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Abstract Gradient-domain compositing is an essential tool
in computer vision and its applications, e.g., seamless
cloning, panorama stitching, shadow removal, scene com-
pletion and reshuffling. While easy to implement, these
gradient-domain techniques often generate bleeding arti-
facts where the composited image regions do not match. One
option is to modify the region boundary to minimize such
mismatches. However, this option may not always be suffi-
cient or applicable, e.g., the user or algorithm may not allow
the selection to be altered. We propose a new approach to
gradient-domain compositing that is robust to inaccuracies
and prevents color bleeding without changing the boundary
location. Our approach improves standard gradient-domain
compositing in two ways. First, we define the boundary gra-
dients such that the produced gradient field is nearly inte-
grable. Second, we control the integration process to con-
centrate residuals where they are less conspicuous. We show
that our approach can be formulated as a standard least-
squares problem that can be solved with a sparse linear sys-
tem akin to the classical Poisson equation. We demonstrate
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results on a variety of scenes. The visual quality and run-
time complexity compares favorably to other approaches.
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1 Introduction

Gradient-domain compositing is an essential technique at
the core of many computer vision applications such as
seamless cloning (Prez et al. 2003; Agarwala et al. 2004;
Georgiev 2006; Jia et al. 2006), panorama stitching (Levin
et al. 2006; Agarwala 2007; Sivic et al. 2008), inpainting
(Whyte et al. 2009), shadow removal (Finlayson et al. 2009),
scene completion (Hays and Efros 2007), and reshuffling
(Cho et al. 2010). These methods first delineate the compos-
ited regions, then compute a target gradient field and bound-
ary conditions from these regions, and finally solve the Pois-
son equation to reconstruct an image. A major issue with
gradient-domain compositing is that the combined gradient
field may not be integrable; that is, an image with gradients
that match the target field as well as the specified boundary
conditions may not exist. Existing work mitigates this is-
sue by moving the boundary to more carefully combine the
merged regions. However, when the combined images are
widely different, this strategy may not be sufficient. Or, if
the user has specified the boundary by hand, he or she may
not want it to be altered. For instance in Fig. 1, the selection
cannot be modified because the tree trunks have to abut the
pyramids. Even with boundary refinement, the target gradi-
ent fields may be far from integrable, yielding color leaks
and halos typical of Poisson-based methods.

In this paper, we present an algorithm for minimizing
artifacts in gradient-domain image compositing. We char-
acterize the origin of typical bleeding artifacts and analyze
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Fig. 1 We present an image-compositing technique tolerant to selec-
tion inaccuracies. In this example, a user wishes to add trees to an im-
age of the Egyptian pyramids, but it is not possible to select the trees
without cutting through the foliage (a). Moreover, to ensure a good
insertion behind the pyramids, it is not possible to modify the selec-

tion boundary. A direct copy of the pixels yields a undesirable vis-
ible seam (b). Standard gradient-domain compositing minimizes the
seam, but leads to bleeding artifacts where the foliage is cut (c). Our
method characterizes where color leakage should be avoided, produc-
ing a seamless composite without bleeding artifacts (d)

the image to locate the areas where they would be most and
least conspicuous. Based on this analysis, we propose a two-
step algorithm. First, we process the gradient values on the
boundary to minimize artifacts in regions where bleeding
would be visible. Second, we describe a weighted integra-
tion scheme that reconstructs the image from its gradient
field so that residuals are located in textured regions where
they are less visible. Our results show that the combina-
tion of these two steps yields significantly better compos-
ites. Moreover, our method is formulated as a least-squares
optimization that can be solved using a sparse linear system,
which makes our approach computationally efficient. We
demonstrate our approach on scenarios in which boundary
mismatches are likely to occur: user-driven seamless cloning
(Prez et al. 2003), heterogeneous panorama stitching (Sivic
et al. 2008), and scene reshuffling (Cho et al. 2010).

1.1 Related Work

Gradient-domain techniques are useful to a variety of prob-
lems in computer vision, including image stitching, intrinsic
images, shadow removal, and shape-from-shading (Levin
et al. 2006; Tappen et al. 2005; Finlayson et al. 2006;
Agrawal et al. 2006; Bhat et al. 2009). In most of these
problems, the gradient field contains non-integrable regions
and many authors have noted that reconstruction artifacts
are often due to boundary conditions. As a result, a vari-
ety of methods have been introduced to minimize artifacts
by refining the boundary location (Agarwala et al. 2004;
Jia et al. 2006; Levin et al. 2006; Lalonde et al. 2007).
Rather than moving the boundary, which may not always
be possible, we focus on reconstructing the final image from
the target gradient field once the boundary is specified. Our
approach is complementary and orthogonal to boundary-
refinement methods. We show that our image analysis com-
bined with a careful study of the numerical scheme reduces
visible artifacts. Our approach could benefit many computer
vision algorithms that rely on gradient-domain reconstruc-
tion as a subroutine.

The general formulation of the gradient-domain recon-
struction problem is to seek an image I that approximates
the target field v in a least-squares sense (with ∇ , the gradi-
ent operator):

argmin
I

∫
‖∇I − v‖2 (1)

which can be minimized by solving the Poisson equation:

�I − div(v) = 0 (2)

where � is the Laplacian operator ∂2/∂x2 + ∂2/∂y2 and
div is the divergence operator ∂/∂x + ∂/∂y. To solve this
equation, one also needs boundary conditions that depend
on the application. After solving for �I , I and I + k, where
k is a constant, can satify the equation. Usually one or more
data terms are used to bind the k to a certain value. We il-
lustrate how to compute the target gradient v in the context
of seamless compositing using three inputs: the background
image, B; the foreground image, F ; and a selection, S with
a boundary β (Levin et al. 2006).

v(x, y) =

⎧⎪⎨
⎪⎩

∇F if (x, y) ∈ S, (x, y) /∈ β

∇B if (x, y) /∈ S
1
2 (∇F + ∇B) if (x, y) ∈ β

(3)

Other cases such as panorama stitching are similar except
that the images are not named “foreground” and “back-
ground.” For the sake of simplicity, we will name the images
foreground and background.

The gradients from the foreground image F and back-
ground image B are integrable since they are computed di-
rectly from images. But the gradients along the boundary
between the two images may not be integrable, creating a
source of errors that the integration routine must manage.
Farbman et al. (2009) address this issue by relying on users
to identify the leaks. The gradients of marked regions are ig-
nored, which removes the leaks. In comparison, our method
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analyzes the image to automatically adapt the integration
process. Our approach shares similarities with the method of
Lalonde et al. (2007) who propose to take the image gradient
magnitude into account during the reconstruction process.
However, color leaks may still appear with this technique
when boundaries are not accurate.

Besides image compositing, gradient-domain methods
have also been used in computer vision for surface recon-
struction problems, such as shape-from-shading and photo-
metric stereo. In these problems, an algorithm estimates the
gradient of a surface at every pixel and then a robust Poisson
solver is used to find the surface that best fits the estimated
gradients. We refer to the recent work of Agrawal et al.
(2006), Reddy et al. (2009), and the references therein for
detail. Although image compositing and robust integration
techniques both reconstruct a 2D signal from its gradients,
the two problems are fundamentally different. The gradients
from surface-reconstruction methods are noisy everywhere,
whereas image-compositing gradients are problematic only
at the boundary between foreground and background. In this
paper, we exploit this specificity to improve the quality of
the results. We also rely on visual masking to locate integra-
tion residuals where they are less conspicuous.

1.2 Contributions

In this paper, we introduce several contributions:

– Low-curl boundaries. We describe a method that limits
the artifacts by minimizing the curl of the target gradients
on the foreground-background boundary.

– Weighted Poisson equation. We show how to add weights
to the Poisson equation so that integration residuals lie in
textured regions where they are less visible due to visual
masking.

– Efficient non-bleeding compositing. We combine the two
previous contributions to obtain a compositing algorithm
that prevents bleeding artifacts while remaining linear
akin to the original Poisson equation.

1.3 Overview

Our algorithm consists of two steps. First, we focus on the
boundary between the foreground and background regions.
We characterize the origin of the bleeding artifacts and we
show how to modify the gradient field v to minimize them.
The second step focuses on the location of the integration
residuals. We show that artifacts are less visible in textured
regions due to visual masking. We describe an algorithm that
controls the integration residuals such that they are located
in textured areas. In the results section, we show that the
combination of these two steps yields visually superior re-
sults.

Fig. 2 Estimating the curl on a discrete grid. Circles denote pixels
and arrows denote differences between pixels. If the curl is computed
within the foreground region (a), all the derivatives come from F and
the curl is null. The background case is equivalent (not shown). On the
boundary (b), derivatives from diverse sources are used and in general
the curl is not zero

2 Low-Curl Boundary

A necessary condition for a gradient field u to be integrable
is to have a zero curl.1 That is, if there exists an image I such
that ∇I = u, then curl(u) = ∂uy/∂x − ∂ux/∂y = 0. For
example, consider the configuration illustrated in Fig. 2(a).
When all pixels come from one image, in this case the fore-
ground image, the derivatives are consistent and the curl is
zero. Therefore, this region is integrable, i.e., the image can
be reconstructed from its gradients. The same observation
holds for regions from the background image.

In the image compositing problem, a non-integrable gra-
dient field only occurs on the boundary, as illustrated in
Fig. 2(b). On the boundary, the gradient field is a mixture of
two fields and may have non-zero curl since gradients come
from mixed sources. When the gradient field has a non-zero
curl, we cannot minimize the Poisson equation (2) exactly
and residuals remain. These residuals are often visible in
composited images as halos, bleeding, or other artifacts.

2.1 Reducing the Curl on the Boundary

Since the non-integrability of regions along boundary is the
source of artifacts, we seek to alter the desired gradient field
to minimize the bleeding artifacts. Let v represent the de-
sired gradient field of the composited image. To preserve
the visual information of the two images, we do not modify
the foreground or background gradients in v. We only mod-
ify v values on the boundary such that the curl is as small as
possible.

A naive solution would be to seek curl(v) = 0 every-
where. But the following counterexample shows that this
approach would not achieve our goal. Consider the standard
copy-and-paste operation that directly combines the pixel

1Note that for a 2D vector field u = (ux,uy), the curl is a scalar value
that corresponds to the z component of the 3D curl applied to the 3D
vector field (ux,uy,0).
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Fig. 3 Influence of the curl
term. With high weights Wβ , the
composite is seamless but
suffers from bleeding (a). With
low Wβ , bleeding disappears but
seams become visible (b). Our
adaptive approach locally
adjusts the weights to achieve
seamless results with no
leaks (c)

values and produces an image Iseam with visible seams. The
curl of the gradient field of Iseam is null since it is computed
from an actual image. And, inside the selection, gradients
are equal to the foreground values since pixels have been
copied. The same holds outside the selection with the back-
ground values. However, on the boundary, gradients are dif-
ferent from either the foreground or the background, which
generates the seams. We address the shortcomings of this
naive solution by seeking gradient values that minimize the
curl and are close to the gradients of the input images.

A Least-Squares Approach We formulate our goal using
a least-squares energy where the desired gradients v on the
boundary are the unknowns. The first term minimizes the
curl:

∫
β
[curl(v)]2 and the second term keeps the values close

to the input gradients
∫
β
(v−∇F)2 +∫

β
(v−∇B)2. This last

term has the same effect as keeping v close to the average
gradient. We combine the two terms to obtain:

argmin
v

∫
β

([
curl(v)

]2 + Wβ

[
v − 1

2
(∇B + ∇F)

]2)
(4)

where Wβ controls the importance of the second term.

Adaptive Weights Figure 3 shows results for several values
of Wβ . For large Wβ , we only minimize the proximity to the
input gradients, which is the standard gradient compositing
with seamless boundaries but leaking artifacts. For a small
Wβ , we have the naive solution described above where we
only minimize the curl. There are no bleeding artifacts but
the boundary is visible. We combine these two behaviors by
varying the weights according to the local image structure.

Intuitively, a seamless boundary is desirable when both
sides of the boundary are smooth. This is the case for in-
stance when we stitch a sky region with another sky re-
gion. A seamless boundary is also acceptable when both
sides are textured because leaking is a low-frequency phe-
nomenon that will be hidden by visual masking. Figure 5
illustrates this effect that has also been used in the rendering
literature (Drettakis et al. 2007; Ramanarayanan et al. 2007,
2008; Vangorp et al. 2007). In these two cases, we seek high

values for Wβ . But when a textured region is composited
adjacent to a smooth region, we want to prevent bleeding
because such regions would generate unpleasing artifacts on
the smooth side, e.g. in the sky. In this case, we want low
values of Wβ . The following paragraph explains how we
compute Wβ based on the local amount of texture.

Estimating the Local Amount of Texture Our strategy relies
on the presence or absence of texture in a given neighbor-
hood. In this paragraph, we describe a simple and compu-
tationally efficient texture estimator although one could use
other models (Su et al. 2005; Bae et al. 2006). Formally, our
scheme is:

Tσ1,σ2(g) = Gσ1 ⊗ ‖g‖
Gσ2 ⊗ ‖g‖n

(‖g‖) (5)

where g is a gradient field, Gσ is a Gaussian of width σ ,
σ1 and σ2 are two parameters such that σ1 < σ2, ⊗ is the
convolution operator, and n(·) a noise-controlling function.
Our scheme relies on image gradients, for instance T (∇I ) is
the texture map of the image I as shown in Fig. 4. We com-
pare the average amplitude of the gradients in two neighbor-
hoods defined by σ1 and σ2, effectively comparing a small
gradient neighborhood over a larger gradient neighborhood.
If the image is locally textured, then the average in the small
neighborhood will be higher than in the large neighborhood,
corresponding to T > 1. Conversely, T < 1 corresponds to
regions with locally less texture than in the larger neighbor-
hood. This scheme would be sensitive to noise in smooth
regions where gradients are mostly due to noise. We address
this issue with the function n that is equal to 0 for very small
gradient and 1 otherwise. In practice, we use a smooth step
equal to 0 for the bottom 2 % of the intensity scale and 1
for 4 % and above. In our context, the goal is to differentiate
textureless areas from textured regions; the relative amount
of texture in textured regions does not matter. Consequently,
we use the estimator T̄ = min(1, T ) that considers all tex-
tured regions to be equal.

Computing the Boundary Weights Recall that we want Wβ

to be large when both foreground and background regions
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Fig. 4 We illustrate our equation for estimating the local amount of
texture. We use our computed gradient field g, to compute the local
texture. A small Gaussian shown in red and large Gaussian shown in

green are used. To avoid noisy results, we also use a noise controlling
function (Color figure online)

Fig. 5 We show the same dots
on a uniform background (a)
and on a photograph (b) but the
two dots on the tree are not
visible because of the texture of
the foliage

have the same degree of texture, either both smooth or
both textured. If one of them is smooth and the other tex-
tured, we want Wβ to be small. We consider the difference
D = |T̄ (∇F) − T̄ (∇B)| and define Wβ using a function
that assigns a small value w when D is large, 1 when D

is small, and linearly transitions between both values. For-
mally, we use:

Wβ =
{

w if D > τ

min(1,w + λ(1 − D/τ)) otherwise
(6)

where λ and τ control the linear transition. We found that
λ = 4, w = 0.05, τ = 0.005, σ1 = 0.5, and σ2 = 2 work
well in practice. All results are computed with these values
unless otherwise specified.

Discussion Figure 6 illustrates the effect of our approach
that reduces the curl on the compositing boundary. Bleed-
ing artifacts are significantly reduced. In next section, we
describe how to remove the remaining leaks. For color im-
ages, we use RGB gradients in Eq. (5) so that we can dis-
tinguish textures of different colors effectively. Our texture
estimation also assumes some sort of irregularity in the tex-
tured areas. One advantage to this is that in regularly dashed
regions or half-tones, the estimator will register the areas as
less textured, which prevents color bleeding from entering
these regions. As described in our results, we used a simple
scheme to compute textures, but a more complex and accu-
rate texture estimator can also be used. From an efficiency
standpoint, an important characteristic of our approach is
that it can be solved with a sparse linear system since our

least-squares energy (Eq. (4)) involves only sparse linear op-
erators and Wβ depends only on the input data.

3 Controlling the Location of the Residuals

Although our boundary treatment reduces the curl of the gra-
dient field v, in general v is not integrable. As with other
gradient-domain methods, our goal is to produce an image
with a gradient field ∇I as close as possible to v. Our strat-
egy is to modify the Poisson equation (Eq. (2)) in order to
locate the residuals as much as possible in regions where
they will be the least objectionable. Intuitively, we want to
avoid errors in smooth regions such as the sky where they
produce color leaks and halos, and put them in textured ar-
eas where visual masking will conceal the artifacts (Fig. 5).

3.1 Adapting the Poisson Equation

Let’s assume that we have a scalar map WP with high val-
ues in regions where errors would be visible and low values
otherwise. We discuss later how to compute such a function
using our texture estimator T̄ . Given WP, we modulate the
least-squares strength so that we penalize less the regions
where we prefer the residuals to be, that is, regions with low
WP values:

argmin
I

∫
WP‖∇I − v‖2 (7)

Since we want to reduce the difference between ∇I and v,
WP has to be strictly positive everywhere. Moreover, to keep
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Fig. 6 We illustrate the effect of the two parts in our approach: curl
reduction at the boundary and weighted reconstruction. As a compar-
ison, the Poisson reconstruction (a) exhibits high residuals, (e), and
curl not equating zero, (i), at badly cut regions. Our boundary weights
minimize the residuals at badly cut regions (f). The weights illustrated
in black adhere to curl equating to zero (j). As a result, the edges are
more well-defined as seen in (b). With the weighted reconstruction,

the residuals account for the texture of the image as shown in (g). The
weights are shown in (k), where white areas represent astringent con-
trol of bleeding (g). By combining the curl reduction and weighted
reconstruction, the residuals of the edges are reduced while texture is
respected in (h). As a result, areas with curl not equating to zero are
minimized as shown in (l), producing a more desirable result (d) (Color
figure online)

our approach computationally efficient, we will design WP

such that it does not depend on the unknown image I . In
this case, Eq. (7) is a classical least-squares functional that
can be minimized by solving a linear system. To obtain a
formula similar to the Poisson equation (2), we apply the
Euler-Lagrange formula (Aubert and Kornprobst 2002). Re-
call that WP does not depend on I . Thus, we obtain the fol-
lowing linear system:

div
(
WP(∇I − v)

) = 0 (8)

In Sect. 3.2, we show that although this equation is simple,
it has favorable properties.

Computing the Weights To keep our scheme linear, we do
not use any quantity related to the unknown I . We use the
desired gradient field v to estimate the texture location in
the image. Although v is not equal to the gradient of the fi-
nal output, it is a good approximation that is sufficient to

compute the weights WP. Since we want high weights in
smooth regions and low weights in textured areas, we use
the following formula: WP = 1 −pT̄ (v) where p is a global
parameter that indicates how much we control the residual
location. For instance, p = 0 corresponds to no control, that
is, to the standard Poisson equation, whereas larger values
impose more control. p has to be strictly smaller than 1 to
keep WP > 0. We found that values close to 1 performs bet-
ter in practice. We use p = 0.999 in all our results. We also
found that it is useful to have a more local estimate of the
texture, which we achieve using σ1 = 0 to compute T̄ while
keeping the other parameters unchanged. Figure 6 shows a
sample weight map.

3.2 Analysis of the Residual Structure

Independent of the actual definition of WP, we can show that
the residuals produced by our approach have structure that
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Fig. 7 We compare several approaches on an example where we
composite a tree on a sky background. To test the robustness against
selection accuracies, we introduce three errors (a): a small error on the
left, a large error on the right, and the trunk is inserted in the ground.
A direct copy-and-paste produces an image with visible seams in the
sky region (b). Poisson compositing (Prez et al. 2003) (c), maximum
gradient (Prez et al. 2003) (d), diffusion (Agrawal et al. 2006) (e),

Photo Clip Art (Lalonde et al. 2007) (f), and robust Poisson recon-
struction using the L1 norm (Reddy et al. 2009) (g) generate seamless
boundaries but suffer from bleeding artifacts where the selection cuts
through the foliage and also at the contact between the trunk and the
ground. In comparison, our method (h) produces artifact-free results.
We provide more comparisons in supplemental material

is aligned with the image content. Wang et al. (2004) have
demonstrated that such structural similarity produces more
acceptable results. To better understand the role of WP, we
distribute the divergence in Eq. (8): WP div(∇I −v)+∇WP ·
(∇I −v) = 0. With WP �= 0, the relation div(∇I ) = �I , and
the logarithmic gradient ∇WP/WP = ∇ logWP, we obtain:

�I − div(v)︸ ︷︷ ︸
Poisson term

+∇ logWP · (∇I − v)︸ ︷︷ ︸
new term

= 0 (9)

The left term is the same as the standard Poisson equa-
tion (2) while the right term is new. In regions where WP is
constant, the new term is null and our scheme behaves as the
Poisson equation, that is, it spreads the residuals uniformly.
In other regions where WP varies, our scheme differs from
the Poisson equation and allows for discontinuities in the
residual. Since WP measures the amount of texture, it means
that residual variations are aligned with texture edges, which
ensures the structural similarity that has been shown desir-
able by Wang et al. (2004). We provide illustrations of this
property in Fig. 6.

3.3 Relationship with Existing Methods

For this section, we make explicit the variable WP, that
is, Eq. (7) becomes

∫
WP(v)‖∇I − v‖2, and Eq. (8),

div(WP(v) (∇I − v)) = 0. We discuss the relationships
among our work and related methods independently of the
actual definition of WP.

The Poisson Equation and its Variants Rewriting the Pois-
son equation (2) as div(∇I − v) = 0, we see that our lin-
ear system has the same complexity since we do not intro-
duce new unknowns nor new coefficients in the system; we
only reweight the coefficients. Agrawal et al. (2006) also de-
scribe an anisotropic variant that is linear. However, while
this method performs well in shape-from-shading, it does
not prevent bleeding when applied to image compositing
(Fig. 7). The L1 reconstruction method that Reddy et al.
(2009) propose in the context of shape-from-shading has the
same difficulty with image compositing (Fig. 7).

Edge-preserving Filtering Our method is also related to
Farbman’s edge-preserving filter (Farbman et al. 2008) that
minimizes an attachment term plus

∫
WP(I0)‖∇I‖2 where

I0 is the input image. Farbman projects the formula on
the x and y axes but we believe that it does not have a
major impact on the results. More importantly, Farbman’s
method and ours share the idea of using a modulation WP

that depends on fixed quantities and preserves the least-
squares nature of the problem; Farbman uses the input im-
age I0 and we use the target gradient field v. Finally, our
work has common points with Perona and Malik’s nonlin-
ear anisotropic diffusion filter (Perona and Malik 1990):
∂I/∂t = div(WP(∇I ) ∇I ). The difference is that our mod-
ulation term WP is not a function of the image I which
makes our equation linear, and we have a term ∇I − v in-
stead of ∇I , which can be interpreted as Perona and Malik
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Fig. 8 We numerically evaluate bleeding introduced by different
methods. We selected two 11 × 11 regions in the tree example (Fig. 7),
one within the textured area below the trunk and one in the sky on right
of the foliage. We compute the L2 RGB difference between the image
before and after compositing, normalized relative to Poisson composit-
ing; that is, 100 % indicates as much bleeding as Poisson and 0 % in-
dicates no bleeding. In the textured region (left), all methods bleed but

the bleeding is masked by the high frequency texture. In the textureless
area (right), most methods cause visible bleeding, which is particularly
visible in this smooth region. The L1-norm and our method achieve
similarly low values which confirm minimal bleeding. But in a num-
ber of cases, the L1-norm method introduces an undesirable color cast
shown in the tree example, whereas our method yields a satisfying out-
put

“diffuse gradients” whereas we “diffuse integration residu-
als.”

4 Results

We demonstrate our approach on a typical hand-made com-
positing scenario which may generate inaccurate selections
(Figs. 7, 13, and 15). We also show that our approach ap-
plies to heterogeneous panorama stitching (Sivic et al. 2008)
(Fig. 12) and image reshuffling (Cho et al. 2010) (Fig. 14).
More results are in our supplemental material. All the re-
sults are computed using the same parameters unless oth-
erwise specified. These settings performed well in all of our
experiments. Parameter variations are also shown in the sup-
plemental material.

Quantitative Evaluation We use direct compositing and
Poisson compositing as baselines to estimate how much
bleeding occurs. For direct compositing, we directly copy
pixel values and the result Id exhibits visible seams but not
bleeding. For Poisson compositing, we copy gradient values
and solve the Poisson equation. The result IP is seamless but
colors leak where the selection is inaccurate. Then we con-
sider an image I , pick a pixel p in the potential leaking area,
and compute: ‖I (p)−Id(p)‖/‖IP(p)−Id(p)‖. Expressed in
percentages, 0 % indicates no bleeding at all and 100 % in-
dicates as much bleeding as Poisson compositing. Figure 8
compares the results of several methods on the tree exam-
ple (Fig. 7). In texture areas, all methods including ours in-
troduce significant bleeding. But because of visual mask-
ing, it is mostly invisible and is not an issue. In smooth re-
gions, only the L1-norm method and ours produce nearly
bleeding-free images—however, the L1-norm method also
generates visible artifacts inside the pasted regions whereas
our method does not (Fig. 7). We repeated this experiments

Fig. 9 This plot locates each method according to its speed and how
much bleeding it introduces in the sky region on Fig. 7 as reported
in Fig. 8. Our method is as fast as the standard Poisson solver while
introducing almost no bleeding. In comparison, the other methods are
slower and generate color leaks. Note that the L1 method does not
produce bleeding artifact on this example but it creates a severe color
cast (Fig. 7)

on smooth regions in several images and obtained equivalent
results. Existing methods perform well on average but also
fail in some cases. In comparison, our approach always im-
proves over standard Poisson compositing (Fig. 10). These
quantitative results follow closely with human perception of
the residual errors as described in Fig. 5.

Parameter Changes In this section, we will refer to Eqs. (5)
and (6) and explore the impact parameters make on the re-
sults.

Changing λ affects the adaptivity of using seamless or
hard egdes around the selection. With a low value of λ

(λ � 1), the boundaries of the selection will have seams.
However, with a high λ value (λ � 1), we get a larger adap-
tation ability of around the boundaries. This disadvantage of
high values is that results can be unpredictable as boundaries
may vary greatly in different areas. The value used balances
these two properties.
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Fig. 10 Estimation of the amount of bleeding in a textureless area over
several images. All existing methods have performances that largely
vary depending on the image. In particular, all of them sometimes
introduce more bleeding than the original Poisson method. In compari-

son, our approach performs consistently well. The images used for this
test are provided in supplemental material and the code to compute
these values is also included. We have truncated bars larger than 200 %

Fig. 11 In some cases, when
compared to the input (a),
Poisson compositing (b) and our
approach (c) discolor the pasted
region. See text for details

The parameters w and τ effectively control the amount
of leakage coming from the background to the foreground
image. With small values of w or τ (� 1), seams will start
to appear to prevent the leakage. With large values of w or τ

(� 1), leakage from the background to foreground is easily
visible. The value used balances these two properties.

The parameters σ1 and σ2 control the texture estimation.
Too low of a value for σ1 will make the texture-estimation
less discriminative because the operation will become too
local. A high value will also pose the same problem of be-
ing less discriminative because the operation becomes too
global, losing local information. Ideally, σ2 should be a sig-
nificantly larger than σ1, but with too large of σ2, perfor-
mance becomes an issue because we have to use a blur with
a larger kernel.

With the balanced values we chose, the results are robust
throughout many different images. All of our evaluations
and examples are done with the same parameters. Again,
we found that λ = 4, w = 0.05, τ = 0.005, σ1 = 0.5, and
σ2 = 2 work well in practice. All results are computed with
these values unless otherwise specified.

Complexity We compute the final result in two linear steps.
This is equivalent to a single linear system because I is

a linear function of v (Eq. (8)) and v is a linear function
of B and F (Eq. (4)). Further, only sparse operators are
involved: divergence, curl, and weights that correspond to
diagonal matrices. Compared to the Poisson equation, we
solve for the same number of unknowns, that is, the number
of pixels in I . The only overhead is the computation of v,
for which the number of unknowns is orders of magnitude
smaller, since only pixels on the boundary are concerned.
To summarize, our method has the same complexity as the
Poisson equation. In comparison, nonlinear methods (Reddy
et al. 2009) require more complex iterative solvers. Figure 9
shows that our implementation achieves timings similar to
the Poisson reconstruction, resulting in a run-time faster
than most other implementations while introducing almost
no bleeding.

Discussion Although our method produces high quality
outputs, a close examination reveals that the boundary can
be sometimes overly sharp. This minor issue is difficult to
spot at first and less conspicuous than color leaks. Nonethe-
less, matching the sharpness of other edges in the im-
age would be an interesting extension to this work. An-
other promising extension is to combine our method with
optimized boundary selection techniques to further reduce
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Fig. 12 For a heterogeneous panorama, Photoshop Auto Blend (Agar-
wala 2007) produces strong bleeding near the cut. In comparison, our
method significantly improves the result. Our approach also performs

better than to other methods on this challenging case as shown in sup-
plemental material

Fig. 13 Our method also achieves satisfying composite when the entire image is textured

Fig. 14 Compared to the blending approach proposed by Cho et al.
(2010) (a, b), our approach (c, d) improves the result of image reshuf-
fling. We used the same patch locations and boundaries as Cho et al.
but applied our method which yields better results than the Poisson-
based blending proposed in the original article (Cho et al. 2010). In

particular, our result produces more faithful colors but does have local
color leaks as can be seen on the close-up (zoom of a region above the
girl’s hat). This result may be better seen in the supplemental material.
Data courtesy of Tim Cho
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Fig. 15 Sample composites using different methods. We show the
3 existing techniques that usually perform best and our method. The
method based on diffusion tenors and the one by Lalonde et al. reduce
the bleeding artifacts but they nonetheless remain visible. The L1-

norm approach regularly achieves artifact-free results but sometimes
completely fails, e.g. “the man on the roof”. Our method consistently
produces satisfying results

bleeding artifacts. As other gradient-domain methods, our
method can yield some discoloration (Fig. 11 and supple-
mental material). This effect is often desirable to achieve
seamless blending. If one wishes to preserve the original
colors, matting can be a solution but it often requires a
more careful user input. We also found that our approach

is useful in challenging applications such as heterogeneous
panorama stitching (Sivic et al. 2008) where mismatches
are common place (Fig. 12). In this case, we found that
our method performs better with a smoother transition from
seamless and leak-free compositing, which is achieved by
setting τ = 0.01 in Eq. (6). We also tested our algorithm on
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images where texture is present everywhere to confirm that
it is also able to achieve seamless composites in this case
(Fig. 13).

5 Conclusion

We have described an image-compositing method that is ro-
bust to selection inaccuracies. The combination of low-curl
boundaries and a weighted reconstruction based on visual
masking produces artifact-free results on a broad range of
inputs, in particular where other methods have difficulties.
In addition, the solution is linear and has similar complex-
ity to the standard Poisson equation. With robust results and
speed, our method is a suitable replacement for the standard
Poisson equation in many computer vision applications.
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