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Abstract Transportation-based metrics for comparing im-
ages have long been applied to analyze images, especially
where one can interpret the pixel intensities (or derived
quantities) as a distribution of ‘mass’ that can be transported
without strict geometric constraints. Here we describe a new
transportation-based framework for analyzing sets of im-
ages. More specifically, we describe a new transportation-
related distance between pairs of images, which we denote
as linear optimal transportation (LOT). The LOT can be used
directly on pixel intensities, and is based on a linearized
version of the Kantorovich-Wasserstein metric (an optimal
transportation distance, as is the earth mover’s distance).
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The new framework is especially well suited for comput-
ing all pairwise distances for a large database of images ef-
ficiently, and thus it can be used for pattern recognition in
sets of images. In addition, the new LOT framework also al-
lows for an isometric linear embedding, greatly facilitating
the ability to visualize discriminant information in differ-
ent classes of images. We demonstrate the application of the
framework to several tasks such as discriminating nuclear
chromatin patterns in cancer cells, decoding differences in
facial expressions, galaxy morphologies, as well as sub cel-
lular protein distributions.
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1 Introduction

1.1 Background and Motivation

Automated image analysis methods are often used for ex-
tracting important information from image databases. Com-
mon applications include mining information in sets of mi-
croscopy images (Loo et al. 2007), understanding mass dis-
tribution in celestial objects from telescopic images (Shamir
2009), as well as analysis of facial expressions (Stegmann
et al. 2003), for example. We note that the prevalent tech-
nique for quantifying information in such large datasets has
been to reduce the entire information (described by pixel
intensity values) contained in each image in the database
to a numerical feature vector (e.g. size, form factor, etc.).
Presently, this approach (coupled with clustering, classifi-
cation, and other machine learning techniques) remains the
prevalent method through which researchers extract quanti-
tative information about image databases and cluster impor-
tant image subgroups (Bengtsson 1999; Yang et al. 2009;
Kong et al. 2009).
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In addition to feature-based methods, several techniques
for analyzing image databases based on explicit model-
ing approaches have recently emerged. Examples include
contour-based models (Pincus and Theriot 2007), medial
axis models (Blum et al. 1967), as well as model-based de-
convolution methods (Gardner et al. 2010). Moreover, when
analyzing images within a particular type (e.g. brain images)
researchers have often used a more geometric approach.
Here the entire morphological exemplar as depicted in an
image is viewed as a point in a suitably constructed met-
ric space (see for example Beg et al. 2005), often facilitat-
ing visualization. These approaches have been used to char-
acterize the statistical variation of a particular object in a
given population (or set of populations) (Beg et al. 2005;
Miller et al. 2009). The main idea in these is to understand
the variation of similar objects through analysis of the de-
formation fields required to warp one object (as depicted in
its image) onto another.

Alternatively, transportation-based metrics have also
been used to analyze image data in problems when pixel in-
tensities (or derived quantities) can be interpreted as ‘mass’
free to move without strict geometric constraints (Rubner
et al. 2000; Haker et al. 2004; Chefd’hotel and Bousquet
2007; Grauman and Darrell 2004; Wang et al. 2011). They
are interesting alternatives to other methods since when ap-
plied directly to pixel intensities, they have the potential to
quantify both texture and, to some extent, shape informa-
tion combined (see for example Haker et al. 2004; Wang
et al. 2011). In particular, there has been continuing effort to
develop fast and reliable methods for computing transporta-
tion related distances (Orlin 1993; Ling and Okada 2007;
Shirdhonkar and Jacobs 2008; Pele and Werman 2009;
Angenent et al. 2003; Barrett and Prigozhin 2009; Benamou
and Brenier 2000; Delzanno and Finn 2010; Haber et al.
2010). While the computational complexity of these meth-
ods ranges from quadratic to linear with respect to image
size (for smooth enough images), the computations are still
expensive (time wise), in particular for rough images (with
large gradients), and there are issues with convergence (e.g.
due to local minima in PDE-based variational implementa-
tions).

1.2 Overview of Our Approach and Contributions

Our contribution is to develop a linear framework closely re-
lated to the optimal transportation metric (OT) (Wang et al.
2011) for analyzing sets of images. This framework, which
we call the linear optimal transportation (LOT), not only
provides a fast way for computing a metric (and geodesics)
between all pairs in a dataset, permitting one to use pixel
intensities directly, but it also provides an isometric embed-
ding for a set of images. Therefore our method takes as input
a potentially large set of images and outputs an isometric
embedding of the dataset (endowed with the LOT metric)

onto the standard Euclidean space. Our approach achieves
this task by utilizing the following series of steps:

– Step 1: compute a template image that will serve as a ref-
erence point for analyzing the given image dataset.

– Step 2: for each image in the input dataset, as well as the
estimated template, compute a particle approximation that
will enable a linear programming-based computation of
the OT distance between it and the template computed in
Step 1.

– Step 3: normalize each particle approximation with re-
spect to translation, rotation, and coordinate inversions.

– Step 4: compute a quadratic-based OT distance between
the particle approximation of each image and the tem-
plate.

– Step 5: from the output of Step 4, compute the LOT dis-
tances and embedding.

As compared to previous works that make use of trans-
portation-related metrics in image analysis, we highlight
the following innovations of our approach. The first is that,
given a database of M images, the number of transporta-
tion related optimizations required for computing the dis-
tance between all pairs of images is M when utilizing our
approach (versus M(M − 1)/2 when utilizing other ap-
proaches). This provides a substantial increase in speed es-
pecially when performing pattern recognition tasks (e.g.
classification) in large databases. Secondly, as mentioned
above, our LOT framework also provides an isometric lin-
ear embedding that has a couple of convenient properties.
One being that the embedding of an image newly added to
the database can be computed exactly and with one trans-
portation optimization only. Another being that any point in
the embedded space can be visualized as an image. This in-
cludes measured points (existing images in the database) but
also any other point in this space. Below we show how this
embedding greatly facilitates the use of standard geometric
data analysis techniques such as principal component anal-
ysis (PCA) and linear discriminant analysis (LDA) for visu-
alizing interesting variations in a set of images.

1.3 Paper Organization

In Sect. 2 we begin by reviewing the mathematical under-
pinnings of the traditional optimal transportation framework
and then describe its linearized version and some of its prop-
erties. Equation (1) gives the definition of the traditional OT
metric, and formulas (2) and (3) the linearized version of
the metric. Then in Sect. 3 we describe our computational
approach in the discrete setting. This includes an algorithm
for ‘estimating’ the content of a relatively sparse image with
particles (full details of this algorithm are provided in the
Appendix). The definition of the OT distance in the discrete
setting is provided in (5), while our approximation of its lin-
earized version in the discrete setting is given in formula (9).
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Equations (10) and (11) provide the isometric linear embed-
ding for a given particle approximation according to a refer-
ence point. Section 4 describes how one can utilize the linear
embedding provided in the LOT framework to extract useful
information from sets of images using principal component
analysis and linear discriminant analysis. The applications
of LOT towards decoding subcellular protein patterns and
organelle morphology, galaxy morphology as well as facial
expression differences are presented in Sect. 5.

2 Optimal Transportation Framework

Transportation-based metrics are especially suited for quan-
tifying differences between structures (depicted in quantita-
tive images) that can be interpreted as a distribution of mass
with few strict geometric constraints. More precisely, we
utilize the optimal transportation (Kantorovich-Wasserstein)
framework to quantify how much mass, in relative terms, is
distributed in different regions of the images. We begin by
describing the mathematics of the traditional OT framework,
and in particular the geometry behind it, which is crucial to
our subsequent introduction of the linearized OT distance.

2.1 Optimal Transportation Metric

Let Ω represent the domain (the unit square [0,1]2, for ex-
ample) over which images are defined. To describe images
we use the mathematical notion of a measure. While this is
somewhat abstract, it enables us to treat simultaneously the
situation when we consider the image to be a continuous
function and when we deal with actual computations and
consider the image as a discrete array of pixels. It is impor-
tant for us to do so, because many notions related to optimal
transportation are simpler in the continuous setting, and in
particular we can give an intuitive explanation for the LOT
distance we introduce. On the other hand the discrete ap-
proximation necessitates considering a more general setting
because the mass (proportional to intensity) from one pixel
during transport often needs to be redistributed over several
pixels.

We note that, in the current version of the technique, we
normalize all images in a given dataset so that the intensity
of all pixels in each image sums to one. Thus we may in-
terpret images as probability measures. The assumption is
adequate for the purpose of analyzing shape and texture in
the datasets analyzed in this paper. We note that OT-related
distances can be used when masses are not the same (Rubner
et al. 2000; Pele and Werman 2008).

Recall that probability measures are nonnegative and that
the measure of the whole set Ω is 1: μ(Ω) = ν(Ω) = 1. Let
c : Ω × Ω → [0,∞) be the cost function. That is c(x, y) is
the ‘cost’ of transporting unit mass located at x to the lo-
cation y. The optimal transportation distance measures the

least possible total cost of transporting all of the mass from
μ to ν . To make this precise, consider Π(μ,ν), the set of
all couplings between μ and ν. That is consider the set of all
probability measures on Ω ×Ω with the first marginal μ and
the second marginal ν. More precisely, if π ∈ Π(μ,ν) then
for any measurable set A ⊂ Ω we have π(A × Ω) = μ(A)

and π(Ω × A) = ν(A). Each coupling describes a trans-
portation plan, that is π(A0 × A1) is telling one how much
‘mass’ originally in the set A0 is being transported into the
set A1.

We consider optimal transportation with quadratic cost
c(x, y) = |x − y|2. The optimal transportation (OT) dis-
tance, also known as the Kantorovich-Wasserstein distance,
is then defined by

dW (μ,ν) =
(

inf
π∈Π(μ,ν)

∫
Ω×Ω

|x − y|2dπ

) 1
2

. (1)

It is well known that the above infimum is attained and that
the distance defined is indeed a metric (satisfying the pos-
itivity, the symmetry, and the triangle inequality require-
ments), see Villani (2003). We denote the set of minimizers
π above by ΠOT(μ, ν).

2.2 Geometry of Optimal Transportation in Continuous
Setting

The construction of the LOT metric which we introduce be-
low can be best motivated in the continuous setting. Con-
sider measures μ and ν which have densities α and β , that
is

dμ = α(x)dx and dν = β(x)dx.

Then the following mathematical facts, available in Vil-
lani (2003), hold. The OT plan between μ and ν is unique
and furthermore the mass from each point x, is sent to a
single location, given as the value of the function ϕ(x)

called the optimal transportation map (see Fig. 1). The
relation between ϕ and the optimal transportation plan
Π introduced above is that Π(A0 × A1) = μ({x ∈ A0 :
ϕ(x) ∈ A1}). That is Π is concentrated on the graph of ϕ.
We note that ϕ is a measure preserving map from μ

to ν, that is that for any A,
∫
ϕ−1(A)α(x)dx = ∫

A
β(y)dy.

The Kantorovich-Wasserstein distance is then dW (μ,ν) =∫
Ω

|ϕ(x) − x|2α(x)dx.

Fig. 1 Optimal transport map ϕ

between measures μ and ν

whose supports are outlined
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In addition to being a metric space, the set of mea-
sures is formally a Riemannian manifold (do Carmo 1992),
that is at any point there is a tangent space endowed
with an inner product. In particular the tangent space
at the measure σ with density γ (i.e. dσ = γ (x)dx) is
the set of the following vector fields Tσ = {v : Ω →
R

d such that
∫
Ω

|v(x)|2γ (x)dx < ∞} and the inner prod-
uct is the weighted L2:

〈v1, v2〉σ =
∫

Ω

v1(x) · v2(x)γ (x)dx.

The OT distance is just the length of the shortest curve
(geodesic) connecting two measures (Benamou and Brenier
2000).

A very useful fact is the geodesics have a form that
is simple to understand. Namely if μt , 0 ≤ t ≤ 1 is the
geodesic connecting μ to ν. Then μt is the measure obtained
when mass from μ is transported by the transportation map
x → (1 − t)x + tϕ(x). Then μt(A) = ∫

ϕ−1
t (A)

α(x)dx.

2.3 Linear Optimal Transportation Metric

Computing a pairwise OT distance matrix is expensive for
large datasets. In particular let TOT be the time it takes
to compute the OT distance and T2 the time it takes to
compute the Euclidean distance between two moderately
complex images. Using the method described below, TOT

is typically on the order of tens of seconds, while T2 is
on the order of miliseconds. For a dataset with M im-
ages, computing the pairwise distances takes time on the
order of M(M − 1)TOT/2. Here we introduce a version
of the OT distance that is much faster to compute. In par-
ticular computing the distance matrix takes approximately
MTOT +M(M −1)T2/2. For a large set of images, in which
the number of pixels in each image is fixed, as the number
of images in the set tends to infinity, the dominant term is
M2T2.

The distance we compute is motivated by the geomet-
ric nature of the OT distance. Heuristically, instead of com-
puting the geodesic distance on the manifold we compute a
‘projection’ of the manifold to the tangent plane at a fixed
point and then compute the distances on the tangent plane.
This is the main reason we use the term linear when nam-
ing the distance. To consider the projection one needs to fix
a reference image σ (where the tangent plane is set). Com-
puting the projection for each image requires computing the
OT plan between the reference image σ and the given im-
age. Once computed, the projection provides a natural linear
embedding of the dataset, which we describe in Sect. 3.5.

We first describe the LOT distance in the continuous set-
ting. Let σ be a probability measure with density γ . We in-
troduce the identification (‘projection’), P , of the manifold

Fig. 2 The identification of the manifold with the tangent plane. Dis-
tances to σ as well as angles at σ are preserved

with the tangent space at σ . Given a measure μ, consider the
optimal transportation map ψ between σ and μ. Then

P(μ) = v where v(x) = ψ(x) − x.

Note that v ∈ Tσ and that P is a mapping from the man-
ifold to the tangent space. See Fig. 2 for a visualization.
Also P(σ) = 0 and dW (σ,μ)2 = ∫

Ω
|ψ(x) − x|2γ (x)dx =∫

Ω
|v(x)|2γ (x)dx = 〈v, v〉σ = ‖P(μ) − P(σ)‖2

σ , were
‖v‖2

σ is defined to be 〈v, v〉σ . So the mapping preserves
distances to σ . Let us mention that in cartography such pro-
jection is known as the equidistant azimuthal projection. In
differential geometry this would be the inverse of the expo-
nential map. We define the LOT as:

dLOT(μ, ν) = ∥∥P(μ) − P(ν)
∥∥

σ
. (2)

When σ is not absolutely continuous with respect to the
Labesgue measure the situation is more complicated. The
purely discrete setting (when the measures are made of par-
ticles) is the one relevant for computations and we discuss
it in detail in Sect. 3.3. In the general setting, the proper
extension of the LOT distance above is the shortest gener-
alized geodesic (as defined in Ambrosio et al. 2008) con-
necting μ and ν. More precisely, given a reference mea-
sure σ , and measures μ and ν, with transportation plans
πμ ∈ ΠOT(σ,μ) and πν ∈ ΠOT(σ, ν), let Π(σ,μ, ν) be the
set of all measures on the product Ω × Ω × Ω such that the
projection to first two coordinates is πμ and the projection
to the first and the third is πν . The linearized version of the
OT distance between μ and ν is given by:

dLOT,σ (μ, ν)2 = inf
π∈Π(σ,μ,ν)

∫
Ω×Ω×Ω

|x − y|2dπ. (3)

2.4 Translation and Rotation Normalization

It is important to note that the OT metric defined in (1) is
not invariant under translations or rotations. It can be ren-
dered translation invariant by simply aligning all measures
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in a dataset μ1, . . . ,μN by setting their center of mass to a
common coordinate. This is based on the fact that if μ is a
measure on Ω with center of mass

xμ = 1

μ(Ω)

∫
Ω

xdμ

and ν a measure of the same mass, then among all translates
of the measure ν, νx(A) = ν(A− x), the one that minimizes
the distance to μ is the one with the center of mass xμ.

From now on, we will always assume that the mea-
sures are centered at the origin (the implementation of
this normalization step is given below). The Euclidean-
transformation invariant Kantorovich-Wasserstein distance
is then defined in the following way. Given a measure μ and
an orthogonal matrix T , define μT by μT (A) = μ(T −1A).
Then the invariant distance is defined by d(μ, ν) =
minT ∈O(n) dW (μT , ν). In two dimensions we have devel-
oped an algorithm for finding the minimum above. However
we know of no reasonable algorithm for computing the ro-
tation invariant linearized OT distance (dLOT ). Below we
present an algorithm that greatly reduces the effect of rota-
tion, but does not eliminate it completely.

3 Computing LOT Distances from Image Data

To compute the LOT distance for a set of images we need
to first compute the OT distance from a template image to
each of the images. There exist several approaches for com-
puting OT distances. Perhaps the most direct idea is to dis-
cretize the problem defined in (1). This results in a linear
programming problem (see (5)). While this approach is very
robust and leads to the global minimizer, it is computation-
ally expensive (the fastest strongly polynomial algorithm for
this case is the Hungrian algorithm with time complexity of
O(n3) with n the number of pixels in an image). Other ap-
proaches are based on continuum ideas, where PDEs and
variational techniques are often used (Angenent et al. 2003;
Barrett and Prigozhin 2009; Benamou and Brenier 2000;
Delzanno and Finn 2010; Haber et al. 2010). Some of them
achieve close to linear scaling with the number of pixels.
On the other hand, their performance can deteriorate as one
considers images that lack regularity (are not smooth, have
large gradients). A particular difficulty with some of the ap-
proaches that are not based on linear programing is that they
may not converge to the global solution if they arrive at a
local minimum first.

Our approach is based on combining linear programming
with a particle approximation of the images. It is a refine-
ment of the algorithm we used in Wang et al. (2011). That is,
each image is first carefully approximated by a particle mea-
sure (a convex combination of delta masses) that has much

fewer particles than there are pixels in the image. This sig-
nificantly reduces the complexity of the problem. Further-
more it takes advantage of the fact that many images we
consider are relatively sparse. Then one needs fewer parti-
cles for accurate approximation of the image which acceler-
ates the computation. In addition, as the number of particles
approaches the number of pixels in the image, the approx-
imation error tends to zero. We now present the details of
the algorithm. In particular, we give a description of the par-
ticle approximation, and detailed algorithms for translation
and rotation normalization, and the computation of the LOT
distance. The full details pertaining to the particle approxi-
mation algorithm, which is more involved, are presented in
the Appendix.

3.1 Particle Approximation

The first step in our computational approach is to represent
each image as a weighted combination of ‘particles’ each
with mass (intensity) mi and location xi :

μ =
Nμ∑
i=1

miδxi
(4)

with Nμ being the number of masses used to represent the
measure (image) μ. Since the images are digital, each im-
age could be represented exactly using the model above by
selecting mi to be the pixel intensity values and δxi

the pixel
coordinate grid. Given that images can contain a potentially
large number of pixels, and that the cost of a linear program-
ing solution for computing the OT is generally O(N3

μ), we
do not represent each image exactly and instead choose to
approximate them.

The goal of the algorithm is to use at most, approxi-
mately, N particles to approximate each image, while main-
taining a similar approximation error (by approximation er-
ror we mean the OT distance between the image and the par-
ticle approximation) for all images of a given dataset. For
a dataset of M images, our algorithm requires the user to
specify a number N for the approximate number of particles
that could be used to approximate any image, and consists
of these four steps:

– Step 1: use a weighted K-means algorithm (Lloyd 1982)
to approximate each image, with the number of clusters
set to the chosen N . As we describe in the Appendix, the
weighted K-means is an optimal local step for reducing
the OT error between a given particle approximation and
an image.

– Step 2: improve the approximation of each image by
investigating regions where each image is not approx-
imated well, and add particles to those regions to im-
prove the approximation locally. Details are provided in
the Appendix.
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– Step 3: compute the OT distance between each digital im-
age and the approximation of each image. For images not
well approximated by the current algorithm (details pro-
vided in the Appendix), add particles to improve the ap-
proximation.

– Step 4: For images where the approximation error is sig-
nifficantly smaller than the average error (for the entire
dataset) remove (merge) particles until the error between
the digital image and its approximation is more similar to
the other images. This reduces the time to compute the
distances, while it does not increase the typical error.

The algorithm above was chosen based on mathemati-
cal observations pertaining to the OT metric. These obser-
vations, including a careful description of each of the steps
above, are provided in the Appendix. We have experimented
with several variations of the steps above, and through this
experience we have converged on the algorithm presented.
A few of the details of the algorithm could be improved
further, though we view further improvements to be beyond
the scope of this paper. We emphasize that this particle ap-
proximation algorithm works particularly well for relatively
sparse images, and less so for non-sparse (e.g. flat) images.
Bellow we demonstrate, however, that the algorithm can
nonetheless be used to extract meaningful quantitative in-
formation for datasets of images which are not sparse.

Translation and Rotation Normalization In two dimen-
sions, it suffices to consider translation, rotation, and mir-
ror symmetry. To achieve that we simply align the center
of mass of each particle approximation to a fixed coordi-
nate, and rotate each particle approximation to a standard
reference frame according to a principal axis (Hotteling)
transform. Each particle approximation is then flipped left
to right, and up and down, simply by reversing their coordi-
nates, until the skewness (the third standardized moment) of
the coordinates of each sample have the same sign.

3.2 OT Distance in Particle Setting

We start by explaining how the general framework of Sect. 2
applies to particle measures (such as particle approximations
obtained above). A particle probability measure, μ, which
approximates the image is given as μ = ∑N

i=1 miδxi
where

xi ∈ Ω , mi ∈ (0,1], ∑N
i=1 mi = 1.

We note that for A ⊂ Ω , μ(A) = ∑
i :xi∈A mi . An

integral with respect to measure μ is
∫
A

f (x)dμ(x) =∑
i :xi∈A f (xi)mi .
Now we turn to our main goal of the section: obtaining

the OT distance. For μ = ∑Nμ

i=1 miδxi
and ν = ∑Nν

j=1 pjδyj

the set of couplings Π(μ,ν) is given by a set of Nμ × Nν

matrices, as follows:

Π(μ,ν) =
{ Nμ∑

i=1

Nν∑
j=1

fi,j δxi ,yj
:

fi,j ≥ 0 for i = 1, . . . ,Nμ, j = 1, . . . ,Nν

Nν∑
j=1

fi,j = mi for i = 1, . . . ,Nμ

Nμ∑
i=1

fi,j = pj for j = 1, . . . ,Nν

}
.

Since it is clear from the context we will make no distinction
between measures in Π(μ,ν) and matrices f = [fi,j ] that
satisfy the conditions above.

The optimal transportation distance between μ and ν de-
fined in (1) is the solution to the following linear programing
problem:

d2
W(μ,ν) = min

f ∈Π(μ,ν)

Nμ∑
i=1

Nν∑
j=1

|xi − yj |2fi,j . (5)

See Fig. 3 for a visualization. For convenience, we utilize
Matlab’s implementation of a variation of Mehrotras dual
interior point method (Methora 1992) to solve the linear
program. We note however that better suited alternatives,
which take advantage of the special structure of the linear
programming problem, exist and could be used (Orlin 1993;
Rubner et al. 2000) to increase the computational efficiency
of the method even further. The solution of the linear pro-
gram above is relatively expensive (Wang et al. 2011), with
typical computation times being around 30 seconds (with
500 particles per image) on an Apple laptop with a 2.2 GHz
intel dual core processor and 2 GB of RAM.

Fig. 3 When measures are discrete as in (4), then finding the trans-
portation plan which minimizes the transportation cost, (5), necessi-
tates splitting the particles. The arrows are drawn only for positive fi,j
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For datasets containing tens of thousands of images this
is practical only if we need to compute a single OT distance
per image (the one to the reference image), and is prohibitive
if we need the pairwise distance between all images. This
is the reason we introduce the linear optimal transportation
framework to compute a related distance between μ and ν.

3.3 LOT Distance in Particle Setting

Computing the linear optimal transportation (LOT) distance
requires setting a reference template σ , which we also
choose to be a particle measure σ = ∑Nσ

k=1 qkδzk
(how the

reference template is computed is described in Sect. 3.4).
The distance between μ and ν given by (3) in a discrete set-
ting becomes:

dLOT,σ (μ, ν)2

= min
f ∈ΠOT (σ,μ), g∈ΠOT (σ,ν)

min
h

{ Nμ∑
i=1

Nν∑
j=1

Nσ∑
k=1

hk,i,j |xi − yj |2 :

where hk,i,j ≥ 0,

Nμ∑
i=1

hk,i,j = gk,j and
Nν∑
j=1

hk,i,j = fk,i

}

(6)

We remark that the sets of optimal transportation plans,
ΠOT(σ,μ) and ΠOT(σ, ν), typically have only one element,
so there is only one possibility for f , and g. See Fig. 4 for
a visualization. Usually there is more than one possibility
for h, in the case of particle measures.

We now introduce the ‘distance’ which is an approxima-
tion of the one above (hence we denote it as daLOT ) and
which is used in most computations in this paper. Namely,
given OT plans f and g, as indicated in Fig. 5, we re-
place the f -image of the particle at zk , namely the measure∑

i fk,iδxi
, by one particle at the center of mass, namely the

measure qkδx̄k
. We recall from Sect. 2.2 that if σ , μ and

Fig. 4 Given f and g in (6), for each k fixed, hk,i,j gives the optimal
transportation plan between the ‘f -image’ and the ‘g-image’ of the
particle at zk . Arrows are drawn only for positive coefficients, and only
for the particle at zk

ν were measures which had a density function (and hence
no particles) then there exists an optimal transportation map
and the image of any z is just a single x. On the discrete level
we have an approximation of that situation and typically the
f -image of the particle at zk is spread over a few nearby
particles. Thus the error made by replacing the f image by
a single particle at the images center of mass is typically
small.

To precisely define the new distance, let f be an opti-
mal transportation plan between σ = ∑Nσ

k=1 qkδzk
and μ =∑Nμ

i=1 miδxi
obtained in (5), and g is an optimal transporta-

tion plan between σ = ∑Nσ

k=1 qkδzk
and ν = ∑Nν

j=1 pjδxj
.

Then

x̄k = 1

qk

Nμ∑
i=1

fk,ixi and ȳk = 1

qk

Nν∑
j=1

gk,j yj (7)

are the centroids of the forward image of the particle qkδzk

by the transportation plans f and g respectively (see Fig. 5).
We define

daLOT,σ (μ, ν)2 = min
f ∈ΠOT (σ,μ)
g∈ΠOT (σ,ν)

Nσ∑
k=1

qk|x̄k − ȳk|2 (8)

We clarify that computing (8) in practice does not require a
minimization over f and g, since f and g are unique with
probability one. The reason for that is that in the discrete
case the condition for optimality of transportation plans can
be formulated in terms of cyclic monotonicity (see Villani
2009). The nonuniuqueness of the OT plan can only hap-
pen if the inequalities in some cyclic monotonicity condi-
tions become equalities, which means that the coordinates
of particles satisfy an algebraic equation. And this can only
happen with probability zero. For example, if both measures
have exactly two particles of the same mass then the con-

Fig. 5 For the LOT distance we replace the full f -image and the
g-image of the particle at zk by their centers of mass x̄k and ȳk , (7).
When there are many particles the images of particle at zk tend to be
concentrated on a few nearby particles. Thus the error introduced by
replacing them by their center of mass is small
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dition for nonuniqueness is that |x1 − y1|2 + |x2 − y2|2 =
|x2 − y1|2 + |x1 − y2|2.

Thus we compute

daLOT,σ (μ, ν)2 =
Nσ∑
k=1

qk|x̄k − ȳk|2. (9)

One should notice that the daLOT,σ distance between two
particle measures may be zero. This is related to the ‘resolu-
tion’ achieved by the base measure σ . In particular if σ has
more particles then it is less likely that daLOT,σ (μ, ν) = 0
for μ �= ν. It is worth observing that daLOT,σ (μ, ν)2 com-
puted in (9) is always less than or equal to dLOT,σ (μ, ν)2

introduced in (6).
Furthermore if we consider measures with continuous

density σ , μ, and ν and approximate them by particle mea-
sures σn, μn, and νn, then as the number of particles goes
to infinity dLOT,σn(μn, νn) → dLOT,σ (μ, ν) where the latter
object is defined in (2). This follows from the stability of
optimal transport (Villani 2009).

Let us also remark that, while we use the linear program-
ming problem as described in (5) to compute the optimal
transportation plan, other methods can be used as well. In
particular the LOT distance is applicable even when a dif-
ferent approach to computing the OT plan is used.

3.4 Template Selection

Selecting the template (reference) σ above is important
since, in our experience, a template that is distant from all
images (particle approximations) is likely to increase the dif-
ference between dW and daLOT . In the results presented be-
low, we use a reference template computed from the ‘aver-
age’ image. To compute such average image, we first align
all images to remove translation, rotation, and horizontal
and vertical flips, as described in Sect. 3.3. All images are
then averaged, and the particle approximation algorithm de-
scribed above is used to obtain a particle representation of
the average image. We denote this template as σ and note
that it will contain Nσ particles. Once the particle approxi-
mation for the template is computed, it is also normalized to
a standard position and orientation as described above.

3.5 Isometric Linear Embedding

When applying our approach to a given a set of images
(measures) I1, . . . , IM , we first compute the particle ap-
proximation for each image with the algorithm described in
Sect. 3.1. We then compute a template σ as described in
Sect. 3.4 and compute the OT distance (5) between a tem-
plate σ (also chosen to be a particle measure) and the parti-
cle approximation of each image. Once these are computed,
the LOT distance between any two particle sets is given
by (9).

The lower bound of the linear optimal transportation dis-
tance daLOT,σ defined in (9) provides a method to map a
sample measure νn (estimated from image In) into a linear

space. Let νn = ∑Nνn

j=1 mjδyj
, and recall that the reference

measure is σ = ∑Nσ

k=1 qkδzk
. The linear embedding is ob-

tained by applying the discrete transportation map between
the reference measure σ and νn to the coordinates yj via

xn = (√
q1a

1
n · · ·√qNσ aNσ

n

)T (10)

where ak is the centroid of the forward image of the parti-
cle qkδkk

by the optimal transportation plan, gk,j , between
images σ and νn:

ak
n =

Nνn∑
j=1

gk,j yj /qk (11)

This results in an Nσ -tuple of points in R
2 which we call

the linear embedding xn of νn. That is, xn ∈ R
Nσ ×2. We

note that the embedding is interpretable in the sense that any
point in this space can be visualized by simply plotting the
vector coordinates (each in R

2) in the image space Ω .

4 Statistical Analysis

When a linear embedding for the data can be assumed, stan-
dard geometric data processing techniques such as principal
component analysis (PCA) can be used to extract and visu-
alize major trends of variation in morphology (Blum et al.
1967; Rueckert et al. 2003; Vaillant et al. 2004). Briefly,
given a set of data points xn, for n = 1, . . . ,M , we can com-
pute the covariance matrix S = 1

M

∑
n(xn − x̄)(xn − x̄)T ,

with x̄ = 1
M

∑M
n=1 xn representing center of the entire data

set. PCA is a method for computing the major trends (di-
rections over which the projection of the data has largest
variance) of a dataset via the solution of the following opti-
mization problem:

w∗
PCA = arg max

‖w‖=1
wT Sw (12)

The problem above can be solved via eigenvalue and eigen-
vector decomposition, with each eigenvector corresponding
to a major mode of variation in the dataset (its correspond-
ing eigenvalue is the variance of the data projected over that
direction).

In addition to visualizing the main modes of variation for
a given dataset, important applications involve visualizing
the modes of variation that best discriminate between two or
more separate populations (e.g. as in control vs. effect stud-
ies). To that end, we apply the methodology we developed
in Wang et al. (2011), based on the well known Fisher lin-
ear discriminant analysis (FLDA) technique (Fisher 1936).
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As explained in Wang et al. (2011), simply applying the
FLDA technique in morphometry visualization problems
can lead to erroneous interpretations, since the directions
computed by the FLDA technique are not constrained to
pass through the data. To alleviate this effect we modified
the method as follows. Briefly, given a set of data points xn,
for n = 1, . . . ,N , with each index n belonging to class c, we
modified the original FLDA by adding a least squares-type
representation penalty in the function to be optimized. The
representation constrained optimization can then be reduced
to

w∗
LDA = arg max

w

wT ST w
wT (SW + αI)w

(13)

where ST = ∑
n(xn − x̄)(xn − x̄)T represents the ‘total

scatter matrix’, SW = ∑
c

∑
n∈c(xn − x̄c)(xn − x̄c)

T rep-
resents the ‘within class scatter matrix’, x̄c is the center
of class c. The solution for the problem above is given
by the well-known generalized eigenvalue decomposition
ST w = λ(SW + αI)w (Bishop 2006). In short, the penalized
LDA method above seeks to find the direction w that has
both a low reconstruction error, but that best discriminates
between two populations. We use the method described in
Wang et al. (2011) to select the penalty weight α.

5 Computational Results

In this section, we describe results of applying the LOT
method to quantify the statistical variation of three types of
datasets. We analyze (sub) cellular protein patterns and or-
ganelles from microscopy images, visualize the variation of
shape and brightness in a galaxy image database and charac-
terize the variation of expressions in a facial image database.
We begin by introducing the datasets used. For the cellular
image datasets, we then show results that (1) evaluate the
particle approximation algorithm described earlier, (2) eval-
uate how well the LOT distance approximates the OT dis-
tance, (3) evaluate the discrimination power of the LOT dis-
tance (in comparison to more traditional feature-based meth-
ods), and (4) use the linear embedding provided by the LOT

to visualize the geometry (summarizing trends), including
discrimination properties. For both the galaxy and facial im-
ages, we evaluate the performance of the particle approxi-
mation and discrimination power of the LOT metric, and vi-
sualize the discriminating information. For the facial image
dataset, we also visualize the summarizing trends of varia-
tion of facial expressions. In the case of facial expressions,
the results show that LOT obtains similar quantification of
expression as the original paper (Stegmann et al. 2003), yet
LOT has the disinct advantage of being landmark free.

5.1 Datasets and Pre-processing

The biological imaging dataset has two sub-datasets. The
nuclear chromatin patterns were extracted from histopathol-
ogy images obtained from tissue sections. Tissue for imag-
ing was obtained from the tissue archives of the Chil-
dren’s Hospital of Pittsburgh of the University of Pitts-
burgh Medical Center. The extraction process included a
semi-automatic level set-based segmentation, together with
a color to gray scale conversion and pixel normalization.
The complete details related to this dataset are available in
our previous work (Wang et al. 2010, 2011). The dataset we
use in this paper consists of five human cases of liver hep-
atoblastoma (HB), a liver tumor in children, each contain-
ing adjacent normal liver tissue (NL). In total, 100 nuclei
were extracted from each case (50 NL, 50 HB). The second
sub dataset we use are fluorescent images of 2 golgi pro-
teins: giantin and GPP130. The dataset is described in detail
in Boland and Murphy (2001). In total, we utilize 81 GPP
and 66 giantin protein patterns. The galaxy dataset we use
contain two types of galaxy images including 225 Elliptical
galaxies and 223 Spiral galaxies. The dataset is described in
Shamir (2009). The facial expression dataset is the same as
described in Stegmann et al. (2003). We use only the normal
and smiling expressions, with each expression containing
40 images. Sample images for the nuclear chromatin, golgi,
galaxy and facial expression datasets are show in Fig. 6(A),
(B), (C) and (D) respectively.

Fig. 6 Sample images for the
two data sets. (A): Sample
images from the liver nuclear
chromatin data set. (B): Sample
images from the Golgi protein
data set. (C): Sample images
from galaxy image data set.
(D): Sample image from facial
expression data set
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Fig. 7 Histograms of particle approximation error and LOT error.
(A): The histogram of relative error generated during the particle ap-
proximation process. The x-axis represents the relative error in per-
centage, and the y-axis represents the portion of samples that has the
corresponding relative error. (B): The histogram of relative errors be-

tween LOT and OT for nuclei and golgi data sets. The x-axis represents
the relative error in percentage, and the y-axis represents the portion of
samples that has the corresponding relative error. The dotted line rep-
resents the relative errors for the liver nuclear chromatin dataset, and
the solid line represents relative errors for the Golgi dataset

5.2 Particle Approximation Error

Here we quantify how well our particle-based algorithm de-
scribed above can approximate the different datasets we use
in this paper. Instead of an absolute figure, of interest is the
OT error between each image and its particle approxima-
tion, relative to the OT distances that are present in a dataset.
Figure 7(A) can give us some indication of the relative (in
percentage) error for the particle approximation of each im-
age in each dataset. For each image in a dataset, we compute
the error ei = ϕi

1
M

∑
j=1,...,M di,j

, where di,j is the OT distance

computed through (5), and ϕi is the upper bound on the OT
distance between the particle approximation of image i and
the image i (defined in (16) in the Appendix). The computa-
tion is repeated for M images chosen randomly from a given
dataset. Figure 7(A) contains the histogram of the errors for
all the datasets. The x-axis represents the relative error in
percentage, and the y-axis represents the portion of samples
that has the corresponding relative error. Though, by defi-
nition, we can always reduce the approximation errors by
adding more particles, considering the computational cost,
we use 500 initial particles for the nuclei, golgi and galaxy
data sets, and 2000 initial particles for the face data set. The
data shows that the average errors were 14.1 % for the nu-
clear chromatin dataset, 3.2 % for the golgi protein dataset,
13.1 % for the galaxy image dataset and 18.5 % for the face
data set.

5.3 Difference Between OT and LOT

We compare the LOT distance given in (9) with the OT
distance, defined in (5). To that end, we compute the full
OT distance matrix (all pairwise distances) for both bio-
logical image datasets and compare it to the LOT distance
via: eOT,LOT = dOT−dLOT

dOT
. Figure 7(B) contains the relative

difference for the nuclear chromatin and golgi. The aver-
age absolute difference for the nuclear chromatin data is

eOT,LOT = 2.94 %, and eOT,LOT = 3.28 % for the golgi
dataset.

5.4 Discrimination Power

In Wang et al. (2011), we have shown that the OT metric
can be used to capture the nuclear morphological informa-
tion to classify different classes of liver and thyroid cancers.
We now show that the linear OT approximation we pro-
pose above can be used for discrimination purposes with
little or no loss in accuracy when compared to traditional
feature-based approaches. To test classification accuracy we
use a standard implementation of the support vector machine
method (Bishop 2006) with a radial basis function (RBF)
kernel.

For the nuclear chromatin in the liver cancer dataset we
followed the same leave one case out cross validation ap-
proach described in Wang et al. (2011). The classification
results are listed in Table 1. For comparison, we also com-
puted classification results using a numerical feature ap-
proach where the same 125 numerical features (including
shape parameters, Haralick features, and multi-resolution-
type features) as described in Wang et al. (2011), were used.
Stepwise discriminant analysis was used to select the sig-
nificant features for classification (12 of them were conse-
quently selected). In addition, we also provide classification

Table 1 Average classification accuracy in liver data

Feature OT LOT EMD-L1

Case 1 89 % 87 % 86 % 84 %

Case 2 92 % 88 % 89 % 86 %

Case 3 94 % 91 % 90 % 87 %

Case 4 80 % 87 % 85 % 84 %

Case 5 71 % 76 % 74 % 76 %

Average 85.2 % 85.8 % 84.8 % 83.4 %
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accuracies utilizing the method described in Pele and Wer-
man (2009), which we denote here as EMD-L1. The EMD-
L1 in this case was applied to measure the L1 weighted earth
mover’s distance (EMD) between image pairs. The radius
above which pixels displacements were not computed was
set to 15 for fast computation. When using the EMD-L1
method, each image was downsampled by four, after Gaus-
sian filtering, to allow for the computations to be performed
in a reasonable time frame (see discussion section for a com-
parison and discussion of computation times).

Classification results are shown in Table 1. We note that
because we used a kernel-based SVM method, the only
difference between all implementations were the pairwise
distances computed (OT vs. LOT vs. EMD-L1 vs. feature-
based). In Table 1, each row corresponds to a test case, and
the numbers correspond to the average classification accu-
racy (per nucleus) for normal liver and liver cancer. The first

Table 2 Average classification accuracy in golgi protein data

Feature OT LOT

gia gpp gia gpp gia gpp

gia 79.2 % 20.8 % 86.2 % 13.8 % 83.8 % 16.2 %

gpp 28.6 % 71.4 % 35.6 % 64.3 % 30.7 % 69.3 %

Table 3 Average classification
accuracy for EMD-L1 in golgi
protein data

EMD-L1

gia gpp

gia 85.8 % 14.2 %

gpp 31.3 % 68.7 %

column contains the classification accuracy for the feature-
based approach, the second column the accuracy for the OT
metric, the third column the accuracy for the LOT metric,
and the final column contains the computations utilizing the
EMD-L1 approach (Pele and Werman 2009). We followed a
similar approach for comparing classification accuracies in
the golgi protein dataset. In this case we utilized the feature
set described in Boland and Murphy (2001). This feature
set was specifically designed for classification tasks of this
type. A five fold cross validation strategy was used. Results
are shown in Tables 2 and 3.

We also computed the LOT metric for the galaxy and fa-
cial expression datasets and applied the same support vector
machine (SVM) strategy. In the galaxy case we utilized the
feature set described in Shamir (2009). A five fold cross val-
idation accuracy was used. Compared with the accuracy of
the feature-based approach (93.6 %), the classification ac-
curacy of LOT metric was 87.7 %. For the facial expression
data set, the classification was performed based on SVM
with the LOT metric, and a 90 % classification accuracy was
obtained.

5.5 Visualizing Summarizing Trends and Discriminating
Information

We applied the PCA technique as described in Sect. 4 to the
nuclei and facial expression data sets. The first three modes
of variation for the nuclear chromatin datasets (containing
both normal and cancerous cells) are displayed in Fig. 8(A).
The first three modes of variation for the facial expression
dataset are shown in Fig. 8(B). For both datasets, the first

Fig. 8 The modes of variation
given by the PCA method
combined with the LOT
framework, for nuclear
chromatin (A) and facial
expression (B) datasets. Each
row corresponds to a mode of
variation, starting from the first
PCA mode (top)
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Fig. 9 Modes of discrimination
computed using the penalized
LDA method in combination
with the LOT framework. Each
row contains the mode of
variation that best discriminates
the two classes in each dataset.
Parts (A), (B), (C), (D) refer to
discrimination modes in nuclear
morphology, golgi proteins,
galaxy morphology, and facial
expression datasets, respectively

three modes of variation correspond to over 99 % of the vari-
ance of the data. The modes of variation are displayed from
the mean to plus and minus four times times the standard
deviation of each corresponding mode. For the chromatin
dataset we can visually detect size (first mode), elongation
(second mode), and differences in chromatin concentration,
from the center to the periphery of the nucleus (third mode).
In the face dataset, since we did not normalize for size of the
face, one can detect variations in size (first mode), facial hair
texture (second mode), as well as face shape (third mode).
The variations detected from the second and third modes are
similar to the results reported in Stegmann et al. (2003).

We also applied the method described in Sect. 4 to visual-
ize the most significant differences between the two classes
in each dataset. The most discriminating modes for the nu-
clear chromatin dataset, golgi dataset, galaxy and the facial
expression dataset are shown in Fig. 9(A)–(D), respectively.
In the nuclear chromatin case, the normal tissue cells tend
to look more like the images on the left, while the cancer-
ous ones tend to look more like the images on the right.
In this case we can see that the most discriminating effect
seems to be related to differences in chromatin placement
(near periphery vs. concentrated at the center). The p value
for this direction was 0.019. For the golgi protein dataset,
the discriminating direction (p = 0.049) shows that the gi-
antin golgi protein tends to be more scattered than the gpp
protein, which tends to be more elongated in its spatial dis-
tribution. For the galaxy dataset, the discriminant direction
(p = 0.021) seems to vary from a spiral structure to a bright
dense disk. For the facial expression dataset, the discrimi-
nating direction (p = 0.011) shows a trend from a smiling
face to a serious or neutral facial expression.

6 Summary and Discussion

We described a new method for quantifying and visualizing
morphological differences in a set of images. Our approach

called the LOT is based on the optimal transportation frame-
work with quadratic cost, and we utilize a linearized approx-
imation based on a tangent space representation to make the
method amenable to large datasets. Our current implemen-
tation is based on a discrete ‘particle’ approximation of each
pattern, with subsequent linear programming optimization,
and is therefore best suited for images which are sparse. We
evaluated the efficacy of our methods in several aspects. As
our results show, the error between an image and its parti-
cle approximation, relative to the distances in the dataset,
are relatively small for a moderate number of particles when
the images are sparse (e.g. golgi protein images), and can
be made small for general images if more time is allowed
for computation. We also showed that the LOT distance
closely approximates the standard OT distance between par-
ticle measures, with absolute percentage errors on the order
of a few percent in the datasets we used. In experiments not
shown, we also evaluated the reproducibility of our particle-
based LOT computation with respect to the random particle
initializations required by algorithm. These experiments re-
vealed that the average coefficient of variation was on the
order of a couple of percent. Finally, we also evaluated how
well the LOT distance described can perform in classify-
ing sets of images in comparison to standard feature-based
methods, the traditional OT distance (Wang et al. 2011), and
the EMD-L1 method of Pele and Werman (2009). Overall,
considering all classification tests, no significant loss of ac-
curacy was detected.

A major advantage of the LOT framework is the reduced
cost of computing the LOT distance between all image pairs
in a dataset. For a database of M images, Sect. 2.3 explains
that the number of transportation related optimization prob-
lems that need to be solved for computing all pairwise dis-
tances is M . In comparison, to our knowledge, the num-
ber of transportation related optimizations necessary for this
purpose of all other available methods is M(M − 1)/2. In
concrete terms, if all computations were to be performed us-
ing a single Apple laptop computer with 2 GB or RAM and
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a dual processor of 2.2 GHz, the total computation time for
producing all pairwise distances for computing the results
shown in Table 1 of our paper, for example, would be ap-
proximately 4.1 hours for the LOT method, 15.6 hours for
the EMD-L1 method (Pele and Werman 2009), and 1200
hours for the OT method described in Wang et al. (2011).
We clarify that in order to utilize the EMD-L1 method im-
ages had to be downsampled to allow the computations to be
performed in reasonable times. The time quoted above (and
results shown in Tables 1, 2 and 3) was computed by down-
sampling each image by a factor of four (after spatial filter-
ing). We clarify again, however, that we have used a generic
linear programming package for solving the OT optimiza-
tions associated with our LOT framework. The computation
times for the LOT framework could be decreased further by
utilizing linear programming techniques more suitable for
this problem.

In addition to fast computation, a significant innova-
tion of the LOT approach is the convenient isometric lin-
ear embedding it provides. In contrast to other methods that
also obtain linear embeddings, see for example Roweis and
Saul (2000), Tenenbaum et al. (2000), the embedding LOT
space allows for one to synthesize and visualize any point
in the linear space as an image. Therefore the LOT em-
bedding can facilitate visualization of the data distribution
(via PCA) as well as differences between distributions (via
penalized LDA). Hence, it allows for the automatic visu-
alization of differences in both shape and texture in dif-
ferent classes of images. In biological applications, such
meaningful visualizations can be important in helping elu-
cidate effects and mechanisms automatically from the im-
age data. For example, the results with the nuclear chro-
matin dataset suggest that, in this disease, cancer cells tend
to have their chromatin more evenly spread (euchromatin)
throughout the nucleus, whereas normal cells tend to have
their chromatin in more compact form (heterochromatin).
This suggests that the loss of heterochromatin is associ-
ated with the cancer phenotype in this disease. This find-
ing is corroborated by earlier studies (Wang et al. 2010,
2011) (which used different methodology), as well as other
literature which suggests that cancer progression is associ-
ated with loss of heterochromatin (Moss and Wallrath 2007;
Dialynas et al. 2008).

We note that the use of the quadratic cost in (1) allows
for a Riemannian geometric interpretation for the space of
images. With this point of view, the LOT framework we de-
scribe can be viewed as a tangent plane approximation of
the OT manifold. Thus the linear embedding we mentioned
above can be viewed as a projection onto the tangent plane.
While computing theoretical bounds for the difference be-
tween the OT and LOT distances is difficult since it would
depend on the curvature of the OT manifold (which we have

no way of estimating for a real distribution of images), sev-
eral important facts about this approximation are worth not-
ing. Firstly, we note that the LOT is a proper mathematical
distance on its own, even when the tangent plane approx-
imation is poor. Secondly, the projection is a one to one
mapping. Thus information cannot be lost by projecting two
images onto the same point. Finally, we note that utilizing
the LOT distances (instead of the OT ones) results in no sig-
nificant loss in classification accuracy. This suggests, that
for these datasets, no evidence is available to prefer the OT
space versus the LOT one.

As mentioned above, the LOT embedding obtained via
the tangent space approximation can facilitate the applica-
tion of geometric data analysis methods such as PCA to en-
able one to visualize interesting variations in texture and
shape in the dataset. As compared to applying the PCA
method directly on pixel intensities (data not shown for
brevity), the PCA method applied with the use of the LOT
method yields sharper and easier to interpret variations,
since it can account for both texture and shape variations
via the transportation of mass. As already noted above, sev-
eral other graph-based methods also exist for the same pur-
pose (Roweis and Saul 2000; Tenenbaum et al. 2000). How-
ever, in contrast to our LOT method, these are not analyti-
cal meaning that only measured images can be visualized.
Moreover, the LOT distances we provide here can be used
as ‘local’ distances, based on which such graphs can be con-
structed. Thus both classes of methods could be used jointly,
for even better performance (one example is provided in Ro-
hde et al. 2008).

The LOT framework presented here utilizes on a ‘parti-
cle’ approximation of the input images. The advantage of
such a particle approximation is that the underlying OT op-
timization becomes a linear program whose global optimum
can be solved exactly with standard methods. Drawbacks
include the fact that such approach can become computa-
tionally intensive for non sparse images. We investigated the
average classification accuracy for the experiments encoun-
tered in the previous section as a function of the number of
particles used to approximate each image. For the experi-
ment involving nuclear chromatin patterns, for example, the
average classification accuracy for the LOT method using
300, 500, and 900 particles was 79 %, 83.3 %, and 83.4 %,
respectively. We note that for the golgi protein dataset, uti-
lizing the LOT with 100 particles produced nearly the same
accuracy as the ones reported in Table 2. These results, to-
gether with the already provided comparison to other meth-
ods, suggest the particle approximation was sufficient to
classify these datasets.

Finally, we wish to point out several limitations inherent
in the approach we describe here. First, as already noted, the
particle approximation is best able to handle images which
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are sparse. For images that are not sparse, many more par-
ticles are needed to approximate the image well, thus in-
creasing significantly the computational cost of the method.
In addition, like all transportation related distances, our ap-
proach is not able to handle transport problems which in-
clude boundaries. Instead the approach is best suited for an-
alyzing images whose intensities can be viewed as a distri-
bution of mass that is ‘free’ to move about the image. In
addition, we note that transportation-type distances are not
good at telling the difference between smooth versus punc-
tate patterns. For this specific task, other approaches (such as
Fourier analysis, for example), may be more fruitful. Finally,
we note that for some types of images, the traditional OT and
the LOT can yield very different distances. This could occur
when the images to be compared have very sharp transitions,
of high frequency, and if the phase of these transitions are
mismatched. We note that this is rarely the case in the im-
ages we analyze in this paper. These and other aspects of our
current LOT framework will be the subject of future work.
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Appendix: Particle Approximation Algorithm

Here we present the details of the particle approximation al-
gorithm outlined in Sect. 3.1. The goal of the algorithm is
to approximate the given probability measure, μ on Ω by a
particle measure with approximately N particles, where N

is given. For images where the estimated error of the initial
approximation is much larger than the typical error over the
given dataset the number of particles is increased to reduce
the error, while for images where the error is much smaller
than typical the number of particles is reduced in order to
save time when computing the OT distance. The precise cri-
terion and implementation of adjusting the number of parti-
cles is described in step 8 below.

In our application the measure μ represents the image.
It too can be thought as a particle measure particle measure

itself μ = ∑Nμ

j=1 mjδyj
where Nμ is the number of pixels,

yj the coordinates of the pixel centers, and mj the intensity
values. Our goal however is to approximate it with a particle
measure with a lot fewer particles. Below we use the fact
that the restriction of the measure μ to a set V is defined
as μ|V = ∑Nμ

i=1,xi∈V miδxi
. The backbone of the algorithm

rests on the following mathematical observations.

Observation 1. The best approximation for fixed particle lo-
cations Assume that x1, . . . , xN are fixed. Consider the
Voronoi diagram with centers x1, . . . , xN . Let Vi be the
cell of the Voronoi diagram that correspond to the cen-
ter xi . Then among all probability measures of the form
μ = ∑N

i=1 miδxi
the one that approximates μ the best is

N∑
i=1

μ(Vi)δxi

= argmin

{
dW (μ,μN) : μN =

N∑
i=1

miδxi

with mi ≥ 0 and
N∑

i=1

mi = μ(Ω)

}
(14)

Let us remark that if μ is a particle measure as above
then μ(Vi) is just the sum of intensities of all pixels whose
centers lie in Vi .

Given a measure μ supported on Ω we define the center
of mass to be

x(μ) = 1

μ(Ω)

∫
Ω

xdμ. (15)

Observation 2. The Best Local ‘Recentering’ of Particles
It is easy to prove that among all one-particle measures the
one that approximates μ the best is the one set at the center
of mass of μ:

μ(Ω)δx(μ) = argmin
{
dW

(
μ,μ(Ω)δy

) : y ∈ R
n
}
.

We can apply this to ‘recenter’ the delta measures in each
Voronoi cell:

N∑
i=1

μ(Vi)δx(Vi)

= argmin

{
k∑

i=1

dW

(
μ|Vi

,μ(Vi)δyi

) : yi ∈ R
n

}

Here μ|Vi
is the restriction of measure μ to the set Vi .

More precisely, for A ⊂ Ω , μ|Vi
(A) = μ(A ∩ Vi).

Observation 3. The Error for the Current Approximation is
Easy to Estimate Given a particle approximation as above
one can compute a good upper bound on the error. In partic-
ular

d2
W

(
μ,

N∑
i=1

μ(Vi) δx(Vi )

)

≤
N∑

i=1

d2
W

(
μ|Vi

,μ(Vi) δx(Vi )

)
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=
N∑

i=1

∫
|x − x(μ|Vi

)|2dμ|Vi
. (16)

If μ = ∑Nμ

j=1 mjδyj
the upper bound on the right-hand

side becomes
∑N

i=1
∑Nμ

j=1,yj ∈Vi
mj |yj − x̄i |2 where x̄i =

(
∑Nμ

j=1,yj ∈Vi
mjyj )/

∑Nμ

j=1,yj ∈Vi
mj . We should also note

that the estimate on the right-hand side gives us very use-
ful information on ‘local’ error in each cell Vi . This enables
us to determine which cells need to be refined when needed.

Based on these observations, we use the following
‘weighted Lloyd’ algorithm to produce a particle approxi-
mation to measure μ. The idea is to use enough particles
to approximate each image well (according to the transport
criterion), but not more than necessary given a chosen accu-
racy. The steps of our algorithm are:

1. Distribute N particles (with N an arbitrarily chosen num-
ber), x1, . . . xN , over the domain Ω by weighted random
sampling (without replacement) the measure μ with re-
spect to the intensity values of the image.

2. Compute the Voronoi diagram for centers xi, . . . , xk .
Based on Observation 1, set mi = μ(Vi). The measure
μN = ∑N

i=1 μ(Vi) δxi
is the current approximation.

3. Using Observation 2, we recenter the cells by setting
xi,new = x(μ|Vi

) (the center of mass of μ restricted to
cell Vi ).

4. Repeat steps 2 and 3 until the algorithm stabilizes. (the
change of error upper bound is less than 0.5 % in the
sequential steps).

5. Repeat the steps 1 to 4 10 times for each image and
choose the approximation with lowest error.

6. We then seek to improve the approximation in regions
in the image which have not been well approximated
by the step above. We do so by introducing more par-
ticles in the Voronoi cells Vi where the cost of transport-
ing the intensities in that cell to its center of mass ex-
ceed a certain threshold. To do so, we compute the trans-
portation error erri = dW (μ|Vi

,μ(Vi)δxi
) in cell i. Let

err be the average transportation error. We add particles
to all cells where erri > 1.7err. More precisely if there
are any cells where erri > 1.7err then we split the cell
with the largest error into two cells Vi1,Vi2, and then re-
compute the Voronoi diagram to determine the centers
mi1 = μ(Vi1),mi2 = μ(Vi2) of these two new cells. We
repeat this splitting process until all the Voronoi cells
have error less than 1.7erri . The choice of 1.7 was based
on emperical evaluation with several datasets.

7. In order to reduce the number of particles in areas in each
image where many particles are not needed, we merge
nearby particles. Two particles are merged if, by merging
them, the theoretical upper bound defined in (16) is low-
ered. When particles of mass m1 and m2 and locations

x1 and x2 are merged to a single particle of mass m =
m1 +m2 located at the center of mass x = m1x1+m2x2

m1+m2
the

error in the distance squared is bounded by:

d2
W(m1δx1 + m2δx2 + μrest,mδx + μrest)

≤ m1m2

m1 + m2
|x1 − x2|2

We merge the particles that add the smallest error
first and then continue merging until dW (μN,μmerged) <

0.15dW(μN,μ). This has the overall effect of shifting
the histogram (taken over all images) of the approxima-
tion error to the right, where the inequality is used in the
sense of the available upper bound on the distance (Ob-
servation 3 and the estimate above) and not the actual
distance. This ensures that the final error for each image
after merging is around 1.15dW(μN,μ).

8. Finally, while the two steps above seek to find a good par-
ticle approximation for each image, with N particles or
more, the final step is designed to make the particle ap-
proximation error more uniform for all images in a given
dataset. For a set of images I1, I2, . . . , IM , we estimate
the average transportation error, Eavg, between each dig-
ital image and its approximation, as well as standard de-
viation τ of the errors. We set Esmall = Eavg −0.5∗τ and
Ebig = Eavg + 0.5 ∗ τ .

– For images that have bigger error than Ebig, we split
the particles as in Step 6 until the error for those im-
ages are less than Ebig.

– For images that have smaller error than Esmall, we
merge nearby particles instead as in Step 7. The pro-
cedure we apply is to merge the particles that add the
smallest error first and then continue merging until
dW (μ,μmerged) ≥ Esmall.
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