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Abstract We propose a novel distributed algorithm for the
minimum cut problem. Motivated by applications like vol-
umetric segmentation in computer vision, we aim at solv-
ing large sparse problems. When the problem does not fully
fit in the memory, we need to either process it by parts,
looking at one part at a time, or distribute across several
computers. Many MINCUT/MAXFLOW algorithms are de-
signed for the shared memory architecture and do not scale
to this setting. We consider algorithms that work on dis-
joint regions of the problem and exchange messages be-
tween the regions. We show that the region push-relabel al-
gorithm of Delong and Boykov (A scalable graph-cut algo-
rithm for N-D grids, in CVPR, 2008) uses Θ(n2) rounds of
message exchange, where n is the number of vertices. Our
new algorithm performs path augmentations inside the re-
gions and push-relabel style updates between the regions. It
uses asymptotically less message exchanges, O(B2), where
B is the set of boundary vertices. The sequential and parallel
versions of our algorithm are competitive with the state-of-
the-art in the shared memory model. By achieving a lower
amount of message exchanges (even asymptotically lower in
our synthetic experiments), they suit better for solving large
problems using a disk storage or a distributed system.
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1 Introduction

Minimum s–t cut (MINCUT) is a classical combinatorial
problem with applications in many areas of science and
engineering. This research was motivated by the wide use
of MINCUT/MAXFLOW problems in computer vision, where
large sparse instances need to be solved. We start by a more
detailed overview of models and optimization techniques in
vision, where the MINCUT problem is employed and give
examples of our test problems.

1.1 MINCUT in Computer Vision

In some cases, an applied problem is formulated directly
as a MINCUT. More often, however, MINCUT problems in
computer vision originate from the Energy minimization
framework (maximum a posteriori solution in a Markov
random field model). Submodular Energy minimization
problems completely reduce to MINCUT (Ishikawa 2003;
Schlesinger and Flach 2006). When the energy minimization
is intractable, MINCUT is employed in relaxation and local
search methods. The linear relaxation of pairwise Energy
minimization with 0-1 variables reduces to MINCUT (Boros
et al. 1991; Kolmogorov and Rother 2007) as well as the
relaxation of problems reformulated in 0-1 variables (Kohli
et al. 2008). Expansion-move, swap-move (Boykov et al.
1999) and fusion-move (Lempitsky et al. 2010) algorithms
formulate a local improvement step as a MINCUT problem.

Many applications of MINCUT in computer vision use
graphs of a regular structure, with vertices arranged into
an N -D grid and edges uniformly repeated, e.g., 3D seg-
mentation models illustrated in Fig. 1(c), 3D reconstruc-
tion models, Fig. 1(b). Because of such regular structure,
the graph itself need not be stored in the memory, only
the edge capacities, allowing relatively large instances to be
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Fig. 1 Examples of labeling problems in computer vision solved via
maxflow. (a) Stereo and stereo with occlusions (Boykov et al. 1998;
Kolmogorov and Zabih 2001). (b) 3D reconstruction (Lempitsky et al.
2006; Boykov and Lempitsky 2006) and surface fitting (Lempitsky and
Boykov 2007). (c) 3D segmentation (Boykov and Jolly 2001; Boykov
and Funka-Lea 2006; Boykov and Kolmogorov 2003). The instances
are published at the University of Western Ontario web pages (2008)
for benchmarking maxflow implementations

solved by a specialized implementation. However, in many
cases, it is advantageous to have a non-regular structure,
e.g., in stereo with occlusions in Fig. 1(a), in 3D reconstruc-
tion with adaptive tetrahedral volume (Labatut et al. 2009;
Jancosek and Pajdla 2011). Such applications would benefit
from a large-scale generic MINCUT solver.

1.2 Distributed Computation

The previous research mostly focused on speeding up MIN-
CUT by parallel computation in the shared memory model.
We consider a distributed memory model, which assumes
that the computation units have their own separate memory
and exchanging the information between them is expensive.
A distributed algorithm has therefore to divide the com-
putation and the problem data between the units and keep
the communication rate low. We will consider distributed
algorithms, operating in the following two practical usage
modes:

– Sequential (or streaming) mode, which uses a single com-
puter with a limited memory and a disk storage, reading,
processing and writing back a portion of data at a time.

– Parallel mode, in which the units are thought as computers
in a network.

We propose new algorithms for both cases, prove their cor-
rectness and termination guarantees. In the assessment of
complexity, we focus on the costly operations such as load-
unload of the data in the streaming mode or message ex-
changes in the parallel mode. More specifically, we call a
sweep the event when all units of a distributed algorithm
recalculate their data once. Sweeps in our algorithms corre-
spond to outer iterations and their number is roughly propor-
tional to the amount of communication in the parallel mode
or disk operations in the streaming mode. While there are

algorithms with better bounds in terms of elementary oper-
ations, our algorithms achieve lower communication rates.

1.3 Previous Work

A variant of path augmentation algorithm was shown
by Boykov and Kolmogorov (2004) to have the best per-
formance on computer vision problems among sequential
solvers. There were several proposals how to parallelize
it. Partially distributed implementation (Liu and Sun 2010)
augments paths within disjoint regions first and then merges
regions hierarchically. In the end, it still requires finding
augmenting paths in the whole problem. Therefore, it can-
not be used to solve a large problem by distributing it over
several computers or by using a limited memory and a disk
storage. For the shared memory model Liu and Sun (2010)
reported a near-linear speed-up with up to 4 CPUs for 2D
and 3D segmentation problems.

Strandmark and Kahl (2010) obtained a distributed algo-
rithm using a dual decomposition approach. The subprob-
lems are MINCUT instances on the parts of the graph (re-
gions) and the master problem is solved using the subgra-
dient method. This approach requires solving MINCUT sub-
problems with real valued capacities and does not have a
polynomial bound on the number of iterations. The integer
algorithm proposed by Strandmark and Kahl (2010) is not
guaranteed to terminate. Our experiments (Sect. 7.3) showed
that it did not terminate on some of the instances in 1000
sweeps. In Sect. 10, we relate dual variables in this method
to flows.

The push-relabel algorithm (Goldberg and Tarjan 1988)
performs many local atomic operations, which makes it a
good choice for a parallel or distributed implementation.
A distributed version (Goldberg 1991) runs in O(n2) time
using O(n) processors and O(n2√m) messages, where n is
the number of vertices and m is the number of edges in the
problem. However, for a good practical performance it is
crucial to implement gap relabel and global relabel heuris-
tics (Cherkassky and Goldberg 1994). The global relabel
heuristic can be parallelized (Anderson and Setubal 1995),
but it is difficult to distribute. We should note, however, that
the global relabel heuristic was not essential in the experi-
ments with computer vision problems we made (Sect. 7.2).
Delong and Boykov (2008) proposed a coarser granulation
of push-relabel operations, associating a subset of vertices
(a region) to each processor. Push and relabel operations
inside a region are decoupled from the rest of the graph.
This allows to process several non-interacting regions in par-
allel or run in a limited memory, processing few regions
at a time. The gap and relabel heuristics, restricted to the
regions (Delong and Boykov 2008) are powerful and dis-
tributed at the same time. Our work was largely motivated
by Delong and Boykov (2008) and the notice that their ap-
proach might be extendible to augmenting path algorithms.
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However, our first attempt to prioritize augmentation to the
boundary vertices by the shortest distance to the sink did not
lead to a correct algorithm.

1.4 Contribution

In this work we revisit the algorithm of Delong and Boykov
(2008) for the case of a fixed partition into regions. We study
a sequential variant and a novel parallel variant of their al-
gorithm, which allows computation on neighboring interact-
ing regions to run concurrently using a conflict resolution
similar to the asynchronous parallel push-relabel (Goldberg
1991). We prove that both variants have a tight O(n2) bound
on the number of sweeps. The new algorithm we construct
works with the same partition of the graph into regions but is
guided by a different distance function than the push-relabel
one.

Given a fixed partition into regions, we introduce a dis-
tance function which counts the number of region bound-
aries crossed by a path to the sink. Intuitively, it corresponds
to the amount of costly operations—network communica-
tions or loads-unloads of the regions in the streaming mode.
The algorithm maintains a labeling, which is a lower bound
on the distance function. Within a region, we first augment
paths to the sink and then paths to the boundary vertices pri-
oritized by the lowest label. Thus the flow is pushed out of
the region in the direction given by the distance estimate.
We present a sequential and parallel versions of the algo-
rithm which terminate in O(|B|2) sweeps, where B is the
set of all boundary vertices (incident to inter-region edges).

The proposed algorithms are evaluated on instances of
MINCUT problems collected and published by the Computer
Vision Research Group at the University of Western Ontario
(illustrated in Fig. 1). The results are compared against the
state-of-the-art sequential and parallel solvers. We also stud-
ied the behavior of the algorithms w.r.t. problem size, gran-
ularity of the partition, etc. Our implementation is publicly
available at http://cmp.felk.cvut.cz/~shekhovt/d_maxflow.

1.5 Other Related Work

The following works do not consider a distributed im-
plementation but are relevant to our design. The Partial
Augment-Relabel algorithm (PAR) by Goldberg (2008) aug-
ments in each step a path of length k. It may be viewed as a
lazy variant of push-relabel, where actual pushes are delayed
until it is known that a sequence of k pushes can be executed.
The algorithm by Goldberg and Rao (1998) incorporates the
notion of a length function and a valid labeling w.r.t. this
length. It can be seen that the labeling maintained by our
algorithm corresponds to the length function assigning 1 to
boundary edges and 0 to intra-region edges. Goldberg and
Rao (1998) used such generalized labeling in the context of
the blocking flow algorithm but not within the push-relabel.

Fig. 2 (a) Example of a network with indicated edge capacity func-
tion. (b) Augmenting path approach: send flow from the source to the
sink along a path. The residual network defines an equivalent min-cut
problem. (c) Push-relabel approach: the preflow is pushed over arcs
in all directions, prioritized by the shortest distance to the sink. The
equivalent min-cut problem is defined by a network with excess

2 MINCUT and Push-Relabel

We solve MINCUT problem by finding a maximum pre-
flow.1 In this section, we give basic definitions and intro-
duce the push-relabel framework of Goldberg and Tarjan
(1988). While we assume the reader is familiar with min-
cut/maxflow, we explain some known results using the no-
tation adjusted for the needs of this paper.

In the classical framework of minimum cut and maxi-
mum flow, the flow augmentation transforms a minimum cut
problem into an equivalent one on the residual network (pre-
serving costs of all cuts up to a constant). However, there
is no equivalent minimum cut problem corresponding to
an augmentation of a preflow. In the push-relabel approach
of Goldberg and Tarjan (1988), this is not essential, as only
single residual arcs need to be considered and algorithms
can be formulated as working with a pair of a network and
a preflow. In this paper, we need to work with residual paths
and the reachability in the residual network. We therefore
use the extended definition of the minimum cut problem,
which includes a flow excess (or supply) in every vertex. Af-
ter this extension, the family of equivalent min-cut problems
becomes closed under preflow augmentations. This allows
us to formulate algorithms more conveniently as working
with the current residual network and constructing a preflow
increment. This point is illustrated in Fig. 2.

By a network we call the tuple G = (V ,E, s, t, c, e),
where V is a set of vertices; E ⊂ V × V is the set of edges,
thus (V ,E) is a directed graph; s, t ∈ V , s �= t , are source
and sink, respectively; c : E → N0 is a capacity function;
and e : V → {0,1, . . . ,∞}, e(t) = 0, e(s) = ∞ is an excess
function. We also denote n = |V | and m = |E|.

1A maximum preflow can be completed to a maximum flow using the
flow decomposition, in O(m logm) time. Because we are primarily in-
terested in the minimum cut, we do not consider this step or whether it
can be distributed.

http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
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For any sets X,Y ⊂ V we will denote (X,Y ) =
E ∩ (X × Y). For C ⊂ V such that s ∈ C, t /∈ C, the set
of edges (C, C̄), with C̄ = V \C is called an s–t cut. The
MINCUT problem is

min

{ ∑
(u,v)∈(C,C̄)

c(u, v)+
∑
v∈C̄

e(v)
∣∣ C ⊂ V, s ∈ C, t ∈ C̄

}
.

(1)

The objective is called the cost of the cut. Note, that excess
in this problem can be equivalently represented as additional
edges from the source, but we prefer the explicit form. With-
out a loss of generality, we assume that E is symmetric—if
not, the missing edges are added and assigned a zero capac-
ity.

A preflow in G is the function f : E → Z satisfying the
following constraints:

f (u, v) ≤ c(u, v) ∀(u, v) ∈ E (capacity constraint)
(2a)

f (u, v) = −f (v,u) ∀(u, v) ∈ E (antisymmetry)
(2b)

e(v) +
∑

u|(u,v)∈E

f (u, v) ≥ 0 ∀v ∈ V (preflow constraint)

(2c)

The constraint (2b) removes the redundancy in the otherwise
independent flow values on (u, v) and (v,u) (positive flows
should naturally cancel each other) and shortens the equa-
tions at the same time.

A residual network w.r.t. preflow f is a network Gf =
(V ,E, s, t, cf , ef ) with the capacity and excess functions
given by

cf = c − f, (3a)

ef (v) = e(v) +
∑

u|(u,v)∈E

f (u, v), ∀v ∈ V \{s, t}. (3b)

By constraints (2a), (2b), (2c) it is cf ≥ 0 and ef ≥ 0. The
costs of all s–t cuts differ in G and Gf by a constant called
the flow value, |f | = ∑

u|(u,t)∈E f (u, t). This can be easily
verified by substituting cf and ef into (1) and expanding.
Network Gf is thus equivalent to network G up to the con-
stant |f | and since all cuts in Gf are non-negative, |f | is a
lower bound on the cost of a cut in G. The problem of max-
imizing this lower bound, i.e. finding a maximum preflow:

max
f

|f | s.t. constraints (2a), (2b), (2c) (4)

is dual to MINCUT. The value of a maximum preflow equals
to the cost of a minimum cut and the solutions are related as
explained below.

We say that w ∈ V is reachable from v ∈ V in the net-
work Gf if there is a path (possibly of length 0) from v to w

composed of edges with strictly positive residual capacities
cf (a residual path). This relation is denoted by v → w.

Let us consider a residual path from v to w such
ef (v) > 0. Augmentation increases the flow by � > 0 on
all forward edges of the path, and decreases it on all reverse
edges, where � does not exceed the residual capacities of
the forward arcs or ef (v). In the result, the excess ef (v) is
decreased and excess ef (w) is increased. Augmenting paths
to the sink increases the flow value. In the augmenting path
approach, the problem (4) is solved by repeatedly augment-
ing residual paths from vertices having excess (e.g., source)
to the sink.

If w is not reachable from v in Gf we write v � w. For
any X,Y ⊂ V , we write X → Y if there exist x ∈ X, y ∈ Y

such that x → y. Otherwise we write X � Y .
A preflow f is maximum iff there is no residual path to

the sink which can be augmented. This can be written as
{v | ef (v) > 0} � t in Gf . In this case the cut (T̄ , T ) with
T = {v ∈ V | v → t in Gf } has value 0 in Gf . Because all
cuts are non-negative it is a minimum cut.

2.1 General Push-relabel

A Distance function d∗ : V → {0,1, . . . , n} in Gf assigns
to v ∈ V the length of the shortest residual path from v to
t , or n if no such path exists. A shortest path cannot have
loops, thus its length is not greater than n − 1. Let us denote
d∞ = n.

A labeling d : V → {0,1, . . . , d∞} is valid in Gf if
d(t) = 0 and d(u) ≤ d(v) + 1 for all (u, v) ∈ E such that
cf (u, v) > 0. Any valid labeling is a lower bound on the
distance d∗ in Gf , however not every lower bound is a valid
labeling.

A vertex v is called active w.r.t. (f, d) if ef (v) > 0 and
d(v) < d∞.

The definitions of reachability and validity are given w.r.t.
the residual network Gf , however expressions like “v → w

in G” or “d is valid in G” are also correct, and will be
needed later in the paper. In particular, we will consider al-
gorithms making some large steps, where a preflow incre-
ment f is computed and then applied to the initial network
by assigning G := Gf . After that, the algorithm continues
with G and resets f .

To ensure that residual paths do not go through the source
and for reasons of efficiency, we make all edges from the
source saturated during the Procedure 1 (an initialization
common to all algorithms in this paper).

The generic push-relabel algorithm by Goldberg and Tar-
jan (1988) maintains a preflow f and a valid labeling d . It
starts with Init and applies the following Push and Re-
label operations while possible:



Int J Comput Vis (2013) 104:315–342 319

Procedure 1: Init
/* saturate source edges */

1 f (s, v) := c(s, v), ∀(s, v) ∈ E;
2 G := Gf ; f := 0; /* apply preflow */

3 d := 0, d(s) := d∞; /* initialize labels */

– Push(u,v), which is applicable if u is active and
cf (u, v) > 0 and d(u) = d(v) + 1. The operation in-
creases f (u, v) by � and decreases f (v,u) by �, where
� = min(ef (u), cf (u, v)).

– Relabel(u), which is applicable if u is active and ∀v |
(u, v) ∈ E, cf (u, v) > 0 it is d(u) ≤ d(v). It sets d(u) :=
min(d∞,min{d(v) + 1 | (u, v) ∈ E, cf (u, v) > 0}).

If u is active then either Push or Relabel operation is
applicable to u. The algorithm preserves validity of the la-
beling and stops when there are no active vertices. Then for
any u such that ef (u) > 0, we have d(u) = d∞ and there-
fore d∗(u) = d∞ and u � t in Gf , so f is a maximum
preflow.

3 Region Discharge Revisited

We now review the approach of Delong and Boykov (2008)
and reformulate it for the case of a fixed graph partition.
We then introduce generic sequential and parallel algorithms
which will be applied with both push-relabel and augment-
ing path approaches.

Delong and Boykov (2008) introduce the following oper-
ation. The discharge of a region R ⊂ V \{s, t} applies Push
and Relabel to v ∈ R until there are no active vertices left
in R. This localizes computations to R and its boundary,
defined as

BR = {
w | ∃u ∈ R (u,w) ∈ E,w /∈ R, w �= s, t

}
. (5)

When a Push is applied to an edge (v,w) ∈ (R,BR), the
flow is sent out of the region. We say that two regions
R1,R2 ⊂ V \{s, t} interact if R1 ∩ R2 �= ∅ or R1 ∩ BR2 �= ∅,
that is they share vertices or they are connected by an edge.
Because Push and Relabel operations work on the indi-
vidual edges, discharges of non-interacting regions can be
performed in parallel. The algorithm proposed by Delong
and Boykov (2008) repeats the following steps until there
are no active vertices in V :

1. Select several non-interacting regions, containing active
vertices.

2. Discharge the selected regions in parallel, applying
region-gap and region-relabel heuristics.

3. Apply the global gap heuristic.

Fig. 3 (a) Partition of a network into 4 regions and the boundary set
B depicted by stars. (b) The region network corresponding to the high-
lighted region in (a)

All heuristics (global-gap, region-gap, region-relabel)
serve to improve the distance estimate. They are very impor-
tant in practice, but do not affect the theoretical properties
and will be discussed in Sect. 5 devoted to the implementa-
tion.

3.1 Region Network

We now take a different perspective on the algorithm. We
consider each region discharge as a proper subproblem to be
solved. Given the states of the boundary edges on the input
(labels and excess), region discharge of region R returns a
flow and a labeling. To define it formally, we first single out
a subnetwork on which region discharge will work.

A region network GR = (V R,ER, s, t, cR, eR) has the
set of vertices V R = R ∪ BR ∪ {s, t}; set of edges ER =
(R ∪ {s, t},R ∪ {s, t}) ∪ (R,BR) ∪ (BR,RR); capacities
cR(u, v) = c(u, v) if (u, v) ∈ ER\(BR,R) and 0 otherwise;
and excess eR = e|R∪{s,t} (the restriction of function e to
its subdomain R ∪ {s, t}). This subnetwork is illustrated in
Fig. 3(b). Note that the capacities of edges coming from the
boundary, (BR,R), are set to zero. Indeed, these edges be-
long to a neighboring region network. The region discharge
operation of Delong and Boykov (2008), which we refer to
as Push-relabel Region Discharge (PRD), can now be de-
fined as shown in Procedure 2.

Procedure 2: PRD(GR ,d)

/* assume d : V R → {0, . . . , d∞} valid in GR
*/

1 while ∃v ∈ R active do
2 apply Push or Relabel to v; /* changes f and

d */
3 apply region gap heuristic (Sect. 5); /* optional

*/
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3.2 Generic Region Discharging Algorithms

While Delong and Boykov (2008) selected the regions dy-
namically, trying to divide the work evenly between CPUs
in each iteration and cover the most of the active vertices,
we restrict ourselves to a fixed collection of regions (Rk)Kk=1
forming a partition (disjoint union) of V \{s, t}. With respect
to this partition we will use shortened notations Bk , Gk ,
V k , Ek , ck , ek to denote the corresponding region boundary
BRk , region network GRk and its respective components. We
also define the boundary B = ⋃

k Bk , which is the set of all
vertices incident to inter-region edges (Fig. 3(a)).

We now define generic sequential and parallel algorithms
which use a black-box Discharge function as a subrou-
tine. The sequential algorithm (Algorithm 1) takes regions
one-by-one from the partition and applies the Discharge
operation to them until there are no active vertices in ei-
ther region. The parallel algorithm (Algorithm 2) calls Dis-
charge for all regions concurrently and then resolves con-
flicts in the flow similarly to the asynchronous parallel push-
relabel of Goldberg and Tarjan (1988). A conflict occurs if
two interacting regions increase their labels on the vertices
of a boundary edge (u, v) simultaneously and try pushing
flow over it (in their respective region networks). In such a
case, we accept the labels, but do not allow the flow to cross
the boundary in one of the directions by the following con-
struction. In step 5 of Algorithm 2, boundary edges, where
the validity condition is potentially violated, are assigned
α = 0 (here, [[]] is the Iverson bracket). The flow fusion in
step 6 disables the flow on such edges (the flow going “up-
wards”). As will be proven later, this correction restores the
validity. The actual implementation does not maintain the
full network G, only the separate region networks. This is
in contrast to Delong and Boykov (2008), who perform all
operations in the global network G.

In the case when the abstract Discharge procedure is
implemented by PRD, the sequential and parallel algorithms
correspond to the push-relabel approach and will be referred
to as S-PRD and P-PRD respectively. S-PRD is a sequential
variant of Delong and Boykov (2008) and P-PRD is a novel
parallel variant. As was mentioned above, the original al-
gorithm by Delong and Boykov (2008) allows to discharge
only non-interacting regions in parallel (in this case there are
no conflicts). To discharge all regions, this approach would
require sequentially selecting subsets of non-interacting re-
gions for processing.2 Our parallel algorithm applies ideas
of Goldberg and Tarjan (1988) to remove this limitation and
process all regions in parallel.

2The number of sequential phases required in a general case is equal to
the minimal coloring of the region interaction graph, i.e. 2 for bipartite
graph and so on.

Algorithm 1: Sequential Discharging

1 Init;
2 while there are active vertices do /* a sweep */
3 for k = 1, . . . ,K do
4 Construct Gk from G;

5 (f ′, d ′) := Discharge(Gk, d|V k );
6 G := Gf ′ ; /* apply f ′ to G */

7 d|Rk := d ′|Rk ; /* update labels */
8 apply global gap heuristic (Sect. 5);

/* optional */

9 Compute the reachability v → t in G, ∀v (Sect. 5.2);

Algorithm 2: Parallel Discharging

1 Init;
2 while there are active vertices do /* a sweep */

/* discharge all regions in parallel

*/
3 (f ′

k
, d ′

k
) := Discharge(Gk, d|V k ) ∀k;

4 d ′|Rk := d ′
k
|Rk ∀k; /* fuse labels */

/* determine valid pairs */
5 α(u, v) := [[d ′(u) ≤ d ′(v) + 1]] ∀(u, v) ∈ (B,B);

/* fuse flows */
6 f ′(u, v) :={

α(v,u)f ′
k
(u, v) + α(u, v)f ′

j
(u, v) if (u, v) ∈ (Rk,Rj )

f ′
k
(u, v) if (u, v) ∈ (Rk,Rk)

7 G := Gf ′ ; /* apply f ′ to G */

8 d := d ′; /* update labels */
9 global gap heuristic (Sect. 5); /* optional */

10 Compute the reachability v → t in G, ∀v (Sect. 5.2);

We prove below that both S-PRD and P-PRD terminate
with a valid labeling in at most 2n2 sweeps. Parallel vari-
ants of push-relabel (Goldberg 1987) have the same bound
on the number of sweeps. However, they perform much sim-
pler sweeps, processing every vertex only once, compared to
S/P-PRD. A natural question is whether O(n2) bound can-
not be tightened for S/P-PRD. In Sect. 9, we give an example
of a graph, its partition into two regions and a valid sequence
of Push and Relabel operations, implementing S/P-PRD
which takes Ω(n2) sweeps to terminate.3 The number of
inter-region edges in this example is constant, which shows
that a better bound in terms of this characteristic is not pos-
sible.

3An algorithm is said to be Ω(f (n)) if for some numbers c′ and n0 and
all n >= n0, the algorithm takes at least c′f (n) time on some problem
instance. Here we measure complexity in sweeps.
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3.3 Complexity of Sequential Push-relabel Region
Discharging

Our proof follows the main idea of the similar result for par-
allel push-relabel by Goldberg (1987). The main difference
is that we try to keep Discharge operation as abstract as
possible. Indeed, it will be seen that proofs of termination
of other variants follow the same pattern, using several im-
portant properties of the Discharge operation, abstracted
from the respective algorithm. Unfortunately, to this end we
do not have a unified proof, so we will analyze all cases sep-
arately.

Statement 1 (Properties of PRD)
Let (f ′, d ′) = PRD(GR,d), then

1. there are no active vertices in R w.r.t. (f ′, d ′) (optimal-
ity),

2. d ′ ≥ d ; d ′|BR = d|BR (labeling monotony),
3. d ′ is valid in GR

f ′ (labeling validity),

4. f ′(u, v) > 0 ⇒ d ′(u) > d(v), ∀(u, v) ∈ ER (flow
direction).

Proof 1. Optimality. This is the stopping condition of PRD.
2, 3. Labeling validity and monotony: labels are never

decreased and the Push operation preserves labeling valid-
ity (Goldberg and Tarjan 1988). Labels not in Rk are not
modified.

4. Flow direction: let f ′(u, v) > 0, then there was a push
operation from u to v in some step. Let d̃ be the labeling
in this step. We have d̃(u) = d̃(v) + 1. Because labels never
decrease, d ′(u) ≥ d̃(u) > d̃(v) ≥ d(v). �

These properties are sufficient to prove correctness and
the complexity bound of S-PRD. They are abstract from
the actual sequence of Push and Relabel operation per-
formed by PRD and for a given pair (f ′, d ′) they are easy
to verify. For correctness of S-PRD we need to verify that it
maintains a labeling, which is globally valid.

Statement 2 Let d be a valid labeling in G. Let f ′ be a
preflow in GR and d ′ be a labeling satisfying properties 2
and 3 of Statement 1. Extend f ′ to E by letting f ′|E\ER = 0
and extend d ′ to V by letting d ′|V \V R = d|V \V R . Then d ′ is
valid in Gf ′ .

Proof We have that d ′ is valid in GR
f ′ . For edges outside

the region network, (u, v) ∈ (V \R,V \R), it is f ′(u, v) = 0
and d ′ coincides with d on V \R. It remains to verify va-
lidity on the boundary edges (v,u) ∈ (BR,R) in the case
cR
f (v,u) = 0 and cf (v,u) > 0. These are the incoming

boundary edges which are zeroed in the network GR . Be-
cause 0 = cR

f (v,u) = cR(v,u) − f (v,u) = −f (v,u), we

have cf (v,u) = c(v,u). Since d was valid in G, d(v) ≤
d(u) + 1. The new labeling d ′ satisfies d ′(u) ≥ d(u) and
d ′(v) = d(v). It follows that d ′(v) = d(v) ≤ d(u) + 1 ≤
d ′(u) + 1. Hence d ′ is valid in Gf ′ . �

Similar to Goldberg (1987), we introduce the potential func-
tion

Φ = max
{
d(v) | v ∈ V, v is active in G

}
. (6)

This value may increase and decrease during the algorithm
run, but the total number of times it can change is bounded.
We first show that for a region discharge on R its increase is
bounded by the total increase of the labeling.

Statement 3 Let (f ′, d ′) satisfy properties 2-4 of State-
ment 1. Let f ′ be extended to E by setting f ′|E\ER = 0
and d ′ be extended to V by setting d ′|V \V R = d|V \V R . Let
G′ = Gf ′ and Φ ′ be the new potential computed for the net-
work G′ and labeling d ′. Then

Φ ′ − Φ ≤
∑
v∈R

[
d ′(v) − d(v)

]
. (7)

Proof Let the maximum in the definition of Φ ′ be attained
at a vertex v, so Φ ′ = d ′(v). Then either v /∈ V R , in which
case Φ ′ ≤ Φ (because the label and the excess of v in
G and G′ are the same), or v ∈ V R and there exists a
path (v0, v1, . . . , vl), vl = v, v0, . . . , vl−1 ∈ R, such that
f ′(vi−1, vi) > 0, i = 1, . . . , l and v0 is active in G. We have
Φ ≥ d(v0), therefore

Φ ′ − Φ

≤ d ′(vl) − d(v0)

=
l∑

i=1

[
d ′(vi) − d ′(vi−1)

] + [
d ′(v0) − d(v0)

]

(a)≤
l∑

i=0

[
d ′(vi) − d(vi)

]

(b)≤
∑

v∈R∪BR

[
d ′(v) − d(v)

] (c)=
∑
v∈R

[
d ′(v) − d(v)

]
, (8)

where inequality (a) is due to the flow direction property
(Statement 1.4) which implies d ′(vi−1) > d(vi). The in-
equality (b) is due to monotony property (Statement 1.2)
and due to vi ⊂ R ∪ BR . The equality (c) is due to d ′|BR =
d|BR . �

We can now state the termination.

Theorem 1 S-PRD terminates in at most 2n2 sweeps.
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Proof Labeling d does not exceed n for every vertex. Be-
cause there are n vertices, d can be increased n2 times at
most.

From Statement 3 it follows that the increase of Φ after
the discharge of region Rk is bounded by the total increase
of d|Rk . Since regions are disjoint, the total increase of Φ

after a sweep of S-PRD is bounded by the total increase of d .
If d has not increased during a sweep (d ′ = d) then Φ

decreases at least by 1. Indeed, let us consider the set of
vertices having the label greater or equal to the label of the
highest active vertex, H = {v | d(v) ≥ Φ}. These vertices do
not receive flow during all discharge operations due to the
flow direction property. After discharging Rk , there are no
active vertices in Rk ∩ H (statement 1.1). Therefore, there
are no active vertices in H after the full sweep.

In the worst case, Φ can increase by one n2 times and
decrease by one n2 times. Therefore, there are no active ver-
tices in G in at most 2n2 sweeps and the algorithm termi-
nates. �

When the algorithm terminates, it outputs a network G,
equivalent to the initial one, a labeling d valid in G and
guarantees that there are no active vertices w.r.t. d . This im-
plies that in the current network G there are no paths form
the vertices with excess to the sink and the cut (T̄ , T ), with
T = {v | v → t in G} is one of the minimum cuts. The issue
how to compute the reachability v → t in G in a distributed
fashion, utilizing d , rather than by breadth-first search in G

is discussed in Sect. 5.2. This is the purpose of the last step
in both of the algorithms.

3.4 Complexity of Parallel Push-relabel Region
Discharging

We will now prove the validity and termination of the par-
allel algorithm using the results of previous section. Proper-
ties similar to Statement 1 will be proven for the fused flow
and labeling (constructed at step 6 of Algorithm 2) and the
bound on the increase of the potential will follow for the
whole network as if it was a single region.

Statement 4 Let d be a valid labeling in the beginning of a
sweep of P-PRD. Then the pair of fused flow and labeling
(f ′, d ′) satisfies:

1. d ′ ≥ d (labeling monotony)
2. d ′ is valid in Gf ′ (labeling validity)
3. f ′(u, v) > 0 ⇒ d ′(u) > d(v), ∀(u, v) ∈ E (flow direc-

tion).

Proof 1. We have d ′|Rk ≥ d|Rk for all k.
2. We have to prove validity for the boundary edges,

where the flow and the labeling are fused from different re-
gions. It is sufficient to study the two regions case. Denote

the regions R1 and R2. The situation is completely symmet-
ric w.r.t. orientation of a boundary edge (u, v). Let u ∈ R1

and v ∈ R2. Let only d ′(v) ≤ d ′(u) + 1 be satisfied and not
d ′(u) ≤ d ′(v) + 1. By the construction in step 6 of Algo-
rithm 2, flow f2 is canceled and f ′(u, v) = f ′

1(u, v) ≥ 0.
Suppose cf ′

1
(u, v) > 0, then we have that d ′

1(u) ≤ d ′
1(v)+1,

because d ′
1 is valid in G1

f ′
1
. It follows that d ′(u) = d ′

1(u) ≤
d ′

1(v) + 1 = d(v) + 1 ≤ d ′
2(v) + 1 = d ′(v) + 1, where we

also used labeling monotonicity property. The inequality
d ′(u) ≤ d ′(v) + 1 is a contradiction, therefore it must be
that cf ′(u, v) = 0. The labeling d ′ is valid on (u, v) in this
case. Note that inequalities d ′(v) ≤ d ′(u) + 1 and d ′(u) ≤
d ′(v) + 1 cannot be violated simultaneously. In the remain-
ing case, when both inequalities are satisfied, the labeling is
valid for arbitrary flow on (u, v), so no flow is canceled in
the flow fusion step.

3. If f ′(u, v) > 0 then f ′
k(u, v) > 0 and there was a push

operation from u to v in the discharge of region Rk � u.
Let d̃k be the labeling in Gk on this step. We have d ′(u) ≥
d̃k(u) = d̃k(v) + 1 ≥ d(v) + 1 > d(v). �

Theorem 2 P-PRD terminates in at most 2n2 sweeps.

Proof As before, the total increase of d is at most n2. As
shown above, the labeling monotony, labeling validity and
flow direction are satisfied for the fused flow and labeling
(f ′, d ′) on the region R = V \{s, t}. Applying Statement 3,
we get that the total increase of potential is bounded above
by the total increase of d during a sweep.

If d has not increased during a sweep (d ′ = d) then
α(u, v) = 1 for all (u, v) ∈ (B,B) (all boundary pairs are
valid). Flow direction property implies that the flow goes
only “downwards” the labeling. So no flow is canceled on
the fusion step. Let H = {v | d(v) ≥ Φ}. These vertices
are above any active vertices, so they cannot receive flow.
After the sweep, all active vertices which were in H are
discharged and must become inactive. Because there is no
active vertices with label Φ or above left, it is Φ ′ < Φ .
It follows that the algorithm will terminate in at most 2n2

sweeps. �

4 Augmented Path Region Discharge

In this section, we introduce the core of our new algo-
rithm, which combines path augmentation and push-relabel
approaches. We will give a new definition to the distance
function and validity of a labeling and introduce the new
Discharge operation to be used within the generic se-
quential and parallel algorithms (Algorithms 1 and 2). With
these modifications the algorithms will be proven correct
and posses a tighter bound on the number of sweeps.
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Fig. 4 (a) Illustration of region distance. (b) Illustration of Lemma 1:
augmentation on paths from x to u or from v to y preserves X � Y ,
but not the augmentation on the red path

4.1 A New Distance Function

Consider the fixed partition (Rk)Kk=1. Let us introduce a dis-
tance function, which counts only inter-region edges and not
inner edges. The region distance d∗B(u) in G is the minimal
number of inter-region edges contained in a path from u to
t , or |B| if no such path exists:

d∗B(u) =
{

minP=((u,u1),...,(ur ,t)) |P ∩ (B,B)| if u → t,

|B| if u� t.

(9)

This distance corresponds well to the number of region dis-
charge operations required to transfer the excess to the sink
(see Fig. 4(a)).

Statement 5 If u → t then d∗B(u) < |B|.

Proof Let P be a path from u to t given as a sequence of
edges. If P contains a loop then it can be removed from P

and |P ∩(B,B)| will not increase. A path without loops goes
through each vertex at most once. For B ⊂ V there is at most
|B| − 1 edges in the path which have both endpoints in B.
�

We now let d∞ = |B| and redefine a valid labeling w.r.t.
the new distance. A labeling d : V → {0, . . . , d∞} is valid in
G if d(t) = 0 and for all (u, v) ∈ E such that cf (u, v) > 0:

d(u) ≤ d(v) + 1 if (u, v) ∈ (B,B), (10)

d(u) ≤ d(v) if (u, v) /∈ (B,B). (11)

Statement 6 A valid labeling d is a lower bound on the
region distance d∗B .

Proof If u � t then d(u) ≤ d∗B . Otherwise, let P =
((u, v1), . . . , (vl, t)) be one of the shortest paths w.r.t. d∗B ,
i.e. d∗B(u) = |P ∩ (B,B)|. Applying the validity property to
each edge in this path, we have d(u) ≤ d(t)+|P ∩(B,B)| =
d∗B(u). �

Procedure 3: ARD(GR ,d)

/* assume d : V R → {0, . . . , d∞} valid in GR
*/

1 for i = 0,1, . . . , d∞ do /* stage i */
2 Ti = {t} ∪ {v ∈ BR | d(v) < i};
3 Augment(R,Ti);

/* Region-relabel */

4 d(u) :=

⎧⎪⎨
⎪⎩

min{i | u → Ti} u ∈ R,u → Td∞ ,

d∞ u ∈ R,u� Td∞ ,

d(u) u ∈ BR.

Procedure 4: Augment(X,Y )

1 while there exist a path (v0, v1, . . . , vl), cf (vi−1, vi) > 0,
ef (v0) > 0, v0 ∈ X, vl ∈ Y do

2 augment � = min(ef (v0),mini cf (vi−1, vi )) units
along the path.

4.2 New Region Discharge

In this subsection, reachability relations “→”, “�”, residual
paths, and labeling validity will be understood in the region
network GR or its residual GR

f .
The new Discharge operation, called Augmented path

Region Discharge (ARD), works as follows. It first pushes
excess to the sink along augmenting paths inside the net-
work GR . When it is no longer possible, it continues to aug-
ment paths to vertices in the region boundary BR in the or-
der of their increasing labels. This is represented by the se-
quence of nested sets T0 = {t}, T1 = {t} ∪ {v ∈ BR | d(v) <

1}, . . . , Td∞ = {t} ∪ {v ∈ BR | d(v) < d∞}. Set Ti is the
destination of augmentations in stage i. As we prove be-
low, in stage i > 0 residual paths may exist only to the set
Ti\Ti−1 = {v | d(v) = i − 1}.

The labels on the boundary d|BR remain fixed during Pro-
cedure 3 and the labels d|R inside the region do not partici-
pate in augmentations and therefore are updated only in the
end.

We claim that Procedure 3 terminates with no active ver-
tices inside the region, preserves validity and monotonicity
of the labeling, and pushes flow from higher labels to lower
labels w.r.t. the new labeling. These properties will be re-
quired to prove finite termination and correctness of S-ARD.
Before we prove them (Statement 10) we need the following
intermediate results:

– Properties of the network GR
f maintained by Procedure 3

(Statement 7, Corollaries 1 and 2).
– Properties of valid labellings in the network GR

f (State-
ment 8).

– Properties of the labeling constructed by region-relabel
(line 4 of Procedure 3) in the network GR

f (Statement 9).
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Lemma 1 Let X,Y ⊂ V R , X ∩ Y = ∅, X � Y . Then X �

Y is preserved after (i) augmenting a path (x, . . . , v) with
x ∈ X and v ∈ V R ; (ii) augmenting a path (v, . . . , y) with
y ∈ Y and v ∈ V R .

Proof (See Fig. 4(b).) Let X be the set of vertices reachable
from X. Let Y be the set of vertices from which Y is reach-
able. Clearly X ∩ Y = ∅, otherwise X → Y . Therefore, the
cut (X , X̄ ) separates X and Y and has all edge capacities
equal zero. Any residual path starting in X or ending in Y

cannot cross the cut and its augmentation cannot change the
edges of the cut. Hence, X and Y will stay separated. �

Statement 7 Let v ∈ V R and v � Ta in Gf in the begin-
ning of stage i0 of Procedure 3, where a, i0 ∈ {0,1, . . . , d∞}.
Then v � Ta holds until the end of Procedure 3, that is dur-
ing all stages i ≥ i0.

Proof We need to show that v � Ta is not affected by aug-
mentations performed by Procedure 3. If i0 ≤ a, we first
prove v � Ta holds during stages i0 ≤ i ≤ a. Consider
augmentation of a path (u0, u1, . . . , ul), u0 ∈ R, ul ∈ Ti ⊂
Ta , ef (u0) > 0. Assume v � Ta before augmentation. By
Lemma 1 with X = {v}, Y = Ta (noting that X � Y and the
augmenting path ends in Y ), after the augmentation v � Ta .
By induction, it holds till the end of stage a and hence in the
beginning of stage a + 1.

We can assume now that i0 > a. Let A = {u ∈ R |
ef (u) > 0}. At the end of stage i0 − 1, we have
A � Ti0−1 ⊃ Ta by construction. Consider augmentation
in stage i0 on a path (u0, u1, . . . , ul), u0 ∈ R, ul ∈ Ti0 ,
ef (u0) > 0. By construction, u0 ∈ A. Assume {v} ∪A� Ta

before augmentation. Apply Lemma 1 with X = {v} ∪ A,
Y = Ta (we have X � Y and u0 ∈ A ⊂ X). After augmen-
tation it is X � Ta . By induction, X � Ta till the end of
stage i0. By induction on stages, v � Ta until the end of the
Procedure 3 procedure. �

Corollary 1 If w ∈ BR then w � Td(w) throughout the Pro-
cedure 3 procedure.

Proof At initialization, it is fulfilled by construction of GR

due to cR(BR,R) = 0. It holds then during Procedure 3 by
Statement 7. �

In particular, we have BR
� t during Procedure 3.

Corollary 2 Let (u, v1 . . . vl,w) be a residual path in GR
f

from u ∈ R to w ∈ BR and let vr ∈ BR for some r . Then
d(vr) ≤ d(w).

Proof We have vr � Td(vr ). Suppose d(w) < d(vr), then
w ∈ Td(vr ) and because vr → w it is vr → Td(vr ) which is a
contradiction. �

Fig. 5 (a) Reachability relations in the network GR
f at the end of stage

1 of ARD: {v | ef (v) > 0} � T1; Td∞\T1 � R. (b) Example of a path
in the network GR

f for which by Corollary 2 it must be d(v) ≤ d(w).
Note, such a path is not possible at the beginning of ARD, but in the
middle it may exist since residual capacities of edges (BR,R) may
become non-zero

The properties of the network GR
f established by State-

ment 7 and Corollary 2 are illustrated in Fig. 5.

Statement 8 Let d be a valid labeling, d(u) ≥ 1, u ∈ R.
Then u � Td(u)−1.

Proof Suppose u → T0. Then there exist a residual path
(u, v1, . . . , vl, t), vi ∈ R (by Corollary 1 it cannot happen
that vi ∈ BR). By validity of d we have d(u) ≤ d(v1) ≤
· · · ≤ d(vl) ≤ d(t) = 0, which is a contradiction.

Suppose d(u) > 1 and u → Td(u)−1. Because u � T0, it
must be that u → w, w ∈ BR and d(w) < d(u) − 1. Let
(v0, . . . , vl) be a residual path with v0 = u and vl = w. Let
r be the minimal number such that vr ∈ BR . By validity of
d we have d(u) ≤ d(v1) ≤ · · · ≤ d(vr−1) ≤ d(vr) + 1. By
Corollary 2 we have d(vr) ≤ d(w), hence d(u) ≤ d(w) + 1
which is a contradiction. �

Statement 9 For d computed on line 4 of Procedure 3 and
any u ∈ R it holds:

1. d is valid;
2. u � Ta ⇔ d(u) ≥ a + 1.

Proof 1. Let (u, v) ∈ ER and c(u, v) > 0. Clearly u → v.
Consider four cases:

– case u ∈ R, v ∈ BR : Then u → Td(v)+1, hence d(u) ≤
d(v) + 1.

– case u ∈ R, v ∈ R: If v � Td∞ then d(v) = d∞ and
d(u) ≤ d(v). If v → Td∞ , then d(v) = min{i | v → Ti}.
Let i = d(v), then v → Ti and u → Ti , therefore d(u) ≤
i = d(v).

– case u ∈ BR , v ∈ R: By Corollary 1, u � Td(u). Because
u → v, it is v � Td(u), therefore d(v) ≥ d(u) + 1 and
d(u) ≤ d(v) − 1 ≤ d(v) + 1.

– case when u = t or v = t is trivial.

2. The “⇐” direction follows by Statement 8 applied to
d , which is a valid labeling. The “⇒” direction: we have
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u � Ta and d(u) ≥ min{i | u → Ti} = min{i > a | u →
Ti} ≥ a + 1. �

Statement 10 (Properties of ARD) Let d be a valid labeling
in GR . The output (f ′, d ′) of Procedure 3 satisfies:

1. There are no active vertices in R w.r.t. (f ′, d ′) (optimal-
ity),

2. d ′ ≥ d , d ′|BR = d|BR (labeling monotonicity),
3. d ′ is valid in GR

f ′ (labeling validity),
4. f ′ is a sum of path flows, where each path is from a ver-

tex u ∈ R to a vertex v ∈ {t} ∪ BR and it is d ′(u) > d(v)

if v ∈ BR (flow direction).

Proof

1. In the last stage, the Procedure 3 procedure augments all
paths to Td∞ . After this augmentation a vertex u ∈ R ei-
ther has excess 0 or there is no residual path to Td∞ and
hence d ′(u) = d∞ by construction.

2. For d(u) = 0, we trivially have d ′(u) ≥ d(u). Let d(u) =
a + 1 > 0. By Statement 8, u � Ta in GR and it holds
also in GR

f ′ by Statement 7. From Statement 9.2, we con-
clude that d ′(u) ≥ a + 1 = d(u). The equality d ′|BR =
d|BR is by construction.

3. Proven by Statement 9.1.
4. Consider a path from u to v ∈ BR , augmented in stage

i > 0. It follows that i = d(v) + 1. At the beginning of
stage i, it is u � Ti−1. By Statement 7, this is preserved
till the end of Procedure 3. By Statement 9.2, d ′(u) ≥ i =
d(v) + 1 > d(v).

�

Algorithms 1 and 2 for Discharge being Procedure 3
will be referred to as S-ARD and P-ARD, respectively.

4.3 Complexity of Sequential Augmented path Region
Discharging

Statement 2 holds for S-ARD as well, so S-ARD maintains
a valid labeling.

Theorem 3 S-ARD terminates in at most 2|B|2 + 1 sweeps.

Proof The value of d(v) does not exceed |B| and d is non-
decreasing. The total increase of d|B during the algorithm is
at most |B|2.

After the first sweep, active vertices are only in B. Indeed,
discharging region Rk makes all vertices v ∈ Rk inactive and
only vertices in B may become active. So by the end of the
sweep, all vertices V \B are inactive.

Therefore, after the first sweep, the potential can be
equivalently written as

Φ = max
{
d(v) | v ∈ B, v is active in G

}
. (12)

We will prove the following two cases for each sweep but
the first one:

1. If d|B is increased then the increase in Φ is no more than
total increase in d|B . Consider discharge of Rk . Let Φ be
the value before ARD on Rk and Φ ′ the value after. Let
Φ ′ = d ′(v). It must be that v is active in G′. If v /∈ V k ,
then d(v) = d ′(v) and e(v) = ef ′(v) so Φ ≥ d(v) = Φ ′.

Let v ∈ V k . After the discharge, vertices in Rk are
inactive, so v ∈ Bk and it is d ′(v) = d(v). If v was
active in G then Φ ≥ d(v) and we have Φ ′ − Φ ≤
d ′(v) − d(v) = 0. If v was not active in G, there must
exist an augmenting path from a vertex v0 to v such
that v0 ∈ Rk ∩ B was active in G. For this path, the
flow direction property implies d ′(v0) ≥ d(v). We now
have Φ ′ −Φ ≤ d ′(v)− d(v0) = d(v)− d(v0) ≤ d ′(v0)−
d(v0) ≤ ∑

v∈Rk∩B[d ′(v) − d(v)]. Summing over all re-
gions, we get the result.

2. If d|B is not increased then Φ is decreased at least by 1.
We have d ′ = d . Let us consider the set of vertices having
the highest active label or above, H = {v | d(v) ≥ Φ}.
These vertices do not receive flow during all discharge
operations due to the flow direction property. After the
discharge of Rk there are no active vertices left in Rk ∩H

(Statement 10.1). After the full sweep, there are no active
vertices in H .

In the worst case, starting from sweep 2, Φ can increase
by one |B|2 times and decrease by one |B2| times. There are
no active vertices left in at most 2|B|2 + 1 sweeps. �

On termination, we have that the labeling is valid and
there are no active vertices in G. Therefore, the accumulated
preflow is maximal and a minimum cut can be found by
analyzing the reachability in G (see discussion for S-PRD
Sect. 3.3 and implementation details Sect. 5.2).

4.4 Complexity of Parallel Augmented Path Region
Discharging

Statement 11 (Properties of Parallel ARD) Let d be a valid
labeling at the beginning of a sweep of P-ARD. Then the
pair of fused flow and labeling (f ′, d ′) satisfies:

1. Vertices in V \B are not active in Gf ′ (optimality),
2. d ′ ≥ d (labeling monotony),
3. d ′ is valid (labeling validity),
4. f ′ is the sum of path flows, where each path is from a

vertex u ∈ V to a vertex v ∈ B, satisfying d ′(u) ≥ d(v)

(weak flow direction).

Proof

1. For each k there are no active vertices in Rk w.r.t.
(f ′

k, d
′
k). The fused flow f ′ may differ from f ′

k only on
the boundary edges (u, v) ∈ (B,B). So there are no ac-
tive vertices in V \B w.r.t. (f ′, d ′).
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2. By construction.
3. Same as in P-PRD.
4. Consider the augmentation of a path from u ∈ Rk to v ∈

Bk during ARD on Gk and canceling of the flow on the
last edge of the path during the flow fusion step. Let the
last edge of the path be (w,v). We need to prove that
d ′(u) ≥ d(w). Let d̃ be the labeling in Gk right before
augmentation, as if it was computed by region-relabel.
Because d̃ is valid it must be that d̃(w) ≤ d̃(v) + 1. We
have d ′

k(u) > d(v) = d̃(v) ≥ d̃(w) − 1 ≥ d(w) − 1. So
d ′(u) ≥ d(w).

�

Theorem 4 P-ARD terminates in 2|B|2 + 1 sweeps.

Proof As before, total increase of d|B is at most |B|2.
After the first sweep, active vertices are only in B by State-
ment 11.1.

For each sweep after the first one:

– If d|B is increased then increase in Φ is no more than the
total increase of d|B . Let Φ ′ be the value of the potential
in the network G′ = Gf ′ . Let Φ ′ = d ′(v). It must be that
v is active in G′ and v ∈ B.

If v was active in G then Φ ≥ d(v) and we have Φ ′ −
Φ ≤ d ′(v) − d(v).

If v was not active in G then there must exist a path
flow in f ′ from a vertex v0 to v such that v0 ∈ B was
active in G. For this path, the weak flow direction prop-
erty implies d ′(v0) ≥ d(v). We have Φ ′ − Φ ≤ d ′(v) −
d(v0) = d ′(v) − d(v) + d(v) − d(v0) ≤ d ′(v) − d(v) +
d ′(v0) − d(v0) ≤ ∑

v∈B[d ′(v) − d(v)].
– If d|B is not increased then Φ is decreased at least by 1.

In this case, f ′ satisfies the strong flow direction property
and the proof of Theorem 3 applies.

After total of 2|B|2 + 1 sweeps, there are no active vertices
left. �

5 Implementation

In this section, we first discuss heuristics for improving the
distance labeling (making it closer to the true distance at
a cheap cost) commonly used in the push-relabel frame-
work. They are essential for the practical performance of
the algorithms. We then describe our base implementations
of S-ARD/S-PRD and the solvers they rely on. In the next
section, we describe an efficient implementation of ARD,
which is more sophisticated but has a much better practical
performance. All of the labeling heuristics can only increase
the labels and preserve validity of the labeling. Therefore,
they do not break theoretical properties of the respective al-
gorithms.

5.1 Heuristics

Region-relabel heuristic computes labels d|R of the region
vertices, given the distance estimate on the boundary, d|BR .
There is a slight difference between PRD and ARD variants
(using distance d∗ and d∗B , resp.), displayed by the corre-
sponding “if” conditions (Procedure 5).

Procedure 5: Region-relabel(GR ,d|BR )

/* init */
1 d(t) := 0; O := {t}; d|R := d∞; dc := 0;
2 if ARD then d|BR := d|BR + 1; /* (for ARD) */
/* O is a list of open vertices, having

the current label dc
*/

3 dmax := max{d(w) | w ∈ BR, d(w) < d∞};
4 while O �= ∅ or dc < dmax do

/* if O is empty raise dc to the next
seed */

5 if O = ∅ then
dc := min{d(w) | w ∈ BR, d(w) > dc, d(w) < d∞};
/* add seeds to the open set */

6 O := O ∪ {w ∈ BR | d(w) = dc};
/* find all unlabeled vertices from

which O can be reached */

7 O := {u ∈ R | (u, v) ∈ ER, v ∈ O, c(u, v) > 0, d(u) =
d∞};

8 if PRD then dc ← dc + 1; /* (for PRD) */
9 d|O := dc; /* label the new open vertices

*/

10 if ARD then d|BR := d|BR − 1; /* (for ARD) */

In the implementation, the set of boundary vertices is
sorted in advance, so that Region-relabel runs in O(|ER| +
|V R|+|BR| log |BR|) time and uses O(|V R|) space. The re-
sulting labeling d ′ is valid and satisfies d ′ ≥ d for arbitrary
valid d .

Global Gap Heuristic Let us briefly explain the global gap
heuristic (Cherkassky and Goldberg 1994). It is a sufficient
condition to identify that the sink is unreachable from a set
of vertices. Let there be no vertices with label g > 0: ∀v ∈ V

d(v) �= g, and let d(u) > g. For a valid labeling d , it follows
that there is no vertex v for which c(u, v) > 0 and d(v) < g.
Assuming there is, we will have d(u) ≤ d(v)+1 ≤ g, which
is a contradiction. Therefore the sink is unreachable from all
vertices {u | d(u) > g} and their labels may be set to d∞.

Region gap heuristic of Delong and Boykov (2008) de-
tects if there are no vertices inside region R having label
g > 0. Such vertices can be connected to the sink in the
whole network only through one of the boundary vertices,
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so they may be relabeled up to the closest boundary label.
Here is the algorithm (Procedure 6)4

Procedure 6: d|R = Region-gap(GR ,d|R∪BR , g)

/* Input: region network GR, labeling d,

*/
/* gap g: ∀v ∈ R d(v) �= g */

1 dnext := min{d(w) | w ∈ BR,d(w) > g.};
2 for v ∈ R such that g < d(v) < dnext do
3 d(v) := dnext + 1;

If no boundary vertex is above the gap, then dnext = d∞
in step 1 and all vertices above the gap are disconnected
from the sink in the network G. Interestingly, this sufficient
condition does not imply a global gap. In our implementa-
tion of PRD, we detect the region-gap efficiently after every
vertex relabel operation by discovering an empty bucket (see
the implementation of S/P-PRD in Sect. 5.5).

5.2 Reachability/Exact Distance Computation

At the termination of our algorithms (S/P-PRD, S/P-ARD),
we have found a maximum preflow and we know that
(T̄ , T ), defined by T = {v | v → t in G}, is a minimum cut.
However, we only know the lower bound d on the true dis-
tance d∗ (resp. d∗B) and therefore the reachability relation
v → t is not fully known at this point. When d(v) = d∞ we
are sure that v � t in G and hence v must be in the source
set of a minimum cut, but if d(v) < d∞ it is still possible
that v � t in G. Therefore, we need to do some extra work
to make d the exact distance and in this way to find the min-
imum cut. For this purpose we execute several extra sweeps,
performing only region-relabel and gap heuristics until la-
bels stop changing. We claim that at most d∞ such extra
sweeps are needed. We give a proof for the case of push-
relabel distance.

Proof Let us call labels d(v) loose if d(v) < d∗(v) and ex-
act if d(v) = d∗(v). Consider the lowest loose label, L =
min{d(v) | d(v) < d∗(v)} and the set of loose vertices hav-
ing this label, L = {v | L = d(v) < d∗(v)}. Let us show that
after a sweep of region-relabel, the value of L increases at
least by 1. Let v ∈ L, (v,w) ∈ E and c(v,w) > 0. If d(w)

is loose, we have d(w) ≥ L by construction. Assume that
d(w) is exact. Since d(v) < d∗(v) and d∗(v) ≤ d∗(w) + 1,
we have d(w) ≥ d(v) = L. Therefore, all neighbors of v

have label L or above. After the elementary Relabel of v

or Region-relabel of the region including v, its label will

4Region-gap-relabel (Delong and Boykov 2008, Fig. 10) seems to con-
tain an error: only vertices above the gap should be processed in step 3.

increase at least by 1 (recall that Relabel of v performs
d(v) := minw{d(w) | (v,w) ∈ E, c(v,w) > 0} + 1). Be-
cause this holds for all vertices from L, the value L will
increase at least by 1 after elementary Relabel of all vertices
or a sweep of Region-relabel. Because L is bounded above
by d∞, after at most d∞ sweeps, d will be the exact dis-
tance. �

This proof can be suitably modified for the case of re-
gion distance (used in ARD) by replacing the pair (v,w)

with a path from v to a boundary vertex w. In this case, we
have the bound d∞ = |B| sweeps. In the experiments, we
observed that in order to compute the exact distance, only
few extra sweeps were necessary (from 0 to 2) for S/P-ARD
and somewhat more for S/P-PRD. Note, to compute the fi-
nal reachability relation in S/P-PRD, the region distance and
ARD Region-relabel could be employed. However, we did
not implement this improvement. In Sect. 6 we describe how
ARD Region-relabel is replaced by a dynamic data structure
(search trees), allowing for quick recomputation during the
sweeps.

5.3 Referenced Implementations

Boykov-Kolmogorov (BK) The reference augmenting path
implementation by Boykov and Kolmogorov (2004) (v3.0,
http://www.cs.adastral.ucl.ac.uk/~vnk/software.html). We
will also use the possibility of dynamic updates in this
code due to Kohli and Torr (2005). There is only a trivial
O(mn2|C|) complexity bound known for this algorithm,5

where C is the cost of a minimum cut.

Highest level Push-Relabel (HIPR) The reference push-
relabel implementation by Cherkassky and Goldberg (1994)
(v3.6, http://www.avglab.com/andrew/soft.html). This im-
plementation has two stages: finding the maximum pre-
flow/minimum cut and upgrading the maximum preflow to
a maximum flow. Only the first stage was executed and
benchmarked. We tested two variants with frequency of the
global relabel heuristic (the frequency parameter roughly
corresponds to the proportion of time spent on global up-
dates versus push/relabel) equal to 0.5 (the default value in
HIPR v3.6) and equal to 0. These variants will be denoted
HIPR0.5 and HIPR0 respectively. HIPR0 executes only one
global update at the beginning. Global updates are essential
for difficult problems. However, HIPR0 was always faster
than HIPR0.5 in our experiments with real test instances.6

The worst case complexity is O(n2√m).

5The worst-case complexity of breadth-first search shortest path aug-
mentation algorithm is just O(m|C|). The tree adaptation step, intro-
duced by Boykov and Kolmogorov (2004) to speed-up the search, does
not have a good bound and introduces an additional n2 factor.
6There is a discrepancy with Delong and Boykov (2008, Fig. 4) re-
garding the results for the basic push-relabel. The main implementation

http://www.cs.adastral.ucl.ac.uk/~vnk/software.html
http://www.avglab.com/andrew/soft.html
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5.4 S/P-ARD Implementation

The basic implementation of ARD simply invokes BK solver
as follows. On stage 0 we compute the maximum flow in the
network GR by BK, augmenting paths from source to the
sink. On the stage i, infinite capacities are added from the
boundary vertices having label i − 1 to the sink, using the
possibility of dynamic changes in BK. The flow augmenta-
tion to the sink is then continued, reusing the search trees.
The Region-relabel procedure is implemented as described
earlier in this section. In the beginning of next discharge,
we clear the infinite link from boundary to the sink and re-
peat the above. Some parts of the sink search tree, linked
through the boundary vertices, get destroyed, but the larger
part of it and the source search tree are reused. A more ef-
ficient implementation is described in Sect. 6. It includes
additional heuristics and maintenance of separate boundary
search trees.

S-ARD In the streaming mode, we keep only one region in
the memory at a time. After a region is processed by ARD,
all the internal data structures have to be saved to the disk
and cleared from memory until the region is discharged next
time. We manage this by allocating all the region’s data into
a fixed page in the memory, which can be saved and loaded
preserving the pointers. By doing the load/unload manually
(rather than relying on the system swapping mechanism),
we can accurately measure the pure time needed for compu-
tation (CPU) and the amount of disk I/O. We also can use 32
bit pointers with larger problems.

A region with no active vertices is skipped. The global
gap heuristic is executed after each region discharge. Be-
cause it is based on labels of boundary vertices only, it is
sufficient to maintain a label histogram with |B| bins to im-
plement it. S-ARD uses O(|B|+|(B,B)|) “shared” memory
and O(|V R + ER|) “region” memory, to which regions are
loaded one at a time.

To solve large problems, which do not fit in the memory,
we have to create region graphs without ever loading the full
problem. We implemented a tool called splitter, which reads
the problem from a file and writes edges corresponding to
the same region to the region’s separate “part” file. Only the
boundary edges (linking different regions) are withheld to
the memory.

P-ARD We implemented this algorithm for a shared-
memory system using OpenMP language extension. All re-
gions are kept in the memory, the discharges are executed
concurrently in separate threads, while the gap heuristic and
messages exchange are executed synchronously by the mas-
ter thread.

difference is in the order of processing (HIPR versus FILO). It is also
possible that their plot is illustrative and is not using the gap heuristic.

5.5 S/P-PRD Implementation

To solve region discharge subproblems in PRD in the high-
est label first fashion, we designed a special reimplemen-
tation of HIPR, which will be denoted HPR. We intended
to use the original HIPR implementation to make sure that
PRD relies on the state-of-the art core solver. It was not pos-
sible directly. A subproblem in PRD is given by a region
network with fixed distance labels on the boundary (let us
call them seeds). Distance labels in PRD may go up to n in
the worst case. The same applies to region subproblems as
well. Therefore, keeping an array of buckets corresponding
to possible labels (like in HIPR), would not be efficient. It
would require O(|V |) memory and an increased complexity.
However, because a region has only |V R| vertices, there are
no more than |V R| distinct labels at any time. This allows to
keep buckets as a doubly-linked list with at most |V R| en-
tries. Highest label selection rule and the region-gap heuris-
tic can then be implemented efficiently with just a small
overhead. We tried to keep other details similar to HIPR
(current arc data structure, etc.). HPR with arbitrary seeds
has the worst case complexity O(|V R|2√|ER|) and uses
O(|V R| + |V E |) space. When the whole problem is taken
as a single region, HPR should be equivalent to HIPR0.
Though the running time on the real instances can be some-
what different.

S-PRD This is our reimplementation of the algorithm
by Delong and Boykov (2008) for an arbitrary graph and a
fixed partition, using HPR as a core solver. It uses the same
memory model, paging mechanism and the splitter tool as
S-ARD. The region discharge is always warm-started. We
found it inefficient to run the region-relabel after every dis-
charge. In the current experiments, motivated by perfor-
mance of HIPR0, we run it once at the beginning and then
only when a global gap is discovered. To detect a global gap,
we keep a histogram of all labels, O(n) memory, and update
it after each region discharge (in O(|V R|) time). In practice,
this O(n) memory is not a serious limitation—labels are
usually well below n. If they are not then we should con-
sider a weaker gap heuristic with a smaller number of bins.
Applying the gap (raising the corresponding vertices to d∞)
for all regions is delayed until they are loaded. So we keep
the track of the best global gap detected for every region.
Similar to how the sequential Algorithm 1 represents both
S-ARD and S-PRD, it constitutes a piece of generic code in
our implementation, where the respective discharge proce-
dure and gap heuristics are plugged.

P-PRD This is our implementation of parallel PRD for
shared-memory system with OpenMP.
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6 Efficient ARD Implementation

The basic implementation of S-ARD, as described in the
previous section, worked reasonably fast (comparable to
BK) on simple problems like 2D stereo and 2D random seg-
mentation (Sect. 7.1). However, on some 3D problems the
performance was unexpectedly bad. For example, to solve
LB07-bunny-lrg instance (Sect. 7.2) the basic imple-
mentation required 32 minutes of CPU time. In this section
we describe an efficient implementation which is more ro-
bust and is comparable in speed with BK on all tested in-
stances. In particular, to solve LB07-bunny-lrg it takes
only 15 seconds of CPU time. The problem why the basic
implementation is so slow is in the nature of the algorithm:
sometimes it has to augment the flow to the boundary, with-
out knowing of whether it is a useful work or not. If the par-
ticular boundary was selected wrongly, the work is wasted.
This happens in LB07-bunny-lrg instance, where the
data seeds are sparse. A huge work is performed to push the
flow around in the first few iterations, before a reasonable
labeling is established. We introduce two heuristics how to
overcome this problem: the boundary-relabel heuristic and
partial discharges. An additional speed-up is obtained by dy-
namically maintaining boundary search trees and the current
labeling.

6.1 Boundary Relabel Heuristic

We would like to have a better distance estimate, but we
cannot run a global relabel because implementing it in a
distributed fashion would take several full sweeps, which
would be too wasteful. Instead, we go for the following
cheaper lower bound. Our implementation keeps all the
boundary edges (including their flow and distance labels of
the adjacent vertices) in the shared memory. Figure 6(a) il-
lustrates this boundary information. We want to improve the
labels by analyzing only this boundary part of the graph, not
looking inside the regions. Since we do not know how the
vertices are connected inside the regions, we have to assume
that every boundary vertex might be connected to any other
one within the region, except of the following case. If u and
v are in the same region R and d(u) > d(v) then we know
for sure that u � v in GR . It follows from the validity of
labeling d (as defined for ARD in Sect. 4). We can calculate
now a lower bound on the distance d∗B in G assuming that
all the rest of the vertices are potentially connected within
the regions.

We will now construct an auxiliary directed graph Ḡ with
arcs having length 0 or 1 and show that the distance in this
graph (according to the arc lengths) lower bounds d∗B . If
d(v) = d(u) we have to assume that v → u and u → v

in GR , therefore the new lower bound for u and v will
coincide. Hence we group vertices having the same label

Fig. 6 Boundary relabel heuristic: (a) Boundary vertices of the net-
work and a valid labeling. Directed arcs correspond to non-zero resid-
ual capacities. Vertices without numbers have label d∞ and do not
participate in the construction. (b) Vertices having the same label are
grouped together within each region and arcs of zero length (of red
color) are added from a group to the next label’s group. It is guaran-
teed that e.g., vertices with label 1 are not reachable from vertices with
label 2 within the region, hence there is no arc 2→1. Black arcs have
the unit length. (c) The distance in the auxiliary graph is a valid label-
ing and a lower bound on the distance in the original network

within a region together as shown in Fig. 6(b). In the case
d(v) < d(u), we know that u � v but have to assume v → u

in R. We thus add a directed arc of length zero from the
group of v to the group of u (Fig. 6(b)). Let d1 < d2 < d3 be
labels of groups within one region. There is no need to cre-
ate an arc from d1 to d3, because two arcs from d1 to d2 and
from d2 to d3 of length zero are an equivalent representa-
tion. Therefore it is sufficient to connect only groups having
consecutive labels. We then add all residual edges (u, v) be-
tween the regions to Ḡ with length 1. We can calculate the
distance to vertices with label 0 in Ḡ by running Dijkstra’s
algorithm. Let this distance be denoted d ′. We then update
the labels as

d(u) := max
{
d(u), d ′(u)

}
. (13)

We have to prove the following two points:

1. d ′ is a valid labeling;
2. If d and d ′ are valid labellings, then max(d, d ′) is valid.

Proof 1. Let c(u, v) > 0. Let u and v be in the same region.
It must be that d(u) ≤ d(v). Therefore either u and v are in
the same group or there is an arc of length zero from group
of u to group of v. It must be d ′(u) ≤ d ′(v) in any case. If u

and v are in different regions, there is an arc of length 1 from
group of u to group of v and therefore d ′(u) ≤ d ′(v) + 1.
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Fig. 7 Search trees. (a) A region with some residual arcs. The region
has only 3 boundary vertices, for simplicity, the numbers correspond
to the labels. (b) Search trees of the sink and boundary vertices: when
a vertex can be reached by several trees, it choses the one with the

lowest label of the root. The sink is assigned a special label −1. The
source search tree is empty in this example. (c) Labels of the inner
vertices are determined as their tree’s root label +1

2. Let l(u, v) = 1 if (u, v) ∈ (B,B) and l(u, v) = 0 oth-
erwise. We have to prove that if c(u, v) > 0 then

max
{
d(u), d ′(u)

} ≤ max
{
d(v), d ′(v)

} + l(u, v). (14)

Let max{d(u), d ′(u)} = d(u). From validity of d we have
d(u) ≤ d(v) + l(u, v). If d(v) ≥ d ′(v), then max{d(v),

d ′(v)} = d(v) and (14) holds. If d(v) < d ′(v) then d(u) ≤
d(v) + l(u, v) < d ′(v) + l(u, v) and (14) holds again. �

The complexity of boundary relabel heuristic is O(|(B,B)|).
It is relatively inexpensive and can be run after each sweep.
It does not affect the correctness and the worst case bound
on the number of sweeps of S/P-ARD.

6.2 Partial Discharge

Another heuristic which proved very efficient was simply
to postpone path augmentations to higher boundary vertices
to further sweeps. This allows to save a lot of unnecessary
work, especially when used in combination with boundary-
relabel. More precisely, on sweep s the ARD procedure is
allowed to execute only stages up to s. This way, in sweep 0
only paths to the sink are augmented and not any path to the
boundary. Vertices which cannot reach the sink (but can po-
tentially reach the boundary) get label 1. These initial labels
may already be improved by boundary-relabel. In sweep 1
paths to the boundary with label 0 are allowed to be aug-
mented and so on.

Note that this heuristic does not affect the worst case
complexity of S/P-ARD. Because labels can grow only up to
|B|, after at most |B| sweeps the heuristic turns into full dis-
charge. Therefore, the worst case bound of O(|B2|) sweeps
remains valid. In practice, we found it to increase the num-
ber of sweeps slightly, while significantly reducing the to-
tal computation time. Similarly, in the case of push-relabel,
it would make sense to perform several sweeps of Region-
relabel before doing any pushes to get a better estimate of
the distance.

6.3 Boundary Search Trees

We now redesign the implementation of ARD such that not
only the sink and source search trees are maintained but also
the search trees of boundary vertices. This allows to save
computation when the labeling of many boundary vertices
remains constant during the consequent sweeps, with only
a small fraction changing. Additionally, knowing the search
tree for each inner vertex of the region determines its ac-
tual label, so the region-relabel procedure becomes obsolete.
The design of the search tree data structures, their updates
and other detail are the same as proposed by Kolmogorov
(2004), only few changes to the implementation are neces-
sary. For each vertex v ∈ R, we introduce a mark d̃(v) which
corresponds to the root label of its tree or is set to a special
free mark if v is not in any tree. For each tree we keep a
list of open vertices (called active by Kolmogorov (2004)).
A vertex is open if it is not blocked by the vertices of the
trees with the same or lower root label (more precisely, v is
open if it is not free and there is a residual edge (u, v) such
that u is free or its root label is higher than that of v). The
trees may grow only at the open vertices.

Figure 7 shows the correspondence between search trees
and the labels. The sink search tree is assigned label −1. In
the stage 0 of ARD, we grow the sink tree and augment all
found paths if the sink tree touches the source search tree.
Vertices, which are added to the sink tree are marked with
label d̃ = −1. In stage i + 1 of ARD, we grow trees with
root at a boundary vertices w with label d(w) = i, all ver-
tices added to the tree are marked with d̃ = i. When the tree
touches the source search tree, the found path is augmented.
If the tree touches a vertex u with label d̃(u) < i, it means
that u is already in the search tree with a lower root and no
action is taken. It cannot happen that a vertex is reached with
label d̃ > i during growth of a search tree with root label i,
this would contradict to the properties of ARD. The actual
label of a vertex v at any time is determined as d̃(v) + 1 if
v ∈ R and d(v) if v ∈ BR .

Let us now consider the situation in which region R has
built some search trees and the label of a boundary vertex w

is risen from d(w) to d ′(w) (as a result of update from the
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neighboring region or one of the heuristics). All the vertices
in the search tree starting from w were previously marked
with d(w) and have to be declared as free vertices or adopted
to any other valid tree with root label d(w). The adaptation
is performed by the same mechanism as in BK. The situa-
tion when a preflow is injected from the neighboring region
and (a part of) a search tree becomes disconnected is also
handled by the orphan adaptation mechanism.

The combination of the above improvements allows S-
ARD to run in about the same time as BK on all tested vi-
sion instance (Sect. 7.2), sometimes being even significantly
faster (154 s vs. 245 s on BL06-gargoyle-lrg).

7 Experiments

All experiments were conducted on a system with Intel
Core 2 Quad CPU@2.66 Hz, 4 GB memory, Windows XP
32 bit and Microsoft VC compiler. Our implementation and
instructions needed to reproduce the experiments can be
found at http://cmp.felk.cvut.cz/~shekhovt/d_maxflow. We
conducted 3 series of experiments:

– Synthetic experiments, where we observe general depen-
dencies of the algorithms, with some statistical signifi-
cance, i.e. not being biased to a particular problem in-
stance. It also serves as an empirical validation, as thou-
sands of instances are solved. Here, the basic implemen-
tation of S-ARD was used.

– Sequential competition. We study sequential versions of
the algorithms, running them on real vision instances.
Only a single core of the CPU is utilized. We fix the re-
gion partition and study how much disk I/O it would take
to solve each problem when only one region can be loaded
in the memory at a time. In this and the next experiment
we used the efficient implementation of ARD. Note, in the
preceding publication (Shekhovtsov and Hlavac 2011) we
reported worse results with the earlier implementation.

– Parallel competition. Parallel algorithms are tested on the
instances which can fully fit in 2 GB of memory. All 4
cores of the CPU are allowed to be used. We compare
our algorithms with two other state-of-the-art distributed
implementations.

7.1 General Dependences: Synthetic Problems

We generated simple synthetic problems to validate the al-
gorithms. The network is constructed as a 2D grid with a
regular connectivity structure. Figure 8(a) shows an example
of such a network. The edges are added to the vertices at the
following relative displacements (0,1), (1,0), (1,2), (2,1),
(1,3), (3,1), (2,3), (3,2), (0,2), (2,0), (2,2), (3,3), (3,4),
(4,2). By connectivity we mean the number of edges inci-
dent to a vertex far enough from the boundary. Adding pairs

Fig. 8 (a) Example of a synthetic problem: a network of the size
6 × 6, connectivity 8, partitioned into 4 regions. The source and sink
are not shown. (b) Dependence on the interaction strength, for size
1000 × 1000, connectivity 8 and 4 regions. Plots show mean values
and intervals containing 70 % of the samples

(0,1), (1,0) results in connectivity 4 and so on. Each vertex
is given an integer excess/deficit distributed uniformly in the
interval [−500 500]. A positive number means a source link
and a negative number a sink link. All edges in the graph are
assigned a constant capacity, called strength. The network
is partitioned into regions by slicing it in s equal parts in
both dimensions. Thus we have 4 parameters: the number
of vertices, the connectivity, the strength and the number of
regions. We generate 100 instances for each value of the pa-
rameters.

Let us first look at the dependence on the strength shown
in Fig. 8(b). Problems with small strength are easy, because
they are very local—long augmentation paths do not oc-
cur. On the other hand, long paths needs to be augmented
for problems with large strength. However, finding them is
easy because bottlenecks are unlikely. Therefore BK and S-
ARD have a maximum in the computation time somewhere
in the middle. It is more difficult to transfer the flow over
long distances for push-relabel algorithms. This is where the
global relabel heuristic becomes efficient and HIPR0.5 out-

http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
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Fig. 9 Dependence on the number of regions, for size 1000 × 1000,
connectivity 8, strength 150

Fig. 10 Dependence on the problem size, for connectivity 8, strength
150, 4 regions

performs HIPR0. The region-relabel heuristic of S-PRD al-
lows it to outperform other push-relabel variants.

In general, we think all such random 2D networks are too
easy. Nevertheless, they are useful and instructive to show
basic dependences. We now select the “difficult” point for
BK with the strength 150 and study other dependencies:

– The number of regions (Fig. 9). For this problem fam-
ily, both the number of sweeps and the computation time
grows slowly with the number of regions.

– The problem size (Fig. 10). Computation efforts of all
algorithms grow proportionally. However, the number of
sweeps shows different asymptotes. It is almost constant
for S-ARD but grows significantly for S-PRD.

Fig. 11 Dependence on the connectivity, for size 1000 × 1000,
strength = (150 × 8)/connectivity, 4 regions

– Connectivity (Fig. 11). Connectivity is not independent
of the strength. Roughly, 4 edges with capacity 100 can
transmit as much flow as 8 edges with capacity 50. There-
fore while increasing the connectivity we also decrease
the strength as 150 · 8 divided by connectivity in this plot.

– Workload (Fig. 12). This plot shows how much time each
of the algorithms spends performing different parts of
computation. Note that the problems are solved on a sin-
gle computer with all regions kept in memory, therefor
the time on sending messages should be understood as
updates of dynamic data structure of the region w.r.t. the
new labeling and flow on the boundary. For S-PRD more
sweeps are needed, so the total time spent in messages and
gap heuristic is increased. Additionally, the gap heuris-
tic has to take into account all vertices, unlike only the
boundary vertices in S-ARD.

7.2 Sequential Competition

We tested our algorithms on the MAXFLOW problem in-
stances in computer vision University of Western Ontario
web pages (2008). The data consist of typical max-flow
problems in computer vision, graphics, and biomedical im-
age analysis. Stereo instances are sequences of subprob-
lems (arising in the expansion move algorithm) for which
the total time should be reported. There are two models:
BVZ (Boykov et al. 1998), in which the graph is a 4-
connected 2D grid, and KZ2 (Kolmogorov and Zabih 2001),
in which there are additional long-range links. Multiview
3D reconstruction models LB06 (Lempitsky et al. 2006)
and BL06 (Boykov and Lempitsky 2006). Graphs of these
problems are cellular complexes subdividing the space into
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Fig. 12 Workload distribution, for size 1000×1000, connectivity 8, 4
regions, strength 150. msg—passing the messages (updating flow and
labels on the boundary), discharge—work done by the core solver (BK

for S-ARD and HPR for S-PRD), relabel—the region-relabel opera-
tion, gap—the global gap heuristic

3D cubes and each cube into 24 smaller cells. Surface fit-
ting instances LB07 (Lempitsky and Boykov 2007) are 6-
connected 3D grid graphs. And finally, there is a collec-
tion of volumetric segmentation instances BJ01 (Boykov
and Jolly 2001), BF06 (Boykov and Funka-Lea 2006),
BK03 (Boykov and Kolmogorov 2003) with 6-connected
and 26-connected 3D grid graphs.

To test our streaming algorithms, we used the
regulargrid hint available in the definition of the prob-
lems to select the regions by slicing the problem into 4 parts
in each dimension—into 16 regions for 2D BVZ grids and
into 64 regions for 3D segmentation instances. Problems
KZ2 do not have such a hint (they are not regular grids),
so we sliced them into 16 pieces just by the vertex number.
The same we did for the multiview LB06 instances. Though
they have a size hint, we failed to interpret the vertex lay-
out correctly (the separator set, B, was unexpectedly large
when trying to slice along the dimensions). So we sliced
them purely by the vertex number.

One of the problems we faced is pairing the arcs which
are reverse of each other. While in stereo, surface and mul-
tiview problems, the reverse arcs are consequent in the files,
and can be easily paired, in 3D segmentation they are not.
For a generic algorithm, not being aware of the problem’s
regularity structure, it is actually a non-trivial problem re-
quiring at least the memory to read all of the arcs first. Be-
cause our goal is a relative comparison, we did not pair
the arcs in 3D segmentation. This means we kept twice as
many arcs than necessary for those problems. This is seen
in Table 1, e.g. for babyface.n26c100, which is 26-
connected, but we construct a multigraph (has parallel arcs)
with average vertex degree of 49. For some other instances,
however, this is not visible, because there could be many
zero arcs, e.g. liver.n26c10 which is a 26-connected
grid too, but has the average vertex degree of 10.4 with
unpaired arcs. The comparison among different methods is
correct, since all of them are given exactly the same multi-
graph.

The results are presented in Table 1. We did measure the
real time of disk I/O. However, it depends on the hard drive
performance, other concurrently running processes as well
as on the system file caching (which has effect for small
problems). We therefore report total bytes written/loaded
and give an estimate of the full running time for the disk

speed of 100 MB/s (see Table 2). Note that disk I/O is not
proportional to the number of sweeps, because some regions
may be inactive during a sweep and thus skipped. For HIPR
we do not monitor the memory usage. It is slightly higher
than that of HPR, because of keeping initial arc capaci-
ties.

For verification of solvers, we compared the flow values
to the ground truth solution provided in the dataset. Ad-
ditionally, we saved the cut output from each solver and
checked its cost independently. Verifying the cost of the cut
is relatively easy: the cut can be kept in memory and the
edges can be processed form the DIMACS problem defini-
tion file on-line. An independent check of (pre-)flow feasi-
bility would be necessary for full verification of a solver.
However, it would require storing the full graph in the mem-
ory and was not implemented.

Our new algorithms computed flow values for all prob-
lems matching those provided in the dataset, except for the
following cases:

– LB07-bunny-lrg: no ground truth solution available
(we found flow/cut of cost 15537565).

– babyfacen26c10 and babyfacen26c100: we
found higher flow values than those which were pro-
vided in the dataset (we found flow/cut of cost 180946
and 1990729 resp.).

The latter problems appear to be the most difficult for S-
ARD in terms of both time and number of sweeps. Despite
this, S-ARD requires much fewer sweeps, and consequently
much less disk I/O operations than the push-relabel variant.
This means that in the streaming mode, where read and write
operations take a lot of time, S-ARD is clearly superior. Ad-
ditionally, we observe that the time it spends for computa-
tion is comparable to that of BK, sometimes even signifi-
cantly smaller.

Next, we studied the dependency of computation time
and number of sweeps on the number of regions in the
partition. We selected 3 representative instances of differ-
ent problems and varied the number of regions in the parti-
tion. The results are presented in the Fig. 13. The instance
BL06-gargoyle-sml was partitioned by the vertex in-
dex and the remaining two problems were partitioned ac-
cording to their 3D vertex layout, using variable number
of slices in each dimension. The results demonstrate that
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Table 1 Sequential Competition. CPU—the time spent purely for
computation, excluding the time for parsing, construction and disk
I/O. The total time to solve the problem is not shown. K—number
of regions. RAM—memory taken by the solver; for BK in the case

it exceeds 2 GB limit, the expected required memory; for streaming
solvers the sum of shared and region memory. I/O—total bytes read or
written to the disk
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Table 2 Estimated running
time for the algorithms in the
streaming mode, including the
time for Disk I/O. The estimate
is computed for a disk speed of
100 MB/s and does not include
initial problem splitting. The
table also gives the total amount
of memory used by the solver

Problem S-ARD S-PRD

Memory (MB) Time Memory (MB) Time

BVZ-sawtooth 1.1 1.7 s 1.9 11 s

BL06-camel-lrg 122 6 min 208 1.8 h

BL06-gargoyle-lrg 118 8.5 min 194 2.4 h

LB07-bunny-lrg 217 8.6 min 325 54 min

babyface.n26c10 212 20 min 231 1.9 h

adhead.n26c10 236 16 min 281 2.3 h

adhead.n26c100 70 9 min 116 1 h

bone.n26c10 183 6.3 min 210 1.4 h

abdomen long.n6c10 813 36 min ∼800 >3 h

Fig. 13 Dependence on the number of regions for the representative
instances of multiview, stereo and segmentation. Top: CPU time used.
Bottom: number of sweeps

the computation time required to solve these problems is
stable over a large range of partitions and the number of
sweeps required does not grow rapidly. Therefore, for the
best practical performance the partition for S-ARD can be
selected to meet other requirements: memory consumption,
number of computation units, etc. We should note how-
ever, that with refining the partition the amount of shared
memory grows proportionally to the number of boundary
edges. In the limit of single-vertex regions, the algorithm
will turn into a very inefficient implementation of pure push-
relabel.

7.3 Parallel Competition

In this section, we test parallel versions of our algorithms
and compare them with two state-of-the-art methods. The
experiments are conducted on the same machine as above
(Intel Core 2 Quad CPU@2.66 Hz) but allowing the use of
all 4 CPUs. The goal is to see how the distributed algorithms
perform in the simplified setting when they are run not in the
network but on a single machine. For P-ARD/PRD we ex-
pect that the total required work would increase compared
to the sequential versions because the discharges are exe-
cuted concurrently. The relative speed-up therefore would
be sublinear even if we managed to distribute the work be-
tween CPUs evenly. The tests are conducted on small and
medium size problems (taking under 2 GB of memory). For
P-ARD and P-PRD we use the same partition into regions
as in Table 1. For other solvers, discussed next, we tried to
meet better their requirements.

DD The integer dual decomposition algorithm by Strand-
mark and Kahl (2010)7 uses adaptive vertex-wise step rule
and randomization. With or without randomization, this al-
gorithm is not guaranteed to terminate. However, while
without randomization there is an example with 4 vertices
such that the algorithm never terminates, with randomiza-
tion there is always a chance that it does. Interestingly, on
all of the stereo problems the algorithm terminated in a
small number of iterations. However, on larger problems
partitioned into 4 regions it exceeded the internal iterations
bound (1000) in many cases and returned without optimal
flow/cut. In such a case it provides only an approximate so-
lution to the problem. Whether such a solution is of practical
value is beyond us. We tested it with partitions into 2 and 4
regions (denoted DDx2 and DDx4 resp.). Naturally, with 2
regions the algorithm can utilize only 2 CPUs. When the

7Multithreaded maxflow library, http://www.maths.lth.se/matematiklth/
personal/petter/cppmaxflow.php.

http://www.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
http://www.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
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number of regions is increased, the random event of termi-
nation is expected to happen less likely, which is confirmed
by our experiments.

RPR A recently published implementation of Region Push
Relabel (Delong and Boykov 2008) by Sameh Khamis
(v1.01, http://vision.csd.uwo.ca/code/).

For RPR we constructed partition of the problem into
smaller blocks. Because regions in RPR are composed
dynamically out of blocks (default is 8 blocks per re-
gion) we partitioned 2D problems into 64 = 82 blocks
and 3D problems into 512 = 83 blocks. This partition was
also empirically faster than a coarser one. The parameter
DischargesPerBlock was set by recommendation of
authors to 500 for small problems (stereo) and to 15000 for
big problems. The implementation is specialized for regular
grids, therefore multiview and KZ2 problems which do not
have regulargrid hint cannot be solved by this method.
Because of the fixed graph layout in RPR, arcs which are
reverse of each other are automatically grouped together, so
RPR computes on a reduced graph compared to other meth-
ods. Let us also note that because of the dynamic regions,
RPR is not fully suitable to run in a distributed system.

The method of Liu and Sun (2010) (parallel, but not dis-
tributed) would probably be the fastest one in this competi-
tion (as could be estimated from the results reported by Liu
and Sun (2010)), however the implementation is not publicly
available.

Results The results are summarized in Table 3. The time
reported is the wall clock time passed in the calculation
phase, not including any time for graph construction. The
number of sweeps for DD has the same meaning as for
P-ARD/PRD, it is the number of times all regions are
synchronously processed. RPR however is asynchronous
and uses dynamic regions. For it, we define sweeps =
block_discharges/number_of_blocks.

Comparing to Table 1, we see that P-ARD on 4 CPUs is
about 1.5–2.5 times faster than S-ARD. The speed-up over
BK varies from 0.8 on livern6c10 to more than 4 on
gargoyle.

We see that DD gets lucky some times and solves the
problem really quickly, but often it fails to terminate. We
also observe that our variant of P-PRD (based on high-
est first selections rule) is a relatively slow, but robust
distributed method. RPR, which is based on LIFO selec-
tion rule, is competitive on the 3D segmentation problems
but is slow on other problems, despite its compile-time
optimization for the particular graph structure. It is also
uses relatively higher number of blocks, The version we
tested always returned the correct flow value but often a
wrong (non-optimal) cut. Additionally, for 26 connected

Fig. 14 Speedup of P-ARD with the number of CPUs used. The
extended legend shows the time to solve each problem with 1 and
8 CPUs (does not include initialization). Dashed lines correspond to
the speedup in the ideal case (Amdahl’s law) when the parallel portion
of the computation is 90 % and 95 %

bone_subxy.n26c100 it failed to terminated within 1
hour.

7.4 Scalability with Processors

We performed additional tests of P-ARD in the shared mem-
ory mode using 1–8 CPUs. This experiment is conducted
on a system with Intel(R) Core(TM)i7 CPU 870@2.9 GHz,
16 GB memory, Linux 64 bit and gcc compiler. The plot
in Fig. 14 shows the speedup of solving the problem (ex-
cluding initialization) using multiple CPUs over the time
needed by a single CPU. For this test, we selected medium
and large size problems of different kind which can fully fit
in 16 GB of memory. The two problems which were taking
longer in the serial implementation scaled relatively well.
On the other side, the largest LB07-bunny problem did
not scale well. We believe that the limiting factor here is the
memory bandwidth. We inspected that the sequential part
of the computation (boundary relabel heuristic, synchronous
message exchange) occupy less than 10 % of the total time
for all four problems. The fully parallel part should exhibit
a linear speed-up in the ideal case of even load. The load
for LB07-bunny should be relatively even, since we have
enough regions (64) to be processed with 8 CPUs. Still, there
is no speed-up observed in the parallel part of the first sweep
(where most of the work is done) when scaling from 4 to 8
CPUs.

http://vision.csd.uwo.ca/code/
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Table 3 Parallel Competition

It is most probable that reducing memory requirements
(e.g. by having dedicated graph implementation for reg-
ular grids) would also lead to a speed-up of the parallel
solver. We also observed that 32 bit compilation (pointers
take 32 bits) runs faster than 64 bit compilation. It is likely
that our implementation can be optimized further for the
best parallel performance. We should however consider that
preparing the data for the problem and splitting it into re-
gions is another time-consuming part, which needs to be
parallelized.

8 Region Reduction

In this section, we attempt to reduce the region network
as much as possible by identifying and eliminating vertices
which can be decided optimally regardless of the reminder
of the full network outside of the region. If it was possible
to decide about many vertices globally optimally inside a
region network, the whole problem would simplify a lot. It
would require less memory and could be potentially solved
without distributing and or partitioned again into larger re-
gions. We propose an improved algorithm for such a reduc-
tion and its experimental verification. This preprocessing is
studied separately and was not applied in the tests of dis-
tributed algorithms above. Experiments with vision prob-

lems (Table 4) showed that while 2D problems can be sig-
nificantly reduced, many of the higher-dimension problems
do not allow a substantial reduction.

Some vertices become disconnected from the sink in the
course of the studied algorithms (S/P-ARD, S/P-PRD). If
they are still reachable from the source, they must belong to
the source set of any optimal cut. Such vertices do not par-
ticipate in further computations and the problem can be re-
duced by excluding them. Unfortunately, the opposite case,
when a vertex must be strictly in the sink set is not discov-
ered until the very end of the algorithms.

The following algorithm attempts to identify as many
vertices as possible for a given region. It is based on the
following simple consideration: if a vertex is disconnected
from the sink in GR as well as from the region boundary,
BR , then it is disconnected from the sink in G; if a vertex
is not reachable from the source in GR as well as from BR

then it is not reachable from the source in G.
Let us say that a vertex v is a strong source vertex (resp.

a strong sink vertex) if for any optimal cut (C, C̄), v ∈ C

(resp. v ∈ C̄). Similarly, v will be called a weak source ver-
tex (resp. weak sink vertex), if there exists an optimal cut
(C, C̄) such that v ∈ C (resp. v ∈ C̄).

Kovtun (2004) suggested to solve two auxiliary prob-
lems, modifying network GR by adding infinite capacity
links from the boundary vertices to the sink and in the sec-
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ond problem adding infinite capacity links from the source
to the boundary vertices. In the first case, if v is a strong
source vertex in the modified network GR , it is also a strong
source vertex in G. Similarly, the second auxiliary problem
allows to identify strong sink vertices in G. It requires solv-
ing a maxflow problem on GR twice. We improve this con-
struction by reformulating it as the following algorithm find-
ing a single flow in GR .

Statement 12 Sets BS and BT constructed in step 2 are
disjoint.

Proof We have s � t after step 1, hence there cannot exist
simultaneously a path from s to v and a path from v to t . �

After step 1, the network GR is split into two discon-
nected networks: with vertices reachable from s and ver-

Algorithm 3: Region Reduction (GR,BR)

/* Input: network GR, boundary BR
*/

1 Augment(s, t);

2 BS := {v | v ∈ BR, s → v}; /* source boundary set

*/
3 BT := {v | v ∈ BR,v → t}; /* sink boundary set

*/
4 Augment(s,BS);

5 Augment(BT , t);
6 foreach v ∈ R do
7 if s → v then v is strong source vertex;
8 if v → t then v is strong sink vertex;
9 otherwise

10 if v � BR then v is weak source vertex;

11 if B � vR then v is weak sink vertex

tices from which t is reachable. Therefore, any augmenta-
tions occurring in steps 4 and 5 act on their respective sub-
networks and can be carried independently of each other.
On the output of Algorithm 3, we have: s � BR ∪ {t} and
BR ∪ {s} � t . The classification of vertices is shown in
Fig. 15.

Augmenting on (s, t) in step 1 and on (s,BS) in the step 4
is the same work as done in ARD (where (s,BS) paths are
augmented in the order of labels of BS ). This is not a coinci-
dence, these algorithms are very much related. However, the
augmentation on (BT , t) in step 5 cannot be executed during
ARD. It would destroy validity of the labeling. We therefore
consider Algorithm 3 as a separate general preprocessing.

If v is a weak source vertex, it follows that it is not a
strong sink vertex. In the preflow pushing algorithms, we
find the cut (T̄ , T ), where T is the set of all strong sink
vertices in G. We consider that v is decided if it is a strong
sink or a weak source vertex.

Table 4 gives the percentage of how many vertices are
decided (and hence can be excluded from the problem) by

Fig. 15 Classification of vertices in V R build by Algorithm 3. Ver-
tices reachable from s are strong source vertices. Vertices from which
t is reachable are strong sink vertices. The remaining vertices can be
classified as weak source (a) if they cannot reach boundary, or as weak
sink (b) if they are not reachable from the boundary. Some vertices are
both: weak source and weak sink, this means they can be on both sides
of an optimal cut (but not independently)

Table 4 Percentage of vertices which can be decided by preprocessing. The problems are partitioned into regions the same way as in Table 1. For
stereo problems the average number over subproblems is shown

BVZ-sawtooth(20) 80.0 % LB07-bunny-sml 15.6 % bone.n26c100 6.9 % bone_subxyz.n6c100 6.6 %

BVZ-tsukuba(16) 72.8 % liver.n26c10 7.1 % bone.n6c10 8.8 % bone_subxyz_subx.n26c10 7.9 %

BVZ-venus(22) 70.2 % liver.n26c100 5.3 % bone.n6c100 7.0 % bone_subxyz_subx.n26c100 6.6 %

KZ2-sawtooth(20) 85.0 % liver.n6c10 7.2 % bone_subx.n26c10 6.6 % bone_subxyz_subx.n6c10 8.2 %

KZ2-tsukuba(16) 69.9 % liver.n6c100 5.3 % bone_subx.n26c100 6.6 % bone_subxyz_subx.n6c100 6.6 %

KZ2-venus(22) 75.8 % babyface.n26c10 29.3 % bone_subx.n6c10 6.3 % bone_subxyz_subxy.n26c10 11.3 %

BL06-camel-lrg 2.0 % babyface.n26c100 30.9 % bone_subx.n6c100 6.3 % bone_subxyz_subxy.n26c100 9.5 %

BL06-camel-med 2.3 % babyface.n6c10 35.4 % bone_subxy.n26c10 6.6 % bone_subxyz_subxy.n6c10 12.7 %

BL06-camel-sml 4.6 % babyface.n6c100 33.7 % bone_subxy.n26c100 6.6 % bone_subxyz_subxy.n6c100 9.3 %

BL06-gargoyle-lrg 6.0 % adhead.n26c10 0.3 % bone_subxy.n6c10 6.4 % abdomen_long.n6c10 1.7 %

BL06-gargoyle-med 2.4 % adhead.n26c100 0.3 % bone_subxy.n6c100 6.3 % abdomen_short.n6c10 6.3 %

BL06-gargoyle-sml 9.8 % adhead.n6c10 0.2 % bone_subxyz.n26c10 6.6 %

LB07-bunny-lrg 11.4 % adhead.n6c100 0.1 % bone_subxyz.n26c100 6.6 %

LB07-bunny-med 13.1 % bone.n26c10 8.7 % bone_subxyz.n6c10 6.6 %
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Fig. 16 Steps of Example 1. The height of a vertex correspond to its
label. The black box shows the vertex with excess in each step. The
source and the think vertices are not shown. (a–b) flow excess is pushed

to vertex 2; (c) vertex 2 is relabeled, so that two pushes are available
and excess is pushed to vertex 3; (d–f) similar

Fig. 17 Steps of Example 2.
Top left: a network with several
chains of vertices like in
Example 1. Nodes 1, 5, 6 are
common for all chains but there
are separate copies of vertices 2,
3, 4 denoted by letters. In
addition, there is a reverse arc
from vertex 6 to vertex 1. From
left to right, top to bottom: one
step of transferring a flow from
vertex 1 to vertex 6 using one of
the chains and then pushing it
through the arc (6,1), relabeling
6 when necessary. The label of
the first vertex is increased three
times by 2

Algorithm 3 for computer vision problems. It is seen that in
stereo problems, a large percent of vertices is decided. These
problems are rather local and potentially can be fully solved
by applying Algorithm 3 on several overlapping windows.
In contrast, only a small fraction can be decided locally for
many other problems.

9 Tightness of O(n2) Bound for PRD

In this section, we give an example of a network, its parti-
tion into regions and a sequence of valid push and relabel
operations, implementing PRD, such that S/P-PRD runs in
Ω(n2) sweeps.

We start by an auxiliary example, in which the preflow is
transfered from a vertex to a boundary vertex with a higher
label. In this example, some inner vertices of a region are
relabeled, but not any of the boundary vertices. It will imply

that the total number of sweeps cannot be bounded by the
number of relabellings of boundary vertices alone.

Example 1 Consider a network of 6 regular vertices in
Fig. 16. Assume all edges have infinite capacity, so only
non-saturating pushes occur. There are two regions R1 =
{1,2,3,4,5} and R2 = {6}. Figure 16 shows a sequence of
valid push and relabel operations. We see that some vertices
get risen due to relabel, but the net effect is that flow excess
from vertex 1 is transfered to vertex 6, which had a higher
label initially. Moreover, none of the boundary vertices (ver-
tices 5,6) are relabeled.

Example 2 Consider the network in Fig. 17. The first step
corresponds to a sequence of push and relabel operations
(same as in Fig. 16) applied to the chain (1,2a,3a,4a,5,6).
Each next step starts with the excess at vertex 1. Chains are
selected in turn in the order a, b, c. It can be verified from
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the figure that each step is a valid possible outcome of PRD
applied first to R1 and then to R2. The last configuration
repeats the first one with all labels raised by 6, so exactly
the same loop may be repeated many times.

It is seen that vertices 1,5,6 are relabeled only during
pushes in the chains a and b and never during pushes in
chain c. If there were more chains like chain c, it would take
many iterations (= number of region discharge operations)
before boundary vertices are risen. Let there be k additional
chains in the graph (denoted d, e, . . .) handled exactly the
same way as chain c. The total number of vertices in the
graph is n = 3k + const. Therefore, it will take Ω(n) re-
gion discharges to complete each loop, raising all vertices
by a constant value. The number of discharges needed in
order that vertex 1 reaches a label D, is Ω(nD). To make
the example complete, we add a chain of vertices initially
having labels 1,2,3, . . . ,D to the graph such that there is
a path from vertex 1 to the sink through a vertex with label
D. Clearly, we can arrange that D = Ω(n). The algorithm
needs Ω(n2) discharges on this example.

Because there is only one active vertex at any time, the
example is independent of the rule used to select the active
vertex (highest label, FIFO, etc.). By the same reason, it also
applies to parallel PRD. Because the number of regions is
constant, the number of sweeps required is also Ω(n2).

For comparison, noting that the number of boundary ver-
tices is 3, we see that S-ARD algorithm will terminate on
this example in a constant number of sweeps for arbitrary k.

10 Relation to Dual Decomposition

In our approach, we partition the set of vertices into re-
gions and couple the regions by sending the flow through
the inter-region edges. In the dual decomposition for MIN-
CUT (Strandmark and Kahl 2010) detailed below, a sepa-
rator set of the graph is selected, each subproblem gets a
copy of the separator set and the coupling is achieved via
the constraint that the cut of the separator set must be con-
sistent across the copies. We now show how the dual vari-
ables of Strandmark and Kahl (2010) can be interpreted as
flow, thus relating their approach to ours.

Decomposition of the MINCUT problem into two parts is
formulated by Strandmark and Kahl (2010) as follows. Let
M,N ⊂ V are such that M ∪ N = V , {s, t} ⊂ M ∩ N and
there are no edges in E from M\N to N\M and vice-versa.
Let x : M → {0,1} and y : N → {0,1} be the indicator vari-
ables of the cut set, where 0 corresponds to the source set.
Then the MINCUT problem without excess can be reformu-
lated as:

Fig. 18 Interpretation of the dual decomposition. (a) Example of a
network with denoted capacities. Terminal capacities are shown in cir-
cles, where “+” denotes s-link and “−−” denotes t -link. M ∩ N is a
separator set. (b) The network is decomposed into two networks hold-
ing copies of the separator set. The associated capacities are divided
(not necessarily evenly) between two copies. The variable λ1 is the La-
grangian multiplier of the constraint xv = yv . (c) Introducing edges of
infinite capacity enforces the same constraint, that v′ and v′′ are nec-
essarily in the same cut set of any optimal cut. (d) A maximum flow
in the network (c), the flow value on the red edges corresponds to the
optimal value of the dual variables λ

min
x,y

CM(x) + CN(y),

(15)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xs = ys = 0,

xt = yt = 1,

xi = yi, ∀i ∈ M ∩ N,

where

CM(x) =
∑

(i,j)∈EM

cM(i, j)(1 − xi)xj , (16a)

CN(y) =
∑

(i,j)∈EN

cN(i, j)(1 − yi)yj ; (16b)
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cM(i, j) + cN(i, j) = c(i, j), (17a)

cM(i, j) = 0 ∀i, j ∈ N\M, (17b)

cN(i, j) = 0 ∀i, j ∈ M\N, (17c)

EM = (M,M)
def= (M × M) ∩ E and EN = (N,N). The

minimization over x and y decouples once the constraint
xi = yi is absent. The dual decomposition approach is to
solve the dual problem:

max
λ

[
min

x
xs=0
xt=1

(
CM(x) +

∑
i∈M∩N

λi(1 − xs)xi

)

+ min
y

ys=0
yt=1

(
CN(y) −

∑
i∈M∩N

λi(1 − ys)yi

)]
, (18)

where the dual variable λ is multiplied by the extra terms
(1 − xs) = (1 − ys) = 1 to show explicitly that the inner
minimization problems are instances of the minimum cut
problem.

We observe that dual variables λ correspond to the flow
on the artificial edges of infinite capacity between the copies
of the vertices of the separator set as illustrated by Fig. 18.
Indeed, consider a vertex v in the separator set. The dual
variable λv contributes to the increase of the terminal link
(v′, t) in the subproblem M and to the decrease of the ter-
minal link (v′′, t) in the subproblem N . This can be equiv-
alently represented as an augmentation of flow of λv on the
cycle v′, t ′, v′′ in the network Fig. 18(c). The optimal flow in
the network Fig. 18(c) on the constraint edges will therefore
correspond to the optimal λ. This construction could be eas-
ily extended to the case when a vertex v from the separator
set is shared by more than two subproblems.

There exist an integer optimal flow for a problem with
integer capacities. This observation provides an alternative
proof of the theorem (Strandmark and Kahl 2010, Theo-
rem 2),8 stating that there exist an integer optimal λ. Despite
the existence of an integer solution, the integer subgradient
algorithm (Strandmark and Kahl 2010) is not guaranteed to
find it.

The algorithm we introduced could be applied to such
a decomposition by running it on the extended graph
Fig. 18(c), where vertices of the separator set are duplicated
and linked by additional edges of infinite capacity. It could
be observed, however, that this construction does not allow
to reduce the number of boundary vertices or the number of

8Strandmark and Kahl (2010) stated their theorem for even integer
costs in the case of two-subproblem separator sets. They remarked that
a multiple of 4, resp., 8 is needed in the cases of decompositions for 2D
and 3D grids. However, this multiplication is unnecessary if we chose
to split the cost unevenly but preserving the integrality (like we did in
the example).

inter-region edges, while the size of the regions increases.
Therefore it is not beneficial with our approach.

11 Conclusion

We developed a new algorithm for MINCUT problem on
sparse graphs, which combines augmenting paths and push-
relabel approaches. We proved the worst case complexity
guarantee of O(|B|2) sweeps for the sequential and parallel
variants of the algorithm (S/P-ARD). While there are many
algorithms in the literature with complexities in terms of ele-
mentary arithmetic operations better than we could possibly
prove, we showed that our algorithms are fast and competi-
tive in practice, even in the shared memory model. We pro-
posed an improved algorithm for local problem reduction
(Sect. 8) and determined that most of our test instances are
difficult enough in the sense that very few vertices can be de-
cided optimally by looking at individual regions. The result
that S/P-ARD solves test problem in few tens of sweeps is
thus non-trivial. We also gave a novel parallel version of the
region push-relabel algorithm of Delong and Boykov (2008)
and a number of auxiliary results, relating our approach to
the state-of-the.

Both in theory and practice (randomized test), S-ARD
has a better asymptote in the number of sweeps than the
push-relabel variant. Experiments on real instances showed
that when run on a single CPU and the whole problem
fits into the memory, S-ARD is comparable in speed with
the non-distributed BK implementation, and is even signif-
icantly faster in some cases. When only a single region is
loaded into memory at a time, S-ARD uses much fewer disk
I/O than S-PRD. We also demonstrated that the running time
and the number of sweeps are very stable with respect to the
partition of the problem into up to 64 regions. In the parallel
mode, using 4 CPUs, P-ARD achieves a relative speedup of
about 1.5–2.5 times over S-ARD and uses just slightly larger
number of sweeps. P-ARD compares favorably to other par-
allel algorithms, being a robust method suitable for a use in
a distributed system.

Our algorithms are implemented for generic graphs.
Clearly, it is possible to specialize the implementation for
grid graphs, which would reduce the memory consumption
and might reduce the computation time as well.

A practically useful mode could be actually a combina-
tion of a parallel and sequential processing, when several
regions are loaded into the memory at once and processed
in parallel. There are several particularly interesting com-
binations of algorithm parallelization and hardware, which
may be exploited: (1) parallel on several CPUs, (2) parallel
on several network computers, (3) sequential, using Solid
State Drive, (4) sequential, using GPU for solving region
discharge.
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There is the following simple way how to allow region
overlaps in our framework. Consider a sequential algorithm,
which is allowed to keep 2 regions in memory at a time. It
can then load pairs of regions (1,2), (2,3), (3,4), . . . , and
alternate between the regions in a pair until both are dis-
charged. With PRD, this is efficiently equivalent to discharg-
ing twice larger regions with a 1/2 overlap and may sig-
nificantly decrease the number of sweeps required. In the
case of a 3D grid, it would take 8 times more regions to al-
low overlaps in all dimensions. However, to meet the same
memory limit, the regions have to be 8 times smaller. It has
to be verified experimentally whether it is beneficial. In fact,
the RPR implementation of Delong and Boykov (2008) uses
exactly this strategy: a dynamic region is composed out of
a number of smaller blocks and blocks are discharged until
the whole region is not discharged. It is likely that with this
approach we could further reduce the disk I/O in the case of
the streaming solver.

Future Work We plan to provide also a distributed MPI-
based implementation as well as address the question of dy-
namic updates of the problem and implement a more effi-
cient input-output interface for the use in real applications.
The memory-efficient representation of graphs having repet-
itive structure is also possible.
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