
Int J Comput Vis (2013) 101:288–304
DOI 10.1007/s11263-012-0569-9

Verifying Global Minima for L2 Minimization Problems
in Multiple View Geometry

Richard Hartley · Fredrik Kahl · Carl Olsson ·
Yongduek Seo

Received: 26 August 2010 / Accepted: 3 September 2012 / Published online: 4 October 2012
© Springer Science+Business Media, LLC 2012

Abstract We consider the least-squares (L2) minimization
problems in multiple view geometry for triangulation, ho-
mography, camera resectioning and structure-and-motion
with known rotation, or known plane. Although optimal
algorithms have been given for these problems under an
L-infinity cost function, finding optimal least-squares solu-
tions to these problems is difficult, since the cost functions
are not convex, and in the worst case may have multiple
minima. Iterative methods can be used to find a good so-
lution, but this may be a local minimum. This paper pro-
vides a method for verifying whether a local-minimum so-
lution is globally optimal, by providing a simple and rapid
test involving the Hessian of the cost function. The basic
idea is that by showing that the cost function is convex in a
restricted but large enough neighbourhood, a sufficient con-
dition for global optimality is obtained.

The method is tested on numerous problem instances of
real data sets. In the vast majority of cases we are able to
verify that the solutions are optimal, in particular, for small
to medium-scale problems.

Keywords Geometric optimization · Reconstruction ·
Convex programming

R. Hartley (�)
Australian National University and NICTA, Canberra, Australia
e-mail: Richard.Hartley@anu.edu.au

F. Kahl · C. Olsson
Centre for Mathematical Sciences, Lund University, Lund,
Sweden

Y. Seo
Department of Media Technology, Sogang University, Seoul,
Korea

1 Introduction

Modern methods for the solution of geometric reconstruc-
tion problems in Computer Vision may be viewed as start-
ing with the paper of Longuet-Higgins (1981). However, af-
ter nearly three decades of research, the problem of find-
ing guaranteed optimal least-squares (L2) solutions to such
problems is not solved. In fact, papers such as Nistér et al.
(2007a, 2007b) suggest that such algorithms do not exist.

Even for the simplest of geometric vision problems, the
triangulation problem, no ideal method has been given that
guarantees an optimal least-squares solution. This paper,
however, tries a totally different approach, by giving a pro-
cedure for verifying whether a solution obtained through
standard methods such as bundle-adjustment actually is the
global optimum. Usually, in fact, it is. Though not useful
for all geometric Vision problems, the method given in this
paper is applicable to a substantial number of the common
reconstruction problems, as will be shown theoretically and
by experiment in this paper.

Perhaps the simplest of all 3D reconstruction problems is
the triangulation problem, which nevertheless shares many
of the difficulties of more complex tasks. We begin our de-
scription of our approach by considering the triangulation
problem, before generalizing later to a wider class of prob-
lems. The condition we provide for the verification is a suf-
ficient but not necessary condition for the solution to be a
global optimum. However, for triangulation it works in al-
most all cases. In the rare cases where the condition fails it
is usually because the point has large noise, in which case in
a large-scale reconstruction problem, the best option is just
to remove the point from consideration. Alternatively it may
be possible to apply one of the recent (considerably more
time-consuming) optimal algorithms (Lu and Hartley 2007;
Kahl et al. 2008) for solving the problem; see also the survey
(Hartley and Kahl 2007).

mailto:Richard.Hartley@anu.edu.au

Int J Comput Vis (2013) 101:288–304 289

How Hard is the Triangulation Problem, Really? It was
shown in Hartley and Sturm (1997) that the least-squares
two-view triangulation problem is solvable in closed form.
However, up to three local minima may exist. Much more re-
cently, it has been shown (Stewenius et al. 2005) that the so-
lution for three views involves the solution of a polynomial
of degree 47, and higher degree polynomials are required
with more views. The degree of the polynomial involved in
the solution translates into numbers of possible local min-
ima. It is certainly possible to find explicit examples with
multiple local minima (Hartley and Sturm 1997). This sug-
gests that the problem is difficult.

On the other hand, it was shown in Hartley and Schaffal-
itzky (2004) that a single local (and hence global) minimum
occurs if an L∞ (minimax) solution is sought, instead of the
least-squares solution. However, the least-squares problem
remains the problem of primary interest. The L∞ solution
is useful as an initialization procedure for the least squares,
but it does not guarantee an optimal L2 solution. In a real
data test it seems that common algorithms get the right an-
swer most of the time. So, perhaps the problem is not so
hard after all—if only one knows whether one has the right
solution. That problem is effectively solved in this paper.

Working algorithms with practical accuracy have been re-
ported for geometric vision problems since the eight-point
algorithm for two view reconstruction (Hartley and Zisser-
man 2004). Although these known methods do not guaran-
tee a globally optimal solution, nevertheless, simple meth-
ods based on initialization, followed by iterative refinement
usually work very well. They depend on the initial solution
being within the basin of attraction of the optimal solution.
However, until now there has been no way of verifying this
requirement. In this paper, we address this problem and give
a fast and very satisfactory method of verifying that a given
local minimum is the global minimum. By experiments on
a very large set of triangulation problems, the test is seen to
have a 99.9 % success rate and averages 0.5 ms per triangu-
lated point on a modern 2.66 GHz laptop computer, substan-
tially faster for small problems.

The new technique for proving convexity and thus the
global optimality is applicable to not only triangulation but
also other geometric vision problems. We show that the
same analysis for the triangulation problem applies to any
optimization problem with quasi-convex residual functions
(Ke and Kanade 2007; Kahl and Hartley 2008), since the lo-
cation of the global minimum can be constrained to a convex
set.

The class of problems that our framework covers is the
same as the quasiconvex problems in the L∞-norm (Ke and
Kanade 2007; Kahl and Hartley 2008), which includes n-
view triangulation, homography estimation, camera resec-
tioning to name a few.

Our main contributions may be listed as follows:

– An easy and fast method to verify the global optimality
of the solution under the L2 norm for a whole class of
multiview geometry problems.

– We perform an extensive set of experiments on several
data sets to explore the limitations of the method. Results
are given for triangulation, homography estimation, cam-
era resectioning and structure and motion with known ro-
tations. Our main conclusion is that in most cases the ba-
sic verification test succeeds, especially for small scale
problems.

2 Triangulation—Simple Convexity Test

We will derive conditions for optimality of the solutions for
a class of cost functions encountered in the solution of ge-
ometric vision problems. These are the cost functions com-
posed of sum of squares of measurement errors, where each
error term is a quasi-convex cost function of Second Order
Cone Programming (SOCP) type (Kahl and Hartley 2008).
This type of cost function is encountered in many different
problems, many of which are listed in the survey (Hartley
and Kahl 2007). However, to allow a simple introduction to
the techniques introduced in this paper, we will first apply
them to the triangulation problem, which has been shown to
be representative of the more general problems considered
later.

2.1 Problem Description

We consider a calibrated camera model and think of image
points as being represented by points on a sphere, that is unit
vectors, rather than points in an image plane. The triangula-
tion problem is characterized by a set of unit measurement
vectors wi based at projection centres Ci , all pointing to a
common point X in space, which is to be determined. Thus,
nominally X = Ci + diwi , where di is the depth of the point
X with respect to the i-th projection.

With error in the measurements, the rays from centre Ci

in direction di do not exactly intersect, so the required point
X is the one that minimizes the sum of squares error. The
image error is normally the angular difference between a
measured direction w and the direction vector from the cam-
era centre to the point X. For simplification, our cost func-
tion will be the sum of squares of the tangent of the angular
error, rather than the squared angle itself. Since errors are
usually quite small, the difference is insignificant, and the
analysis is simpler. Eventually, we will extend the result to
minimization of squared angle error (see Appendix A).

Considered more generally, the desired solution is a point
Xopt that represents a global minimum of the cost function
C(X) = ∑N

i=1 f 2
i (X), where f 2

i represents a squared resid-
ual error measurement in the i-th of N images. If we use the
tangent of the angle to measure the residual error, then the
total cost function is given by

290 Int J Comput Vis (2013) 101:288–304

C(X) =
N∑

i=1

f 2
i (X)

=
N∑

i=1

tan2 ∠(wi ,X − Ci)

=
N∑

i=1

‖wi × (X − Ci)‖2

(wi
�(X − Ci))2

. (1)

Bounding the Solution Now, suppose that X0 is a proposed
solution to this triangulation problem with residual given by
C(X0) = ∑N

i=1 f 2
i (X0) = ε2. This observation gives a con-

straint on the position of the optimal solution, which must
satisfy

C(Xopt) =
N∑

i=1

f 2
i (Xopt) ≤ ε2. (2)

Since the sum of terms f 2
i (Xopt) must be less than ε2, so

must each individual term. Thus, for all i, f 2
i (Xopt) ≤ ε2.

The set of points X in R
3 satisfying this condition for some

i consists of those points that map into a circular neighbour-
hood of the image point. This constitutes a cone in R

3, as ob-
served in Hartley and Schaffalitzky (2004). Since this con-
dition must be satisfied by each of the projections, it follows
that Xopt must lie in the intersection of all the cones. This is
a convex region of R

3, since each cone is a convex set.
Let us define the convex set D of points for the optimal

solution as

D = {
X |f 2

i (X) ≤ ε2; wi
�(X − Ci) ≥ 0, i = 1, . . . ,N

}
,

(3)

where the second condition wi
�(X − Ci) ≥ 0 restricts the

domain to points in front of the camera.
Our overall strategy of finding Xopt (or verifying X0 =

Xopt) is to provide tests that allow us to prove that the cost
function must be convex on this convex region. If this is so,
then finding the optimal solution Xopt may be carried out
using standard convex optimization methods. More signifi-
cantly, if X0 already is a local minimum of the cost function,
found by any geometric optimization technique, then it must
be a global minimum.

The Hessian of the Cost Function A sufficiently differen-
tiable function is convex on a convex region if and only if its
Hessian is positive semi-definite. Hence, we are led in this
section to consider the Hessian of the cost function. The to-
tal cost function is a sum of several different terms, one for
each measurement. We will first consider a single term in
the cost function, corresponding to a single image measure-
ment.

To begin with, we consider the Hessian expressed in a
suitable camera-centred coordinate frame. Consider a vector
w pointing from the origin in the direction of the z-axis, and
let X = (x, y, z) be a point lying close to the positive z axis,
such that the vector from the origin to X makes an angle φ

from the vector w. Consider the error function given by

f 2(x, y, z) = tan2 φ = (
x2 + y2)/z2. (4)

This represents the squared projection error of the point X
with respect to the “measured direction”, w.

The Hessian matrix of f 2 with respect to x, y and z is
easily computed to be

H = 2

z2

⎡

⎣
1 0 −2x/z

0 1 −2y/z

−2x/z −2y/z 3(x2 + y2)/z2

⎤

⎦ , or (5)

H = 2

d2

⎡

⎣
1 0 −2τx

0 1 −2τy

−2τx −2τy 3τ 2

⎤

⎦ , (6)

where we introduce the notation τx , τy , τ and d defined by
the terms in corresponding position. Note that τ 2 = τ 2

x + τ 2
y ,

and d represents the depth of the point in the viewing direc-
tion. Neglecting the constant factor 2/d2, the eigenvalues of
this matrix are easily computed to be 1 and a ± √

a2 + τ 2,
where a = (3τ 2 + 1)/2. There are two positive and one neg-
ative eigenvalue.

A Bound on the Hessian As the point X = (x, y, z) moves
over the region of interest D, the Hessian changes. It is our
purpose to find a lower bound for the Hessian matrix for all
points X in D.

Consider the matrix given by

H′ = 2

d2

⎡

⎣
1/3 0 0
0 1/3 0
0 0 −3τ 2

⎤

⎦ . (7)

The reasoning that led to the choice of this matrix H′ will
be explained later, but its properties are simple enough. The
key property of this matrix is the observation that

H− H′ = 4

3d2

⎡

⎣
1 0 −3τx

0 1 −3τy

−3τx −3τy 9τ 2

⎤

⎦

is positive semi-definite. Indeed, it is easily seen that H− H′
has eigenvalues (4/3d2) times the following:

1 with eigenvector (τy,−τx,0)�

0 with eigenvector (3τx,3τy,1)�

1 + 9τ 2 with eigenvector
(
τx, τy,−3τ 2)�

.

Int J Comput Vis (2013) 101:288–304 291

All eigenvalues are non-negative. We write H − H′ 	 0, or
H	 H′. Matrix H′ is a lower bound for the Hessian.

The eigenvalues of H′ are obviously the diagonal entries.
We see that H′ has two positive and one negative eigenvalue.
The eigenvector corresponding to the negative eigenvalue is
directed along the z axis, and the other two eigenvectors are
in the plane perpendicular to the z axis. However, since the
two corresponding eigenvalues are equal, the eigenvectors
may be taken as any two orthogonal vectors in the xy plane.

The matrix H′ is more easily handled than H, since it is
dependent on the point X only through the values of d and τ ,
both of which can be bounded, as we shall see. We may write
H′ as

H′ = (
2/3d2)diag

(
1,1,−9τ 2).

We assume that the point X lies in a cone with angle
arctan τmax. Thus, τ ≤ τmax, and we see that

H	 H′ = (
2/3d2)diag

(
1,1,−9τ 2)

	 (
2/3d2)diag

(
1,1,−9τ 2

max

)
.

Note that this matrix is a lower bound (in the semi-
definite partial ordering) for the Hessian of f at any point
X lying in the cone. It depends only on the depth d of the
point from the vertex of the cone.

Generally Placed Cone The above computation was car-
ried out for the case where the vector w points directly along
the z axis. We now consider a cone with axis represented by
an arbitrary unit vector w and with vertex at a point C. This
corresponds to rotating the camera by R to align the Z di-
rection to w, followed by a translation of the origin. The
depth d(X) of a point X relative to the vertex is given by
w�(X − C). The Hessian for the function (4) can be trans-
formed easily to this rotated coordinate frame, according to

H
→ RHR� 	 2

3d(X)2

(
uu� + vv� − 9τ 2

maxww�)
, (8)

where u, v and w are the three columns of the rotation ma-
trix. This gives a lower bound for the Hessian, depending
only on the point X through its depth d(X) from the vertex.

Bounded Depths We may remove this final dependency of
the Hessian on the point X if we assume that the point X
lies in a bounded domain. Thus, suppose the depth d(X) is
bounded on the feasible domain D, and that we can find
bounds L and U such that for all X ∈ D,

L ≤ 1/d(X) ≤ U. (9)

In this case, one can find a bound on the Hessian that
holds over the complete domain D, and yet is independent

of X, namely (8) and (9) together give

H	 (2/3)
(
L2(uu� + vv�) − 9U2 τ 2

maxww�)
, (10)

where the inequality holds for the Hessian of f 2 computed
at any point in D. Thus, the matrix on the right may be
thought of as a lower bound for the Hessian evaluated in
this region.

Summing the Hessians Now, we consider a point X, sub-
ject to several measurements, represented by vectors wi . We
do not care where the vertex of the cone (corresponding to
the camera centre) is located, but only that the depth of the
point X in the i-th cone is di . We suppose that the point X is
situated in the intersection of cones with angle arctan τmax.
Let f 2

i (X) be τ 2
i where arctan τi is the angle of X from the

axis of the i-th cone. The L2 error associated with the point
X is given by f 2(X) = ∑

i f
2
i (X) and the Hessian of f 2 is

H= ∑
i Hi . Now applying the inequality (8) to each Hi , we

get

H	
∑

i

(
2/3di(X)2)(uiui

� + vivi
� − 9τ 2

maxwiwi
�)

. (11)

Although each of the individual summands Hi in this ex-
pression cannot be positive semi-definite, we hope that by
adding up the contributions for different i, the positive
eigenvalues will dominate the negative eigenvalues, result-
ing in a positive definite or semi-definite matrix.

Summarizing the previous discussion, we may state our
basic convexity theorem for the 3D triangulation problem.

Theorem 1 Let the convex domain D be contained in the
intersection of a set of N cones with vertices Ci and with
axes represented by unit vectors wi , and angle bounded by
arctan τmax. Let ui and vi be unit vectors orthogonal to each
other and to wi . For a point X ∈ D, let di(X) = wi

�(X−Ci)

represent its depth from the vertex of the i-th cone in the
direction wi . Let Ui and Li be upper and lower bounds for
the value of 1/di(X) on D. Then

N∑

i=1

(
L2

i

(
uiui

� + vivi
�) − 9U2

i τ 2
maxwiwi

�) 	 0 (12)

is a sufficient condition for the least-squares error func-
tion (1) to be convex on D.

3 Weighted Depths

It is possible to obtain a better condition than that given in
Theorem 1, as will be shown next. Observe that the sum-
mand in (12) consists of two parts, which are multiplied by
L2

i and U2
i respectively. Whereas uiui

� + vivi
� is positive

292 Int J Comput Vis (2013) 101:288–304

semi-definite, −9τ 2
maxwiwi

� is negative semi-definite. In or-
der for the total sum to be positive semi-definite, it is advan-
tageous if the factor U2

i is kept as small as possible. Though
Ui can be no smaller than Li , it is best if the bounds Li and
Ui are as close to each other (tight) as possible.

Looked at another way, the condition (12) resulted from
obtaining a lower bound for the Hessian over the whole re-
gion D. Since the Hessian of each individual term f 2

i scales
as 1/d2 along any ray through Ci , any constant lower bound
over the region D will not be a good bound if the depth of
the region varies greatly, so that Li and Ui are widely dif-
ferent. An alternative is to introduce some positive function
α(X) and find a lower bound for the scaled Hessian α(X)H
over the region D. If this lower bound is positive definite,
then so is H everywhere in D.

Consider a positive function α(X) and suppose that there
exist constants Lα

i and Uα
i , such that the following condi-

tions holds for all i, and all X ∈ D:

Lα
i ≤ α(X)

di(X)
≤ Uα

i . (13)

Then, referring to (11), we find that

∑

i

(
uiui

� + vivi
�

d2
i (X)

− 9τ 2
max

wiwi
�

d2
i (X)

)

	 1

α(X)2

∑

i

((
Lα

i

)2(uiui
� + vivi

�)

− 9
(
Uα

i

)2
τ 2

maxwiwi
�)

. (14)

So to establish convexity it is sufficient to verify that

∑

i

((
Lα

i

)2(uiui
�+vivi

�)−9
(
Uα

i

)2
τ 2

maxwiwi
�) 	 0. (15)

Observe that this condition is identical with (12) except
that bounds Li and Ui are replaced by Lα

i and Uα
i . If these

new bounds are tighter (that is more nearly equal) than
(Li,Ui), then we can expect a better result; we are more
likely to be able to establish convexity using condition (15)
than by using (12).

If Lα
i and Uα

i are not greatly different, this condition
specifies that all the depths di(X) are approximately pro-
portional to some “average” depth value α(X).

A useful choice for the function α(X) in the above dis-
cussion is the average depth of point X with respect to all
views, that is

α(X) = (1/N)

N∑

i=1

di(X).

If the depth di(X) of a point is reasonably approximated by
the average depth over all views, then α(X)/di(X) does not

Fig. 1 When the baseline is small compared to depth, the region D is
elongated, and the ratio Ui/Li can be large. However, over the region
of interest, the depth of a point X is approximately the same in all
views, so α(X)/di(X) is close to constant when α(X) is the average
depth over all views

vary greatly over the domain D, so the bounds Lα
i and Uα

i

are close together. Even for domains D reaching to infinity,
the ratio α(X)/di(X) will remain within reasonable maxi-
mum and minimum bounds, since the average depth α(X)

increases to infinity at the same rate as any specific depth di .
This is illustrated in Fig. 1.

Average depth is a good choice for the function α(X) in
the case where all the points have approximately the same
depth in all views. In the case when the depths are substan-
tially different, then it may be better to choose a weighted
depth average. For instance, let μi = di(X0), where X0 ∈ D
is a proposed solution to the problem. Then, a good choice
for the function α(X) is

α(X) = 1

N

N∑

i=1

di(X)

μi

.

We now may summarize the previous discussion by stat-
ing the general convexity theorem.

Theorem 2 With the notation as in Theorem 1, let α(X)

be any positive real valued function defined on D, and let
Uα

i and Lα
i be upper and lower bounds for the value of

α(X)/di(X) on D. Then

N∑

i=1

((
Lα

i

)2(uiui
� +vivi

�)−9
(
Uα

i

)2
τ 2

maxwiwi
�) 	 0 (16)

is a sufficient condition for the least-squares error func-
tion (1) to be convex on D.

3.1 Computing the Bounds

For conditions of this type to be useful, it is necessary that
the bounds Lα

i and Uα
i can be calculated. We can find Uα

i

by maximizing α(X)/di(X) for X ∈ D. Any value Uα
i no

smaller than this maximum will be a suitable bound.
The region D of R

3 over which we need to minimize and
maximize α(X)/di(X) is the intersection of second order
cones. Using second order cones leads us into Second Order
Cone Programming (SOCP), which for efficiency (and the
non-availability of public domain code in C++) we wish
to avoid. It is easier to allow D to be a polygonal region
(if necessary by enlarging it slightly). This polygonal region

Int J Comput Vis (2013) 101:288–304 293

can be expressed in terms of linear constraints, resulting in
the use of Linear Programming to optimize α(X)/di(X).
More details of this are given in the algorithm description
in Sect. 3.2.

In the case α(X) = 1, the problem reduces to finding the
maximum and minimum values of depth on D. Thus, let

B = min
X∈D

di(X) = min
X∈D

wi
�(X − Ci).

Then Uα
i can be chosen as any value greater than 1/B . If

the region D is polygonal, the value of B may be found by
linear programming. If D is an intersection of cones, then
we may use SOCP to find the minimum.

If α(X) is a linear function of the different depths, say
α(X) = α0 + ∑n

j=1 αjdj (X), then it is also possible to find
the bounds Uα

i and Lα
i . The required optimization problem

to find Uα
i is

maximize B

subject to α(X) ≥ di(X)B and X ∈ D

where the maximization takes place over all values of B

and X ∈ D, and Uα
i is subsequently chosen as any value

no smaller than B . In this case, however, writing di(X) =
wi

�(X − Ci) results in a constraint involving both B and
the point X; this is not a linear constraint. Nevertheless, for
a fixed value of B , the constraint is linear, and instead of
maximizing B , we may solve a feasibility problem to deter-
mine whether there exists X to satisfy the constraints. The
problem can be rewritten, essentially equivalently, as

minimize B

such that α(X) ≥ di(X)B; X ∈ D is infeasible.

By a process of binary search over the range of B one may
solve the optimization problem to determine the optimal B .
This requires repeated solution of the feasibility problem.
We write the problem in this way to emphasize that the re-
quired value of B is one in which the constraint problem is
infeasible. It is of some importance not to stop the bisection
process at a value B where the constraints are satisfied.

A good starting point is the point X0 ∈ D, which can be
used to specify a value B for which the problem is feasible.
Since we may not need a tight upper bound B , the bisection
process may not need to continue to high accuracy. One may
set Uα

i to some value of B for which the constraint problem
is infeasible.

3.2 Algorithm

We give a summary of the algorithm for proving convexity
of the cost function.

Consider a set of cameras with centres Ci , and let wi be
a direction vector representing the measured direction of an

observed point X from Ci . Let ui and vi be two unit vectors
orthogonal to wi constituting (along with wi) an orthogonal
coordinate frame.

1. Bounding the region. Let X be a 3D point constituting a
potential solution to the triangulation problem. The cost
of this point is the value of the cost function

C(X) =
N∑

i=1

f 2
i (X)

=
N∑

i=1

(
ui

�(X − Ci)

wi
�(X − Ci)

)2

+
(

vi
�(X − Ci)

wi
�(X − Ci)

)2

.

(17)

Let the value of this cost for the given point X be ε2.
We then define a region of space in which the optimal

point Xopt lies according to the inequalities.

−ε ≤ ui
�(Xopt − Ci)

wi
�(Xopt − Ci)

≤ ε (18)

and similar inequalities involving vi instead of ui . Since
wi

�(Xopt − Ci) > 0 (the cheirality constraint that the
point must lie in the direction it is observed), we can mul-
tiply out by wi

�(Xopt −Ci) to obtain a total of four linear
inequalities in the positions of the point Xopt, constrain-
ing it to a polyhedral region of space, D.

2. Finding depth bounds. The next step is to find minimum
and maximum values of di on the region D. Since di is
defined to be wi

�(X−Ci), determining its minimum and
maximum over the polyhedral region D is simply a pair
of linear programming problems.

3. Performing the test. We can now form the matrix in
(12) and test its smallest eigenvalue to determine if it is
positive-definite. If it is, then the cost function is convex
on the region D. If the initial estimate X is a local mini-
mum, then it is also a global minimum.

4. α-test. If the test in the previous step failed, then repeat
steps 2 and 3 to find bounds (13), and then condition (16)
to test for convexity.

4 General SOCP Cost Functions

We now consider the same problem in the more general con-
text of the type of cost function that arises in many geometric
Vision problems. The type of cost function that we consider
is of the type that arises in SOCP. Thus, let f : R

m → R be
a function of the form

f 2(X) = ‖A�X + b‖2

(c�X + k)2
, (19)

294 Int J Comput Vis (2013) 101:288–304

where A is an m × n matrix. Suppose that for X ∈ D the
value of the function is bounded, so that f 2(X) < τ 2

max for
X ∈ D.

Define the vector v = (A�X+b)/(c�X+k), and observe
that ‖v‖2 = f 2(X) < τ 2

max. The Hessian of f 2(X) can now
be computed to equal

H= 2

(c�X + k)2
[A c]

[
In×n −2v
−2v� 3‖v‖2

][
A�
c�

]

. (20)

Apart from the multiplication by [A c] and its transpose, this
is the same as what was obtained previously in (5). As be-
fore, we see that
[
In×n −2v
−2v� 3‖v‖2

]

	 1

3

[
In×n 0
0� −9‖v‖2

]

× 1

3

[
In×n 0
0� −9τ 2

max

]

.

Indeed, it is straight-forward to verify that the difference be-
tween these two matrices,

2

3

[
In×n −3v
−3v� 9‖v‖2

]

has eigenvectors 0, 2/3 (repeated n−1 times) and (2/3)(1+
9‖v‖2). It results from this that

H	 2

3d(X)2

(
AA� − 9τ 2

maxcc�)
, (21)

where d(X) = c�X + k. If we can bound 1/d(X)2 so that
L2 ≤ 1/d(X)2 ≤ U2, then we obtain a bound that does not
depend at all on the point X, namely

H	 (2/3)
(
L2AA� − 9U2 τ 2

maxcc�)
. (22)

In addition, as with the triangulation problem, we may
define a function α(X) on D to obtain a general condition.

Theorem 3 Let D be a domain in R
m and for i = 1, . . . ,N

let f 2
i : D → R be a function of the form

f 2
i (X) = ‖Ai

�X + bi‖2

(ci
�X + ki)2

such that 0 ≤ f 2
i (X) ≤ τ 2

i on D. Let α be a positive real
valued function defined on D and (Lα

i ,Uα
i) be lower and

upper bounds for α(X)/(ci
�X + ki) on D. Then

N∑

i=1

((
Lα

i

)2
AiAi

� − 9
(
Uα

i

)2
τ 2
i cici

�) 	 0 (23)

is a sufficient condition for the function
∑N

i=1 f 2
i (X) to be

convex on D.

An important special case is when α is identically equal
to unity, and (Li,Ui) are bounds for the inverse “depth”,
1/(ci

�X + ki). Also note that if τmax = maxi τi , then we
can replace τi by τmax in the (23) to get a slightly weaker
(but more simple) sufficient condition.

4.1 Application to Other Problems

We now consider the way many other problems in Multiple-
View Geometry may be expressed in terms of cost functions
of the form given in (19), and hence are susceptible to the
methods developed in this paper. Problems that can be ad-
dressed in this way are essentially the same as those that
can be solved in L∞ norm using SOCP or related methods.
A survey of such problems was given in Hartley and Kahl
(2007). We consider the most important such problems here.
In all cases we consider, it is a simple exercise to write the
cost functions as a sum of terms of the form (19).

4.2 Multiple View Reconstruction

The cost function (17) involves only one point X. Suppose
we have several points Xj ; j = 1, . . . ,M and also several
points Ci ; i = 1, . . . ,N , and that a direction vector wij

nominally pointing from Ci to Xj is known for some subset
S of pairs (i, j). One may write a cost-function

∑

(i,j)∈S
f 2

ij (Ci ,Xj)

=
∑

i,j

(uij
�(Xj − Ci))

2 + (vij
�(Xj − Ci))

2

(wij
�(Xj − Ci))2

(24)

which is to be minimized over all choices of the Xj and Ci .
To remove the gauge freedoms from this problem, it is best
to set one of the Ci to be at the origin, and for one point Xj

to be chosen to satisfy wij
�(Xj − Ci) = 1.

Now, if we define a vector X to be a concatenation of
all the Xj and Ci , then each of the terms in (24) is easily
expressible in the form (19). The matrix Aij , and the vector
cij

� that will appear in the place of Ai and ci in (19) will
have 3(M + N) columns, but will be quite sparse, having
non-zero entries only in columns corresponding to the points
Xi and Cj involved in the term.

Defined in this way, the problem satisfies the conditions
of Theorem 3, and the bound (23) may be used to check
convexity of the cost function.

For large problems, the number of measurements is quite
large and the total cost

∑
f 2

ij (X0) = ε2 will be high. This
value determines the value of τ that must be used to verify
optimality. For this reason, the region D can be large, and
the test can fail. An alternative is to set a smaller value of τ .
If the convexity test succeeds for this smaller value, then we
cannot rule out the existence of an optimum Xopt not in the

Int J Comput Vis (2013) 101:288–304 295

region D; however, it such an optimum exists, then the resid-
ual f 2

ij (Xopt) must be greater than τ for at least one measure-
ment. If τ is reasonably large, then this may be considered
an unlikely occurrence, particularly if the measurement set
is outlier-free.

4.3 Reconstruction Using Image Measurements

Consider a projective camera with camera matrix Pi acting
on a point Xj , and let the corresponding measured image
point be xij , defined for (i, j) ∈ S , that is for some subset of
all point—image pairs. If we decompose the camera matrix
as

Pi =
[
Ai bi

ai
� bi

]

where Ai is a 2×3 matrix and ai and bi are vectors, then the
projection of a point Xj is given by (AiXj + bi)/(ai

�Xj +
bi). The squared image error is then given by

f 2
ij (Xj ,bi , bi) =

∥
∥
∥
∥
AiXj + bi

ai
�Xj + bi

− xij

∥
∥
∥
∥

2

which is easily put into the form (19).
If the camera matrices are completely known, and there

is only one point Xj that needs to be found, then this is sim-
ply the triangulation problem, expressed in terms of image
coordinates.

With several points and cameras, we suppose that the
first three columns of Pi , consisting of matrix Ai and vector
a� are known, whereas Xj , bi and bi are unknown. Then,
AiXj + bi and ai

�Xj + bi are linear in the unknowns Xj ,
bi and bi . As in Sect. 4.2 we define a vector X by concate-
nating all the Xj , bi and bi . Each term f 2

ij (X) of the cost
function is then of the required form (19) and (23) may be
used to prove convexity of the cost function.

Together, Ai and ai
� make up the left-hand 3 × 3 block

of the camera matrix. There are two important situations in
which this left-hand block of Pi may be known. The first is
when the cameras are calibrated, and the block constitutes
the rotation matrix associated with the camera. This rotation
matrix may have been obtained from a prior reconstruction
step in which rotations are computed. This is the same prob-
lem as was considered in Sect. 4.2, expressed now in image
coordinates.

The second situation is that considered by Rother and
Carlsson (2002), in which a plane in the scene allows us to
compute inter-image homographies induced by that plane.
These homographies are represented by the left-hand block
of the camera matrices. Note that the solution given in
Rother and Carlsson (2002) was a linear solution to the re-
construction problem, not the sort of least-squares solution
that we wish to verify here.

4.4 Homographies and Camera Resectioning

In the camera resectioning problem, we are given 3-dimen-
sional points Xi and measured corresponding points xi re-
lated by an unknown 3 × 4 projection matrix P, which is to
be estimated. This is also known as the projective camera
pose estimation problem. For no apparent reason, this has
also recently become known as the PnP problem, a neolo-
gism which we abjure. The homography estimation is essen-
tially the same, except that the points Xi are 2-dimensional
points, and the matrix P is a 3 × 3 matrix. Since these two
problems are essentially the same, we will concentrate on
the pose-estimation problem.

If we denote the k-th row of P by pk , then the squared
error associated with the measurement of point xi is given
by

f 2(P) =
(

p1
�X̃i

p3
�X̃i

− xi

)2

+
(

p2
�X̃i

p3
�X̃i

− yi

)2

where X̃i represents the homogeneous vector (x, y, z,1).
Here, the situation is slightly different from the previous
cases of triangulation and multiple view reconstruction, in
that the entries of the matrix P are the unknowns, and not
the coordinates of the points Xi . Nevertheless, it is easily
observed that the squared error term may be written in the
usual form (19).

5 Projective Coordinate Change

If the convexity test described previously should fail to give
a positive answer, then there are further things that can be
tried to attempt to prove convexity. Our first method of at-
tack is to try a projective coordinate change.

By changing projective coordinate systems, we will
reparametrize the domain of the error function f 2(X). This
may turn a non-convex function into a convex function. It is
easy to see that affine coordinate changes do not affect con-
vexity so it is enough to restrict our attention to transforma-
tions that change the plane at infinity. Cheirality conditions
also apply, that is, all 3D-points must remain in front of the
cameras. See Hartley and Zisserman (2004) for more details
on projective geometry.

We consider the use of the inequalities given previously
to demonstrate that the function is positive semi-definite on
a region. The matrix H′ defined in (7) has one small neg-
ative eigenvalue in the direction along the principal ray of
the camera, and two larger positive eigenvalues oriented in
directions orthogonal to the principal ray. It gives a uniform
lower bound on the Hessian in a region of space. The general
idea is that if a point is seen from two different directions,
then the Hessian of the combined error function is simply

296 Int J Comput Vis (2013) 101:288–304

the sum of the individual Hessians. If the two principal rays
are not aligned, then the idea is that the negative eigenvalue
in the principal direction for one camera will be outweighed
by the contribution of the positive eigenvalues for the other
camera.

This will be true if the view directions for the different
cameras are sufficiently different. If on the other hand, the
view directions for the different views are the same, then
no cancelling will take place, and we will not be able to
conclude that the Hessian is positive definite in any region
around the point X of interest.

In this case, the situation can be saved by the applica-
tion of a projective transformation. If the view directions for
several cameras are similar, this implies that the point X is
near to infinity. We apply a projective transformation that
maps this point to a point closer to the cameras, so that the
viewing rays are no longer near parallel. Then, consider the
Hessian of the error function in this new coordinate system.
The general idea is best illustrated by an example.

Consider cameras with matrices Pa = [I|(a,0,0)�],
where a is a variable. This camera is placed at the posi-
tion x = −a on the x-axis, and the principal rays for all
these cameras point in the direction of the z-axis. Suppose
we want to find the Hessian of the error function on the
intersection of error-cones, defined by τ , around the princi-
pal rays of the cameras. This situation will occur when the
correct triangulation point lies near infinity. Now, according
to (7), the Hessian at a point with depth d may be bounded
as follows:

Ha 	 2/3d2 diag
(
1,1,−9τ 2)

and this bound is the same for all a. Adding any number of
such Hessians Ha for different cameras Pa will not result in
a positive-definite matrix. Hence, we cannot easily conclude
that the Hessian is positive-definite.

It is instructive to note here in passing that since the re-
gion of interest D stretches to infinity, the bound La in con-
dition (12) will be zero. Hence the matrix in (12) will be
primitive. This problem will be partly alleviated by using
the α-test (16) with α(X) equalling the average depth of a
point over different images. Since the depth is the same in
all images, the ratio α(X)/d(X) = 1, so Lα

i = Uα
i = 1, and

the matrix to test is
∑N

i=1 2/3d2 diag(1,1,−9τ 2), which as
remarked above is still not positive-definite. The problem
is that the axes of the cones are parallel, which gives no
scope for the positive eigenvalues of the individual Hessians
to cancel the negative ones.

However, if we apply a projective transformation repre-
sented by matrix

T=

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

⎤

⎥
⎥
⎦

which takes the point (0,0,1,0)�, the point at infinity in the
z direction, to (0,0,1,1)�, a finite point. The axes of differ-
ent cones pointing to this point will no longer be parallel.

This action transforms the camera matrix Pa to

PaT
−1 =

⎡

⎣
1 0 −a a

0 1 0 0
0 0 1 0

⎤

⎦ .

Note that the point (0,0,1,1) still maps to the origin in all
images. Now, according to (21) the Hessian for a point at
depth d will be bounded by

Ha = 2

3d2

⎡

⎣
1 0 0
0 1 0

−a 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 −9τ 2

⎤

⎦

⎡

⎣
1 0 −a

0 1 0
0 0 1

⎤

⎦

= 2

3d2

⎡

⎣
1 0 −a

0 1 0
−a 0 a2 − 9τ 2

⎤

⎦ .

Now, summing two such Hessians for a = 1 and a = −1,
we find that

H1 + H−1 = 4

3d2

⎡

⎣
1 0 0
0 1 0
0 0 a2 − 9τ 2

⎤

⎦ ,

where we use the fact that (as before) the depth d is the same
for all images. This matrix is obviously positive definite
even for moderately large values of τ . This proves that the
Hessian is positive definite on the intersection of τ -cones,
and shows that the region over which it is certain that there
is a single minimum of the cost function is relatively large.

Algorithm Even if there exists a transformation T : P
m
→

P
m that makes the error function f 2(X) convex over the

transformed domain T (D) (where m is the dimension of the
unknown), it may be hard to find it automatically. Note that
the maximum and minimum depths change when the plane
at infinity is transformed, so it is required that the bounding
depths are recomputed as well.

In addition, there is an essential subtlety to observe in
selecting candidates for the plane at infinity π∞. We limit
the discussion for the triangulation problems, but the similar
considerations apply for other problems. First, it is not ad-
visable to select π∞ to be a plane cutting the region of inter-
est D, for in this case, points in D will be moved to infinity,
which defeats our purpose of selecting non-parallel viewing
directions. More important is a second consideration that
if the selected plane at infinity separates a camera centre
from the region of interest D, then cheirality of points in D
with respect to that camera is reversed (Hartley 1998). This
causes complications in defining depth with the right sign.

In the experiments, we have found that by choosing the
candidate plane at infinity as a plane parallel to one of the

Int J Comput Vis (2013) 101:288–304 297

Table 1 Results for Notre Dame

Problem Instances Method Unsuccessful tests

Triangulation 277887 points Primary test (12) 265/277887

α-test (16) 158/265

Projective change 2/158

Table 2 Results for Dinosaur

Problem Instances Method Unsuccessful tests

Triangulation 328 points Primary test (12) 0/328

Resectioning 36 cameras Primary test (12) 0/36

Known rotation 1 set of 36 images Primary test (12) 1/1

1 set of 22 images Primary test (12) 0/1

100 random pairs Primary test (12) 0/100

100 random triples Primary test (12) 0/100

cameras’ image planes, and with an offset such that all 3D
points and camera centres are just in front of this plane, then
good verification rates are obtained. This choice corresponds
to picking a principal plane to one of the cameras and mov-
ing it slightly backwards. Recall that the coordinates of a
principal plane is extracted from the last row of the camera
matrix.

Suppose the candidate plane at infinity is parametrized
by v�X + 1 = 0 where v is a m-vector (for triangulation
m = 3). Then, the matrices Ai and vectors ci of Theo-
rem 3 should be updated according to Ai
→ Ai − vbi

� and
ci
→ ci − kiv. The next step is to recompute the bounding
depths, and finally test whether condition (16) holds.

6 Experiments

Test Procedure In all experiments described below, the fol-
lowing test procedure is run until a definitive answer is re-
turned (unless otherwise stated) in order to determine con-
vexity and hence to verify global optimality.

1. Compute a local minimizer Xlocal with bundle adjust-
ment.

2. Compute lower and upper bounds, Li and Ui , respec-
tively, according to Theorem 1.

3. Test if the convexity condition in (12) holds (referred to
as primary test).

4. Compute lower and upper bounds, Lα
i and Uα

i , respec-
tively, according to Theorem 2.

5. Test if the stronger convexity condition in (16) holds (re-
ferred to as α-test).

6. Apply a projective transformation and test convexity (see
Sect. 5). This is only done for triangulation.

Notre Dame This data set was originally created in Snavely
et al. (2006). It consists of 595 images with 277,877 recon-
structed 3D-points. Each point is visible in at least 2 images
up to as many as 216 images according to the following dis-
tribution: 2 images 58 %, 3 images 19 %, 4–10 images 18 %
and more than 10 images 5 %.

Out of 277,887 triangulated 3D-points, 265 instances
were unsuccessful with our primary test in (12), and after
applying the stronger α-test derived in Sect. 3, 158 cases re-
mained. By transforming the plane at infinity, another 156
cases could be proven to be optimal. Hence, only 2 cases
could not be verified to be globally optimal.

See Table 1 for a summary of the results. Each problem
instance takes on the average less than 0.5 milliseconds to
verify on a 2.66 GHz Pentium written in C++.

Dinosaur This turn-table sequence consists of 36 images
with 328 given point features. The complete 3D reconstruc-
tion was computed with standard structure from motion rou-
tines (including refinements by bundle adjustment).

The multiview geometry problems tested were triangu-
lation, camera resectioning and structure and motion with
known rotations. See Table 2 for a summary of results. Both
camera resectioning and triangulation work very well for
this type of scene and camera motion. It was not possible to
prove optimality for the whole sequence (assuming known
rotations), only for the first 22 images. Note that this con-
figuration is still a large structure and motion problem: 22
cameras and several hundreds of 3D points. When going be-
yond 22 images, the primary test was not sufficient. We did
not apply the α-test due to the sheer size of the configura-
tion.

The large number of image measurements in this data set
makes the total cost C(X0) relatively large. And since this

298 Int J Comput Vis (2013) 101:288–304

Table 3 Results for the Christ Statue

Problem Instances Method Unsuccessful tests

Triangulation 185 points Primary test (12) 0/185

Resectioning 76 cameras Primary test (12) 0/76

Known rotation 100 random pairs Primary test (12) 12/100

100 random triples Primary test (12) 3/100

Table 4 Results for Corridor

Problem Instances Method Unsuccessful tests

Triangulation 737 points Primary test (12) 0/737

Resectioning 11 cameras Primary test (12) 0/11

Homography 55 image pairs Primary test (12) 28/55

α-test (16) 25/28

Known rotation 1 set of 11 images Primary test (12) 1/1

55 sets of image pairs Primary test (12) 55/55

165 sets of image triples Primary test (12) 165/165

value determines the value of τ for the test, it is not sur-
prising that the convexity test fails. One may ask to what
pixel threshold is it possible to verify optimality? We ran a
series of tests with different values τ ’s using bisection and
found that it is possible to verify the whole configuration
for up to 2.59 pixels. It cannot be ruled out the existence of
an optimum Xopt with lower total cost C(Xopt), but at the
same time such a solution must have at least one residual
with more than 2.59 pixels of error. Given that the data set
is outlier free and typical residual errors are much lower, this
seems like an unlikely occurrence. Hence, we may conclude
that with high probability we have verified the globally opti-
mal solution. Similar ideas have recently been developed for
one-dimensional vision problems in Olsson et al. (2009).

We also tried verifying 100 random pairs of images with
common feature points in this pair, and similarly 100 ran-
dom triples with all common feature points, with 100 %
success rate. Only pairs and triples with at least 10 feature
points were selected.

The Christ Statue The images were collected from vari-
ous tourist photographs of this well-known statue and recon-
structed with standard structure and motion routines. Similar
experiments as for the Dinosaur sequences were performed
with similar success rates, see Table 3.

Corridor The forward camera motion for this 11-image
sequence is quite different from the other sequences. Veri-
fying global optimality for triangulation and camera resec-
tioning turned out to be no problem, but for the other multi-
view problems it was more difficult, see Table 4. We did not
apply the α-test to the known rotation cases due to the large
size of the configurations.

There are several 3D planes in the scene and we took
all the point features on the left frontal wall and computed
all pairwise 3 × 3 homographies for this plane using bundle
adjustment. Out of the

(11
2

) = 55 image pairs, 27 were suc-
cessfully verified with the primary test, and another 3 with
the α-test.

The known rotation case turned out to be more difficult,
which is consistent with the findings in Vedaldi et al. (2007).
Not a single test was successful for the primary test. We did
not apply the other methods due to the size of the setup.
The whole sequence has 11 cameras and more than 4000
image points, so just computing all the depth tests takes
time. (The size for the LP constraint set is approximately
4 × 4000 = 16000 since each image coordinate gives rise to
two inequality constraints).

Arnold A final experiment with 6 images of a poster was
tested, see Fig. 2 and Table 5. In this scene, all 3D feature
points are on a plane, and hence uncalibrated camera resec-
tioning is not possible. Triangulation of all 3D points (in
total, 1639 points) as well as all pairwise homographies (15
in total) induced by the plane were successfully verified by
the primary test. The results with known rotation were as
follows: 9 out of 15 pairwise images were successfully ver-
ified and 17 out 20 image triples were verified. Again, no
other steps in the test procedure were applied due to the size
of these configurations.

Discussion The method works very successfully (with al-
most 100 % success) on the triangulation and resection prob-
lems. However for large problems, such as full 3D recon-
struction the method is less reliable. The main reason for

Int J Comput Vis (2013) 101:288–304 299

Table 5 Results for Arnold

Problem Instances Method Unsuccessful tests

Triangulation 1639 points Primary test (12) 0/1639

Homography 15 image pairs Primary test (12) 0/15

Known rotation 15 sets of image pairs Primary test (12) 6/15

20 sets of image triples Primary test (12) 3/20

Fig. 2 One image of the Arnold sequence with feature points

this is the approximation made after (2), where it is deduced
that each fi(Xopt) ≤ ε2. This is the worst-case hypothesis,
that all the error is incurred by one measurement. The effect
is to set an unrealistically high bound τmax in the convexity
conditions, which causes the tests to fail. For this reason, the
tests derived here do not work well for very large problems.
It is only possible to verify subproblems for optimality.

The other main failure case for the primary and α-tests
is when points are a long way away compared to the base
line, that is, close to infinity. This is because the two bounds
L and U in (10) or Lα

i and Uα
i in (15) are far apart—the

intersection volume is too elongated. Indeed, it is easily seen
that if U or Uα

i is too large then the matrix in (10) or (15)
cannot be positive definite. However, in this case, as shown,
the projective change method succeeds in all but two cases.

In practice, the three tests, the primary test, the α-test
and projective change are run sequentially until one of them
returns a positive answer. Since the tests are successively
more expensive in terms of time, this is the most efficient
approach. The total time for triangulation verification of all
the points in the Notre Dame sequence was 2 m 12 s (less
than 0.5 ms per point) on a 2.66 GHz laptop, single threaded,
programmed in C++.

Comparing the primary test and the α-test, it was ob-
served (on the Notre Dame set) that the α-test is more accu-
rate. There were only two cases where the α-test failed but
the primary test succeeded. However the α-test takes about
5 times as long to run as the primary test (9 m 40 s). Since

in practice it is only run when the primary test fails (about
one test in 1000, this longer run time is not important).

As a tool to verify the optimality of the triangulation
and resection results for a 3D reconstruction, this method
requires insignificant time in the context of the complete
reconstruction task. Even for a large reconstruction of
106 points, the time to verify that all points and cameras
are triangulated or resectioned correctly will take no more
than 500 seconds.

To summarize, reconstruction problems with small di-
mensions can be handled well with a small computational
effort (the primary test generally works) while for larger
problems the picture is mixed. The success rate depends
on the geometry of the scene as well as the motion of the
camera. Images taken with a wide baseline seem to be more
easily verifiable compared to other camera motions. As the
number of residuals increases, it becomes harder to verify
optimality—just as expected.

7 Conclusion

The tests described here are extremely effective at verifying
convexity, and hence global optimality of a local minimum
for various multiple view geometry problems. The convex-
ity test for the primary bound seems to do almost as well
as α-bound. As the second bound is harder to compute, it
is often advantageous to try the simple bound first. Experi-
mental evaluations on several data sets showed the practical
efficacy of the tests.

Failure of verifying optimality is quite rare. In the case
of triangulation, the success rate is almost 100 % and veri-
fication time is about 0.5 ms per point. The main reason for
failure is that the viewing rays are being parallel and the do-
main of interest becomes elongated, as illustrated in Fig. 1.
For larger problems with many residuals, the success rate
decreases, and it is possible only to verify subproblems. We
have been able to verify optimality for reconstructions with
more than 1500 image points and 20 cameras.

This work has shown how to deal with a large class of
multiple view geometry problems under the L2 cost func-
tion. On the other hand, many geometric problems involve
optimizations including rotations, for example, the estima-
tion of two-view relative motion. Such problems cannot be

300 Int J Comput Vis (2013) 101:288–304

Fig. 3 Hessian for cost
function (25)

H= 1

r2

⎡

⎣
1 + cos(2φ) − 2φ sin(2φ) 0 −2φ cos(2φ) − sin(2φ)

0 2φ/ tan(φ) 0
−2φ cos(2φ) − sin(2φ) 0 1 − cos(2φ) + 2φ sin(2φ)

⎤

⎦

handled with the presented techniques and are left as a chal-
lenge for future work.

Acknowledgement This research was supported by (i) NICTA, a re-
search centre funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy, (ii) the Australian Research Council through the ICT Cen-
tre of Excellence program, (iii) the Swedish Research Council (Grant
No. 2007-6476), (iv) the Swedish Foundation for Strategic Research
(SSF) through the programmes Future Research Leaders and Wear-
able Visual Information Systems, (v) the European Research Coun-
cil (GlobalVision Grant No. 209480), and (vi) Sogang University Re-
search Grant of 2012 (201210029.1).

Appendix A: Minimizing Squared Angle

In the derivations in Sect. 2, the error function used was the
sum of squares of the tangents of the angles, as given by (4).
This leads to a relatively simple result in terms of computing
and bounding the Hessian. On the other hand, it would be
more natural to wish to minimize the sum of squares of the
error angles, and not their tangents. The difference is very
small, but for exactness, we now derive a similar result for
this error function. It is worth noting here that although in
many computer-vision applications, pixel error is the natural
metric for evaluating a solution, this is not clearly true of
omnidirectional or wide-angle images.

In a different application, target tracking and localization,
the position of a target may be measured from several ob-
servation points resulting in angular (alt-azimuth) readings.
The task of determining the position of the target is precisely
the orientation problem. In this context, it is natural to wish
to minimize squared angular error, which is what we do in
this appendix.

In the following discussion, we give the outline of the
argument. To verify the details, the reader may need to use a
computer algebra system, such as Mathematica. Now, under
the same conditions as before, we define the error function

f 2(x, y, z) = φ2 = arctan

(√
x2 + y2

z

)2

. (25)

We compute the Hessian at a point with (x, y, z) with re-
spect to the coordinates x, y and z. Subsequently, evalu-
ating with x ≥ 0 and y = 0, and making the substitutions
φ for arctan(x/z), radial distance r for

√
x2 + z2 and tanφ

for x/z, we arrive after some computation at the expression
for the Hessian given in Fig. 3. This matrix has eigenvalues

Fig. 4 Plot of the function D(φ)/φ2 demonstrating that the product of
the eigenvalues of H− H′ is positive for φ < 0.3

2φ/(r2 tan(φ)) and (1 ± √
1 + 4φ2)/r2, namely two posi-

tive and one negative eigenvalue.
Similarly as before,1 let H′ be the matrix (2/r2)diag(1/4,

1/4,−4φ2). We claim that H− H′ is positive semi-definite.
Unfortunately, the proof is a little more intricate than before.

First, we observe that (0,1,0)� is an eigenvector of
H− H′, with eigenvalue (2/r2)(φ/ tan(φ) − 1/4), which is
positive at least for φ < 1. The other two eigenvalues are the
eigenvalues of the reduced-size matrix obtained by elimi-
nating the second row and column from H− H′. This matrix
will have two positive eigenvalues, as long as its trace and
determinant are both positive. Apart from the factor 1/r2 the
trace is equal to 8φ2 + 3/2 which is positive. The determi-
nant is equal to

D(φ) = −1 + (
1 + 16φ2)(cos(2φ) − 2φ sin(2φ)

)
.

This function is positive for φ < 0.3 as may be shown by
plotting the function D(φ)/φ2 (see Fig. 4). A more formal
proof can be given by computing the series expansion of this
function.

The result of this computation is the following result.

Lemma 1 If H is the Hessian of the error function (25) eval-
uated at a point with error less than angle φ < 0.3, then

H	 (
2/r2)diag

(
1/4,1/4,−4φ2).

From here on, conditions for convexity of the error func-
tion in the intersection of a set of cones with angle bounded
by φmax proceeds just the same as previously.

1By analogy with Sect. 2.1 one may be tempted to define H′ =
(2/r2)diag(1/3,1/3,−3φ2) which gives a slightly better bound, but
this does not work in this case.

Int J Comput Vis (2013) 101:288–304 301

Appendix B: Minimum Bounds for Hessians

The matrix H′ given in (7) was presented without motivation.
In this section, we will give some theory that justifies the
choice. This will be developed in a more general context, to
allow for possible applications to other problems. In what
follows, all matrices are assumed to be symmetric, even if
not stated.

Notation We need to develop some properties of the rela-
tionship H 	 0 which has been used throughout this paper.
It means that H is positive semi-definite, possibly zero. The
notation H	 H′ means H− H′ 	 0. This defines a partial or-
dering relationship between matrices. We use the notation
H 0 to mean that H is positive semi-definite, but not zero.
It could be interpreted as meaning that H is positive definite,
but not semi-definite, but that is not what we mean. If we
need to specify that H is strictly positive-definite, this will
be specifically stated.

Consider a family of symmetric matrices Hv defined in
terms of a parameter vector v. We say that a matrix G is a
lower bound for this set if Hv 	 G for all v, and it is a maxi-
mal lower bound if there is no other lower bound G′ such that
G′ G. There may be more than one maximal lower bound
for a family of matrices. Clearly if we want to define a lower
bound for a set of Hessian matrices, it is advantageous to
identify the maximal lower bounds.

We are particularly interested in the lower bounds for ma-
trices of the form

Hv =
[
In×n −2v
−2v� 3τ 2

max

]

(26)

as in (5) or (20). We may determine the complete set of max-
imal lower bounds for the set of all matrices Hv where ‖v‖
is bounded.

Theorem 4 Consider the set of matrices

H = {
Hv | ‖v‖2 ≤ τ 2

max

}
. (27)

The maximal lower bounds for this set are the matrices of
the form Gλ = diag(1 − 1/λ,1 − 1/λ, (3 − 4λ)τ 2

max) with
λ > 0.

This theorem will follow from a more general theorem,
which we will state shortly, in terms of maximal ellipsoids
in R

n.
The matrices of interest are of the form

A0 −
[
0n×n v
v� 0

]

= A0 − S(v), (28)

where v ranges over a set V of vectors in R
n, and A0 is a

symmetric matrix. Compare this with the form of (26).

The following simple observation reduces finding lower
bounds of such matrices A0 −S(v) to finding bounds for the
set S(v).

Lemma 2 The (maximal) lower bounds of A0 − S(v) for
all v ∈ V are exactly those matrices A0 − G, where G is a
(minimal) upper bound for the matrices S(v).

We now consider a connection between matrices and el-
lipsoids in R

n that will help us identify a connection be-
tween maximal lower bounds for sets of matrices and ellip-
soids. Let G be a matrix of the form

G=
[
A r
r� q

]

with A	 0 and q ≥ 0 (29)

Define also

Gλ =
[
A/λ r
r� qλ

]

for λ > 0. (30)

Definition 1 Let G be a matrix of the form (29). We define
the ellipsoid C(G) associated with G to be the set

C(G) = {
Kw + r | ‖w‖2 ≤ q

}

where K is a real symmetric n × n matrix such that A= K2.

Thus, C(G) is the image of a ball in R
n under an affine

mapping, and hence an ellipsoid, possibly degenerate (lying
in a subspace of dimension less than n) if A does not have
full rank. It is clear that C(G) and C(Gλ) define the same
ellipsoid for all λ.

Even when A is not of full rank such a matrix K exists,
since writing A = UD2U�, where D is diagonal and U or-
thogonal, we can choose K = UDU�, which is symmetric.
It is easy to verify that the set C(G) is independent of the
choice of K, depending only on A= K2.

We give another useful characterization of ellipsoids. For
a matrix A, define the span of A to be Sp(A) = {Aw} for all
vectors w. Further, given a symmetric matrix A with Sin-
gular Value Decomposition A = UDU�, define the pseudo-
inverse A+ = UD+U�, where D+

ii = D−1
ii when Dii = 0 and

D+
ij = 0 otherwise. Then, for a matrix of the form (29),

C(G) = {
x | (x − r) ∈ Sp(A) and (x − r)�A+(x − r) ≤ q

}
.

(31)

Our main theorem on lower bounds of matrices can now
be stated.

Theorem 5 Let V be a bounded set of points in R
n. The

maximal lower bounds for the set of matrices A0 −S(v) with
v ∈ V , are the matrices of the form A0 −G, where G is of the
form (29) and C(G) is a minimal ellipsoid containing the
set V .

302 Int J Comput Vis (2013) 101:288–304

Application Before giving the proof of this theorem, we
show how it may be used to prove Theorem 4 as a spe-
cial case. Thus, let A0 = diag(In×n,3τ 2

max). According to
Theorem 5, the maximal lower bounds for the set of ma-
trices H are those matrices of the form A0 − Gλ where
C(G) is a minimal ellipsoid containing the set of vec-
tors V = {2v | ‖v‖ ≤ τ 2}. The minimal ellipsoid contain-
ing V is clearly a sphere of radius 2τ , having equation
x�Ix� ≤ 4τ 2. Therefore, Gλ = diag(I/λ,4λτ 2). Conse-
quently, the least lower bounds for the set H are the matrices
diag(1 − 1/λ, . . . ,1 − 1/λ, (3 − 4λ)τ 2) with λ > 0, which
is the conclusion of Theorem 4.

If λ < 1, these lower bounds are not very useful, since the
eigenvalues 1 − 1/λ are negative. Our strategy in this paper
is to select the value of λ that leads to the largest absolute
value of the ratio of the largest to smallest eigenvalues of this
matrix. Hence, we seek to maximize (1 − 1/λ)/(4λ − 3)τ 2

with λ > 1. The maximum occurs when λ = 3/2, and the
corresponding optimal bound is diag(1/3,1/3,−3τ 2). This
is the value that is used in (7).

Proof of Theorem We now start the proof of Theorem 5,
which will be completed through a sequence of lemmas. The
connection of ellipsoids with lower bounds of sets of matri-
ces is given by the following lemma.

Lemma 3 G	 S(v) if and only if G is of the form (29) and
v ∈ C(G). Consequently, G is an upper bound for a set of
matrices S(v), v ∈ V if and only if C(G) contains the set V .

Proof First, we prove the if part of this lemma. Writing G
as in (29), choose K such that K2 = A with K symmetric. If
v ∈ C(G), then we can write v − r = Kw with w�w ≤ q .
Substituting for v − r in G− S(v) we see

G− S(v) =
[

K2 −Kw
−w�K q

]

=
[

K 0
−w� 1

][
I 0

0� q − w�w

][
K −w

0� 1

]

.

Therefore x�(G− S(v))x ≥ 0 for any x, and it follows that
G− S(v) 	 0.

For the converse, assume that G− S(v) 	 0. Then G can
be written as in (29) where A	 0 and q ≥ 0, since any prin-
cipal minor of a positive semi-definite matrix must be semi-
definite.

If v − r does not lie in the span of the columns of K, then
there exists a vector x such that Kx = 0 and of suitable length
such that (v − r)�x > q . Writing x̂ = (x�,1)�, we see that

x̂�(
G− S(v)

)
x̂ = q − (v − r)�x < 0,

so G− S(v) can not be positive semi-definite.

Consequently, v − r must lie in Sp(K) and we may write
v − r = Kw. Select the w of minimum norm that satisfies
this equation. This is given by w = K+(v − r). Then

w = K+(v − r) = K
(
K+K+(v − r)

) = Kx

where x is defined by this formula. Let x̂ = (x�,1)�. Then,[K −w
0� 1

]
x̂ = (0�,1)� and it follows that x̂�(G − S(v))x̂ =

q − w�w. Since by assumption G−S(v) 	 0, it follows that
‖w‖2 ≤ q , and so v = Kw + r is in the ellipsoid C(G), and
the proof is complete. �

This identifies the upper bounds for a set of matrices
S(v). We need to identify the least upper bounds. This will
be done by the following lemma.

Lemma 4 Let G and G′ be matrices as in (29). If G′ ≺ G
then C(G′) ⊂ C(G). Conversely, if C(G′) is a proper subset
of C(G) then there exists a number λ such that G′

λ ≺ G.

Note that the ellipsoids represented by G′
λ are the same

for all λ �= 0. It is clearly not true that G′
λ � G for all λ, since

by making λ large or small enough, this condition will surely
be broken.

A corollary of this lemma is

Lemma 5 Let V be a bounded set of points in R
n. Matrix

G is a least upper bound for matrices S(v), v ∈ V if and
only if G is of the form (29) and C(G) is a minimal ellipsoid
containing the set V .

Proof of the first part of Lemma 4 is easy. Let v be a
point in C(G′). Then, by Lemma 3, G′ 	 S(v). If G G′ then
G 	 S(v). Again by Lemma 3, this implies that v ∈ C(G).
Hence C(G′) ⊂ C(G).

Now, we turn to the converse statement, which is consid-
erably more difficult. First, note that it is sufficient to prove
this result in the case where the matrices A and A′ belong-
ing to G and G′ are invertible. If this is not the case, then
the ellipsoids they define are degenerate, lying in a lower-
dimensional subspace. By an appropriate affine transforma-
tion of the matrices, we can reduce them to matrices of lower
dimension after eliminating rows and columns of zeros, and
subsequently assume that the matrices are invertible.

We simplify this problem a little by simplifying the form
of the matrices. The first observation is that we can assume
that one of the two vectors r and r′ is zero. Thus, we can
assume that r′ is replaced by r′ − r, and r is replaced by the
zero vector.

The second simplification is to apply an affine transfor-
mation to reduce to the case where A′ = I. There exists a
matrix P such that P�A′P= I. Essentially, this affine trans-
formation rescales non-isometrically so that the second el-
lipsoid becomes a spherical ball. We may also assume that
q = q ′ = 1.

Int J Comput Vis (2013) 101:288–304 303

Fig. 5 A result about ellipsoids.
If a sphere is contained in an
ellipsoid, then there exists an
ellipsoid represented by a
matrix of the form (32) that
contains the centre of the sphere

It is now easily verified that if we prove Lemma 4 in the
special case where A′ is the identity and r = 0, then it will
hold generally. Thus, given

G=
[
A 0

0� 1

]

; G′ =
[
I r′

r′� 1

]

our task is to show that

G− G′
λ =

[
A− I/λ −r′
−r′� 1 − λ

]

 0 (32)

for some λ, under the assumption that the ellipsoid C(G)

contains the sphere C(G′).
However, this is equivalent, according to Lemma 3 to

showing that A−I/λ 	 0, and 1 −λ ≥ 0, and that the ellip-
soid x�(A−I/λ)+x ≤ (1 − λ) contains the point r′. This is
shown in Fig. 5.

In the worst case, we may assume that the sphere C(G′)
is touching the ellipsoid C(G) tangentially at some point,
which we denote by y. The inward-pointing normal to the
ellipsoid at y is obtained by differentiating y�A−1y. It is
−2A−1y and the unit vector is −A−1y/λ where we define
λ = ‖A−1y‖. Therefore, the centre of the unit sphere touch-
ing the ellipsoid at point y is given by

r′ = y − A−1y/λ = (A− I/λ)A−1y (33)

where we define λ = ‖A−1y‖. This shows that r′ ∈ Sp(A−
I/λ). We need to show that r′ lies in the ellipsoid x�(A−
I/λ)+x ≤ (1 − λ). We compute

r′�(A− I/λ)+r′ = y�A−1(A− I/λ)A−1y

= y�A−1y − y�A−2y/λ

= 1 − λ (34)

as required.
We also need to show that the matrix A− I/λ is positive

semi-definite. This will be true if and only if 1/λ ≤ λmin(A),
the smallest eigenvalue of A. Equivalently, our task is to
show that

λ ≥ λmax
(
A−1) (35)

under the assumption that the unit sphere touching the el-
lipsoid x�A−1x = 1 at the point y lies entirely inside the
ellipsoid. Now, let u be the eigenvector of A−1 such that

A−1u = λmaxu, and suppose that the condition (35) is vi-
olated. With the centre r′ of the sphere given by (33) we
verify that

u�r′ = u�y − u�A−1y/λ = u�y
(
1 − λmax

(
A−1)/λ

)

= c u�y

with c < 0. This means that r′ and y are on opposite sides of
the principal plane of the ellipsoid defined by points x such
that u�x = 0. We argue that this is impossible.

Let y′ be the point symmetrically opposite to y, reflected
across this plane. This point also lies on the boundary of the
ellipsoid C(G). Since y′ is on the same side of the plane as
r′, we claim that r′ is closer to y′ than it is to y. This means
that y′ lies closer than unit distance from r′ and so the unit
ball centred at r′ is not contained completely inside the ellip-
soid. This contradiction indicates that (35) must be true, and
hence A − I/λ is positive semi-definite, as required. This
being so, it follows directly from (34) that also (1 − λ) ≥ 0,
as required.

This completes the proof of Lemma 4. The truth of The-
orem 5 follows from Lemmas 2 and 5.

Remarks on the Lower Bound Matrix It was assumed
throughout most of this paper that the errors in any particu-
lar are bounded within a circle of radius τmax. This allows an
easy derivation of a good maximal lower bound for the Hes-
sians. The justification for this is that the region D, formed
as an intersection of cones, must project to points within the
stated error bound. However, in reality the projection of the
region D in each image may be significantly smaller, and
not circular in shape. In this case, we could think of using
the more general form of the maximal lower bound Hessians
for each image given by Theorem 5. This would be expected
to give better results, at the cost of greater computation. The
improvement may, however, not be worth the extra compu-
tational effort.

References

Hartley, R. I. (1998). Chirality. International Journal of Computer Vi-
sion, 26(1), 41–61.

Hartley, R., & Kahl, F. (2007). Optimal algorithms in multiview geom-
etry. In Asian conf. computer vision, Tokyo, Japan.

Hartley, R., & Schaffalitzky, F. (2004). L∞ minimization in geomet-
ric reconstruction problems. In Conf. computer vision and pattern
recognition, Washington DC, USA (Vol. I, pp. 504–509).

Hartley, R., & Sturm, P. (1997). Triangulation. Computer Vision and
Image Understanding, 68(2), 146–157.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in com-
puter vision (2nd ed.). Cambridge: Cambridge University Press.

Kahl, F., & Hartley, R. (2008). Multiple view geometry under the L∞-
norm. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 30(9), 1603–1617.

304 Int J Comput Vis (2013) 101:288–304

Kahl, F., Agarwal, S., Chandraker, M. K., Kriegman, D. J., & Belongie,
S. (2008). Practical global optimization for multiview geometry.
International Journal of Computer Vision, 79(3), 271–284.

Ke, Q., & Kanade, T. (2007). Quasiconvex optimization for robust geo-
metric reconstruction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(10), 1834–1847.

Longuet-Higgins, H. C. (1981). A computer algorithm for reconstruct-
ing a scene from two projections. Nature, 293, 133–135.

Lu, F., & Hartley, R. (2007). A fast optimal algorithm for L2 trian-
gulation. In Asian conf. computer vision, November (Vol. 2, pp.
279–288).

Nistér, D., Hartley, R., & Stewénius, H. (2007a). Using Galois theory
to prove structure from motion algorithms are optimal. In Conf.
computer vision and pattern recognition, Minneapolis, USA.

Nistér, D., Kahl, F., & Stewénius, H. (2007b). Structure from motion
with missing data is NP-hard. In Int. conf. computer vision, Rio
de Janeiro, Brazil.

Olsson, C., Byröd, M., & Kahl, F. (2009). Globally optimal least
squares solutions for quasiconvex 1d vision problems. In Scan-
dinavian conf. on image analysis, Oslo, Norway.

Rother, C., & Carlsson, S. (2002). Linear multi view reconstruction and
camera recovery using a reference plane. International Journal of
Computer Vision, 49(2/3), 117–141.

Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: ex-
ploring photo collections in 3d. ACM Transactions on Graphics,
25(3), 835–846.

Stewenius, H., Schaffalitzky, F., & Nister, D. (2005). How hard is
3-view triangulation really? In Proc. international conference on
computer vision (pp. 686–693).

Vedaldi, A., Guidi, G., & Soatto, S. (2007). Moving forward in struc-
ture from motion. In Conf. computer vision and pattern recogni-
tion, Minneapolis, USA.

	Verifying Global Minima for L2 Minimization Problems in Multiple View Geometry
	Abstract
	Introduction
	How Hard is the Triangulation Problem, Really?

	Triangulation-Simple Convexity Test
	Problem Description
	Bounding the Solution
	The Hessian of the Cost Function
	A Bound on the Hessian
	Generally Placed Cone
	Bounded Depths
	Summing the Hessians

	Weighted Depths
	Computing the Bounds
	Algorithm

	General SOCP Cost Functions
	Application to Other Problems
	Multiple View Reconstruction
	Reconstruction Using Image Measurements
	Homographies and Camera Resectioning

	Projective Coordinate Change
	Experiments
	Notre Dame
	Dinosaur
	The Christ Statue
	Corridor
	Arnold
	Discussion

	Conclusion
	Acknowledgement
	Appendix A: Minimizing Squared Angle
	Appendix B: Minimum Bounds for Hessians
	Notation
	Application
	Proof of Theorem
	Remarks on the Lower Bound Matrix

	References

