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Abstract We present a novel method for recovering the
3D structure and scene flow from calibrated multi-view se-
quences. We propose a 3D point cloud parametrization of
the 3D structure and scene flow that allows us to directly es-
timate the desired unknowns. A unified global energy func-
tional is proposed to incorporate the information from the
available sequences and simultaneously recover both depth
and scene flow. The functional enforces multi-view geomet-
ric consistency and imposes brightness constancy and piece-
wise smoothness assumptions directly on the 3D unknowns.
It inherently handles the challenges of discontinuities, oc-
clusions, and large displacements. The main contribution of
this work is the fusion of a 3D representation and an ad-
vanced variational framework that directly uses the available
multi-view information. This formulation allows us to ad-
vantageously bind the 3D unknowns in time and space. Dif-
ferent from optical flow and disparity, the proposed method
results in a nonlinear mapping between the images’ coor-
dinates, thus giving rise to additional challenges in the op-
timization process. Our experiments on real and synthetic
data demonstrate that the proposed method successfully re-
covers the 3D structure and scene flow despite the compli-
cated nonconvex optimization problem.
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1 Introduction

The structure and motion of objects in a 3D space is an
important characteristic of dynamic scenes. Reliable 3D
motion maps can be utilized in many applications, such
as surveillance, tracking, dynamic 3D scene analysis, au-
tonomous robot navigation, 3D display devices, or virtual
reality. In the last decade, an emerging field of research has
addressed the problem of scene flow computation. Scene
flow is defined as a dense 3D motion field of a nonrigid 3D
scene (Vedula et al. 1999). It follows directly from this def-
inition that 3D surface recovery must be an essential part
of any scene flow algorithm, unless it is given a priori. Our
objective is to simultaneously compute the 3D structure and
scene flow from a multi-camera system. The system consists
of N calibrated and synchronized cameras with overlapping
fields of view. A unified variational framework is proposed
to incorporate the information from the available sequences
and simultaneously recover both depth and scene flow. To
describe our method, we next elaborate on the parametriza-
tion of the problem, the integration of the spatial and tem-
poral information from the set of sequences, and the setting
of a global energy functional together with the variational
framework used for solving it.

Most existing methods for scene flow and surface esti-
mation parameterize the problem in 2D rather than 3D (e.g.,
Zhang and Kambhamettu 2000, 2001; Vedula et al. 2005;
Isard and MacCormick 2006; Min and Sohn 2006; Huguet
and Devernay 2007; Wedel et al. 2008; Li and Sclaroff 2008;
Pock et al. 2008). That is, they compute disparity (stereo),
which is the projection of the desired 3D shape, and the opti-
cal flow, which is the projection of the 3D motion (Fig. 1b).
The relation between the scene flow and its projection is pre-
sented in Fig. 1a. Assuming that reliable and consistent so-
lutions of both stereo and optical flow are given, the scene
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Fig. 1 (a) The point P is
projected to pixels p0 and p1 on
cameras C0 and C1,
respectively. The new 3D
location at t + 1 is given by
̂P = P + V and it is projected to
p̂0 and p̂1. In this example, V is
the 3D motion while
v = p̂0 − p0 is the optical flow.
(b) The 2D relation between
corresponding points in two
views at two time steps (optical
flow and disparity fields)

flow and the 3D structure can be directly computed. This
can be done, for example, by obtaining the 3D shape from
the stereo in two time steps and deriving the scene flow from
the optical flow in one of the images.

We propose a 3D point cloud parametrization of the 3D
structure and 3D motion, with respect to a reference view
(often referred as 2.5D parameterization). That is, for each
pixel in a reference view, a depth value, P, and a 3D motion
vector, V, are computed (see Fig. 1a). A similar parametriza-
tion for only 3D reconstruction was used by Robert and
Deriche (1996). The advantage of using 3D rather than 2D
parametrization is that it allows primary assumptions to be
imposed on the unknowns prior to their projection. For ex-
ample, a constant 3D motion field of a scene may project
to a discontinuous 2D field (Fig. 2). Hence, in this exam-
ple, smoothness assumptions hold for 3D parametrization
but not for 2D. In addition, 3D parametrization allows direct
extension to multiple views, without changing the problem’s
dimension. That is, the number of unknowns remains mini-
mal, regardless of the number of views. This is in contrast to
2D parameterization where each additional view requires an
additional set of parameters (e.g., disparity or optical flow
maps).

We suggest coupling the spatio-temporal information by
simultaneously recovering the scene flow and 3D structure.
This approach is in contrast with previous approaches that
decouple the scene flow and 3D structure problems (e.g.,
Vedula et al. 1999, 2005; Zhang and Kambhamettu 2000,
2001; Carceroni and Kutulakos 2002; Pons et al. 2007;
Wedel et al. 2008). When the scene flow and 3D structure
are decoupled, the two problems are solved sequentially. As
a result, the spatio-temporal information is not fully utilized.
In Vedula et al. (2005), for example, the optical flow field is
computed independently for each camera without imposing
consistency between the flow fields. Another example of the
limitations of decoupling is the study by Wedel et al. (2008),
where consistency is enforced on the stereo and motion so-
lutions. Since the disparity map is computed separately, the
results are still sensitive to its errors. Previous approaches
for simultaneous recovery of scene flow and 3D structure

help overcome these limitations (e.g., Vedula et al. 2000;
Isard and MacCormick 2006; Min and Sohn 2006; Huguet
and Devernay 2007; Neumann and Aloimonos 2002) but
most rely on and hence suffer from the limitations of 2D
parametrization; in particular, they are limited to two views.
Our method simultaneously utilizes the multi-view informa-
tion using 3D representation to improve the stability of the
results and reduce possible ambiguities. (We extend on other
methods that couple the multi-view information using 3D
representation in Sect. 1.1).

The 3D parametrization and the spatio-temporal informa-
tion from the set of sequences are used to define a global
energy functional. The energy functional incorporates the
multi-view geometry with a brightness constancy (BC) as-
sumption (data term). Regularization is imposed by assum-
ing piecewise smoothness directly on the 3D motion and
depth. We avoid the linearization of the data term constraints
to allow large displacements between frames. Moreover, dis-
continuities in both 3D motion and depth are preserved by
using nonquadratic cost functions. This approach is mo-
tivated by the state-of-the-art optical flow variational ap-
proach of Brox et al. (2004). Our method is the first to extend
it to multiple views and 3D parametrization. The minimiza-
tion of the resulting nonconvex functional is obtained by
solving the associated Euler-Lagrange equations. We follow
a multi-resolution approach coupled with an image-warping
strategy.

We tested our method on challenging real and synthetic
data. When ground truth is available, we propose a new eval-
uation of scene flow based on the 3D errors rather than the
conventional 2D error. We argue that the 2D errors tradition-
ally used for evaluating stereo and optical flow algorithms
do not necessarily correlate with the 3D errors. In partic-
ular, we show that the ranking of stereo algorithms (e.g.,
Scharstein and Szeliski 2002) may change when the 3D er-
rors are considered.

The main contribution of this paper is to combine a novel
3D formulation with an accurate global energy functional
that explicitly describes the desired assumptions on the 3D
structure and scene flow. The functional inherently handles
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the challenges of discontinuities, occlusions, and large dis-
placements. Combining our 3D representation in that vari-
ational framework leads to a better constraint problem that
directly utilizes the information from multi-view sequences.
As demonstrated in our experiments, we successfully re-
cover the 3D structure and scene flow despite the challeng-
ing nonconvex optimization problem.

The rest of the paper is organized as follows. We be-
gin with reviewing related studies in Sect. 1.1. Section 2
describes our method. Section 3 provides insight into our
quantitative 3D evaluation measures. In Sect. 4 we present
the experimental results. We conclude in Sect. 5.

1.1 Related Work

To the best of our knowledge, our view-centered 3D point
cloud representation has not been previously considered for
the scene flow recovery problem. Other 3D parameteriza-
tions, that are not view dependent, were studied: 3D array
of voxels, Vedula et al. (1999), various mesh representations
(Furukawa and Ponce 2008; Courchay et al. 2009; Neumann
and Aloimonos 2002) and dynamic surfels (Carceroni and
Kutulakos 2002). In contrast to our method, each of these 3D
representations can provide a complete, view-independent
3D description of the scene. However, the scene that can
be considered is often limited by the representation (e.g.,
a single moving object) and a large number of cameras is re-
quired in order to benefit from their choice of parametriza-
tion. In addition, in these representations, the discretization
of the 3D space is often independent of the actual 2D reso-
lution of the available information from the images.

The studies most closely related to ours in the sense of
numeric similarity are (Huguet and Devernay 2007; Wedel
et al. 2008). Huguet and Devernay (2007) proposed to simul-
taneously compute the optical flow field and two disparity
maps (in successive time steps), while Wedel et al. (2008)
decoupled the disparity at the first time step from the rest
of the computation. Both extend the variational framework
of Wedel et al. (2008) for solving for scene flow and struc-
ture estimation. In these studies regularization is imposed on
the disparity and optical flow (2D formulation), while our
assumptions refer directly to the 3D unknowns. Nor were
these methods extended to multiple views.

A multi-view energy minimization framework was pre-
sented by Zhang and Kambhamettu (2000). A hierarchical
rule-based stereo algorithm was used for initialization. Their
method imposed optical flow and stereo constraints while
preserving discontinuities using image segmentation infor-
mation. Each view results in an additional set of unknowns,
and the setup is restricted to a parallel camera array. Another
multi-view method was suggested by Pons et al. (2007).
They use a 3D variational formulation in which the predic-
tion error of the shape and motion is minimized by using

Fig. 2 (a) The Middlebury stereo dataset, Cones. The scene flow, V, is
constant for all image points since only the camera translates. (b) The
horizontal component of the projected scene flow, the optical flow. It
depends on the 3D point location

a level-set framework. However, the shape and motion are
sequentially computed.

There are only a few multi-view methods that use 3D
representations and simultaneously solve the 3D surface
and motion. Neumann and Aloimonos (2002) modeled the
object by a time-varying subdivision hierarchy of triangle
meshes, optimizing the position of its control points. How-
ever, their method was applied only to scenes which con-
sist of one connected object. Furukawa and Ponce (2008)
constructed an initial polyhedral mesh at the first frame. It
is tracked assuming locally rigid motion and globally non-
rigid deformation. Courchay et al. (2009) represented the 3D
shape as an animated mesh. The shape and motion are recov-
ered by optimizing the positions of its vertices under the as-
sumption of photo-consistency and smoothness of both the
surface and 3D motion. Nevertheless, both methods Cour-
chay et al. (2009) and Furukawa and Ponce (2008) are lim-
ited due to the fixed mesh topology.

2 The Method

Our goal is to simultaneously reconstruct the 3D surface of
a 3D scene and its scene flow (3D motion) from N static
cameras. The cameras are assumed to be calibrated and syn-
chronized, each providing a pair of successive frames of the
scene. We assume brightness constancy (BC) in both spatial
(different viewpoints) and temporal (3D motion) domains.
We formulate an energy functional which we minimize in
a variational framework by solving the associated Euler-
Lagrange equations.

2.1 System Parameters and Notations

Consider a set of N calibrated and synchronized cameras,
{Ci}N−1

i=0 . Let Ii(x, y, t) : Ω ⊂ R
3 → R

3, be the sequence
taken by camera Ci . Let Mi be the 3 × 4 projection ma-
trix of camera Ci . The projection of a 3D surface point
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P = (X,Y,Z)T onto an image of the ith sequence at time
t is given by:

pi =
(

xi

yi

)

= [Mi]1,2[P 1]T
[Mi]3[P 1]T , (1)

where [Mi]1,2 is the 2 × 4 matrix which contains the first
two rows of Mi and [Mi]3 is the third row of Mi .

Let V = (u, v,w)T be the 3D displacement vector of the
3D point P (in our notation bold characters represent vec-
tors). The new location of a 3D point P after the displace-
ment V is denoted by ̂P = P + V. Its projection onto the ith
image at time t + 1 is denoted by p̂i (see Fig. 1a).

Assume without loss of generality that the 3D points are
given in the coordinate system of the reference camera, C0.
In this case, the X and Y coordinates are functions of Z and
are given by the back projection:

(

X

Y

)

= Z

(

x/sx
y/sy

)

− Z

(

ox/sx
oy/sy

)

, (2)

where sx and sy are the scaled focal lengths, (ox, oy) is the
principal point, and (x, y)T are the reference image coor-
dinates. We directly parameterize the 3D surface and scene
flow with respect to (x, y) and t . In particular, given the time
step, t , the surface and scene flow are represented as the 3D
functions, P(x, y, t) : Ω ⊂ R

3 → R
3 and V(x, y, t) : Ω ⊂

R
3 → R

3, respectively. That is,

P(x, y, t) = (

X(x,y, t), Y (x, y, t), Z(x, y, t)
)T

, (3)

V(x, y, t) = (

u(x, y, t), v(x, y, t), w(x, y, t)
)T

. (4)

Note that P(x, y, t + 1) is the 3D surface point which is
projected to pixel p = (x, y)T at time t + 1. Obviously, it
is different from ̂P, which is projected to a different image
pixel p̂ (unless there is no motion). From this point, we will
refer to P and V at a fixed time step, t . Hence, the temporal
dependency of P and V will be disregarded.

For each image point in the reference camera, (x, y), and
a single time step, there are six unknowns: three for P and
three for V. However, since X and Y can be determined by
Eq. (2) as functions of Z and (x, y), there are only four un-
knowns for each image pixel. In particular, the 3D point P is
given by:

P(x, y) =
⎛

⎝

X

Y

Z

⎞

⎠ = Z(x, y)

⎛

⎝

x/sx − ox/sx
y/sy − oy/sy

1

⎞

⎠ . (5)

We aim to recover Z and V as functions of (x, y), using the
N pairs of images.

In this representation, the number of unknowns is inde-
pendent of the number of cameras. Hence, a multi-view sys-
tem can be efficiently used without changing the dimensions

of the problem. This is in contrast to previous methods that
use 2D parametrization, e.g., Huguet and Devernay (2007),
Wedel et al. (2008), Li and Sclaroff (2008), Strecha et al.
(2003), where additional cameras require additional sets of
unknowns (e.g., optical flow or disparity field). Moreover,
our representation does not require image rectification.

2.2 The Energy Functional

The total energy functional we aim to minimize is a sum of
two terms:

E(Z,V) = EData + αESmooth. (6)

The data term Edata expresses the fidelity of the result to the
model. Recovering the surface and scene flow by the mini-
mization of Edata alone is an ill-posed problem. Hence, reg-
ularization is used, mainly to deal with ambiguities (low tex-
ture regions) and image noise. In addition, the regularization
is used to obtain solutions for occluded pixels (see Sect. 2.4).
The relative impact of each of the terms is controlled by the
regularization parameter α > 0. Next, we elaborate on each
of these terms.

Data Term The data term imposes the brightness con-
stancy assumption in both spatial and temporal domains.
That is, the intensity of a 3D point’s projection onto dif-
ferent images before and after the 3D displacement does not
change. Additionally, our 3D parametrization forces the so-
lution to be consistent with the 3D geometry of the scene
and the camera parameters. In particular, the epipolar con-
straints are satisfied.

The brightness constancy assumption is generalized for
all N cameras and for both time steps. The data term is
obtained by integrating the sum of three penalizers over
the reference image domain. BCm penalizes deviation from
the brightness constancy assumption before and after 3D
displacement; BCs1 and BCs2 penalize deviation from the
brightness constancy assumption between the reference
view and each of the other views at time t and t + 1, re-
spectively. Formally the penalizers for each pixel are defined
by:

BCm(Z,V) =
N−1
∑

i=0

ci
mΨ

(∣

∣Ii(pi , t) − Ii( p̂i , t + 1)
∣

∣

2)
,

BCs1(Z) =
N−1
∑

i=1

ci
s1

Ψ
(∣

∣I0(p0, t) − Ii(pi , t)
∣

∣

2)
,

BCs2(Z,V) =
N−1
∑

i=1

ci
s2

Ψ
(∣

∣I0( p̂0, t + 1) − Ii( p̂i , t + 1)
∣

∣

2)
,

(7)
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Fig. 3 Two adjacent pixels in camera C0 correspond to two distance
pixels in camera, C1. Hence, the gradient of pixel p0 in C0 is generally
different from the gradient of its corresponding pixel, p1 in C1

where Ψ (s2) is a chosen cost function and ci∗ is a binary
mask that omits occluded pixels from the computation, since
they are not expected to satisfy the brightness constancy
assumption (see Sect. 2.4). We use a nonquadratic robust
cost function Ψ (s2) = √

s2 + ε2 (ε = 0.0001), which is a
smooth approximation of L1 (see Brox et al. 2004), for re-
ducing the influence of outliers on the functional. The out-
liers are pixels that do not comply with the model due to
noise, lighting changes, reflections or occlusions. In this for-
mulation, no linear approximations are made; hence large
displacements between frames are allowed.

The parameterization used by our method (defined in
Sect. 2.1) leads to nonlinear mappings between the images’
coordinate systems to the reference image coordinate sys-
tem. We extend on these mappings in Appendix A. Observe
that when 2D parameterization is considered, namely optical
flow and disparity, the mappings between the images’ coor-
dinates are given by adding to those coordinates the optical
flow and/or the disparity fields to images’ coordinates. This
simple mapping is probably one of the reasons that 2D pa-
rameterization is often chosen to parametrize the scene flow.

In natural scenes the BC assumption does not necessarily
hold for all pixels in all frames, in particular when consider-
ing wide baseline setup. To overcome this problem, previous
studies for estimating optical flow (e.g., Brox et al. 2004) or
scene flow (e.g., Huguet and Devernay 2007) imposed an ad-
ditional gradient constancy assumption in order to allow de-
viation in the gray value. Nevertheless, since the gradient is
viewpoint dependent (due to the foreshortening effect), this
assumption does not hold in the spatial domain (see Fig. 3).
Hence, we chose not to impose the additional gradient con-
stancy assumption. The robustness of our method to devia-
tion from the BC assumption is obtained by using multiple
views. That is, since the data term is given by integrating
the deviation from the BC assumption over all views, each
view has a relative impact on the total deviation from the BC
assumption.

Smoothness Term We assume that both the 3D motion field
and surface are changing piecewise smoothly w.r.t. reference

camera. Deviations from this model are usually penalized
by using a total variation regularizer, which is generally the
L1 norm of the field derivatives. Here we use the same ro-
bust function Ψ (s2) for preserving discontinuities in both
the scene flow and depth. Using the notation, ∇ = (∂x, ∂y)

T ,
this can be expressed as:

Sm(V) = Ψ
(∣

∣∇u(x, y)
∣

∣

2 + ∣

∣∇v(x, y)
∣

∣

2 + ∣

∣∇w(x,y)
∣

∣

2)
,

(8)
Ss(Z) = Ψ

(∣

∣∇Z(x, y)
∣

∣

2)
,

where Sm and Ss are the penalizeres of deviation from the
motion and shape (piecewise) smoothness assumption, re-
spectively. Note that the first order regularizer gives priority
to fronto-parallel solutions. In future work we intend to ex-
plore a general smoothness constraint that is unbiased to a
particular direction. For example, a second order smooth-
ness prior (Woodford et al. 2009) might be more suitable in
our framework. In addition, the current regulazier depends
on the depth range in the scene. Therefore, a normalization
that takes into account the depth values in each pixel may be
desirable.

The total energy function is obtained by integrating the
penalty (Eqs. (7)–(8)) over all pixels in the reference cam-
era, Ω :

E(Z,V) =
∫

Ω

[

BCm + BCs
︸ ︷︷ ︸

Data

+α (Sm + μSs)
︸ ︷︷ ︸

Smooth

]

dxdy, (9)

where BCs = BCs1 + BCs2 , and μ > 0 is a parameter used
to balance the motion and the surface smoothness.

2.3 Optimization

We wish to find the functions Z,V that minimize our func-
tional (Eq. (9)) by means of calculus of variations. Calcu-
lus of variations supplies a necessary condition to achieve
a minimum of a given functional, which is essentially the
vanishing of its first variation. This leads to a set of partial
differential equations (PDEs) called Euler-Lagrange equa-
tions. In our case the associated Euler-Lagrange equations
can generally be written as:

(

∂E

∂Z
,
∂E

∂u
,
∂E

∂v
,
∂E

∂w

)T

= 0. (10)

2.3.1 Euler-Lagrange Equations

Consider the points P, ̂P, their sets of projected points
{pi}N−1

i=0 , {̂pi}N−1
i=0 , and the sequences {Ii}N−1

i=0 . We use the
following abbreviations for the difference in intensities be-
tween corresponding pixels in time and space:

�i = Ii(pi , t) − I0(p0, t),

̂�i = Ii (̂pi , t + 1) − I0(̂p0, t + 1),

�t
i = Ii (̂pi , t + 1) − Ii(pi , t).

(11)
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We use subscripts to denote the image derivatives. Using
the aforementioned notations, the nonvanishing terms of the
equations with respect to Z and u result in:

0 =
N−1
∑

i=0

Ψ ′((�t
i

)2)
�t

i · (�t
i

)

Z

+
N

∑

i=1

Ψ ′((�i)
2)�i · (�i)Z

+
N−1
∑

i=1

Ψ ′((̂�i)
2)

̂�i · (̂�i)Z

− αμ · div
(

Ψ ′(|∇Z|2)∇Z
)

, (12)

0 =
N−1
∑

i=0

Ψ ′((�t
i

)2)
�t

i · (�t
i

)

u

+
N

∑

i=1

Ψ ′((̂�i)
2)

̂�i · (̂�i)u

− α · div
(

Ψ ′(|∇u|2 + |∇v|2 + |∇w|2)∇u
)

, (13)

with the Neumann boundary condition: ∂nZ = ∂nu = ∂nv =
∂nw = 0, where n is the normal to the image boundary. The
Euler-Lagrange equations with respect to v and w are sim-
ilar to Eq. (13). Observe that the first variation of the func-
tional with respect to Z involves computing the derivatives
of all images (none of them vanish). This enforces the de-
sired synergy of the data from all sequences.

At this point, it is worth noting that the pixels are nonlin-
ear functions of the 3D unknowns due to perspective projec-
tion. As a result, the computation of image derivatives with
respect to Z and V requires using the chain rule, often in a
nontrivial manner (see Appendices A–B).

2.3.2 Numerics

Our parametrization and functional represent precisely the
desired model (no approximations are made), resulting in a
complicated minimization problem. In particular, the use of
nonlinearized data terms and nonquadratic penalizers yields
a nonlinear system in the four unknown functions Z and V
(e.g., Eqs. (12)–(13)). Therefore, one has to deal with the
problem of multiple local minima as a result of the noncon-
vex functional. In our method, the derivation and discretiza-
tion of the equations results in additional complexity since
the perspective projection is nonlinear in the unknowns Z

and V (see Appendices A–B).
We cope with these challenges by using a multi-resolution

warping method coupled with two nested fixed point itera-
tions as previously suggested by Brox et al. (2004). The
multi-resolution approach is employed by downsampling

each input image to an image pyramid with a scale factor η.
The original projection matrices are modified to suit each
level by scaling the intrinsic parameters of the cameras. The
amplitude of our 3D unknowns remains fixed regardless to
the pyramid level used. (Note that the amplitude of the opti-
cal flow and the disparity is scaled according to the pyramid
level.) Starting from the coarsest level, the solution is com-
puted at each level and then utilized to initiate the lower
(finer) level. This justifies the assumption of small changes
in the solution between consecutive levels. Thus, the equa-
tions can be partially linearized by Taylor expansion. Fur-
thermore, the effect of “smoothing” the functional in the
“coarse to fine” approach increases the chance of converg-
ing to the global minimum. We wish to avoid oversmoothing
at the low resolution levels by keeping the relative impact of
the smoothness term the same in all levels. This is obtained
by scaling the smoothness term α	 = α · η	 with respect to
the pyramid level, 	. The required resolution of the coars-
est level depends on the quality of the initial depth or flow
maps. However, if the resolution is too low, small objects
might be oversmoothed. We discuss this issue in Sect. 4.

The solution in a given pyramid level is obtained from
two nested fixed point iterations that are responsible for re-
moving the nonlinearity in the equations. The outer iteration
is responsible for the linearizion of the expressions given
in Eq. (11) using the first order Taylor expansion. At each
outer iteration, k, small increments in the solutions, dZk

and dVk = (duk, dvk, dwk)T , are estimated. Next, the to-
tal solution is updated using Zk+1 = Zk + dZk and Vk+1 =
Vk +dVk , the images are rewarped accordingly, and the im-
age derivatives are recomputed (see Appendix B). The in-
ner loop is responsible for removing the nonlinearity that
resulted from the use of the function Ψ . At each inner iter-
ation a final linear system of equations is obtained by keep-
ing Ψ

′
expressions fixed (see Appendix C). The final linear

system is solved by applying the successive overrelaxation
(SOR) method (Young 1954).

2.4 Occlusions

Scene points viewed by the reference camera at time t , may
be occluded in one or more of the other images, taken from
a different viewpoint or at different time steps. Our method
defines the correspondence between pixels in two images
using the projection of a 3D point to each of the images.
Hence, when a point is occluded in one image, its com-
puted correspondence is incorrect. In particular, the bright-
ness constancy assumption is not satisfied in this case.

The use of a multi-view system in our method increases
the chances of a point to be occluded in at least one of the
images, especially those taken from different distant view-
points. Therefore, the occluded pixels cannot be negligible
or treated as outliers. To overcome this problem, the associ-
ated component of occluded pixels should be omitted from
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Algorithm 1 Calculate occlusion map, ci
s1: zero value for

occluded
S ← 0 {S—source map of reference image coordinates}
ci
s1 ← 1 {ci

s1—occlusion map}
{Going over all 3D points w.r.t. the reference view}
for each 3D point P(p0) do

pi = proj(Mi,P(p0)) {Mi—the projection matrix}
if S(pi ) == 0 then

S(pi ) = p0 {pi is approached for the first time}
else

q = S(pi )

if ‖P(p0) − P(q)‖ > th then
{p0 and q are different 3D points}
if ‖P(p0) − COPi‖ < ‖P(q) − COPi‖ then

S(pi ) = p0 {saving closest point origin}
ci
s1(q) = 0 {pi is the occluded}

else
ci
s1(p0) = 0 {pi is occluded}

end if
end if

end if
end for

the relevant data term. This is accomplished by comput-
ing for each view (other than the reference) three occlusion
maps, ci∗. Each map corresponds to the relevant penalizer in
the data term (Eq. (7)). The computed maps are used as 2D
binary masks on each of the data term components. Since
we use multiple views, each scene point viewed by the ref-
erence camera is expected to be visible in at least one more
view. If a point is visible only in the reference view, its so-
lution would be determined by the smoothness term.

It is important to consider how the occluded pixels are
determined. One approach can be to directly consider it as a
part of the minimization problem (e.g., Ben-Ari and Sochen
2007; Ayvaci et al. 2010). For example, for computing the
occluded pixels in optical flow, the optimization may in-
clude searching for a minimal sparse set of pixels that do not
satisfy the brightness constancy assumption (Ayvaci et al.
2010). However, such methods do not take into account the
scene geometry. When scene geometry and the camera pa-
rameters are known, the occluded pixels are uniquely de-
termined; hence, the occluded pixels cannot be added as an
additional set of unknowns.

We use the computed 3D shape and motion in a given
iteration for determining the visibility of each 3D surface
point in each of the cameras at each time step. (A similar
approach was used in Huguet and Devernay (2007), Wedel
et al. (2011).) A modified Z-buffering is applied for directly
computing the occlusion maps. These maps are computed
w.r.t. the reference image. For example, the map ci

s1
is com-

puted by testing, for each pixel from camera i at time t , its

origin in the reference image. When two pixels from the ref-
erence image are mapped to the same pixel in frame i, one
of them is occluded. The occluded pixel is determined by the
distances between the associated 3D points from the center
of projection of camera i. The pseudocode of this algorithm
is given in Algorithm 1. The other occlusion maps are com-
puted in a similar manner. The maps are updated at each
outer iteration in order to include the increments of the un-
knowns in the computation.

3 A Note on Error Evaluation

We evaluate scene flow in 3D rather than in 2D. That is, the
error is defined by the deviation of the estimated 3D point,
P(x, y), and 3D motion, V(x,y), from their corresponding
ground truth values, Po(x, y) and Vo(x,y). Various statistics
over these errors can then be chosen. We use the normalized
root mean square (NRMS) error, which is the percentage of
the RMS error from the range of the observed values. The
NRMSP is defined by:

NRMSP =
√

1
N

∑

Ω ‖P(x,y)T −Po(x,y)T ‖2

max(‖Po(x,y)‖)−min(‖Po(x,y)‖) ,
(14)

where Ω denotes the integration domain (e.g., nonoccluded
areas) and N is the number of pixels. Note that this mea-
sure is independent of the units of Z. Similarly, the NRMSV

error is computed for the 3D motion vector V. In addition,
the scene flow angular error is evaluated by computing the
absolute angular error (AAE), for the vector V.

Conventionally, evaluations of stereo, optical flow, and
scene flow algorithms are performed in the image plane.
That is, the computed error is the deviation of the projection
of the erroneous values in 3D from their 2D ground truth
(error of the disparity or the optical flow). The proposed 3D
evaluation is motivated by the observation that the errors in
2D (in the image plane) do not necessarily approximate well
nor correlate with the errors in 3D. In particular, the 2D er-
ror at a given pixel depends not only on the magnitude of
the 3D error but also on the 3D error sign (toward or away
from the camera). A simple example in Fig. 4 demonstrates
how the sign of the 3D error affects the size of the 2D error.
Furthermore, the 3D errors strongly depend on the depth of
the point, Z(x, y), as well as on the location within the im-
age, (x, y). In particular, using Eq. (2) it can be shown that
Eq. (14) can be written as:

NRMSE3D =
√

1
N

∑

Ω(Z(x,y)−Zo(x,y))2·w(x,y)

max(|Z(x,y)·√w(x,y)|)−min(|Z(x,y)·√w(x,y)|)
,

(15)

where

w(x,y) =
(

x − ox

sx

)2

+
(

y − oy

sy

)2

+ 1. (16)
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Fig. 4 Illustration of the difference between the disparity errors origi-
nating from the opposite sign of the 3D error: the green line represents
the ground truth depth Z; the blue and orange lines represent positive
and negative erroneous depths, respectively; and p1 and q2 are their
projection onto camera C1, which results in different absolute values
of the disparity error

The 3D error’s dependence on w(x,y) and on Z(x, y)

is not taken into account by 2D error evaluation. Hence the
correlation between the two types of evaluation can be weak.
Thus, when comparing the results of 3D reconstruction or
scene flow algorithms, the 3D evaluation may result in dif-
ferent ranking than the 2D.

To practically test this observation, we evaluated the re-
sults of the top ten ranked stereo algorithms in the Middle-
bury stereo evaluation (Scharstein and Szeliski) using 2D
and 3D errors. We chose to compare the ranking using the
RMS measure (since it does not require any error tolerance
setting).

The errors were computed for three of the Middlebury
stereo datasets, Cones, Teddy and Venus (Scharstein and
Szeliski 2003), over three domains: all pixels, nonoccluded
regions, and only discontinuous regions. The intrinsic pa-
rameters of the camera were set as explain in Sect. 4.1.
Figure 5 shows, for each algorithm, the average RMS er-
ror (over the three datasets and the three domains) in 2D,
versus the average RMS error in 3D. As expected, the re-
sults demonstrate that changes in the ranking indeed occur
when RMS is considered. For example, the second and third
ranked algorithm in 3D RMS are ranked as the tenth and the
seventh in 2D RMS.

4 Experimental Results

Our algorithm was implemented in C using the OpenCV
library.1 Like all variational methods, our method requires
initial depth and 3D motion maps. In general, any stereo
algorithm can be used for obtaining an initial depth map.
In all experiments the 3D motion field was simply initiated

1The source code is publicly available.

Fig. 5 Comparison between the ranking order in 2D and 3D: the com-
puted average RMS error of each algorithm (numbered from one to
ten) in 2D vs. 3D. The resulting nonmonotonic graph demonstrates the
changes in the ranking

to zero. It is possible to improve the trivial motion initial-
ization, by first fixing the initial depth at the coarser levels
of the pyramid and optimizing only for U,V and W . The
full optimization on both flow and depth can then start only
from an intermediate level. However, the results next pre-
sented were obtained directly with the trivial motion initial-
ization.

In the first two experiments, where the input images were
rectified, we used the stereo algorithm proposed in Felzen-
szwalb and Huttenlocher (2006). In the third experiment, to
avoid rectification of the input images, we used a naive ini-
tialization of two parallel planes. This initialization is very
far from the real depth and scene flow, but as shown, is
sufficient to converge to the correct solution. Clearly, using
a more sophisticated initialization can improve the conver-
gence time.

The running time of our method is the same order of mag-
nitude as that of Huguet and Devernay (2007). In addition,
one should consider the running time of the chosen stereo
algorithm used for initialization. The code can probably be
significantly accelerated by implementation on parallel ar-
chitecture (e.g., GPU), however, it is not the focus of our
method and is left for future research. We next elaborate on
each of the experiments.

4.1 Egomotion Using Stereo Datasets

This experiment consists of a real 3D rigid translating scene
viewed by two, three and four cameras. This scenario can
also be regarded as a static scene viewed by a translat-
ing “camera array” where our method computes the ego-
motion of the cameras. The Middlebury stereo datasets,
Cones, Teddy and Venus (Scharstein and Szeliski 2003),
were used for generating the data (as in Huguet and Dev-
ernay 2007).
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Each dataset consists of 9 rectified images taken from
equally spaced viewpoints. Eight of the images were con-
sidered as taken by four cameras at two time steps. Due to
the camera setup, both the 2D and the 3D motion are purely
horizontal. Still, while the 3D motion is constant over the
entire scene, the 2D motion is generally different for each
pixel. We do not make use of this knowledge when testing
our algorithm (see Fig. 2).

Our method requires full calibration, which, however, is
not available for these datasets. We set the projection ma-
trix of each camera up to two degrees of freedom by using
the known relative cameras’ positions. One of the cameras is
taken as the reference camera. Accordingly, the others cam-
eras’ extrinsic parameters are set as only translation along
the horizontal axis with respect to the reference camera.
The cameras’ intrinsic parameters are computed by defining
the viewing angle (chosen to be 30◦), and the scaled focal
lengths are uniquely determined by the image size. Note that
this arbitrary choice of parameters may impair the quality of
our results.

For comparison with the results of the scene flow algo-
rithm proposed by Huguet and Devernay (2007), we project
our results for V and Z onto the images. To evaluate the re-
sults, we compute the absolute angular error (AAE) for the
optical flow and the root mean square error (RMS) for the
optical flow and each of the disparity fields at time t and
time t + 1. These measurements are given in Table 1. We
achieved significantly better results for the optical flow and
disparity at time t + 1 and similar results for the disparity at
time t . There is an improvement of 46 %–54 % in the RMS
error of the optical flow and 28 %–58 % in the RMS error
of the disparity t + 1. Furthermore, the advantage of using
more than two views is demonstrated. As expected, the use
of more than two views leads to better results for all the un-
knowns.

4.2 Synthetic Data

4.2.1 Multi-View Rotating Sphere

We tested our method on a challenging synthetic scene
viewed by five calibrated cameras. This sequence was
generated in OpenGL and consists of a rotating sphere
placed in front of a rotating plane. The plane is placed
at Z = 700 (the units are arbitrary) and the center of
the sphere at Z = 500 with radius of 200. Both plane
and sphere are rotated, each around different 3D axes
with different angles (see Fig. 6). Therefore, occlusions
and large discontinuities in both motion and depth must
be dealt with. The accuracy of the computed depth and
3D motion is demonstrated in Fig. 7 by comparing them
with the ground truth. The results are quantitatively eval-
uated by computing the NRMSP , NRMSV errors and the

Table 1 The evaluated errors (w.r.t. the ground truth) of the projection
of our scene flow and structure compared with the 2D results of Huguet
and Devernay (2007). RMS error in the optical flow (O.F.), disparity
at time t , and the disparity at time t + 1. Also shown is the absolute
angular error (AAE) corresponding to the optical flow.

RMS AAE
(deg)O.F. Disp. at t Disp. at t + 1

Cones 4 Views 0.25 2.36 2.36 0.12

2 Views 0.58 2.48 2.49 0.39

Huguet and
Devernay 2007

1.1 2.11 5.24 0.69

Teddy 4 Views 0.51 2.47 2.47 0.22

2 Views 0.57 2.83 2.86 1.01

Huguet and
Devernay 2007

1.25 2.27 6.93 0.51

Venus 4 Views 0.13 0.9 0.9 1.09

2 Views 0.16 1.06 1.06 1.58

Huguet and
Devernay 2007

0.31 0.97 1.48 0.98

AAEV (defined in Sect. 3). Table 2 summarizes the com-
puted errors over three domains: all pixels, nonoccluded
regions, and only continuous regions (namely, removing
regions corresponding to discontinuities of the surface).
An analysis of our results clearly shows that oversmooth-
ing in the discontinuous areas accounts for most of the er-
rors.

4.2.2 Orthographic Rotating Sphere

We tested our method on the Rotating Sphere dataset from
Huguet and Devernay (2007). The scene represents a rotat-
ing textured sphere, where its two hemispheres rotate sepa-
rately in opposite directions (see Fig. 8). The input images
were generated as taken under orthographic projection, by
two cameras related by rotation. However, our method as-
sumes a perspective camera model. Hence, we interpreted
the input images as taken by a parallel pair of cameras un-
der perspective projection. The parameters of the cameras
were chosen arbitrarily to be sx = sy = 200 (scaled fo-
cal length) and T = 20 (baseline). Such interpretation re-
sults in a different 3D scene (a distorted ball) and 3D mo-
tion; this is illustrated in longitudinal sections in Fig. 9.
The background, where the initial disparity was set to zero,
was treated as an occluded region in our implementation
(since otherwise the depth would need to be set to infin-
ity).

Figure 9 shows the recovered depth compared to the
ground truth of the object along longitudinal sections. The
recovered depth is almost perfect except in regions which
have very large depth change (close to the boundaries).
These significantly large gradients in depth are due to
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Fig. 6 (a) Illustration of the
rotation axes. The sphere is
rotating around the green axis
and the plane around the blue
one. (b) With texture. (c) The
reference view before rotation

Fig. 7 The top figure
represents, from left to right, the
ground truth for the depth Z and
the 3D motion u, v and w. The
bottom figure shows these
results computed by our method

Table 2 Multi-View Rotating Sphere: The evaluated errors of our com-
puted scene flow and structure over three domains: the continuous re-
gions, the nonoccluded regions, and over all pixels

% NRMSP % NRMSV AAEV (deg)

w/o Discontinuities 0.65 2.94 1.32

w/o Occlusions 1.99 5.63 2.09

All pixels 4.39 9.71 3.39

our perspective interpretation and correlate with the re-
gions in which the RMS, as we next describe, is relatively
high.

For comparison with the results of the scene flow algo-
rithms proposed by Huguet and Devernay (2007), and Wedel
et al. (2008, 2011), we project our 3D results, Z, and V, to
compute the optical flow and the disparity maps. Despite
the differences in the recovered 3D structure and scene flow,
which depend on the projection model, the projection of our
results should be the same as the given ground truth values
for the orthographic projection. However, it is important to
note that the resulting errors in our computed optical flow

are affected not only by the error in V, but also by the er-
ror in Z. Therefore, this comparison is suboptimal for our
method.

The results of the disparity and the optical flow are com-
pared with the ground truth values in Fig. 8(b). As can be
seen, most of our errors are close to the ball boundary. These
errors are probably due to occlusions, large changes in the
depth range, and several outliers resulting from error projec-
tion.

For quantitative comparisons, we compute the absolute
angular error for the optical flow (AAEOF ), the RMS for
the disparity (RMSd ), the optical flow, (RMSOF ), and for
the optical flow together with the change in the disparity
(RMSOF+d ′ ). The errors were computed over two domains:
the whole sphere and nonoccluded pixels. The computed er-
rors are summarized in Table 3.

The initial disparity map computed by Felzenszwalb
and Huttenlocher (2006) was significantly improved by our
method (RMSd decreased from 3.3 to 1.3). This demon-
strates the advantages of our method in using the full spatio-
temporal information.
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Fig. 8 (a) Illustration of the scene motion on top and the reference
view below. (b) The top figure represents, from left to right, the ground
truth for the disparity at time t , disparity at time t + 1 and the optical

flow, horizontal and vertical components. The bottom figure shows
these results computed by our method

Fig. 9 The blue plots are the ground truth shape along longitudinal sections A and B, marked on the disparity map. The green plots is the results
of the recovered depth along these sections. Note that due to the perspective projection interpretation of the images, the object shape is not a ball

Table 3 The evaluated errors (w.r.t. the ground truth) of the projec-
tion of our scene flow and structure compared with the 2D results of
Huguet and Devernay (2007) and Wedel et al. (2008, 2011) as reported

in Wedel et al. (2011). RMS (pixels) error in the disparity, optical flow
(OF), and optical flow together with the disparity change. Also shown
is the absolute angular error (AAE) for the optical flow

Algorithm RMSd Without occluded regions With occluded regions

RMSOF RMSOF+d ′ AAEOF RMSOF RMSOF+d ′ AAEOF

Huguet and Devernay (2007) 3.8 0.37 0.83 1.24 0.69 2.51 1.75

Wedel et al. (2011) using SGM 2.9 0.34 0.63 1.04 0.66 2.45 1.50

Our method 1.24 0.32 0.55 1.98 0.43 1.44 2.28

To conclude, our results are similar to results obtained by
the state-of-the-art methods on this dataset. Our method is
designed to cope with a larger number of views. The results
of our method would probably improve if additional views
were available.

4.3 Real Data

In this set of experiments we used real-world sequences of
a moving scene. These sequences were captured by three
USB cameras (IDS uEye UI-1545LE-C). The cameras were
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calibrated using the MATLAB Calibration Toolbox. The lo-
cation of the cameras was fixed for all datasets. All test se-
quences were taken with an image size of 1280 × 1024 and
then downsampled by half. In all datasets, the depth was ini-
tialized to two planes that are parallel to the reference view,
located in Z = 2 · 103 mm and 103 mm. We next discuss our
results on three datasets.

The first dataset (Fig. 10) involves the rigid 3D motion
of a small object (car), in a static scene. The second dataset
(Fig. 11) exemplifies a larger motion, mostly in depth direc-

Fig. 10 Cars dataset: (a) the reference view at time t ; (b) the depth
map masked with the computed occlusion maps; (c) the magnitude of
the computed scene flow (mm); (d) zoom in at time t ; (e) the corre-
sponding warped image; and (f) zoom in at time t + 1; (g) the projec-
tion of the computed scene flow. Occluded pixels are colored in red

tion. The object is low in texture and is moving piecewise
rigidly (due to the rotation of the back part of the object).
The third experiment consists of a rotating face (Fig. 12).
In that case, the 3D motion is generally different for each
3D point. In addition, the motion of the hair is nonrigid. In
all three datasets, large occlusions exist due to the notable
dissimilarity between the frames.

We present our results in Figs. 10–12. For each dataset
we display the magnitude of the estimated scene-flow and
the resulting projection of our scene flow onto the reference
view. The motion of pixels that are occluded in at least one
of the images is indicated by red arrows. Note that most of
the errors are found in the computed occluded regions and
in the depth discontinuities. In addition, we present the es-
timated depth masked with the occlusion maps. In order to
visually validate our results, we present images warped to
the reference view. As can be seen in all the experiments,
our method successfully recovers the scene flow and depth.
It can be observed that the warped images are very similar
to the reference view.

5 Discussion and Conclusions

In this paper, we proposed a variational approach for si-
multaneously estimating the scene flow and structure from
multi-view sequences. The novel 3D point cloud represen-
tation, used to directly model the desired 3D unknowns,
allows smoothness assumptions to be imposed directly on
the scene flow and structure. In addition, the desired syn-
ergy between the 3D unknowns is obtained by imposing
the spatio-temporal brightness constancy assumption. Our
energy functional explicitly expresses the smoothness and
brightness constancy assumptions while enforcing geomet-
ric consistency between the views. The redundant informa-

Fig. 11 Cat dataset: (a–c) the three views at time t , where (c) is the
reference; (f–h) the corresponding views at time t + 1; (d) warped
image from h → c; (e) warped image from g → c, where the yellow
regions are the computed occlusions; (i) the magnitude of the resulting

scene flow (mm); (j) the depth map masked by the computed occlusion
maps; and (k) the projection of the computed scene flow. Occluded
pixels are colored in red
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Fig. 12 Maria dataset: (a–c) the three views at time t , where (c) is
the reference; (f–h) the corresponding views at time t + 1; (d) warped
image from h → c; (e) warped image from f → c, where the yellow
regions are the computed occlusions; (i) the magnitude of the resulting

scene flow (mm); (j) the depth map masked by the computed occlusion
maps; and (k) the projection of the computed scene flow. Occluded
pixels are colored in red

tion from multiple views adds supplementary constraints
that reduce ambiguities and improve stability.

The combination of our 3D representation in this multi-
view variational framework results in a challenging noncon-
vex optimization problem. Moreover, due to our 3D repre-
sentation, the relation between the image coordinates and
the unknowns is nonlinear (as opposed to optical flow or dis-
parity). Consequently, the derivation of the associated Euler-
Lagrange equations involves nontrivial computations. In ad-
dition, the use of multiple views requires that occlusions be
properly handled since each view adds more occluded re-
gions. Obviously, the occlusion between the views becomes
more severe when a wide baseline rig is considered. Our
variational framework, which is used for the first time for
multiple views and 3D representation, successfully recov-
ers the 3D structure and scene flow despite these difficulties.
Our accurate and dense results on real and synthetic data
demonstrate the validity of the developed method.

There are several challenges that remain open for future
work. These include dealing with larger non-textured re-
gions. Currently, these regions are handled using the reg-
ularization, since the data term does not provide sufficient
constraints. Another challenge is dealing with occluded re-
gions. Such regions are expected to increase, when the setup
consists of even larger differences in the fields of view of
the cameras than those considered in our experiments. On
the other hand, using more views may provide partial infor-
mation about these regions. As demonstrated in our results,
most of the errors are found in the depth discontinuities and
in the occluded regions.

It is, therefore, worthwhile to further study a method that
will directly cope with such regions, by, for example, im-
proving the smoothness terms near occlusion boundaries.

Acknowledgements The authors are grateful to the A.M.N. founda-
tion for its generous financial support.

Appendix A: Mapping Between Images

Our 3D parameterization in the presented framework intro-
duces a nonlinear transformation of the 3D unknowns, Z

and V, to each of the image’s plane. A notable challenge in
the minimization of the proposed functional arises from the
nontrivial mapping of the images’ coordinates to the refer-
ence camera coordinate system.

Using our parametrization, each pixel in the reference
camera, (x, y), and its corresponding depth, Z(x, y), spec-
ify a 3D point, P (see Eq. (5)). It follows that projecting
P onto the ith camera maps (x, y,Z(x, y)) to the point
pi = (xi, yi)

T . That is,

pi = Proj
(

P,Mi
) = f i

(

x, y,Z(x, y)
)

, (17)

where f i is the mapping to the corresponding ith image.
More precisely, f i is given by substituting Eq. (5) into
Eq. (1). For example, the component xi is given by:

xi = a · Z + b

c · Z + d
. (18)

The coefficients a, b, c and d depend on the reference
camera coordinates, (x, y):

a(x, y) = Mi
11 · (x/sx − ox/sx) + Mi

12 · (y/sy − oy/sy)

+ Mi
13,

b(x, y) = Mi
14,

(19)
c(x, y) = Mi

31 · (x/sx − ox/sx) + Mi
32 · (y/sy − oy/sy)

+ Mi
33,

d(x, y) = Mi
34,
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where Mi is the 3 × 4 projection matrix of the ith camera
(subscripts denote the row and column indices). The expres-
sion for yi is equivalently computed.

Similarly, at time step t + 1, projecting ̂P = P + V maps
(x, y,Z(x, y),V (x, y)) to p̂i , denoted by a mapping, ̂f i :

p̂i = Proj
(

̂P,Mi
) = ̂f i

(

x, y,Z(x, y),V(x, y)
)

. (20)

Analogously to Eq. (18), the component x̂i is given by:

x̂i = a · Z + Mi
11 · u + Mi

12 · v + Mi
13 · w + b

c · Z + Mi
31 · u + Mi

32 · v + Mi
33 · w + d

, (21)

where the coefficients a, b, c and d are defined in Eq. (19).

Appendix B: Image Derivatives with Respect to the 3D
Unknowns

A first step toward the numerical solution of the resulting
Euler-Lagrange equations (Eq. (12) or Eq. (13)) requires
computing the derivatives of the intensity functions with re-
spect to the 3D unknowns. To produce the final expressions
for these derivatives, the nonlinear relation between the 3D
unknowns and the image plane has to be carefully consid-
ered (see Appendix A). This appendix shows how these
computations are performed. The mathematical analysis is
preformed in the continuous domain. Thus, the frames as
well as the 3D unknowns are regarded as continuous func-
tions. Finally, the resulting equations are discretized by us-
ing standard approximations for the derivatives.

For simplicity, given a time step, t , we use the in-
tensity functions I t

i and I t+1
i to abbreviate Ii(pi , t) and

Ii (̂pi , t + 1), respectively. We next elaborate on the compu-
tation of derivatives of I t

i and I t+1
i with respect to Z and u,

denoted by ∂ZI t
i , ∂ZI t+1

i and ∂uI
t+1
i (the other derivatives

with respect to v and w are similarly computed).
I t
i can be regarded as a function of the reference image

coordinates, (x, y), and the corresponding depth, Z(x, y),
by considering a composition of two functions: the ith in-
tensity function and the mapping transformation, defined in
Appendix A. That is,

I t
i

(

x, y,Z(x, y)
) = Ii(f

i
(

x, y,Z(x, y), t
)

. (22)

Similarly, I t+1
i can be regarded as a function of (x, y,

Z(x, y)) and V. That is,

I t+1
i (x, y,Z,V) = Ii

(

̂f i(x, y,Z,V), t + 1
)

. (23)

Considering Eqs. (17)–(20), the chain rule is applied for
computing the partial derivatives:

∂ZI t
i = (∇I t

i

)T · ∂Zpi , (24)

∂ZI t+1
i = (∇I t+1

i

)T · ∂Zp̂i , (25)

∂uI
t+1
i = (∇I t+1

i

)T · ∂up̂i . (26)

The derivatives ∂ZpT
i = (∂Zxi, ∂Zyi)

T are directly com-
puted from Eqs. (18)–(19).

To compute the derivative of I t
i with respect to pi ,

(∇I t
i )

T , we use a warping approach. As discussed in Ap-
pendix A, a nonlinear mapping relates each of the image’s
plane to the reference camera. By warping I t

i toward the ref-
erence image using the estimated Z, the values of I t

i can be
directly related to the reference image values, I t

0. Specifi-
cally, the required derivatives, ∇I t

i are then computed using
the warped image. Let I t

i,w be the warped image of I t
i . That

is,

I t
i,w(x, y) = Ii(pi , t). (27)

The warped image gradient is related to the original image
by:

(∇I t
i,w

)T = (

∂xI
t
i,w, ∂yI

t
i,w

) = (∇I t
i

)T ·
( ∂xi

∂x
∂xi

∂y

∂yi

∂x
∂yi

∂y

)

︸ ︷︷ ︸

J

, (28)

where J is the Jacobian matrix of the change of coordinates,
(xi, yi) → (x, y). Therefore, the original image derivatives
are obtained by multiplying Eq. (28) by J−1, leading to:

(∇I t
i

)T = (∇I t
i,w

)T · J−1. (29)

The Jacobian matrix, J , is obtained by computing the
derivatives of pi with respect to x and y. In particular, J in-
volves the derivatives of Z(x, y), namely ∂xZ and ∂yZ. Fol-
lowing the explanation above, ∇I t+1

i,w is similarly computed.
In this case, the Jacobian matrix, J , additionally involves
the derivatives of u,v and w with respect to the reference
camera coordinates.

Appendix C: Linearizion

This appendix describes the linearizion process of the result-
ing Euler-Lagrange equations and the numerical approxima-
tions used. At each pyramid level, a linear system of equa-
tions is obtained and small increments in the 3D unknowns,
dZ, and dV, are estimated. The total solution, Z + dZ, and
V + dV, is then used to initialize the next finer level (see
Sect. 2.3.2).

Considering equations (12)–(13), there are two sources
of nonlinearity:

1. nonlinearized data term;
2. nonquadratic cost function Ψ .
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Following the numerical approach suggested by Brox et al.
(2004), two nested fixed point iterations are used at each
pyramid level to remove the nonlinearity.

The outer iteration is responsible for removing the non-
linearity resulting from the nonlinear data term, using fixed
point iteration on Z and V. Let k be the outer index itera-
tion. The solution at the (k + 1)th iteration is decomposed
of the previous solution and small, unknown increments.
That is, Zk+1 = Zk + dZk and Vk+1 = Vk + dVk , where
dVk = (duk, dvk, dwk)T .

The first step toward linearizion is approximating the
nonlinear expression given in Eq. (11) using first order Tay-
lor expansion. We use �k

i ,
̂�k

i and �
t,k
i to denote the ex-

pressions given in Eq. (11) using the fixed values Zk and Vk .
That is,

�k
i = Ii

(

pk
i , t

) − I0
(

pk
0, t

)

,

̂�k
i = Ii

(

p̂k
i , t + 1

) − I0
(

p̂k
0, t + 1

)

, (30)

�
t,k
i = Ii

(

p̂k
i , t + 1

) − Ii

(

pk
i , t

)

,

where pk
i = Proj(Pk,Mi) and Pk is given by placing Zk

in Eq. (5). The expressions for p̂k
i and ̂P

k
are analogously

given. Using these notations, the first order Taylor expan-
sions for these expressions are given by:

�k+1
i ≈ �k

i + ∂Z�k
i · dZk,

̂�k+1
i ≈ ̂�k

i + ∂Z
̂�k

i · dZk

+ ∂u
̂�k

i · duk + ∂v
̂�k

i · dvk + ∂w
̂�k

i · dwk, (31)

�
t,k+1
i ≈ �t

i + ∂Z�
t,k
i

+ ∂u�
t,k
i · duk + ∂v�

t,k
i · dvk + ∂w�

t,k
i · dwk.

Equation (31) is computed by using the first order Taylor
expansion for the following expressions:

Ii

(

pk+1
i , t

) = Ii

(

Proj
(

Pk+1,Mi
)

, t
)

≈ Ii

(

pk
i , t

) + ∂ZIi(pi , t) · dZk, (32)

Ii

(

p̂k+1
i , t + 1

) = Ii

(

Proj
(

̂P
k+1

,Mi
)

, t + 1
)

≈ Ii

(

p̂k
i , t + 1

) + ∂ZIi

(

p̂k
i , t + 1

) · dZk

+ ∂uIi

(

p̂k
i , t + 1

) · duk

+ ∂vIi

(

p̂k
i , t + 1

) · dvk

+ ∂wIi

(

p̂k
i , t + 1

) · dwk, (33)

where Pk+1 = Pk + dPk is given by placing Zk + dZk

(Eq. (5)). Similarly, ̂P
k+1 = ̂P

k + d̂P
k

where d̂P
k =

dZk + dVk . The computation of the image derivatives with
respect to the 3D unknowns is detailed in Appendix A.

Therefore, deriving the associated Euler-Lagrange equa-
tions with respect to the unknown increments dZk and duk

results in:

0 =
N−1
∑

i=0

Ψ ′((�t,k+1
i

)2)
�

t,k+1
i · (�t,k

i

)

Z

+
N−1
∑

i=1

Ψ ′((�k+1
i

)2)
�k+1

i · (�k
i

)

Z

+
N−1
∑

i=1

Ψ ′((
̂�k+1

i

)2)
̂�k+1

i · (̂�k
i

)

Z

− αμ · div
(

Ψ ′(∣
∣∇Zk+1

∣

∣

2)∇Zk+1), (34)

0 =
N−1
∑

i=0

Ψ ′((�t,k+1
i

)2)
�

t,k+1
i · (�t,k

i

)

u

+
N−1
∑

i=1

Ψ ′((̂�ik+1)
2)

̂�k+1
i · (̂�k

i

)

u

− α · div
(

Ψ ′(∣
∣∇uk+1

∣

∣

2 + ∣

∣∇vk+1
∣

∣

2

+ ∣

∣∇wk+1
∣

∣

2)∇uk+1). (35)

The dependency of the above two equations in the incre-
ments, dZk and duk , is obtained by substituting Eq. (31)
into �k+1

i ,�
t,k+1
i , and, ̂�k+1

i . The equations for dvk and
dwk are similar to Eq. (35).

Applying the above approximations (Eq. (31)), the re-
sulting Euler-Lagrange equations are a nonlinear system
of equations in the unknowns dZk and dVk . The remain-
ing nonlinearity is originated by Ψ

′
. Therefore, an addi-

tional fixed point iterations loop for Ψ
′

expressions is pre-
formed. Finally, after standard discretization of the deriva-
tives, a linear system of equations is introduced. The solu-
tion is obtained by applying the successive overrelaxation
(SOR) method.

References

Ayvaci, A., Raptis, M., & Soatto, S. (2010). Occlusion detection and
motion estimation with convex optimization. NIPS (pp. 100–
108).

Basha, T., Moses, Y., & Kiryati, N. (2010). Multi-view scene flow esti-
mation: A view centered variational approach. In Proc. IEEE conf.
comp. vision patt. recog. (pp. 1506–1513).

Ben-Ari, R., & Sochen, N. A. (2007). Variational stereo vision with
sharp discontinuities and occlusion handling. In Proc. int. conf.
comp. vision (pp. 1–7).

Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High ac-
curacy optical flow estimation based on a theory for warping. In
Proc. European conf. comp. vision (pp. 25–36).



Int J Comput Vis (2013) 101:6–21 21

Carceroni, R. L., & Kutulakos, K. N. (2002). Multi-view scene capture
by surfel sampling: from video streams to non-rigid 3d motion,
shape and reflectance. International Journal of Computer Vision,
49(2–3), 175–214.

Courchay, J., Pons, J. P., Monasse, P., & Keriven, R. (2009). Dense and
accurate spatio-temporal multi-view stereovision. In Asian conf.
on computer vision (pp. 11–22).

Felzenszwalb, P., & Huttenlocher, D. (2006). Efficient belief propaga-
tion for early vision. International Journal of Computer Vision,
70(1), 41–54.

Furukawa, Y., & Ponce, J. (2008). Dense 3d motion capture from syn-
chronized video streams. In Proc. IEEE conf. comp. vision patt.
recog.

Huguet, F., & Devernay, F. (2007). A variational method for scene flow
estimation from stereo sequences. In Proc. int. conf. comp. vision
(pp. 1–7).

Isard, M., & MacCormick, J. (2006). Dense motion and disparity esti-
mation via loopy belief propagation. In Asian conf. on computer
vision (Vol. 3852, p. 32).

Li, R., & Sclaroff, S. (2008). Multi-scale 3d scene flow from binocu-
lar stereo sequences. Computer Vision and Image Understanding,
110(1), 75–90.

Min, D. B., & Sohn, K. (2006). Edge-preserving simultaneous joint
motion-disparity estimation. In Proc. international conf. patt.
recog. (pp. 74–77).

Neumann, J., & Aloimonos, Y. (2002). Spatio-temporal stereo us-
ing multi-resolution subdivision surfaces. International Journal
of Computer Vision, 47(1–3), 181–193.

Pock, T., Schoenemann, T., Graber, G., Bischof, H., & Cremers, D.
(2008). A convex formulation of continuous multi-label problems.
In Proc. European conf. comp. vision (pp. 792–805).

Pons, J., Keriven, R., & Faugeras, O. (2007). Multi-view stereo re-
construction and scene flow estimation with a global image-based
matching score. International Journal of Computer Vision, 72(2),
179–193.

Robert, L., & Deriche, R. (1996). Dense depth map reconstruction:
A minimization and regularization approach which preserves dis-
continuities. In Proc. European conf. comp. vision (pp. 439–451).

Scharstein, D., & Szeliski, R. Middlebury stereo vision research page.
http://vision.middlebury.edu/stereo.

Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International
Journal of Computer Vision, 47(1–3), 7–42.

Scharstein, D., & Szeliski, R. (2003). High-accuracy stereo depth maps
using structured light. In Proc. IEEE conf. comp. vision patt.
recog. (pp. 195–202).

Strecha, C., Tuytelaars, T., & Gool, L. J. V. (2003). Dense matching of
multiple wide-baseline views. In Proc. int. conf. comp. vision (pp.
1194–1201).

Vedula, S., Baker, S., Rander, P., Collins, R. T., & Kanade, T. (1999).
Three-dimensional scene flow. In Proc. int. conf. comp. vision (pp.
722–729).

Vedula, S., Baker, S., Rander, P., Collins, R. T., & Kanade, T. (2005).
Three-dimensional scene flow. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(3), 475–480.

Vedula, S., Baker, S., Seitz, S., & Kanade, T. (2000). Shape and mo-
tion carving in 6D. In Proc. IEEE conf. comp. vision patt. recog.
(Vol. 2).

Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., & Cremers,
D. (2011). Stereoscopic scene flow computation for 3d motion
understanding. International Journal of Computer Vision, 95(1),
29–51.

Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., & Cremers,
D. (2008). Efficient dense scene flow from sparse or dense stereo
data. In Proc. European conf. comp. vision (pp. 739–751).

Woodford, O. J., Torr, P. H. S., Reid, I. D., & Fitzgibbon, A. W. (2009).
Global stereo reconstruction under second-order smoothness pri-
ors. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(12), 2115–2128.

Young, D. (1954). Iterative methods for solving partial difference equa-
tions of elliptic type. Transactions of the American Mathematical
Society, 76(1), 92–111.

Zhang, Y., & Kambhamettu, C. (2000). Integrated 3d scene flow and
structure recovery from multiview image sequences. In Proc.
IEEE conf. comp. vision patt. recog. (Vol. 2, pp. 674–681).

Zhang, Y., & Kambhamettu, C. (2001). On 3d scene flow and structure
estimation. In Proc. IEEE conf. comp. vision patt. recog. (pp. 778–
785).

http://vision.middlebury.edu/stereo

	Multi-view Scene Flow Estimation: A View Centered Variational Approach
	Abstract
	Introduction
	Related Work

	The Method
	System Parameters and Notations
	The Energy Functional
	Data Term
	Smoothness Term

	Optimization
	Euler-Lagrange Equations
	Numerics

	Occlusions

	A Note on Error Evaluation
	Experimental Results
	Egomotion Using Stereo Datasets
	Synthetic Data
	Multi-View Rotating Sphere
	Orthographic Rotating Sphere

	Real Data

	Discussion and Conclusions
	Acknowledgements
	Appendix A: Mapping Between Images
	Appendix B: Image Derivatives with Respect to the 3D Unknowns
	Appendix C: Linearizion
	References


