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Abstract This paper introduces a new parameterization of
diffeomorphic deformations for the characterization of the
variability in image ensembles. Dense diffeomorphic de-
formations are built by interpolating the motion of a fi-
nite set of control points that forms a Hamiltonian flow of
self-interacting particles. The proposed approach estimates
a template image representative of a given image set, an op-
timal set of control points that focuses on the most variable
parts of the image, and template-to-image registrations that
quantify the variability within the image set. The method
automatically selects the most relevant control points for the
characterization of the image variability and estimates their
optimal positions in the template domain. The optimization
in position is done during the estimation of the deforma-
tions without adding any computational cost at each step of
the gradient descent. The selection of the control points is
done by adding a L1 prior to the objective function, which
is optimized using the FISTA algorithm.
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1 Introduction

1.1 The Need to Adapt Generic Parameterization of Image
Variability

The statistical analysis of a set of images plays an impor-
tant role in several fields, such as Computer Vision, Pattern
Recognition, or Computational Anatomy. The goal of this
analysis is to find the invariants across a given set of images
and to characterize how these common features vary in ap-
pearance within the group. This mean and variance analysis
is useful in several ways: (1) to measure how likely a new
image may be considered as another observation of the same
group of images; (2) to cluster the set of images into con-
sistent subgroups; and (3) to understand what distinguishes
two different sets of images. For instance, this can be used
for classification purposes, to understand the variability of
an anatomical structure observed in a normal population or
to characterize what distinguishes normal versus pathologi-
cal anatomical structures.

One way to approach this problem is to extract a set of
features from the images and to perform statistics on feature
vectors of small dimension. Usually, the definition of the
features is specific to each problem and supposes that one
already knows what features are interesting for a given ap-
plication. By contrast, the generic Grenander’s pattern the-
ory for modeling objects (Grenander 1994; Trouvé 1998;
Dupuis et al. 1998; Miller and Younes 2001), which was
later extended for population analysis (Lorenzen et al. 2005;
Allassonnière et al. 2007; Durrleman et al. 2009), estab-
lishes a diffeomorphic map between each image in the data
set and a common “template” image that is representative of
the image ensemble. Both the template image and the de-
formations, together called an “atlas,” need to be estimated.
The former captures the invariants across the image ensem-
ble and the latter describes how these invariants appear in
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individual observations. The atlas characterizes the variabil-
ity of the set of images, without any prior knowledge of what
is variable in the observations.

The distribution of the template-to-subjects deforma-
tions, seen as instances of random variables in the set of all
possible deformations, gives a characterization of the vari-
ability of a given image ensemble. Intrinsic statistics on such
deformations may be computed using the parameterization
of the deformations in the LDDMM setting (Lei et al. 2007;
Singh et al. 2010) or the displacement field of the grid
of voxels using a log-Euclidean technique (Arsigny et al.
2006). In both cases, the mathematical objects used for
statistics are of infinite dimension in theory, and of the order
of the size of the images in practice. This very high dimen-
sionality is an asset of the approach, in the sense that the
model is flexible enough to capture a very wide range of
possible variations across an image set. At the same time,
this dimension is problematic, not only because the number
of images are usually much smaller than the dimension of
the descriptors, which is critical from a statistical point of
view, but also because this very high dimension does not re-
flect the true number of degrees of freedom that are needed
to describe the observed variability of the image set. For
instance, if the images differ from rigid-body, affine trans-
formations or such constrained deformations, then a small
number of parameters is sufficient to describe this variabil-
ity. Therefore, it would be beneficial to estimate which small
subgroup of deformations the template-to-subjects deforma-
tions belong to, given an image ensemble. Then, statistics
can be derived using the small dimensional parameterization
of the deformations in this subgroup. In this paper, we ad-
dress this issue by introducing a data-driven basis selection
technique. We see the infinite parameterization of the diffeo-
morphisms as a dictionary of basis elements and we propose
to find a small finite-dimensional subset of these basis ele-
ments which enables the description of the variability of a
given image ensemble. The weights of the decomposition
of the deformations on this basis will be used as a small-
dimensional descriptor of the variability. The dimension of
this descriptor will give an estimate of the ‘true’ number of
degrees of freedom that underlie the variability of the image
set.

A typical way of finding optimal basis is to estimate the
deformations parameterized by a very large number of vari-
ables, and then apply a generic dimension-reduction tech-
nique to the set of descriptors. Techniques like Principal
Component Analysis (PCA), Independent Component Anal-
ysis (ICA) or matching pursuit can be called upon. The prob-
lem is that such extrinsic dimension-reduction techniques
try to minimize the approximation error in the parameter
space, and not in the image space. These techniques do not
make use of the input images to find the best reduction of

dimension. By contrast, we propose here to estimate the de-
formations as the same time as their optimal parameteriza-
tion. In this case, the reduction of the dimension of the pa-
rameterization can be balanced by adjusting the other pa-
rameters, so that the loss in the description of the variability
is minimal. The whole optimization is driving by the min-
imization of a single criterion, which accounts for the bal-
ance between sparsity and matching accuracy. We will use
a L1 prior in this criterion to enforce the decomposition of
the deformations to be as sparse as possible (i.e. with the
most possible zero weights). The set of basis elements with
non-zero weights defines the subgroup of deformations that
is the more adapted for the description of the variability of a
given image set.

1.2 Finite-Dimensional Parameterization of Atlases

More precisely, we follow the statistical approach initiated
in Allassonnière et al. (2007), which considers that every
observed image derives from an unknown template image
plus identically distributed random white noise:

Ii = I0 ◦ φ−1
i + εi, (1)

where Ii for i = 1, . . . ,N denote the original images, I0

the template image, φi the N template-to-subject deforma-
tions, and εi the N images of white noise. I0 ◦ φ−1

i is the
usual action of the diffeomorphic deformation on images
(seen as measures on the ambient space). The invariants
within the image set are captured in the template image I0.
The variability is encoded in the deformations φi . The at-
las consists in both the template (the photometric variable)
and the set of deformations (the geometric variables). Both
need to be estimated and are intrinsically of infinite dimen-
sion. To estimate such variables, we first introduce a generic
finite-dimensional parameterization and then sparsity priors
to adapt this parameterization to a particular set of observa-
tions.

The construction of the deformed image I0 ◦φ−1
i requires

a computation of the gray level of the template image at
potentially any location in the template image domain: the
template image should have an infinite resolution. To intro-
duce a finite-dimensional parameterization of the template
image, we follow the approach proposed in Allassonnière
et al. (2007) and build a continuous template image by in-
terpolating photometric weights located at a discrete set of
photometric control points. The photometric control points
define a basis for the parameterization of the template im-
age.

In contrast to Allassonnière et al. (2007), who used small
deformations, we will use here large diffeomorphic defor-
mations in the LDDMM setting for the deformations φi

(Trouvé 1998; Miller et al. 2002). In this framework, a large
group of diffeomorphisms is seen as ‘Riemannian manifold’
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of infinite dimension. The equivalent of the logarithm of a
diffeomorphism is a continuous squared integrable velocity
field. The conjugate variable of the velocity field is the mo-
menta, which is used to define intrinsic tangent-space statis-
tics on deformations (Vaillant et al. 2004; Lei et al. 2007;
Durrleman et al. 2009, 2011a; Singh et al. 2010). For im-
age matching, the momenta is encoded by an image of in-
finite dimension, or numerically of the size of the input im-
ages. However, it has been shown in Durrleman et al. (2009)
that such continuous momenta maps can be efficiently ap-
proximated by a finite set of well-chosen Dirac delta mo-
menta, where momenta stand for vectors attached to control
points that are called geometric control points in this con-
text. Therefore, we introduce a finite-dimensional parame-
terization of the momenta based on a finite set of vectors
attached to control points, in the spirit of Joshi and Miller
(2000).

The set of geometric control points, which may be lo-
cated anywhere in the image domain, defines a potentially
infinite-dimensional basis of the parameterization of the de-
formations. The vectors attached to them define the weights
of the decomposition of a given deformations onto this basis.
Defining an adapted basis for the description of the variabil-
ity means finding the optimal positions of a finite number of
control points: both the position and the number of the geo-
metric control points should be optimized altogether, given
an image ensemble. Indeed, an optimal set of geometric con-
trol points are unlikely to be equally distributed in the image
domain; instead, they should be located at the most variable
parts of the image. The optimal positions of the points are
characteristic of the image ensemble and therefore shared by
all the template-to-subjects deformations. The momentum
vectors attached to these control points parameterize each
of these deformations and are therefore specific to each ob-
servation. We will see that the optimization of the position of
the control points could be done along with the estimation of
the momentum vectors without introducing any additional
cost in the computation of the gradient. The optimization of
the number of control points will be done by introducing a
L1 sparsity priors on the set of momentum vectors, which
will force the atlas estimation to use as few non-zero mo-
mentum vectors as possible by selecting the geometric con-
trol points that are most relevant for the description of the
variability.

The proposed method follows the approach initiated
in Durrleman et al. (2011b), which introduced the control-
point parameterization of large diffeomorphic deformations
for image atlasing. However, in Durrleman et al. (2011b),
the whole time-varying parameterization of the template-
to-subject deformations was optimized. Consequently, the
deformations were geodesic, and therefore characterized by
their initial momenta, only once the optimization algorithm

has converged to a local minimum. The method was there-
fore more sensitive to numerical errors. By contrast, we pro-
pose here to take advantage of the geodesic shooting equa-
tions in order to guarantee that, at each step of the optimiza-
tion process, the computed deformations are geodesic. We
also propose here to use a convex L1 penalty term instead
of the non-convex log-L1, which, in addition, needed an ex-
tra parameter. We also change the usual L2 model of image
for the parametric image model introduced in Allassonnière
et al. (2007).

2 Formulation of Parametric Atlases

2.1 Parametric Template Models

The template I0 should be a continuous image, which al-
lows us to compute the gray level at any position x of the
image domain, so that one can build the image I0(φ

−1(x))

and sample it at the pixels grid.
The parametric template model, which has been intro-

duced in Allassonnière et al. (2007), parameterize such con-
tinuous images with a discrete set of weights located at some
“well-chosen” control points. Let’s c

ph
k be a sparse set of Nph

control points in the image domain, called photometric con-
trol points in this context, and Kph(x, y) an interpolating
kernel. We define the parametric template at any location
x in the image domain as the interpolation of photometric
weights wk located at the photometric control points (see
Fig. 1):

I0(x) =
np∑

k=1

Kph(x, c
ph
k

)
wk. (2)

This template model has the advantage of a discrete pa-
rameterization, which can be easily handled. In particular, it
facilitates the easy computation of a deformed template and
its gradient without relying on finite-difference schemes.

Remark 1 (Comparison with templates defined as images)
Assume that one puts one photometric control point at each
node of the pixels grid. Then, the template is represented
by an image, of the same size of the observations, whose
gray levels are given by the weights wk . Moreover, as-
sume that the kernel is the triangle function: Kph(x, y) =
1
�

min(�+ (x − y),�− (x − y))+, where � is the size of a
pixel, then (2) is exactly the linear interpolation of the gray
levels wk at the sub-pixel level. This is the typical template
model given as a digital image, which is linearly interpo-
lated to compute gray values at any arbitrary locations in
the image domain. This is one of the most popular template
models in the literature. We proved here that this template
model is the limit of our parametric template model.
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Fig. 1 Parametric template model. A template image is defined by a
set of signed photometric weights (left). An interpolating kernel builds
a continuous intensity profile, at any resolution (middle), which is dis-
played as an image (right)

However, this limit suffers from two main limitations.
First, it is encoded by an array whose size equals the num-
ber of the pixels in the image domain. This representation
may be highly redundant, especially for binary or highly
contrasted images. In these cases, the information is local-
ized in small areas of the image domain and large back-
ground areas are encoded in endless sequences of ‘0’ in the
template image. Second, the template image is sensitive to
the sampling of the observations. In particular, it is difficult
to use if observations have different sampling and differ-
ent sizes. The parametric model addresses these two limi-
tations.

2.2 Parametric Diffeomorphic Deformation of Images

For the deformations, our approach relies on the large diffeo-
morphic deformations introduced in Trouvé (1998), Dupuis
et al. (1998), Miller et al. (2002). Diffeomorphisms are con-
structed by integrating infinitesimal splines transforms over
time, which play the role of an instantaneous velocity field.
Given a time-varying vector field vt (x) over the time inter-
val [0,1], one integrates the differential equation φ̇t (x) =
vt (φt (x)), with initial condition φ0(x) = x. The end-point
of the path φ1 is the diffeomorphism of interest. Under the
conditions detailed in Beg et al. (2005) and satisfied here,
the resulting (φt )t∈[0,1] is a flow of diffeomorphisms (for
each time t ∈ [0,1], φt is a diffeomorphic deformation). In
particular, the vector fields vt are supposed to belong to a
Reproducible Kernel Hilbert Space (RKHS), namely the set
of L2 vector fields convolved with a regularizing kernel K ,
which plays the role of a low-pass filter and therefore con-
trols the spatial smoothness of the vector fields.

In our approach, we assume a discrete parameterization
of the driving velocity field vt via a convolution operator:

vt (x) =
ng∑

k=1

Kg(x, c
g
k(t)

)
αk(t), (3)

where for each time t , c
g
i (t) denotes a set of ng geomet-

ric control points, αi(t) a set of ng momentum vectors at-
tached to them. Kg is a fixed positive definite kernel that
defines a RKHS. In this work, we will use the Gaussian
kernel K(x,y) = exp(−‖x − y‖2/σ 2

g )Id (Id stands for the
identity matrix) among other possible choices. It has been
shown in Durrleman et al. (2009) that such vector fields can
approximate any vector field in the RKHS defined by the
kernel Kg.

We denote S(t) = {cg
k(t), αk(t)}k=1,...,ng (a 2dng vector,

where d = 2 in 2D and 3 in 3D) the state of the system at
time t . Knowing the state of the system at any time t ∈ [0,1]
defines a flow of diffeomorphisms. Indeed, any point x0 in
the ambient space follows the path x(t) = φt (x0) which sat-
isfies the ODE:
{

ẋ(t) = vt (x(t)) = ∑ng

k=1 Kg(x(t), c
g
k(t))αk(t)

x(0) = x0.
(4)

The path x(t) depends therefore only on the initial condition
x0 and the state of the driving system S(t). The final position
x(1) is by definition φ1(x0).

One could use the time-varying state of the system S(t)

as the parameterization of the diffeomorphism φ1 as pro-
posed in Durrleman et al. (2011b). However, in this work,
we will take advantage of the fact that among all paths
t → S(t) connecting φ0 to φ1 there is one which satisfies a
minimum energy principle: the ‘geodesic paths.’ Indeed, the
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kernel Kg induces a metric on the space of velocity fields,
and therefore on the space of diffeomorphisms (Miller et al.
2006). The distance between the diffeomorphism of inter-
est φ1 and the identity map φ0 is the total kinetic energy
needed to reach the former from the latter:

∫ 1
0 ‖vt‖2dt =∫ 1

0 〈K−1vt , vt 〉dt , which for the particular form of vt given
in (3) reduces to:

∫ 1

0

ng∑

i=1

ng∑

j=1

αi(t)
tKg(ci(t), cj (t)

)
αj (t)dt. (5)

This kinetic energy depends only on the time-varying
state of the system S(t). Following mechanical principles,
it has been shown in Miller et al. (2006) that the extremal
path connecting φ0 and φ1 is such that the state of the sys-
tem S(t) satisfies the following set of ODEs:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dc
g
k(t)

dt
=

ng∑

l=1

Kg(cg
l (t), c

g
k(t)

)
αk(t)

dαk(t)

dt
= −

ng∑

l=1

αk(t)
tαl(t)∇1K

g(cg
l (t), c

g
k(t)

)
,

(6)

given initial conditions αk(0) = α0,k and c
g
k(0) = c

g
0,k . De-

noting S0 = {α0,k, c
g
0,k}k the initial state of the system, (6)

can be re-written in short as:
{

Ṡ(t) = F
(
S(t)

)

S(0) = S0.
(7)

These differential equations can be interpreted as the motion
of ng self-interacting particles without external forces. The
interaction between particles is given by the kernel Kg. The
first equation in (6) gives the speed of the control points;
the second one, its acceleration. Note that the first equation
is consistent with the definition of the velocity field in (3),

since it reads
dc

g
k (t)

dt
= vt (c

g
k(t)).

These equations show that the whole flow of diffeomor-
phisms is entirely determined by the initial state of the
system S0. Indeed, given S0, the integration of (6) gives
the state of the system at any later time t : S(t) (the mo-
tion of the control points and the momentum vector over
time). Then, the integration of (4) gives the motion of any
point x0 in the ambient space according to the flow of
diffeomorphisms φt . The generation of diffeomorphisms
φ can be fully controlled by the finite-dimensional vec-
tor S0. From a Riemannian perspective, S0 plays the role
of the logarithm map (or tangent-space representation) of
the diffeomorphism that it parameterizes. Such parameter-
izations are of paramount importance to define tangent-
space statistics on diffeomorphisms (Vaillant et al. 2004;
Pennec et al. 2006).

Accordingly, the inverse map φ1 is also fully determined
by S0. Given a point position y in the image domain Ω , the
position given by the inverse flow φ−1

1 (y) can be computed
by integrating the following ODE backward in time (where
the velocity field has been reversed):

dy(t)

dt
= −vt

(
y(t)

)
, y(1) = y. (8)

Then, the final value at time t = 0 gives the mapped position:
y(0) = φ−1

1 (y).
Let Y be an image of vectors, which gives the position

of every voxel in the image domain. In the continuous set-
ting, we have Y(y) = y for any y ∈ Ω , where Y is seen as a
squared integrable map in L2(Ω,R

d). The domain Ω is de-
formed by the inverse diffeomorphism φ−1

1 : the inverse flow
can be computed by integrating the following ODE:

⎧
⎪⎨

⎪⎩

dY (t)

dt
= G

(
Y(t),S(t)

)

Y(1) = IdL2,

(9)

where

G
(
Y(t),S(t)

) = −vt

(
Y(t)

)

= −
ng∑

k=1

Kg(Y(t)(.), c
g
k(t)

)
αk(t) (10)

maps an image of vectors in L2(Ω,R
3) and a 2dng-

dimensional vector to an image of vectors in L2(Ω,R
3).1

Once integrated backward from time t = 1 to t = 0, the
final image of vectors Y(0) maps the domain Ω to φ−1

1 (Ω).
As a consequence, the deformation of the template image I0

can be written as:

I0
(
φ−1

1 (y)
) = I0

(
Y(0)(y)

)
. (11)

Eventually, one can easily verify that the geodesic paths
of the state of the system are energy conservative: for any
time t , ‖vt‖2

V = ‖v0‖2
V . Therefore, the total kinetic energy

of a given path is given as:

L(S0) =
ng∑

k=1

ng∑

l=1

αt
0,kK

g(cg
0,k, c

g
0,l

)
α0,l . (12)

This is a function of only the initial state of the system,
which will be used as a measure of regularity of the defor-
mations in the objective function.

1If the image domain Ω is discretized into a regular lattice of Nim
voxels, then Y (t) could be seen as a dNim-dimensional vectors of the
voxels positions that are mapped back via the inverse deformation.
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Remark 2 (Linearization of the deformation model) This
large deformation setting is built by the combination of in-
finitesimal transforms. The ODEs are integrated from t = 0
to t = T , where we fix T to 1 for large deformations. Now,
we linearize the model in time, assuming T tends to zero.
Then, at the first order, the flow of diffeomorphisms re-
duces to a single transform: φ(x) = x + v0(x). v0 plays the
role of a displacement field, which has the form v0(x) =∑ng

k=1 Kg(x, c
g
k)αk . This is typically a displacement field

constructed by interpolation of radial basis functions: Kg

plays the role of the radial basis function and α is the vecto-
rial weight of the interpolation. Here, we build a diffeomor-
phism by composing several of such displacement fields,
while ensuring via the ODE integration the diffeomorphic
property of the final deformation. Similar constructions can
be found in Rueckert et al. (2006), Vercauteren et al. (2009).
In addition, our approach based on mechanical principles
enables us to define a metric on the space of diffeomor-
phisms and then geodesic paths and tangent-space represen-
tation of the diffeomorphisms.

Remark 3 (Comparison with usual LDDMM methods) This
model of large diffeomorphic deformations has been used in
the context of registration in mostly two occasions: for the
registration of images (Miller et al. 2002; Beg et al. 2005)
and the registration of point sets (Joshi and Miller 2000;
Miller et al. 2002; Vaillant and Glaunès 2005; Glaunès et al.
2008). In both cases, one looks for the geodesic flows, which
minimize a trade-off between a data fidelity term (sum of
squared differences between gray values or between point
locations) and a regularity term (the kinetic energy). It has
been shown in Miller et al. (2002, 2006) that the minimiz-
ing velocity fields have a particular structure in each case.
For image registration, the minimizing velocity fields are pa-
rameterized by a time-varying continuous map of momenta
α(t, x), such that the momentum vector α(t, x)∇xI (t) is al-
ways pointing in the direction of the gradient of the moving
template image: vt (x) = ∫

K(x,y)α(t, y)∇yItdy, where
I (t) = I0 ◦φ−1

t . For point sets registration, it has been shown
that the support of a momenta map reduces to the discrete
set of points to be matched. The momenta map is then ex-
pressed as vectors attached to each of the points in the set,
in a similar expression as in (3) where the control points are
equal to the shape points.

The proposed framework unifies both approaches, by us-
ing a set of control points that become independent of the
objects to be matched. Both the position of the control points
and the momentum vectors attached to them need to be es-
timated. The control points are not necessarily at the shape
points. Momentum vectors are not constrained to be parallel
to the image gradient. We will see that the optimization in
the position of control points moves them toward the con-
tours of the template image and are concentrated in the most
variable areas of the image.

3 Atlas Estimation via Gradient Descent

3.1 Objective Function for Atlas Estimation

Our purpose is to estimate the whole atlas from a set of im-
ages: the template image and the template-to-subjects defor-
mations. The parameters of the atlas to be optimized are: the
photometric weights for the template image, a set of control
points in the template image domain, and a collection of mo-
mentum vectors that, with the control points, parameterizes
the template-to-subjects deformations. It is important to no-
tice that the template image and the set of control points are
shared by all the subjects: they parameterize the invariants in
the population. By contrast, the momentum vectors are spe-
cific to each subject. They parameterize the variance of the
image set around the mean template image. Note also that
we do not optimize with respect to the position of the pho-
tometric control points, which is considered a fixed hyper-
parameter.

Formally, the parameters are one vector of photometric
weights w, one vector of the position of the control points
cg

0, and N vectors of initial momenta α0,i , where N denotes
the number of images in the data set. We denote Si (t) the
state of the system of the ith subject, which defines the ith
template-to-subject deformations according to (7):

{
Ṡi (t) = F

(
Si (t)

)

Si (0) = (
cg

0, α0,i

)
,

(13)

where F is defined by (6).
The inverse deformations map y ∈ Ω to φ−1

i,1 (y), which
equals Yi(0)(y), where the flow of images of vectors Yi(t)

(∈ L2(Ω,R
3)) satisfy the ODEs given in (10):

{
Ẏi (t) = G

(
Yi(t),Si (t)

)

Yi(1) = IdL2 .
(14)

A Maximum A Posteriori estimation of these parameters
in the same setting as in Allassonnière et al. (2007) leads to
the minimization of the following objective function:

E
(
w, cg

0, {α0,i}i=1,...,N

)

= 1

2σ 2

N∑

i=1

∥∥I0 ◦ Yi(0) − Ii

∥∥2
L2 + ‖v0,i‖2

V , (15)

where σ 2 is a scalar trade-off between fidelity-to-data and
regularity.

The ith data term Ai = ∫
Ω

|I0(Yi(0)(x)) − Ii(x)|2dx de-
pends on I0 and Yi(0). The template image depends on the
photometric weights w via (2). The image of vectors Yi(0)

depends on positions of the set of particles Si (t) via the
ODE (14), which in turn depends on the initial state of the
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system S0,i via the ODE (13). Therefore, the image of vec-
tors Yi(0) depends on the initial state of the system S0,i via
the forward integration followed by a backward integration
of ODEs. This set of ODE propagates back and forth the
information from the template space at t = 0 to the subject
space at t = 1.

The regularity term ‖v0,i‖2
V is the kinetic energy of

the system of particles, which is conserved over time.
Given (12), this term equals:

‖v0,i‖2
V =

ng∑

p=1

ng∑

q=1

αt
0,i,pKg(cg

0,p, c
g
0,q

)
α0,i,q

= αt
0,iK

g(cg
0, cg

0

)
α0,i , (16)

where we denote Kg(cg
0, cg

0) the dng-by-dng symmetric
block matrix, whose (p, q)th block is given by
Kg(c

g
0,p, c

g
0,q). This term depends only on the initial state

of the system of particles S0,i . Therefore, we write it as:
Li(S0,i ) = Li(c

g
0,α0,i ).

Eventually, the criterion to be optimized writes:

E
(
w, cg

0, {α0,i}i=1,...,N

)

=
N∑

i=1

Ai

(
w, Yi(0)

) + Li

(
cg

0, α0,i

)
. (17)

Let us denote Ei = Ai(w, Yi(0)) + Li(c
g
0,α0,i ) the con-

tribution of the ith subject to the objective function. Then,
the gradient of E is given by:

∇wE =
N∑

i=1

∇wEi, ∇cg
0
E =

N∑

i=1

∇cg
0
Ei,

∇α0,i
E = ∇α0,i

Ei .

(18)

The gradient with respect to the photometric weights and
control points positions involves a sum over the subjects: it
reflects the fact that these variables are shared by all the sub-
jects in the population in contrast to the momentum vectors
that are specific to each subject. These equations also show
that the gradient of the criterion can be computed by com-
puting the gradient of each term of the sum in parallel. This
is possible since there is no coupling between the parameters
of different subjects.

The gradient with respect to the deformation parameters
can be computed using the chain rule:

⎧
⎪⎪⎨

⎪⎪⎩

∇cg
0
Ei = 1

2σ 2

(
dcg

0
Yi(0)

)†∇Yi(0)Ai + ∇cg
0
Li

∇α0,i
Ei = 1

2σ 2

(
dα0,i

Yi(0)
)†∇Yi(0)Ai + ∇α0,i

Li .

We notice that these gradients are driven by the term:
∇Yi(0)Ai , which, according to the definition of Ai , is the im-
age of vectors whose value at position x is given by:

∇Yi(0)Ai(x) = 2
(
I0

(
Yi(0)(x)

) − Ii

)∇Yi(0)(x)I0. (19)

This is the usual image force, which drives the deforma-
tion of most intensity-based registration methods. This term
contains all the interesting information about the data. The
two Jacobian matrices dcg

0
Yi(0) and dα0,i

Yi(0) show how to
combine this image force with the underlying deformation
model. In the next section, we will show a very efficient way
to compute this gradient, which does not require the explicit
computation of these Jacobian matrices. Instead, we will use
a set of linearized ODEs to transport the image force back
and forth between the template image domain and the sub-
ject image domain.

Remark 4 (Gradient in the small deformation setting) The
Jacobian matrices involved in the gradient are easy to com-
pute in the small deformation setting, in which the integra-
tion of ODE are done using a unique step-size. In the setting
of Remark 2, the flow of diffeomorphisms is reduced to the
transform: φ(x) = x +v(x) = x +∑ng

k=1 K(x, c
g
k)αk , which

is parameterized by the fixed momenta (cg,α). The inverse
deformation is approximated by φ−1(yk) = yk − v(yk). One
term of the objective function is then reduced to (omitting
the subject’s index i):

E
(
cg,α

) = 1

2σ 2

∥∥I0 ◦ φ−1 − I
∥∥2 + ‖v‖2

V , (20)

whose gradient can be computed straightforwardly as:

∇αk
E = − 1

σ 2

Nim∑

l=1

Kg(cg
k, yl

)

× (
I0

(
yl − v(yl)

) − I (yl)
)∇yl−v(yl)I0

+ 2

ng∑

p=1

Kg(cg
k, c

g
p

)
αp,

∇c
g
k
E = 1

σ 2

Nim∑

l=1

2

σ 2
g

Kg(cg
k, yl

)(
I0

(
yl − v(yl)

) − I (yl)
)

× (∇yl−v(yl)I0)
tαk

(
c

g
k − yl

)

− 2

ng∑

p=1

2

σ 2
g

Kg(cg
k, c

g
p

)
αt

kαp

(
c

g
k − c

g
p

)
,

where for clarity purposes, we supposed the kernel of the
form Kg(x, y) = exp(−‖x − y‖2/σ 2

g )I .
The first equation consists of two terms: the first one is

the convolution at the control points of the usual image force
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with the smoothing kernel, which tends to decrease the im-
age discrepancy; the second one is a regularizer of the es-
timated momenta, which can be seen as a low-pass filter
on the momenta. The second equation is the update rule for
the control points positions. The first term shows that they
are attracted by the voxels where the gradient of the image
is large (i.e. the contours), provided that the momenta αi

pushes in the ‘right’ direction, that of the image force (mak-
ing the dot product negative). The second term is a repulsion
term which moves away two control points which carry mo-
menta pointing in the same direction (if αt

kαp > 0, then the
opposite direction of the gradient points in the same direc-
tion as c

g
k − c

g
p , which tends to move c

g
k away from c

g
p). The

effect of the term is to limit the redundancy of the parame-
terization at the scale of the kernel σg.

The reader could verify that this gradient is precisely the
linearization of the gradient, which will be given in the next
section. The linearization is at order 0 for the first equation
and at order 1 for the second one (the zeroth order vanish-
ing).

3.2 Differentiation with Respect to the Position of the
Control Points and Momentum Vectors

In this section, we show how to efficiently differentiate the
gradient with respect to the deformation parameters. The
following generic proposition shows that the gradient with
respect with the deformation parameters can be computed
by transporting the image force back and forth between the
template and the subjects’ image domain. Note that in the
sequel we omit the subject’s index i for clarity purposes.

Proposition 1 Let us denote S0 = (c
g
0,α0) be the 2dng pa-

rameters of a generic criterion E of the form:

E(S0) = A
(
Y(0)

) + L(S0),

where:

Ṡ(t) = F
(
S(t)

)
, S(0) = S0

Ẏ (t) = G
(
Y(t),S(t)

)
, Y (1) = IdL2 .

(21)

Y(t) is an image of vectors in L2(Ω,R
d) for all t , A a dif-

ferentiable map from L2(Ω,R
d) to R and F,G two differ-

entiable maps.
Then, the gradient of E is given by:

∇S0E = ξ(0) + ∇S0L, (22)

where two auxiliary variables ξ(t) (a vector of size 2dng)
and η(t) (an image of vectors) satisfy the following linear
ODEs:
{

η̇(t) = −(
∂1G

(
Y(t),S(t)

))†
η(t)

η(0) = −∇Y(0)A,
(23)

{
ξ̇ (t) = −∂2G

(
Y(t),S(t)

)†
η(t) − dS(t)F

t ξ(t)

ξ(1) = 0.
(24)

The proposition is proven in Appendix A.
The first ODE in (23) shows that the auxiliary variable η

transports the image force ∇Y(0)A from the template (t = 0)
to the subject (t = 1) space via a linear ODE. The sec-
ond ODE in (24) is a linear ODE with source term, whose
source is given by the result of the previous integration.
This last ODE is integrated backward in time: the result-
ing value ξ(0) is directly the gradient that we were looking
for (dS0Y(0)†∇Y(0)A). This shows that the product between
the Jacobian matrix and the image force can be efficiently
computed via a forward and backward integration of linear
ODEs.

It is also important to notice that the gradient is computed
with respect to the whole state S0, which means that the gra-
dients with respect to the position of the control points and
the momentum vectors are computed altogether via a cou-
pled system of ODEs. The optimization of the position of
the control points does not involve any additional computa-
tional cost in the gradient computation!

Now, we can apply Proposition 1, with the expressions
of F and G given in (6) and (10) to get the contribution of
the ith subject to the gradient (18) (note that one needs one
time-varying variable S(t), η(t), and ξ(t) per subject).

Decomposing the 2dng vectors into two dng vectors,
S0 = (cg

0,α0) and ξ = (ξc, ξα), we get:

∇c
g
0,k

E = ξc
k (0) + ∇c

g
0,k

L,

∇α0,k
E = ξα

k (0) + ∇α0,k
L,

where we have:

∇α0,k
L = 2

ng∑

p=1

Kg(cg
0,k, c

g
0,p

)
α0,p,

∇c
g
0,k

L = 2

ng∑

p=1

α0,p
tα0,k∇1K

g(cg
0,k, c

g
0,p

)
.

The term ∂1G(Y(t),S(t)) is an operator on L2(Ω,R
d):

∂1G = −
ng∑

p=1

αp(t)∇1K
g(Y(t), ck(t)

)t
IdL2

so that the image of vectors η(t) is updated according to:

η̇(t) = −
ng∑

p=1

η(t)tαp(s)∇1K
g(Y(s), c

g
p(t)

)
. (25)

The term ∂2G(Y(t),S(t)) is a row vector of 2dng images
of vectors. Decomposing it into two blocks of size (dng), we
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get ∂2G = (dcgG(Y(t),S(t)) dαG(Y(t),S(t))). Therefore,

∂2G
(
Y(t),S(t)

)†
η(t) =

(
〈dck(t)G,η(t)〉L2

〈dαk(t)G,η(t)〉L2

)

=
( ∫

Ω
dck(t)G

tη(t)∫
Ω

dαk(t)G
tη(t)

)
. (26)

Similarly, the function F can be divided into two blocks

F
(
S(t)

) =
(

Fc(S(t))

Fα(S(t))

)
, (27)

where Fc(S(t)) and Fα(S(t)) are respectively the first and
second row in (6). Therefore, the differential of F is decom-
posed into 4 blocks as follows:

dS(t)F =
(

∂cg(t)F
c ∂α(t)F

c

∂cg(t)F
α ∂α(t)F

α

)
. (28)

Given the expressions of F and G given in (6) and (10)
respectively, the update rule for the auxiliary variables ξc(t)

and ξα(t) are:

−ξ̇ c
k (t) =

∫

Ω

∇1K
g(cg

k(t), Y (t)(x)
)
η(t)(x)tαk(t)dx

+ (
∂cgFc

)t
ξ c(t)k + (

∂cgFα
)t

ξα(t)k (29)

−ξ̇ α
k (t) =

∫

Ω

Kg(cg
k(t), Y (s)(x)

)
η(t)(x)dx

+ (
∂αF c

)t
ξ c(t)k + (

∂αFα
)t

ξα(t)k (30)

with

(
∂cF

c
)t

ξ c(t)k =
ng∑

p=1

∇1K
g(cg

k(t), c
g
p(t)

)
αp(t)t ξ c

k (t)

+
ng∑

p=1

∇1K
g(cg

k(t), c
g
p(t)

)
ξc
p(t)tαk(t)

(
∂cF

α
)t

ξα(t)k

= −
ng∑

p=1

αk(t)
tαp(t)∇1,1K

g(cg
k(t), c

g
p(t)

)t
ξα
k

+
ng∑

p=1

∇1,1K
g(cg

k(t), c
g
p(t)

)t
ξα
p (t)αp(t)tαk(t)

(
∂αF c

)t
ξ c(t)k =

ng∑

p=1

Kg(cg
k(t), c

g
p(t)

)
ξc
p(t)

(
∂αFα

)t
ξα(t)k =

ng∑

p=1

∇1K
g(cg

k(t), c
g
p(t)

)t
ξα
p (t)tαp(t)

−
ng∑

p=1

αp(t)∇1K
g(cg

k(t), c
g
p(t)

)t
ξα
k (t)

where the time-varying vectors c
g
k(t) and αk(t) have been

computed by integrating the ODE (6) from the initial condi-
tions c

g
0,k and α0,k , and the time-varying images of vectors

Y(t) by integrating backward the ODE (9).
In these equations, we supposed the kernel symmetric:

Kg(x, y) = Kg(y, x). If the kernel is a scalar isotropic ker-
nel of the form Kg = f (‖x − y‖2)Id, then we have:

∇1K
g(x, y) = 2f ′(‖x − y‖2)(x − y),

∇1,1K
g(x, y) = 4f ′′(‖x − y‖2)(x − y)(x − y)t

+ 2f ′(‖x − y‖2)Id.

3.3 Numerical Implementation

The implementation of the above equations requires: to
compute the integrals over the image domain Ω , to compute
the sum over the control points, and to integrate the ODEs.

For this purpose, we discretize the image domain Ω into
a regular lattice of voxels. The positions of the voxels are
denoted {yk}k=1,...,Nim . Their flow under the inverse defor-
mation is given by the discretization of the ODE in (9):

{
ẏk(t) = −vt

(
yk(t)

)

yk(1) = yk,
(31)

which gives the practical way to compute Y(t)(yk) = yk(t).
This allows us to compute the image force and the data

term using a sum of squared differences. Indeed, the image
force ∇Y(0)A(x) = 2(I0(Y (0)(x))−I (yk))∇Y(0)(x)I0 in (25)
involve the computation of I0(Y (0)) and ∇Y(0)I0. Accord-
ing to the parametric image model, these two terms can be
sampled at the positions yk to build discrete images:

I0
(
yk(0)

) =
np∑

p=1

Kph(yk(0), c
ph
p

)
wp,

∇yk(0)I0 =
np∑

p=1

wp∇1K
ph(yk(0), c

ph
p

)
.

(32)

Then, the data term is computed as the sum of squared dif-
ferences between the images: A(Y(0)) = ∑Nim

k=1(I0(yk(0))−
I (yk))

2.
For the numerical implementation, we suppose the kernel

Kg translation-invariant (Kg(x, y) = f (x−y)). In this case,
all the integrals over the image domain Ω in (29) and (30)
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are convolutions. The kernel Kg, its gradient ∇1K
g, and the

Jacobian matrix ∇1,1K
g are all translation-invariant, there-

fore one samples them at the nodes of the lattice and their
FFTs are pre-computed. At a given time t , the voxels have
moved to the position given in yk(t), which carry a vec-
tor η(t)(yk). Then one employs a splatting algorithm (also
called Partial Volume Projection in Durrleman (2010)) to
project the vectors η(t)(yk) at the neighbor voxels around
the position yk(t). This is the numerical implementation
of the change of variable x = Y(t)(y) within the integrals.
Then, one computes the convolution using the FFT of this
image of vectors and the pre-computed FFT of the kernel.
The output at the positions ck(t) are computed using a lin-
ear interpolation (also called Partial Volume Interpolation
in Durrleman 2010).

If the number of control points is small enough, then
the sum over the number of control points can be imple-
mented ‘as is.’ Otherwise, one may use the same approxi-
mation tool (Partial Volume Projection, followed by convo-
lution between discrete images, followed by Partial Volume
Interpolation) to compute the discrete convolutions. This is
also called particle-mesh approximation in this context and
is explained in-depth in Durrleman (2010) [Chap. 2]. In par-
ticular, the approximation error is controlled by the ratio be-
tween the grid size and the rate of decay of the kernel.

The ODEs are integrated by using a Euler scheme with
prediction/correction scheme. This has the same accuracy
as a Runge Kutta scheme of order 2.

3.4 Differentiation with Respect to the Photometric
Weights

To complete the computation of the gradient of the objective
function, we need to differentiate it with respect to the pho-
tometric weights. The part of the criterion that depends on
these weights is:

N∑

i=1

∫

Ω

(
I0

(
Yi(0)

) − Ii

)2
,

where, according to the parametric template model (2):

I0
(
Yi(0)(y)

) =
np∑

p=1

Kph(Yi(0)(y), c
ph
p

)
wp.

Therefore, the gradient with respect to the photometric
weight is given by:

∇wpE = 2
N∑

i=1

∫

Ω

Kph(Yi(0)(y), c
ph
p

)

× (
I0

(
Yi(0)(y)

) − Ii(y)
)
dy, (33)

which is discretized as:

∇wpE = 2
N∑

i=1

Nim∑

k=1

Kph(yi,k(0), c
ph
p

)(
I0

(
yi,k(0)

) − Ii(yk)
)
.

(34)

This gradient is also a convolution, which is implemented
by projecting the current ith residual image (I0 ◦ φ−1

i − Ii)

at the neighboring voxels around positions yi,k(0), comput-
ing the convolution using FFTs and interpolating the output
image at the positions of the photometric control points c

ph
p .

Eventually, the overall gradient minimization procedure
is summarized in Algorithm 1, where we wrote the ODEs in
integral forms and use the discrete version of the equations.

4 Adjusting the Number of Control Points with
Sparsity Priors

4.1 L1-Sparsity Priors on Geometric Parameters

The dimension of the parameterization of the deformations
is determined by the number of geometric control points. In
this section, we would like to adjust the dimension of this
parameterization, so that it better reflects the true number of
degrees of freedom that is needed to describe the variability
of the image set. An optimal set of geometric control points
would be concentrated near the contours of the template im-
age, where the need of deformation is the most important.

The kinetic energy is used as a L2 regularity term used
in the criterion. The effect of this term is to spread the ‘to-
tal amount of momentum’ that is needed over the whole set
of control points. Indeed, it is always less energetic to have
two momentum vectors pushing in the same direction with
the same weight, than only one with a doubled weight. This
is in contradiction with our goal to select a small amount of
relevant control points to describe the variability of the im-
age set. To enforce the distribution of momenta to be con-
centrated on a small set of control points, we introduce an
additional L1 penalty term in the spirit of elastic nets (Zou
and Hastie 2005):2

E
(
w, cg

0, {α0,i}i=1,...,N

)

=
N∑

i=1

{
Ai

(
w,yi (0)

) + Li

(
cg

0, α0,i

) + γg

ng∑

p=1

‖α0,i,p‖
}

,

(35)

2Note that this is not exactly the elastic net paradigm, since we do not
use the usual Euclidean norm on the momentum vectors for the L2

penalty (α0,i
tα0,i ) but the L2 metric induced by the metric Kg instead

(α0,i
t Kgα0,i ).
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Algorithm 1 Atlas Estimation with Adaptive Parameterization
1: Input/Initialization:
2: set of images Ii for i = 1, . . . ,N

3: array of positions of the pixels in the image domain y = {yk}k
4: photometric kernel Kph, geometric kernel Kg

5: array of positions of photometric control points cph

6: array of positions of geometric control points cg
0

7: trade-off regularity/fidelity-to-data σ 2

8: vector of photometric weights w ← 0
9: momentum vectors α0,i ← 0 for all subjects i

10:

11: repeat {Gradient descent}
12: ∇wE ← 0, ∇c

g
0
E ← 0, ∇α0,i

E ← 0
13: for i = 1, . . . ,N do
14: {Generate deformation as in (6) (forward integration)}
15: c

g
k(t) = c

g
0,k + ∫ t

0

∑ng

p=1 Kg(c
g
k(s), c

g
p(s))αi,p(s)ds

16: αi,k(t) = α0,i,k − ∫ 1
0

∑ng

p=1 αi,k(s)
tαi,p(s)∇1K

g(c
g
p(s), c

g
k(s))ds

17: {Deform the image domain with φ−1
i (backward integration)}

18: yk(t) = yk − ∫ 1
t

∑Nim
p=1 K(yk(s), cp(s))αi,j (s)ds

19: {Compute image force}
20: I0(yk(0)) = ∑np

p=1 Kph(yk(0), c
ph
p )wp {deformed template image}

21: ∇yk(0)I0 = 1
2σ 2

∑np

p=1 wp∇1K
ph(yk(0), c

ph
p ) {deformed gradient template image}

22: ∇yk(0)A = 1
σ 2 (I0(yk(0)) − Ii(yk))∇yk(0)I0 {Image Force}

23: {Compute auxiliary variable η as in (25) (forward integration)}
24: ηk(t) = −∇yk(0)A − ∫ t

0

∑ng

p=1 ηk(s)
tαp(s)∇1K

g(yk(s), c
g
p(s))ds

25: {Compute auxiliary variables ξc and ξα as in (29) and (30) (backward integration)}
26: ηc

k(t) = ∫ 1
t

ξ̇ c
k (s)ds as in (29)

27: ηα
k (t) = ∫ 1

t
ξ̇ α
k (s)ds as in (30)

28: {Compute gradient}
29: ∇c

g
0,k

E ← ∇c
g
0,k

E + ξc
k (0) + 2

∑ng

p=1 Kg(c
g
0,k, c

g
0,p)α0,i,p

30: ∇α0,i,k
E ← ξα

k (0) + 2
∑ng

p=1 α0,i,p
tα0,i,k∇1K

g(c
g
0,k, c

g
0,p)

31: ∇wpE ← ∇wpE + 2
∑Nim

k=1 Kph(yi,k(0), c
ph
p )(I0(yi,k(0)) − Ii(yk))

32: end for
33: {Update parameters}
34: w ← w − τ∇wE {Update photometric weights}
35: cg

0 ← cg
0 − τ ′∇cg

0
E {Update positions of geometric control points}

36: α0,i ← α0,i − τ ′∇α0,i
E for i = 1, . . . ,N {Update the momentum vectors of each subject}

37: until Convergence
38:

39: Output:
40: Template image I0 = ∑np

k=1 Kph(., c
ph
k )wk

41: Set of optimal control points in the template image domain: cg
0

42: Parameterization of template-to-subject deformations by momentum vectors α0,i

where ‖.‖ denotes the Euclidean norm in the ambient 2D or
3D space.

As we will see, the effect of this prior is to enforce mo-
mentum vectors of small magnitude to vanish. Therefore,
this will enforce the deformations to be encoded in a small

number of non-zero parameters. We will say that a given ge-
ometric control point is c

ph
p active, if the momentum vector

α0,i,p is non-zero for at least one subject i. The effect of the
sparsity prior is to minimize the number of active control
points.
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4.2 Optimization with F/ISTA

To optimize this new criterion, we rely on the adaptation
of the gradient method called Iterative Shrinkage Thresh-
olding Algorithm (ISTA) (Beck and Teboulle 2009) and its
faster version called FISTA for Fast-ISTA. The idea is to use
the previous gradient of the least square criterion (i.e. with-
out the L1 penalty) and then to threshold the update of the
momentum vectors if their magnitude is not large enough.
Therefore, at any time of the optimization procedure, a given
momentum vector can be set to zero if the gradient does not
push strongly enough, or, on the contrary, can make active
an inactive control point if the gradient has a large enough
magnitude. The F/ISTA method enables to set the threshold
given the sparsity weight γg and the current step-size of the
gradient descent. The fast version adds the ideas of Nesterov
(1983) to speed-up the optimization procedure.

To be more precise, let us write the new criterion as:

E
({α0,i}i ,w

) = ELS
({α0,i}i ,w

) + gα

({α0,i}i
)
,

where ELS denotes the previous least-square criterion (17)
and gα({α0,i}i ) = γg

∑N
i=1 ‖α0,i‖R

ng .
F/ISTA is built on the quadratic approximation of the cri-

terion as:
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∥∥w − w′∥∥2 + gα(α0,i ), (36)

where Lg,Lph are two positive constants, which will play
the role of two step-sizes in the adapted gradient descent
scheme.

The key tool of F/ISTA is the minimization of this
quadratic approximation:

arg min
α0,1,...,α0,N ,w

QLph,Lg

({α0,i}i ,
{
α′

0,i

}
i
,w,w′)

as a function of the α′
0,i ’s and w′.

Since Q is a sum of positive terms involving only either
the variables α0,i or each of the coordinates wk , the mini-
mum is reached for wk and α0,i being equal to:

pLph
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1
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.

The first minimizer is given by the usual update of the
gradient descent:

pLph

(
w′

k

) = w′
k − Lph∇w′

k
ELS. (37)

Applying Lemma 1 in Appendix B shows that the second
minimizer is given by:

pLg

(
α′

0,i

) = SγgLg

(∥∥α′
0,i − Lg∇α′

0,i
ELS
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×
α′

0,i − Lg∇α′
0,i
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‖α′
0,i − Lg∇α′

0,i
ELS‖ , (38)

where the Sγ denotes the usual soft-thresholding function
Sγ (x) = max(x − γ,0) − min(x + γ,0), where the thresh-
old γgLg is the product of the sparsity weight and the cur-
rent step-size. This soft-thresholding function has mostly
two effects. First, it tends to penalize the update (α′

0,i −
Lg∇α′

0,i
ELS ) of high magnitude by adding or subtracting

the quantity γgLg. Second, it thresholds to zero any update
whose magnitude is below γgLg, thus enforcing the sparsity.

According to Beck and Teboulle (2009), these updates
are combined within a gradient descent called FISTA, as
shown in Algorithm 2. Note that the gradient with respect
to the position of the control points is not affected by the
sparsity prior.

Remark 5 (Non-convex optimization) F/ISTA is proven to
converge to the minimum of the criterion if the least-square
criterion is a convex function. In our case, the criterion is
convex with respect to the photometric weights, but is not
convex with respect to the momentum vectors. This has the
same drawback as using the gradient descent scheme for
non-convex optimization: only local minima can be reached.
However, the conditions, under which the F/ISTA algorithm
converges to a local minimum of the criterion, still need to
be rigorously established. Experimentally, our results will
show very stable output if the sparsity weight γg is var-
ied, which suggests good convergence properties of the op-
timization procedure.

5 Experiments

5.1 The Importance of Optimally Placed Control Points

In this section, we illustrate the discrete parameterization of
deformations with the registration between a pair of images.
We compute the registration between two simulated images
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Algorithm 2 Sparse Atlas Estimation with FISTA
1: Initialization:
2: k ← 0
3: geometric control points cg

0(k) as nodes of a regular lattice
4: momentum vectors α0,i (k) ← 0 for all subjects i

5: vector of photometric weights w(k) ← 0
6: Take step-sizes Lph > 0, Lg > 0 and η > 1

7: Set cg
0
′
(k + 1) = cg

0(k), α′
0,i (k + 1) = α0,i (k) and w′(k + 1) = w(k)

8: Set t1 = 1, k = 1
9: repeat

10: k ← k + 1
11: Compute ∇cg

0
′
(k)

ELS , ∇α′
0,i (k)E

LS and ∇w′(k)E
LS as in Algorithm 1

12: Find the smallest pair of nonnegative integers ik, jk (e.g. for the lexicographic order) such that with Lph = Lph/η
ik

and Lg = Lg/η
jk

E
({

pLg
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}
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,
{
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)}

i
,w,pLph

(
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))

13: Lph ← Lph, Lg ← Lg

14: cg
0(k) = cg

0
′
(k) − Lg∇cg

0
′
(k)

ELS

15: α0,i (k) = pLg(α
′
0,i (k))

16: w(k) = pLph(w
′(k))

17: tk+1 = (1 +
√

1 + 4t2
k )/2

18: cg
0
′
(k + 1) = cg

0(k) + (
tk−1
tk+1

)(cg
0(k) − cg

0(k − 1))

19: α′
0,i (k + 1) = α0,i (k) + (

tk−1
tk+1

)(α0,i (k) − α0,i (k − 1))

20: w′(k + 1) = w(k) + (
tk−1
tk+1

)(w(k) − w(k − 1))

21: until Convergence
22:

23: Output:
24: Set of optimally placed control points cg

0(k)

25: Sparse set of non-zero momentum vectors α0,i (k)

26: Sparse set of non-zero photometric weights w(k)

and use a regular lattice as the initial set of geometric control
points, with a spacing equal to the standard deviation of the
geometric kernel (σg). This gives a set of 25 control points,
which is the maximum number of degrees of freedom al-
lowed by the deformation model. The registration consists
in optimizing the momenta to get the best matching possible
using the gradient descent. In Fig. 2 (top left), we show the
results obtained by optimizing only the momentum vectors
(in magnitude and direction), whereas in the top right panel,
we show the results when both the position of the control
points and the momentum vectors attached to them are opti-
mized.

We see that both approaches lead to an accurate matching
between both images, as would do the usual image match-
ing methods. This means that the discrete parameterization
of the deformation could efficiently replace the usual con-
tinuous parameterization with a continuous momenta map,
providing that one is able to accurately determine the num-

ber and the positions of the control points. In the former,
the number of parameters that encode the deformation is
2 ∗ 25 = 50, whereas a continuous momenta map would in-
volve as many parameters as the total number of pixels of
the images: 1282 = 16884. With the parameterization we
proposed, we achieved a compression ratio of 99.6 % in the
parameterization of the deformation, with minimal sacrifice
to the matching accuracy.

However, it is likely that the number of parameters
needed to describe the difference between these two images
is much smaller than 2 ∗ 25. In this experiment, we manu-
ally select a subset of nine regularly spaced control points to
drive the registration. In Fig. 2 (bottom left), this set of con-
trol points does not allow an accurate match of the two im-
ages. But, if one optimizes the position of the control points
during the registration (Fig 2, bottom right), then an accu-
rate matching can be obtained with only nine control points.
This shows that a sparse parameterization of the deforma-
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Fig. 2 Registration between a pair of simulated images. A discrete
parameterization of the deformation is estimated using 25 (top) or
9 (bottom) control points. On the left of each panel: the source image
with the initial momenta (red arrows). On the right the superimposi-
tion of the deformed source and target image. First row shows that a
discrete parameterization is sufficient for a perfect matching. Second
row shows that moving the control points to their optimal positions

gives a much better representation of the shape differences for a fixed
number of parameters. Note that the optimal position of the control
points tends to be close to the boundary of the shape (or the areas of
high gradients). Standard deviation of the geometric kernel σ = 50
pixels, trade-off between regularity and fidelity to data σ 2 = 10−2.
Images are 128 × 128 (Color figure online)

tion could not be obtained without an optimal placement of
the control points in the image domain.

In this experiment, the number of control points was
fixed. In the next experiments, we will use the sparsity prior
introduced in Sect. 4 to automatically select the most rel-
evant control points and therefore determine the optimal
number of them.

5.2 Atlas of 3 Simulated Images

We use a set of three simulated images to illustrate our
method (Fig. 3). The image dimensions are 128 × 128 pix-
els, and we fixed the standard deviation of the geometric
kernel to σg = 25, the standard deviation of the photometric
kernel to σph = 5, and the trade-off between regularity and
fidelity-to-data to σ 2 = 5 × 10−3, which is small enough
to allow almost perfect matching between images. We ini-
tialize the algorithm with a regular lattice of 25 geometric
control points with a spacing equal to σg and with a regu-
lar lattice of 676 photometric control points with a spacing
equal to σph, which represents only 4 % of the 1282 pixels
in the image.

For a fixed value of the sparsity prior γg = 250, the at-
las is given in Fig. 3. We assess the impact of the sparsity

Fig. 3 Atlas estimation from a set of 3 simulated images. Top left:
the template image superimposed with the initial momentum vectors.
The color of the vectors corresponds to that of the image. Top-right
and bottom: the original image superimposed with the warped template
image. The superimposition shows a matching with a high accuracy
(Color figure online)
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Fig. 4 Impact of the geometric sparsity prior γg on the atlas esti-
mation. The larger γg, the more penalized the initial momentum, the
smaller the number of active control points, the less sharp the atlas.
If the sparsity penalty term is too strong, then the template-to-subject
matchings are not accurate (large residual errors), which eventually

affects the sharpness of the template image. From the initial grid of
5 × 5 control points, 16 were selected for γg = 100 (the closest control
points to the edge of the image has been pruned), 8 for γg = 200 and 6
for γg = 350 (Color figure online)

prior on the atlas estimation by varying the sparsity parame-
ter γg between 0 and 900. Significant samples are shown in
Fig. 4. As expected, a small value of the sparsity parameter
leads to very accurate matching and sharp atlas, but at the
cost of a redundant parameterization of the deformations:
only a few control points are not active (Fig. 4 first row).
By increasing the sparsity parameter, the representation be-
comes sparser and sparser (Fig. 4 second and third row),

while keeping nearly the same atlas sharpness. However, if
the sparsity prior is too strong, the counterpart of the sparsity
is a less and less accurate matching and therefore less and
less sharp template image (Fig. 4 fourth row). This suggests
that there is an optimal value of the sparsity prior for which
the representation is as sharp as possible with minimal sac-
rifice to the atlas sharpness. The corresponding number of
control points would give an estimate of an optimal number
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Fig. 5 Impact of the sparsity parameters γg on the atlas sharpness. The
greater γg, the fewer the number of active geometric control points, the
less sharp the atlas. The ‘L’-shape of the curves shows that the number
of geometric control points can be reduced from 25 to 8 with minimal
sacrifice to the atlas sharpness. The ‘optimal’ value of γg = 250 se-
lects the minimal number of degree of freedom to capture most of the
variability in the image ensemble (Color figure online)

of degrees of freedom needed to capture the variability in
the image ensemble.

To give a more quantitative evaluation of this assumption,
we plot the evolution of the number of control points and
the norm of the residual matching errors (as a measure of
the atlas sharpness) versus the sparsity prior in Fig. 5. This
experiment shows that the number of active control points
can be decreased from 25 to 8 with minimal sacrifice to the
atlas sharpness by increasing the sparsity parameter from 0
to 250. Beyond this value, the number of control points is
stable before decreasing again, but at the cost of an expo-
nentially increasing residual data term, meaning a less and
less accurate description of the variability of the image en-
semble. This suggests an optimal value of the parameter near
γg ∼ 250.

5.3 Atlas of 20 Images from the US Postal Database

In this section, we used the US postal database to estimate
the variability in hand-written digits (Hastie et al. 2009). The
size of the images is 16 × 16. We set the standard devia-
tion to σg = 3 for the geometric kernel, to σph = 1.1 for the
photometric kernel and the trade-off between regularity and
fidelity-to-data to σ 2 = 10−3.

For each digit (from 0 to 9), we estimated an atlas from a
training set of 20 images. Then, we registered the estimated
template image to a set of 10 test images (different from
the training samples) using the set of control points that has
been selected and placed during the atlas construction. We
repeated the experiment for 26 different training sets with
no intersection between the training sets. We also random-
ized the test sets in a similar fashion. Eventually, we had 26

different atlases and 260 registrations to test data for each
digit. We repeated the whole cross-validation procedure for
a value of the sparsity parameter γg varying between 0 and
1000 by a step of 50. In Fig. 6, we show the decrease profile
of the number of control points in the atlas with respect to
the sparsity parameter γg . It shows in particular the relative
low variance of this number when the training samples are
varied, thus showing the robustness of the atlas construction
method. We used the residual data term after registration to
the test samples as a measure of capability of the atlas to
capture the variability of the shapes of the digits. The vari-
ation of this measure with respect to the sparsity parameter
γg (Fig. 6) shows a sigmoid-like curve for digits 2, 4, 5 and 8
or an exponential-like curve for digit 0, 1, 3, and to a lesser
extent for digits 6, 7 and 9. In the most obvious cases, the
graph shows that there is likely to be an optimal value of the
sparsity parameter for which the number of control points
is significantly decreased and the capability of the atlas to
capture shape variability has not been dramatically altered.
This is confirmed by computing the Wilcoxon test between
distribution of the residual data term at two consecutive val-
ues of the sparsity parameters (red segments in Fig. 6 denote
intervals of statistically significant increase, p-value < 1 %).
In almost every case, there is an interval from γg = 100 on-
wards, for which the residual data term does not significantly
increase (no red segments in Fig. 6): this is the range of val-
ues for which one can decrease the number of control points,
without significantly altering the variability captured by the
model. Once one reaches the red zone, there is a risk that we
loose significant information. Note that the extent of the red
zone depends on the threshold used for the test, here 1 %.

For the largest sparsity priors, the template image is very
fuzzy (it is the mean image) and there are no control points
to capture the variability. In this case, the residual term mea-
sures the variance of the image set, and this measure itself
has a large variance across the cross-validation tests (Fig. 6).
For the smallest values of the sparsity parameter, the vari-
ance of the residual term is smaller, thus suggesting that the
atlas captured most of the image ensemble variability and
that the residual term captures mostly noise that does not
vary much when randomizing the training and test sets. This
is also confirmed by the Wilcoxon tests that take into ac-
count both the median and the variance of the distribution of
the residual data term.

The images in Fig. 6 show a template image and the cor-
responding distribution of control points for the sparsity pa-
rameter that seems to be a good balance between sparsity
and atlas sharpness. Figures 7 and 8 show atlases for other
values of the sparsity parameters for the digit 0 and 2 respec-
tively.

Note that even if we need to remove the sparsity prior
(γg = 0) to have a sharp atlas, the total number of degrees
of freedom in the parameterization of the deformations is
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Fig. 6 Atlas of digits from the US postal database. Blue curves plot
the number of geometric control points versus the sparsity prior γg .
Mean and standard deviation is indicated when randomizing the train-
ing dataset of 20 images (26 training sets without intersection). Green
curves plot the residual data term measured when registering the atlas
to one test sample. Mean and standard deviation is shown for 260 of
such tests for each value of the sparsity parameter γg . This shows that
the atlas sharpness decreases with the dimension of its parameteriza-
tion while the sparsity prior is increased. The shape of the green curves

(a plateau phase followed by rapid increase) suggests that there is an
optimal value of the sparsity parameter γg where the dimension of the
atlas could be reduced without sacrificing much of the atlas sharpness.
The red intervals indicate when the residual data term is significantly
increased between two consecutive values of the sparsity parameter
(Wilcoxon test with p-value < 1 %). The left panels shows a selected
template image for a given value of the sparsity parameter along with
the position of the geometric control points (red asterisks) (Color fig-
ure online)
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Fig. 7 Atlas of digit ‘0’ for different values of the sparsity parameter
γg. Left: the template image with the set of momentum vectors of the
first three images in the training data set superimposed (in red, green
and blue). Right, top row: the first ten training images (among 20); bot-

tom row: the template image warped to each training image using the
sparse parameterization. The more degrees of freedom in the deforma-
tion parameterization, the more variations in shape the deformations
capture (Color figure online)

only of 2 ∗ 36 = 72, which is significantly smaller than the
total number of pixels in the image 16 ∗ 16 = 256, which
would be the size of the parameterization of the deforma-
tion in the usual atlas construction method. From a statis-
tical point of view, this means that we could expect better
estimates of the mean and covariance, since we manage to
decrease the ratio between the dimension of the variables
(p) and the number of observations (N ) for a given data
set. Even in this least favorable case (p = 72 without L1

prior), the adaptive finite-dimensional parameterization of
the deformation that we introduced should help to increase
the power of the statistical estimations derived from the at-
las.

Eventually, we simulated new images according to the
variability captured by the atlas. To this end, we performed
a Principal Component Analysis of the initial momentum
vectors as follows. For each atlas shown in Fig. 6 (left pan-
els that show the atlas for a given value of the sparsity pa-

rameter), we compute the sample mean and centered covari-
ance matrix of the set of 20 initial momentum vectors. With
the notations of the previous sections, the empirical mean
writes:

α0 = 1

20

20∑

i=1

α0,i

and the (i, j)th term of centered covariance matrix Σ :

Σi,j = 1

20

ng∑

p=1

ng∑

q=1

(α0,i,p − α0,p)tKg(cg
0,p, c

g
0,q

)

× (α0,j,q − α0,q )

where we used the metric induced by the kernel Kg to com-
pute the inner-product between the set of momentum vectors
of two subjects.
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Fig. 8 Atlas of digit ‘2’ for different values of the sparsity parameter
γg. Left: the template image with the set of momentum vectors of the
first three images in the training data set superimposed (in red, green
and blue). Right, top row: the first ten training images (among 20); bot-
tom row: the template image warped to each training image using the
sparse parameterization. The more degrees of freedom in the deforma-
tion parameterization, the more variations in shape the deformations
capture. At the intermediate level (γg = 200, middle row), some fea-

tures are captured (presence or absence of the loop, curvature of the
shape) while others are missed (extremities of the digit are not matched
as accurately as in the first row). In the last row, the limited number of
degrees of freedom allows to only match the height and width of the
shape. As a consequence, the deformed template looks closer to the
template image rather than the observations and the template image is
blurrier (Color figure online)

Given Vm and λm the 19 eigenvectors and non-zero
eigenvalues of the matrix Σ , the mth direction of the eigen-
mode is given as:

α̃m = √
λm

∑20
i=1 Vm,iα0,i

‖∑20
i=1 Vm,iα0,i‖V

=
√

1

20

20∑

i=1

Vm,iα0,i

since ‖∑20
i=1 Vm,iα0,i‖2

V = 20λm. Therefore, we simulate a
new set of initial momentum vectors as:

α̃ = α ±
19∑

m=1

γmα̃m (39)

where γm are independent and identically distributed nor-
mal variables. For each sampling of the γm variables, we
simulate two images according the sign in (39), which cor-
responds to the mean ± one standard deviation. To create the
image, one finds the geodesic deformation corresponding to
the simulated set of momentum vectors α̃ by solving (6), and
then deform the template image solving (10).

Results of the simulations are shown in Fig. 9. The sim-
ulated images show that the atlas is able to reproduce a

large part of the variability of the image ensemble. Note
that we used a Gaussian model in this simulation, which
is a symmetric distribution around the mean, whereas the
true distribution of the observations is not. Therefore, we
observed sometimes an unrealistic image, whereas the im-
age generated along the opposite direction resembles one in
the dataset.

6 Discussion and Conclusion

In this paper, we proposed a control point parameterization
of large deformation diffeomorphisms to drive template-to-
subject image registrations. Given an image ensemble, the
proposed method moves the position of the control points
toward the most variable parts of the images. The optimiza-
tion in control point positions opens up the possibility to
drastically reduce the number of control points by selecting
those that are the most relevant for the description of the
variability in the image set. This is done by introducing a L1

prior in the spirit of the now in vogue sparsity methods. The
decomposition of the template-to-subject registrations onto
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Fig. 9 For each digit, we simulate new images based on the atlas that
has been selected in Fig. 6 (left panels). Deformations of the template
were generated based on the Principal Component Analysis of the ini-
tial momentum vectors. For each digit, simulations on both opposite

directions are shown in the first and second row (see text for details).
The variety of the simulated shapes shows that the atlas was able to
capture most of the variability in the training image set

these control points gives a compact and adapted descriptor
of the image variability. This descriptor of small dimension
reflects the constrained nature of the variability of a given
image set. To the very best of our knowledge, this is the first
time that sparsity methods are used for deformations learn-
ing and statistical image analysis, in the context of Grenan-
der’s group action approach for modeling objects (Grenan-
der and Miller 1998). This is in contrast to methods that fo-
cus on the decomposition of the image intensity in a sparse
dictionary like in Yu et al. (2010).

The proposed parameterization of diffeomorphisms for
image matching differs from LDDMM image registration,
for which the deformation is parameterized by a continuous
map of momenta that are always parallel to the image gra-
dient (Miller et al. 2006). Here, we proposed to use a finite
set of momenta, which are not constrained in their direc-

tion. Control points techniques have been widely used for
small deformation transformations, for instance in Glasbey
and Mardia (2001), whereas its use for large deformation
matching of images is much more challenging. In Rueckert
et al. (2006), diffeomorphisms were built by a composition
of small B-splines transforms without a comprehensive vari-
ational formulation and without optimizing the positions of
the control points. In Allassonnière et al. (2005), diffeomor-
phisms were characterized via a finite set of initial momenta
located at the vertices of a “texture mesh,” but no attempt
was made to estimate an optimal mesh describing a whole
population of images. The parameterization of diffeomor-
phisms by seed points in Grenander et al. (2007) does not
fall in a Riemannian framework and therefore is also diffi-
cult to use for template estimation and statistical analysis.
The inherent difficulty is to find an efficient way to transport
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information back and forth from the template space to the
space of each subject. Indeed, control points flow from tem-
plate to subject’s space (via the deformation φ), whereas the
information contained in the image set needs to be pulled
back to the source to build the template image (I0 ◦ φ−1).
Similarly, for the computation of the gradient, small varia-
tions of the data term need to be transported back and forth
to compute the induced variations of the deformations pa-
rameters. In this work, we address this issue by using an
explicit dynamical system to drive the deformation. Then, a
derivation borrowed from optimal control theory allows us
to show that the gradient of the criterion can be efficiently
computed by integrating the linearized dynamical system
(Proposition 1). One of the striking results of this formu-
lation is that optimizing the positions of the control points
in the template space can be done at no additional computa-
tional cost at each iteration. Another advantage of using an
explicit dynamical system formulation is that the deforma-
tions are fully characterized by the initial conditions of the
ODEs, thus giving a very efficient way to define intrinsic
statistics in the space of deformations. The initial conditions
are used as descriptors of the variability.

In our approach, the motion of the control points to their
optimal place is driven by the gradient of the objective func-
tion. This is in contrast to Marsland and McLachlan (2007),
Hansen et al. (2008) where control point positions are as-
sessed heuristically. We also tried heuristic rules to add con-
trol points where the residual image forces were the most
important and to remove control points so that the orthog-
onal projection of the velocity field on the space spanned
by the rest of the control points was maximized. However,
we noticed that such heuristics were not competitive as they
lack reproducibility, robustness and do not allow minimiz-
ing the cost function as efficiently as with the L1 prior opti-
mized with FISTA. In the FISTA optimization also, inactive
control points could become active at any iteration, and vice
versa. One drawback of FISTA is to fix the maximum num-
ber of control points that could become active, namely the
number of control points in the initial set. However, in our
case, we know that the maximum number of control points
is the number of patches of radius σg (i.e. the standard devi-
ation of the deformation kernel) that is needed to cover the
whole image domain (Durrleman et al. 2009). This is con-
firmed empirically since we always observed a decrease of
the number of active control points as soon as the L1 prior
weight was not zero, meaning that we always overestimated
the number of control points needed. Constraining the con-
trol points to be initially at the nodes of a regular lattice does
not seem to be a strong constraint either, since, as shown in
Fig. 2, control points could move up to half the distance to
their closest neighbors.

In our model equation (1), we supposed the noise nor-
mally distributed. However, it is clear that the residual dif-
ference image after registration has some spatial structure

on it. Therefore, spatially structured noise would be more
relevant, but this would make the derivation of the criterion
in the Maximum A Posteriori sense much more challenging.
A workaround could be to perform a Principal Component
Analysis on the residuals to discover the spatial correlations,
as done in Cootes et al. (2001) for images or in Durrleman
et al. (2009) for geometric structures. Changes in texture or
appearance could be a confounding effect in diffeomorphic
registration. It could be beneficial therefore to use more in-
trinsic models of texture like in Meyer (2001), Trouvé and
Younes (2005).

The methods in Risser et al. (2011), Sommer et al.
(2012b) propose a multi-scale parameterization of diffeo-
morphic deformations for landmark or image matching.
These ideas could be included in our statistical framework
for group studies, so that each control point carries a set of
momenta associated with different kernel sizes. In Sommer
et al. (2012a), the authors proposed to also extend the dic-
tionary of basis elements by adding differentials of the ker-
nel, thus modeling torques as differentials of the Delta Dirac
currents (Durrleman 2010). It is clear that making the dictio-
nary of basis elements the largest possible will increase the
compactness of the parameterization of a given deformation
and will ease the statistical processing and the interpretabil-
ity of the results. It is also clear that more work has to be
done in this direction.

We expect to show in the future that the resulting compact
and adapted descriptors increase the power of the statistical
estimations derived from them, such as hypothesis tests or
classification errors. One practical limitation of the method
is the estimation of the best trade-offs γ between sparsity
and fidelity-to-data and σ 2 between regularity and fidelity-
to-data. These parameters could be estimated in a Bayesian
framework by adding a Laplace prior for the former and a
Gaussian prior in the latter in the spirit of Allassonnière et al.
(2007, 2010).
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Appendix A: Proof of Proposition 1

Let δS0 be a small perturbation of the deformation parame-
ters. This perturbation induces a perturbation of the system
of particles δS(t), which induces a perturbation of the posi-
tion of the pixels mapped back by the inverse deformation
δy(0), which in turn induces a perturbation of the criterion
δE:

δE = (∇y(0)A)t δy(0) + (∇S0L)tδS0. (40)
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According to (21), the perturbations of the state of the
system of particles δS(t) and the pixel positions δy(t) satisfy
the linearized ODEs:

δ̇S(t) = dS(t)F δS(t), δS(0) = δS0

δ̇y(t) = ∂1Gδy(t) + ∂2GδS(t), δy(1) = 0.

The first ODE is linear. Its solution is given by:

δS(t) = exp

(∫ t

0
dS(u)Fdu

)
δS0. (41)

The second ODE is linear with source term. Its solution
is given by:

δy(0) = −
∫ 1

0
exp

(
−

∫ s

0
∂1G(u)du

)
∂2G(s)δS(s)ds. (42)

Plugging (41) into (42) and then into (40) leads to:

∇S0E = −
∫ 1

0
R0s

t ∂2G(s)tVs0
t∇y(0)Ads + ∇S0L, (43)

where

Rst = exp

(∫ t

s

dS(u)Fdu

)

and

Vst = exp

(
−

∫ t

s

∂1G(u)du

)
.

Let us denote η(s) = −Vs0
t∇y(0)A, g(s) = ∂2G(s)tη(s)

and ξ(t) = ∫ 1
t

R0s
t g(s)ds, so that the gradient (43) can be

re-written as:

∇S0E =
∫ 1

0
R0s

t g(s)ds + ∇S0L = ξ(0) + ∇S0L.

Now, we need to make explicit the computation of the
auxiliary variables η(t) and ξ(t). By definition of Vs0, we
have V00 = Id and dVs0/ds = Vs0∂1G(s), which implies
that η(0) = −∇y(0)A and η̇(t) = −∂1G(t)tη(t).

For ξ(t), we notice that Rts = Id − ∫ s

t
dRus

du
du = Id +∫ s

t
RusdS(u)F (u)du. Therefore, using Fubini’s theorem, we

get:

ξ(t) =
∫ 1

t

Rts
t g(s)ds

=
∫ 1

t

g(s) + dS(s)F
t

∫ 1

s

Rsu
tg(u)duds

=
∫ 1

t

g(s) + dS(s)F
t ξ(s)ds.

This last equation is nothing but the integral form of the
ODE given in (24).

Appendix B: Lemma: Soft Thresholding in R
N

Lemma 1 Soft-thresholding in R
N Let X and X0 �= 0 two

vectors in R
N and F the criterion:

F(X) = ‖X‖ + 1

2β
‖X − X0‖2.

Then F achieves its minimum for

X = Sβ

(‖X0‖
) X0

‖X0‖ ,

where Sβ(x) = max(x − β,0) − min(x + β,0).

Proof If X �= 0, F is differentiable and ∇XF = X
‖X‖ + (X −

X0)/β . This shows that if the minimum of F is reached
for X �= 0 then X is parallel to X0 and we can write X =
λX0/‖X0‖ where λ satisfies:

λ/|λ| + (
λ − ‖X0‖

)
/β = 0.

If λ > 0, then the minimum is reached for λ+ = ‖X0‖ −
β , which occurs only if ‖X0‖ > β . If λ < 0, then the mini-
mum is reached for λ− = ‖X0‖ + β , which occurs only if
‖X0‖ < −β . In the other cases, namely ‖X0‖ ∈ [−β,β],
X = 0.

Since F(λ+X0/‖X0‖)−F(0) < 0, then the minimum of
F is reached for X = (‖X0‖ − β)X0/‖X0‖ if ‖X0‖ > β .
Since F(λ−X0/‖X0‖) − F(0) > 0, then the minimum of F

is reached for X = (‖X0‖ + β)X0/‖X0‖ if ‖X0‖ < −β . If
‖X0‖ ∈ [−β,β], the minimum of F is reached for X = 0.
These three cases are combined in a single expression using
the soft-thresholding function Sβ . �

References

Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shoot-
ing and diffeomorphic matching via textured meshes. In Proc. of
EMMCVPR (pp. 365–381).

Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coher-
ent statistical framework for dense deformable template estima-
tion. Journal of the Royal Statistical Society. Series B. Statistical
Methodology, 69(1), 3–29.

Allassonnière, S., Kuhn, E., & Trouvé, A. (2010). Construction of
bayesian deformable models via a stochastic approximation al-
gorithm: a convergence study. Bernoulli, 16(3), 641–678.

Arsigny, V., Commowick, O., Pennec, X., & Ayache, N. (2006). A log-
euclidean framework for statistics on diffeomorphisms. In LNCS:
Vol. 4190. Proc. MICCAI (pp. 924–931). Berlin: Springer.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences, 2(1), 183–202.

Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing
large deformation metric mappings via geodesic flows of diffeo-
morphisms. International Journal of Computer Vision, 61, 139–
157.

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance
models. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 23(6), 681–685.



Int J Comput Vis (2013) 101:161–183 183

Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems
on flows of diffeomorphisms for image matching. Quarterly of
Applied Mathematics, 56(3), 587–600.

Durrleman, S. (2010). Statistical models of currents for measuring
the variability of anatomical curves, surfaces and their evolution.
Thèse de sciences (phd thesis), Université de Nice-Sophia Antipo-
lis.

Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical
models of sets of curves and surfaces based on currents. Medical
Image Analysis, 13(5), 793–808.

Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., & Ayache, N.
(2011a). Registration, atlas estimation and variability analysis
of white matter fiber bundles modeled as currents. NeuroImage,
55(3), 1073–1090.

Durrleman, S., Prastawa, M., Gerig, G., & Joshi, S. (2011b). Opti-
mal data-driven sparse parameterization of diffeomorphisms for
population analysis. In G. Székely & H. Hahn (Eds.), LNCS:
Vol. 6801. Information processing in medical imaging (IPMI)
(pp. 123–134).

Glasbey, C. A., & Mardia, K. V. (2001). A penalised likelihood ap-
proach to image warping. Journal of the Royal Statistical Society.
Series B. Statistical Methodology, 63, 465–492.

Glaunès, J., Qiu, A., Miller, M., & Younes, L. (2008). Large defor-
mation diffeomorphic metric curve mapping. International Jour-
nal of Computer Vision, 80(3), 317–336. doi:10.1007/s11263-
008-0141-9.

Grenander, U. (1994). General pattern theory: a mathematical theory
of regular structures. London: Oxford University Press.

Grenander, U., & Miller, M. I. (1998). Computational anatomy: an
emerging discipline. Quarterly of Applied Mathematics, LVI(4),
617–694.

Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic
characterization of biological growth. IEEE Transactions on Med-
ical Imaging, 26(5), 648–659.

Hansen, M. S., Larsen, R., Glocker, B., & Navab, N. (2008). Adaptive
parametrization of multivariate b-splines for image registration.
In Computer vision and pattern recognition (pp. 1–8). New York:
IEEE Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of sta-
tistical learning: data mining, inference, and prediction (2nd ed.).
Berlin: Springer.

Joshi, S., & Miller, M. (2000). Landmark matching via large deforma-
tion diffeomorphisms. IEEE Transactions on Image Processing,
9(8), 1357–1370.

Lei, W., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris,
J., Csernansky, J., & Miller, M. (2007). Large deformation dif-
feomorphism and momentum based hippocampal shape discrimi-
nation in dementia of the Alzheimer type. IEEE Transactions on
Medical Imaging, 26, 462–470.

Lorenzen, P., Davis, B., & Joshi, S. C. (2005). Unbiased atlas for-
mation via large deformations metric mapping. In Lecture notes
in computer science: Vol. 3750. Medical image computing and
computer-assisted intervention—MICCAI (pp. 411–418). Berlin:
Springer.

Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle
method for diffeomorphic image registration. In LNCS: Vol. 4548.
Proceedings of information processing in medical imaging (IPMI)
(pp. 396–407). Berlin: Springer.

Meyer, Y. (2001). University lecture series: Vol. 22. Oscillating pat-
terns in image processing and nonlinear evolution equations.
Providence: Am. Math. Soc. The fifteenth Dean Jacqueline B.
Lewis memorial lectures.

Miller, I. M., Trouvé, A., & Younes, L. (2002). On the metrics and
Euler-Lagrange equations of computational anatomy. Annual Re-
view of Biomedical Engineering, 4, 375–405.

Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and
matching: A general framework. International Journal of Com-
puter Vision, 41, 61–84.

Miller, M., Trouvé, A., & Younes, L. (2006). Geodesic shooting for
computational anatomy. Journal of Mathematical Imaging and Vi-
sion, 24(2), 209–228.

Nesterov, Y. E. (1983). A method of solving a convex program-
ming problem with convergence rate o(1/k2). Soviet Mathemat-
ics. Doklady. 27(2). Translation by A. Rosa.

Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework
for tensor computing. International Journal of Computer Vision,
66(1), 41–66.

Risser, L., Vialard, F. X., Wolz, R., Murgasova, M., Holm, D. D., &
Rueckert, D. (2011). Simultaneous multi-scale registration using
large deformation diffeomorphic metric mapping. IEEE Transac-
tions on Medical Imaging, 30, 1746–1759.

Rueckert, D., Aljabar, P., Heckemann, R. A., Hajnal, J., & Ham-
mers, A. (2006). Diffeomorphic registration using B-splines. In
Proc. MICCAI (pp. 702–709).

Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener,
M., & Joshi, S. (2010). Multivariate statistical analysis of defor-
mation momenta relating anatomical shape to neuropsychological
measures. In T. Jiang, N. Navab, J. Pluim, & M. Viergever (Eds.),
Lecture notes in computer science: Vol. 6363. Proc. MICCAI’10
(pp. 529–537). Berlin: Springer.

Sommer, S., Nielsen, M., Darkner, S., & Pennec, X. (2012a).
Higher order kernels and locally affine lddmm registration.
arXiv:1112.3166v1.

Sommer, S., Nielsen, M., & Pennec, X. (2012b). Sparsity and scale:
compact representations of deformation for diffeomorphic regis-
tration. In IEEE workshop on mathematical methods in biomed-
ical image analysis (MMBIA 2012), Breckenridge, Colorado,
USA. http://hal.inria.fr/hal-00641357/en/.

Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in
image analysis. International Journal of Computer Vision, 28(3),
213–221.

Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group
action. Foundations of Computational Mathematics, 5(2), 173–
198.

Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In
Lecture notes in computer science: Vol. 3565. Proceedings of in-
formation processing in medical imaging (pp. 381–392). Berlin:
Springer.

Vaillant, M., Miller, M., Younes, L., & Trouvé, A. (2004). Statistics on
diffeomorphisms via tangent space representations. NeuroImage,
23, 161–169.

Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009).
Diffeomorphic demons: efficient non-parametric image regis-
tration. NeuroImage, 45(1, Supp. 1), S61–S72. doi:10.1016/
j.neuroimage.2008.10.040.

Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhance-
ment via structured sparse model selection. In Proceedings of the
international conference on image processing (ICIP) (pp. 1641–
1644). New York: IEEE Press.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society. Series B.
Statistical Methodology, 67(2), 301–320.

http://dx.doi.org/10.1007/s11263-008-0141-9
http://dx.doi.org/10.1007/s11263-008-0141-9
http://arxiv.org/abs/arXiv:1112.3166v1
http://hal.inria.fr/hal-00641357/en/
http://dx.doi.org/10.1016/j.neuroimage.2008.10.040
http://dx.doi.org/10.1016/j.neuroimage.2008.10.040

	Sparse Adaptive Parameterization of Variability in Image Ensembles
	Abstract
	Introduction
	The Need to Adapt Generic Parameterization of Image Variability
	Finite-Dimensional Parameterization of Atlases

	Formulation of Parametric Atlases
	Parametric Template Models
	Parametric Diffeomorphic Deformation of Images

	Atlas Estimation via Gradient Descent
	Objective Function for Atlas Estimation
	Differentiation with Respect to the Position of the Control Points and Momentum Vectors
	Numerical Implementation
	Differentiation with Respect to the Photometric Weights

	Adjusting the Number of Control Points with Sparsity Priors
	L1-Sparsity Priors on Geometric Parameters
	Optimization with F/ISTA

	Experiments
	The Importance of Optimally Placed Control Points
	Atlas of 3 Simulated Images
	Atlas of 20 Images from the US Postal Database

	Discussion and Conclusion
	Acknowledgements
	Appendix A: Proof of Proposition 1
	Appendix B: Lemma: Soft Thresholding in RN
	References


