq. (2).We show
that because the structure information, our algorithm cap-
tures much better edge information under smaller superpixels
number setting. In addition, we also quantitatively compared
the segmentation results between the two superpixel methods
over the Weizmann Segmentation Database (WSD) (Alpert
et al. 2007) which has the ground truth of single foreground
segmentation, As the experimental settings of Levinshtein

et al. (2010), the well known F-measure is used to measure
the consistency of the detected foreground region and the
human segmented region. The results are shown in Fig. 25,
which indicates that the our approach promotes the segmen-
tation ability especially with small number of superpixel.

This concludes that our approach achieves visually bet-
ter segmentation results due to the structure sensitivity.
Specifically, our superpixel captures the object boundary
more effectively, thus provides better optimized solutions for
the contour closure algorithm.

6.3 Video Segmentation

Our approach could be easily extended to video segmentation
and is more suitable for superpixels segmentation than pre-
vious superpixel methods with quasi-lattice formation such
as Levinshtein et al. (2009b). Thanks to the spatial consis-
tency between different frames, instead of re-calculation at
each frame, the optimized position of centers could be easily
transferred by methods like SIFT flow (Liu et al. 2009) or
optical flow (Lucas and Kanade 1981). SIFT flow gives bet-
ter correspondence, but it takes more time to perform a dense
matching. Here, we conducted the superpixel flow based
on the popular Lucas–Kanade (LK) algorithm to find stable

123

Int J Comput Vis (2013) 103:1–21 19

Fig. 25 Qualitative
segmentation comparison
between our approach and
TurboPixel. a F-measure versus
the superpixel number and
b F-measure versus the
solution number

0 100 200 300 400 500
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Our approach
TurboPixels

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Our approach
TurboPixels

(a) (b)

(a) Frame #4 (b) Frame #5 (c) Frame #14 (d) Frame #15

Fig. 26 Results of a video’s over-segmentation in multiple frames. The first row: superpixel segmentation results from our algorithm. The second
row: optical flow at the centers’ positions. The red arrows indicate the stable transfers from current center position to that of next frame (Color
figure online)

correspondent centers between adjacent frames. In the video
segmentation scenario, initial seeds have already been given
a structure-sensitive placement which was optimized using
the former frame. This informs us that the algorithm could
converge much faster for the later frames.

Figure 26 gives an example of our video segmentation.
The first row shows the superpixel segmentation results and
the second row shows the center transfer between adjacent
frames, in which the red arrow indicates the seeds’ move-
ment. The transferred centers are always the ones at structure
dense regions such as the place on the car. These regions are
more important for avoiding under-segmentation, and thus
the transferring is satisfactory in most cases. Notice that
besides the first frame, the latter frames cost only 2s−4s
for images around 300 × 500.

7 Conclusion

We proposed a structure-sensitive over-segmentation algo-
rithm for computing superpixels for images. It greatly

limits under-segmentation by considering the homogeneity
of image appearance, density of image contents, compactness
of shape, and regularity of layout. The over-segmentation
can be formulated as a soft clustering problem by exploit-
ing geodesic distance, and a local optimal solution could
be obtained via geometric flows and an efficient itera-
tive optimization strategy through inducing center splitting.
Experimental results on the Berkeley segmentation dataset
demonstrate that our algorithm outperforms many state-of-
the-art approaches, whilst the running time of the algorithm
is fully adoptable for many practical usage.

Additionally, we discussed another optimization strategy
inducing merging, while it gives similar performance with
purely splitting strategy. At last, we provided several poten-
tial applications, e.g. supervised segmentation, image com-
pression and video segmentation, and show the superiority of
our structure-sensitive setting superpixel method compared
with grid layout setting methods, such as TurboPixels.

Acknowledgments This work is supported by National Nature Sci-
ence Foundation of China (NSFC Grant) 61005037 and 90920304,

123

20 Int J Comput Vis (2013) 103:1–21

National Basic Research Program of China (973 Program) 2011CB302202,
and Beijing Natural Science Foundation (BJNSF Grant) 4113071.

References

Alpert, S., Galun, M., Basri, R., & Brandt, A. (2007). Image segmen-
tation by probabilistic bottom-up aggregation and cue integration.
In CVPR.

Arbelaez, P., Maire, M., Fowlkes, C. C., & Malik, J. (2009). From
contours to regions: An empirical evaluation. In CVPR (pp. 2294–
2301).

Bai, X., & Sapiro, G. (2007). A geodesic framework for fast interactive
image and video segmentation and matting. In ICCV (pp. 1–8).

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5), 603–619.

Criminisi, A., Sharp, T., & Blake, A. (2008). Geos: Geodesic image
segmentation. In ECCV (pp. 99–112).

Dollár, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges
and object boundaries. In CVPR (Vol. 2, pp. 1964–1971).

Du, Q., Emelianenko, M., & Ju, L. (2006). Convergence of the lloyd
algorithm for computing centroidal voronoi tessellations. SIJNA:
SIAM Journal on Numerical Analysis, 44, 102–119.

Feil, B., & Abonyi, J. (2007). Geodesic distance based fuzzy cluster-
ing. Lecture notes in computer science, soft computing in industrial
applications (pp. 50–59).

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based
image segmentation. International Journal of Computer Vision,
59(2), 167–181.

Fulkerson, B., Vedaldi, A., & Soatto, S. (2009). Class segmentation
and object localization with superpixel neighborhoods. In ICCV
(pp. 670–677).

Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A.
(2010). Geodesic star convexity for interactive image segmentation.
In CVPR (pp. 3129–3136).

Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. In
B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), NIPS (pp. 545–552).
Cambridge, MA: MIT Press.

He, X., Zemel, R. S., & Ray, D. (2006). Learning and incorporating top-
down cues in image segmentation. In ECCV (Vol. 1, pp. 338–351).

Hoiem, D., Efros, A. A., & Hebert, M. (2005). Geometric context from
a single image. In ICCV (pp. 654–661).

Hyvärinen, A. (1999). The fixed-point algorithm and maximum like-
lihood estimation for independent component analysis. Neural
Processing Letters, 10(1), 1–5.

Jolliffe, I. T. (1986). Principal component analysis. In Principal com-
ponent analysis. New York: Springer.

Kaufhold, J. P., Collins, R., Hoogs, A., & Rondot, P. (2006). Recognition
and segmentation of scene content using region-based classification.
In ICPR (Vol. 1, pp. 755–760).

Kim, J., Shim, K. H., & Choi, S. (2007). Soft geodesic kernel k-means.
In ICASSP (pp. 429–432).

Levinshtein, A., Dickinson, S. J., & Sminchisescu, C. (2009a). Multi-
scale symmetric part detection and grouping. In ICCV (pp. 2162–
2169).

Levinshtein, A., Sminchisescu, C., & Dickinson, S. J. (2010). Optimal
contour closure by superpixel grouping. In ECCV (Vol. 2, pp. 429–
493).

Levinshtein, A., Stere, A., Kutulakos, K. N., Fleet, D. J., Dickinson,
S. J., & Siddiqi, K. (2009b). Turbopixels: Fast superpixels using geo-
metric flows. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(12), 2290–2297.

Li, Y., & Chung, S. M. (2007). Parallel bisecting k-means with pre-
diction clustering algorithm. The Journal of Supercomputing, 39,
19–37.

Liu, C., Yuen, J., & Torralba, A. (2009). Nonparametric scene pars-
ing: Label transfer via dense scene alignment. In CVPR (pp. 1972–
1979).

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transac-
tions on Information Theory, 28, 128–137.

Lucas, B., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the
DARPA image understanding workshop (pp. 121–130).

Maire, M., Arbelaez, P., Fowlkes, C., & Malik, J. (2008). Using contours
to detect and localize junctions in natural images. In CVPR.

Malisiewicz, T., & Efros, A. A. (2007). Improving spatial support for
objects via multiple segmentations. In BMVC.

Martin, D. R., Fowlkes, C., & Malik, J. (2004). Learning to detect natural
image boundaries using local brightness, color, and texture cues.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5), 530–549.

Martin, D. R., Fowlkes, C., Tal, D., & Malik, J. (2001). A database
of human segmented natural images and its application to evalu-
ating segmentation algorithms and measuring ecological statistics.
In ICCV (pp. 416–425).

Meyer, F., & Maragos, P. (1999). Multiscale morphological segmenta-
tions based on watershed, flooding, and eikonal PDE. In Scale space
(pp. 351–362).

Micusík, B., & Kosecká, J. (2010). Multi-view superpixel stereo in
urban environments. International Journal of Computer Vision,
89(1), 106–119.

Moore, A. P., Prince, S. J. D., & Warrell, J. (2010). “lattice
cut”—Constructing superpixels using layer constraints. In CVPR
(pp. 2117–2124).

Moore, A. P., Prince, S., Warrell, J., Mohammed, U., & Jones, G. (2008).
Superpixel lattices. In CVPR.

Moore, A. P., Prince, S. J. D., Warrell, J., Mohammed, U., & Jones
G. (2009). Scene shape priors for superpixel segmentation. In ICCV
(pp. 771–778).

Mori, G. (2005). Guiding model search using segmentation. In ICCV
(pp. 1417–1423).

Muhr, M., & Granitzer, M. (2009). Automatic cluster number selection
using a split and merge K-means approach. In A. M. Tjoa & R.
Wagner (Eds)., DEXA workshops (pp. 363–367). IEEE Computer
Society.

Nwogu, I., & Corso, J. J. (2008). (bp)2: Beyond pairwise belief propa-
gation labeling by approximating kikuchi free energies. In CVPR.

Peyré, G., Péchaud, M., Keriven, R., & Cohen, L. D. (2010). Geodesic
methods in computer vision and graphics. Foundations and Trends
in Computer Graphics and Vision, 5(3–4), 197–397.

Radhakrishna, A., Appu, S., Kevin, S., Aurelien, L., Pascal, F., &
Susstrunk, S. (2010). Slic superpixels. Technical Report 149300
EPFL (June), p. 15.

Rasmussen, C. (2007). Superpixel analysis for object detection and
tracking with application to UAV imagery. In Advances in visual
computing (Vol. I, pp. 46–55).

Russell, B. C., Freeman, W. T., Efros, A. A., Sivic, J., & Zisserman, A.
(2006). Using multiple segmentations to discover objects and their
extent in image collections. In CVPR (Vol. 2, pp. 1605–1614).

Savaresi, S. M., & Boley, D. (2004). A comparative analysis on the
bisecting K-means and the PDDP clustering algorithms. Intelligent
Data Analysis, 8(4), 345–362.

Sethian, J. (1996a). A fast marching level set method for monotonically
advancing fronts. Proceedings of the National Academy of Sciences,
93, 1591–1694.

Sethian, J. A. (1996b). A fast marching level set method for monoton-
ically advancing fronts. Proceedings of the National Academy of
Sciences, 93(4), pp. 1591–1595.

123

Int J Comput Vis (2013) 103:1–21 21

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8), 888–905.

Shotton, J., Winn, J. M., Rother, C., & Criminisi, A. (2006). Texton-
Boost: Joint appearance, shape and context modeling for multi-
class object recognition and segmentation. In ECCV (Vol. 1,
pp. 1–15).

Tai, X. C., Hodneland, E., Weickert, J., Bukoreshtliev, N. V.,
Lundervold, A., & Gerdes, H. H. (2007). Level set methods for water-
shed image segmentation. In Scale-space (pp. 178–190).

Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and super-
voxels in an energy optimization framework. In ECCV (Vol. 5,
pp. 211–224).

Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: An effi-
cient algorithm based on immersion simulations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(6), 583–598.

Wang, J., Jia, Y., Hua, X. S., Zhang, C., & Quan, L. (2008). Normalized
tree partitioning for image segmentation. In CVPR.

Wang, S., Lu, H., Yang, F., & Yang, M. H. (2011). Superpixel tracking.
In ICCV (pp. 1323–1330).

Xiao, J., & Quan, L. (2009). Multiple view semantic segmentation for
street view images. In ICCV (pp. 686–693).

Yatziv, L., Bartesaghi, A., & Sapiro, G. (2006). O(n) implementation
of the fast marching algorithm. Journal of Computational Physics,
212(2), 393–393.

123

	Structure-Sensitive Superpixels via Geodesic Distance
	Abstract
	1 Introduction
	1.1 Our Approach

	2 Problem Formulation via Geodesic Distance
	2.1 Energy Minimization
	2.1.1 Homogeneity Penalization
	2.1.2 Structure Penalization

	3 Iterative Optimization
	3.1 Weight Estimation
	3.1.1 The Geodesic Distance Computation
	3.1.2 Weight Approximation for Acceleration

	3.2 Center Refinement
	3.2.1 Center Splitting

	3.3 Initialization and Termination
	3.3.1 Initial Seeds Placement
	3.3.2 Termination Conditions

	3.4 Algorithm Complexity and Convergence

	4 Alternative Strategy for Optimization
	4.1 Center Merging
	4.2 Discussion Between Splitting and Splitting-Merging
	4.3 Acceleration Scheme for Optimization

	5 Experimental Evaluations
	5.1 Parameter Settings
	5.2 Quantitative Evaluation
	5.2.1 Under-Segmentation Error
	5.2.2 Boundary Recall
	5.2.3 Achievable Segmentation Accuracy (ASA)
	5.2.4 Time Cost

	5.3 Qualitative Results
	5.3.1 Combination with Supervised LEARNT EDGE Maps
	5.3.2 Combination with Image Saliency

	6 Applications
	6.1 Image Compression
	6.2 Foreground Object Contour Closure and Segmentation
	6.3 Video Segmentation

	7 Conclusion
	Acknowledgments
	References

