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Abstract An efficient sparse modeling pipeline for the clas-
sification of human actions from video is here developed.
Spatio-temporal features that characterize local changes in
the image are first extracted. This is followed by the learning
of a class-structured dictionary encoding the individual ac-
tions of interest. Classification is then based on reconstruc-
tion, where the label assigned to each video comes from
the optimal sparse linear combination of the learned basis
vectors (action primitives) representing the actions. A low
computational cost deep-layer model learning the inter-class
correlations of the data is added for increasing discrimina-
tive power. In spite of its simplicity and low computational
cost, the method outperforms previously reported results for
virtually all standard datasets.

Keywords Action classification · Sparse modeling ·
Dictionary learning · Supervised learning

1 Introduction

We are living in an era where the ratio of data acquisition
over exploitation capabilities has dramatically exploded.
With this comes an essential need for automatic and semi-
automatic tools that could aid with the processing require-
ments in most technology-oriented fields. A clear example
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pertains to the surveillance field, where video feeds from
possibly thousands of cameras need to be analyzed by a lim-
ited amount of operators on a given time lapse. As simple as
it seems for us to recognize human actions, it is still not well
understood how the processes in our visual system give our
ability to interpret these actions, and consequently is diffi-
cult to effectively emulate these through computational ap-
proaches. In addition to the intrinsic large variability for the
same type of actions, factors like noise, camera motion and
jitter, highly dynamic backgrounds, and scale variations, in-
crease the complexity of the scene, therefore having a nega-
tive impact in the performance of the classification system.
In this paper, we focus in a practical design of such a system,
that is, an algorithm for supervised classification of human
actions in motion imagery.

There are a number of important aspects of human ac-
tions and motion imagery in general that make the particular
task of action classification very challenging:

1. Data is very high dimensional and redundant: Each video
will be subdivided into spatio-temporal patches which
are then vectorized, yielding high-dimensional data sam-
ples. Redundancy occurs from the high temporal sam-
pling rate, allowing relatively smooth frame-to-frame
transitions, hence the ability to observe the same object
many times (not considering shot boundaries). In addi-
tion, many (but not all) of the actions have an associ-
ated periodicity of movements. Even if there is no peri-
odicity associated with the movements, the availability
of training data implies that the action of interest will be
observed redundantly, since overlapping patches charac-
terizing a specific spatio-temporal behavior are generally
very similar, and will be accounted multiple times with
relatively low variation. These properties of the data al-
low the model to benefit from the blessings of high di-
mensionality (Donoho 2000), and will be key to over-
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coming noise and jitter effects, allowing simple data rep-
resentations by using simple features, while yielding sta-
ble and highly accurate classification rates.

2. Human activities are very diverse: Two people juggling a
soccer ball can do that very differently. Same for people
swimming, jumping, boxing, or performing any of the
activities we want to classify. Learning simple represen-
tations is critical to address such variability.

3. Different human activities share common movements:
A clear example of this is the problem of distinguishing
if a person is either running or jogging. Torso and arms
movements may be very similar for both actions. There-
fore, there are spatio-temporal structures that are shared
between actions. While one would think that a person
running moves faster than a person jogging, in reality it
could be the exact opposite (consider racewalking). This
phenomena suggests that our natural ability to classify
actions is not based only on local observations (e.g., torso
and arms movements) or global observations (e.g., per-
son’s velocity) but on local and global observations. This
is consistent with recent psychological research indicat-
ing that the perception of human actions are a combina-
tion of spatial hierarchies of the human body along with
motion regularities (Blake and Shiffrar 2007). Relation-
ships between activities play an important role in order
to compare among them, and this will be incorporated
in our proposed framework via a simple deep learning
structure.

4. Variability in the video data: While important applica-
tions, here addressed as well, consist of a single acqui-
sition protocol, e.g., surveillance video; the action data
we want to classify is often recorded in a large variety of
scenarios, leading to different viewing angles, resolution,
and general quality. This is the case for example of the
YouTube data we will use as one of the testing scenarios
for our proposed framework.

In this paper, we consider these aspects of motion imagery
and human actions and propose a hierarchical, two-level
sparse modeling framework that exploits the high dimen-
sionality and redundancy of the data. Differently from the
recent literature, discussed in Sect. 2, we learn inter-class
relationships using both global and local perspectives. As
described in detail in Sect. 3, we combine �1-minimization
with structured dictionary learning, and show that with
proper modeling, in combination with a reconstruction and
complexity based classification procedure using sparse rep-
resentations, a single feature and a single sampling scale are
sufficient for highly accurate activity classification on a large
variety of examples.

We claim that there is a great deal of information in-
herent in the sparse representations that have not yet been
fully explored. In Mairal et al. (2008) for example, class-
decision functions were incorporated in the sparse modeling

optimization to gain higher discriminative power. In the re-
sults the authors show that significant gain can be attained
for recognition tasks, but always at the cost of more sophisti-
cated modeling and optimizations. We drift away from these
ideas by explicitly exploiting the sparse coefficients in a dif-
ferent way such that, even though it derives from a purely
generative model, takes more advantage from the structure
given in the dictionary to further model class distributions
with a simpler model. In Sect. 4 we evaluate the perfor-
mance of the model using four publicly available datasets:
the KTH Human Action Dataset, the UT-Tower Dataset, the
UCF-Sports Dataset, and the YouTube Action Dataset, each
posing different challenges and environmental settings, and
compare our results to those reported in the literature. Our
proposed framework uniformly produces state-of-the-art re-
sults for all these data, exploiting a much simpler mod-
eling than those previously proposed in the literature. Fi-
nally, we provide concluding remarks and future research in
Sect. 5.

2 Related Work

The recently proposed schemes for action classification in
motion imagery are mostly feature-based. These techniques
include three main steps. The first step deals with “inter-
est point detection,” and it consists of searching for spa-
tial and temporal locations that are appropriate for per-
forming feature extraction. Examples are Cuboids (Dollar et
al. 2005), Harris3D (Laptev and Lindeberg 2003), Hessian
(Willems et al. 2008), and dense sampling1 (Gall et al. 2011;
Le et al. 2011; Wang et al. 2011). This is followed by a “fea-
ture acquisition” step, where the video data at the locations
specified from the first step undergo a series of transforma-
tion processes to obtain descriptive features of the partic-
ular action, many of which are derived from standard static
scene and object recognition techniques. Examples are SIFT
(Scovanner et al. 2007), the Cuboids feature (Dollar et al.
2005), Histograms of Oriented Gradients (HOGs) (Laptev
et al. 2008), and its extension to the temporal domain, i.e.,
HOG3D (Kläser et al. 2008), combinations of HOG and His-
tograms of Optical Flow (HOF) (Laptev et al. 2008), Ex-
tended Speeded Up Robust Features (ESURF), Local Tri-
nary Patterns (Yeffet and Wolf 2009), and Motion Bound-
ary Histograms (MBH) (Dalal and Triggs 2006). Finally,
the third step is a “classification/labeling” process, where
bag-of-features consisting of the features extracted (or vec-
tor quantized versions) from the second step are fed into a
classifier, often a Support Vector Machine (SVM). Please

1Dense sampling is not an interest point detector per se. It extracts
spatio-temporal multi-scale patches indiscriminately throughout the
video at all locations.
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refer to Shao and Mattivi (2010) and Wang et al. (2009) for
comprehensive reviews and pointers to feature-based as well
as other proposed schemes.

In practice, it is difficult to measure what combinations of
detectors and features are best for modeling human actions.
In Wang et al. (2009), the authors conducted exhaustive
comparisons on the classification performance of several
spatio-temporal interest point detectors and descriptors us-
ing nonlinear SVMs, using publicly available datasets. They
observed that most of the studied features performed rela-
tively well, although their individual performance was very
dependent on the dataset. For example, interest point detec-
tion based feature extraction performed better than dense
sampling on datasets with relatively low complexity like
KTH, while dense sampling performed slightly better in
more realistic/challenging datasets like UCF-Sports. In this
work, we do not look at designing detectors or descriptors
but rather give greater attention into developing a power-
ful model for classification using sparse modeling. We use
a very simple detector and descriptor, and one single spatio-
temporal scale to better show that sparse modeling is capa-
ble of taking high dimensional and redundant data and trans-
late it into highly discriminative information. Also, given
that the gain in performance of dense sampling is not sig-
nificant, and it takes longer computation times, we use a
simple interest point detector (by thresholding) instead of
dense sampling, simply for a faster and more efficient sam-
pling process, such that the spatio-temporal patches selected
contain slightly higher velocity values relative to a larger
background.

Sparse coding along with dictionary learning has proven
to be very successful in many signal and image processing
tasks, especially after highly efficient optimization methods
and supporting theoretical results emerged. More recently,
it has been adapted to classification tasks like face recog-
nition (Wright et al. 2008) (without dictionary learning),
digit and texture classification (Mairal et al. 2008; Ramirez
et al. 2010), hyperspectral imaging (Castrodad et al. 2011;
Charles et al. 2011), among numerous other applications.
It has also been applied recently for motion imagery anal-
ysis for example in Cadieu and Olshausen (2008), Dean et
al. (2009), Guo et al. (2010), Taylor et al. (2010). In Dean
et al. (2009), the authors propose to learn a dictionary in
a recursive manner by first extracting high response val-
ues coming from the Cuboids detector, and then using the
resulting sparse codes as the descriptors (features), where
PCA is optionally applied. Then, as often done for classi-
fication, the method uses a bag-of-features with K-bin his-
tograms approach for representing the videos. To classify
unlabeled videos, these histograms are fed into a nonlinear
χ2-SVM. In contrast to our work, the authors learn a ba-
sis globally, while the proposed method learns it in a per-
class manner, and follows a different scheme for classifica-

tion. We also learn inter-class relationships via a two levels
(deep-learning) approach.

In Guo et al. (2010), the authors build a dictionary using
vectorized log-covariance matrices of 12 hand-crafted fea-
tures (mostly derived from optical flow) obtained from en-
tire labeled videos. Then, the vectorized log-covariance ma-
trix coming from an unlabeled video is represented with this
dictionary using �1-minimization, and the video is classified
by selecting the label associated with those dictionary atoms
that yield minimum reconstruction error. In contrast to our
work, the dictionary in Guo et al. (2010) is hand-crafted di-
rectly from the training data and not learned. While similar
in nature to the �1-minimization procedure used in our first
level, the data samples in Guo et al. (2010) are global repre-
sentations of the entire video, while our method first models
all local data samples (spatio-temporal patches), followed
by a fast global representation on a second stage, leading to
a hierarchical model that learns both efficient per-class rep-
resentations (first level) as well as inter-class relationships
(second level).

In Jhuang et al. (2007), the authors propose a three-
level algorithm that simulates processes in the human visual
cortex. These three levels use feature extraction, template
matching, and max-pooling to achieve both spatial and tem-
poral invariance by increasing the scale at each level. Clas-
sification of these features is performed using a sparsity in-
ducing SVM. Compared to our model, except for the last
part of its second level, the features are hand-crafted, and is
overall a more sophisticated methodology.

In Taylor et al. (2010), a convolutional Restricted Boltz-
mann Machine (convRBM) architecture is applied to the
video data for learning spatio-temporal features by estimat-
ing frame-to-frame transformations implicitly. They com-
bine a series of sparse coding, dictionary learning, and
probabilistic spatial and temporal pooling techniques (also
to yield spatio-temporal invariance), and then feed sparse
codes that are max-pooled in the temporal domain (emerg-
ing from the sparse coding stage) into an RBF-SVM. Com-
pared to our work, this method deals with expensive com-
putations on a frame by frame basis, making the training
process very time consuming. Also they train a global dic-
tionary of all actions. In contrast, our method learns per-
class/activity dictionaries independently using correspond-
ing training data all at once (this is also beneficial when
new classes appear, no need to re-train the entire dictio-
nary). In Le et al. (2011), Independent Subspace Analysis
(ISA) networks are applied for learning from the data us-
ing two levels. Blocks of video data are used as input to the
first ISA network following convolution and stacking tech-
niques. Then, to achieve spatial invariance, the combined
outputs from the first level are convolved with a larger image
area and reduced in size using PCA, and then fed to the sec-
ond level, another ISA network. The outputs from this level
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Fig. 1 Algorithm overview.
The left and right sides illustrate
the learning and classification
procedures, respectively. The
processes in white boxes
represent the first level of sparse
modeling. The processes in gray
boxes represent the second level
(Color figure online)

are vector quantized (bag-of-features approach), and a χ2-

SVM is used for classification. The method here proposed

does not uses PCA to reduce the dimensionality of the data

after the first level, as the dimension reduction derives more

directly and naturally by using sum-pooling in a per-class

manner after the first level.

Note that the hierarchical modeling of the proposed

method is different from Jhuang et al. (2007), Le et al.

(2011), and Taylor et al. (2010). These works progress from

level to level by sequentially increasing spatial and/or tem-

poral scales, thus benefiting from a multi-scale approach

(spatial invariance), while our work progresses from locally

oriented representations using only one scale,2 to a glob-

ally oriented video representation deriving directly from the

sparse model, and not from a bag-of-features approach or

series of multi-scale pooling mechanisms. Also, the pro-

posed scheme, as we will discuss in more detail next, pro-

duces sparse codes that contain information in a different

way than the sparse codes produced with the global dictio-

naries in Dean et al. (2009), Taylor et al. (2010). This is

achieved by explicit per-class learning and pooling, yielding

a C-space, for C activities, representation with invariance

to the per-class selection of action primitives (learned ba-

sis).

2In this work, only a single scale is used to better illustrate the model’s
advantages, already achieving state-of-the-art results. A multi-scale ap-
proach could certainly be beneficial.

3 Sparse Modeling for Action Classification

3.1 Model Overview

Assume we have a set of labeled videos, each contain-
ing 1 of C known actions (classes) with associated label
j ∈ [1,2, . . . ,C].3 Our goal is to learn from these labeled
videos in order to classify new incoming unlabeled ones,
and achieve this via simple and computationally efficient
paradigms. We solve this with a two-level feature-based
scheme for supervised learning and classification, which fol-
lows the pipeline shown in Fig. 1.

For learning, we begin with a set of labeled videos, and
for each action separately, we extract and vectorize overlap-
ping spatio-temporal patches consisting of the videos’ tem-
poral gradients at locations that are above a pre-defined en-
ergy threshold. In other words, we exploit spatio-temporal
(3D) patches that have sufficient activity. During the first
level of training, these labeled training samples (i.e., yj vec-
tors from patches belonging to videos of class j ) serve as
input to a dictionary learning stage. In this stage, an action-
specific dictionary Dj of kj atoms is learned for each of
the C classes. After learning all C dictionaries, a struc-
tured dictionary D consisting of the concatenation of these
sub-dictionaries is formed. A sparse representation of these
training samples (spatio-temporal 3D patches) using �1-
minimization yields associated sparse coefficients vectors.

3In this work, as commonly done in the literature, we assume each
video has been already segmented into time segments of uniform (sin-
gle) actions. Considering we will learn and detect actions based on just
a handful of frames, this is not a very restrictive assumption. We will
comment more on this later in the paper.
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These coefficient vectors are pooled in a per-class manner,
so that they quantify the contribution from each action (i.e.,
the sj vectors, each patch of class j producing one). Then,
on a second level of training, these per-class pooled samples
become the data used for learning a second set of action-
specific dictionaries �j of lj atoms. While the first level dic-
tionaries Dj are class independent, these second level ones
model the inter-relations between the classes/actions. With
this, the off-line learning stage of the algorithm concludes.

To classify a video with unknown label “?,” we follow the
same feature extraction procedure, where test samples, y?’s
(again consisting of spatio-temporal patches of the video’s
temporal gradient) are extracted and sparsely represented
using the (already learned) structured dictionary D. After
sparse coding, the resulting vectors of coefficients are also
pooled in a per-class manner, yielding the s?’s vectors. For
a sometimes sufficient first level classification, a label is as-
signed to the video by majority voting, that is, the class with
the largest contribution using all the pooled vectors is se-
lected. For a second level classification, the same majority
voted single vector is sparsely represented using the con-
catenation of all the dictionaries �j . The video’s label j∗ is
selected such that the representation obtained with the j th
action subdictionary �j yields the minimum sparsity and
reconstruction trade-off.

We now give a detailed description of the proposed mod-
eling and classification algorithm for activity classification.
We start with the data representation and feature extraction
process, which is the same for labeled (training) and unla-
beled (testing) videos. Then, we describe the first level of
sparse modeling, where dictionaries are learned for each
of the actions. This is followed by the second level of the
learning process, where a new set of dictionaries are learned
to model inter-class relationships. We finalize this section
with a description of the labeling/classification procedure,
and briefly contrast the model here proposed with the bag of
features approach.

3.2 Data Representation and Modeling

Let I be a video, and It its temporal gradient. In order to
extract informative spatio-temporal patches, we use a sim-
ple thresholding operation. More precisely, let It (p) be a
3D (space+time) patch of It with center at location p ∈ Ω ,
where Ω is the video’s spatial domain. Then, we extract
data samples y(p) = vect(|It (p)|) such that |It (p)| > δ,∀p,
where δ is a pre-defined threshold, and vect(·) denotes
vectorization (in other words, we consider spatio-temporal
patches with above threshold temporal activity). Let all the
data extracted from the videos this way be denoted by Y =
[y1, . . . ,yn] ∈ �m×n, where each column y is a data sample.
Here m is then the data dimension m = r × c × w, where r ,
c, and w are the pre-defined number of rows, columns, and

frames of the spatio-temporal patch, respectively, and n the
number of extracted “high-activity” patches.

We model the data samples linearly as y = Da+n, where
n is an additive component with bounded energy (‖n‖2

2 ≤ ε)
modeling both the noise and the deviation from the model,
a ∈ �k are the approximation weights, and D ∈ �m×k is a
(possibly overcomplete, k > m) to be learned dictionary. As-
suming for the moment that D is fixed, a sparse representa-
tion of a sample y is obtained as the solution to the following
optimization problem:

a∗ = arg min
a

‖a‖0 s.t.
1

2
‖Da − y‖2

2 ≤ ε, (1)

where ‖ · ‖0 is a pseudo-norm that counts the number of
nonzero entries. This means that the spatio-temporal patches
belong to the low dimensional subspaces defined by the dic-
tionary D. Under assumptions on the sparsity of the signal
and the structure of the dictionary D (see Bruckstein et al.
2009), there exists λ > 0 such that (1) is equivalent to solv-
ing

a∗ = arg min
a

1

2
‖Da − y‖2

2 + λ‖a‖1, (2)

known as the Lasso (Tibshirani 1994). Notice that the �0

pseudo norm was replaced by an �1-norm, and we prefer in
our work the formulation in (2) over the one in (1) since
it is more stable and easily solvable using modern convex
optimization techniques.

The dictionary D can be constructed for example using
wavelets basis. However, in this work, since we know in-
stances of the signal, we learn/infer the dictionary using
training data, bringing the advantage of a better data fit com-
pared with the use of off-the-shelf dictionaries. Contrasting
with sparse coding, we denote this process of also learning
the dictionary sparse modeling. Sparse modeling of data can
be done via an alternation minimization scheme similar in
nature to K-means, where we fix D, obtain the sparse code
A = [a1, . . . ,an] ∈ �k×n, then minimizing with respect to
D while fixing A (both sub-problems are convex), and con-
tinue this process until reaching a (local) minimum to get

(
D∗,A∗) = arg min

D,A

1

2
‖DA − Y‖2

F + λ

n∑

i=1

‖ai‖1, (3)

which can be efficiently solved using algorithms like the K-
SVD (Aharon et al. 2006; Mairal et al. 2010).

This concludes the general formulation for feature extrac-
tion and data representation using sparse modeling. Next,
we focus our attention on a supervised classification setting,
specifically applied to action classification.

3.2.1 Learning Action-Specific Dictionaries

Since we are in the supervised setting, there are labeled
training data available for each of the actions. Let Yj =
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[yj

1, . . . ,yj
nj

] ∈ �m×nj be the nj extracted samples corre-
sponding to the j th action/class. We obtain the j th ac-

tion representation (class-specific dictionary) Dj ∈ �m×kj

+
by solving

Dj∗ = arg min
(Dj ,Aj )�0

1

2

∥∥Dj Aj − Yj
∥∥2

F
+ λ

nj∑

i=1

S
(
aj

)
, (4)

where (a � b) denotes the element-wise inequality, and

S(aj ) = ∑kj

i=1 a
j
i . Notice that we modified the sparse mod-

eling formulation of (3) to a nonnegative version, and this
can be interpreted as performing a sparsity constrained non-
negative matrix factorization on each class. We repeat this
procedure and learn dictionaries for all C classes. As we
explain next, these compose the overall actions structured
dictionary D.

3.2.2 Modeling Local Observations as Mixture of Actions:
Level-1

Once the action-dependent dictionaries are learned, we ex-
press each of the data samples (extracted spatio-temporal
patches with significant energy) as sparse linear combina-
tions of the different actions by forming the block-structured
dictionary D = [D1, . . . ,DC] ∈ �m×k+ , where k = ∑C

j=1 kj .
Then we get, for the entire data being processed Y ,

A∗ = arg min
A�0

1

2
‖DA − Y‖2

F + λ

n∑

i=1

S(ai ), (5)

where A = [a1, . . . ,an] ∈ �k×n+ , ai = [a1
i , . . . , a

k1
i ,

. . . , a
kC

i ]T ∈ �k+, and n = ∑C
j=1 nj . Note that this includes

all the high energy spatio-temporal patches from all the
available training videos for all the classes.

Note that with this coding strategy, we are expressing
the data points (patches) as a sparse linear combination of
elements of the entire structured dictionary D, not only of
their corresponding class-dependent subdictionary (see also
Wright et al. (2008) for a related coding strategy for facial
recognition). That is, each data sample becomes a “mixture”
of the actions modeled in D, and the component (or frac-
tion) of the j th action mixture is given by its associated
aj . The idea is to quantify movement sharing between ac-
tions. If none of the local movements associated with the
j th action are shared, then the contribution from the other
action representations will be zero, meaning that the data
sample is purely pertaining of the j th action, and is quan-
tified in S(aj ). On the other hand, shared movements will
be quantified with nonzero contributions from more than
one class, meaning that the data samples representing these
may lie in the space of other actions. This strategy permits
to share features between actions, and to represent actions

not only by their own model but also by how connected
they are to the models of other actions. This cross-talking
between the different action’s models (classes) will be crit-
ical in the second stage of the learning model, as will be
detailed below. The sparsity induced in the minimization
should reduce the number of errors caused by this shar-
ing effect. Furthermore, these mixtures can be modeled by
letting s = [S(a1), . . . , S(aC)]T ∈ �C+ be the per-class �1-
norm vector corresponding to the data sample y, and letting
S = [s1, . . . , sn] ∈ �C×n+ be the matrix of all per-class �1-
norm samples. By doing this, the actions’ contributions in
the sample are quantified with invariance to the subset se-
lection in the sub-dictionaries Dj , and the dimensionality of
the data is notably reduced to C-dimensional vectors in a
reasonable way, as opposed to an arbitrary reduction using
for example PCA. This reduced dimension, which again ex-
presses the inter-class (inter-action) components of the data,
low dimensional input to the next level of the learning pro-
cess.

3.2.3 Modeling Global Observations: Level-2

Once we obtain the characterization of the data in terms of
a linear mixture of the C actions, we begin our second level
of modeling. Using the training data from each class, Sj ∈
�C×nj

+ (the C-dimensional sj vectors for class j ), we model
inter-class relationships by learning a second set of per-class

dictionaries �j ∈ �C×lj
+ as:

�j∗ = arg min
(�j ,Bj )�0

1

2

∥∥�j Bj − Sj
∥∥2

F
+ τ

nj∑

i=1

S
(
bj

)
, (6)

where Bj = [bj

1, . . . ,bj
nj

] ∈ �lj ×nj are the associated sparse
coefficients from the samples in the j − th class, and τ > 0
controls the trade-off between class reconstruction and co-
efficients’ sparsity. Notice that although the dictionaries �j

are learned on a per-class basis, each models how data sam-
ples corresponding to a particular action j can have energy
contributions from other actions, since they are learned from
the nj mixed coefficients sj ∈ �C+. Inter-class (actions) rela-
tionships are then learned this way.

This completes the description of the modeling as well
as the learning stage of the proposed framework. We now
proceed to describe how is this modeling exploited for clas-
sification.

3.3 Classification

In the first level of our hierarchical algorithm, we learned
dictionaries using extracted spatio-temporal samples from
the labeled videos. Then, each of these samples are ex-
pressed as a linear combination of all the action dictionaries
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to quantify the amount of action mixtures. After class sum-
pooling (�1-norm on a per-class basis) of the corresponding
sparse coefficients, we learned a second set of dictionaries
modeling the overall per-class contribution per sample. We
now describe two decision rules for classification that derive
directly from each modeling level.

3.3.1 Labeling After Level 1

It is expected that the information provided in S should be
already significant for class separation. Let g = S1 ∈ �C+,
where 1 is a n×1 vector with all elements one (note that now
n is the amount of spatio-temporal patches with significant
energy present in a single video being classified). Then, we
classify a video according to the mapping function f1(g) :
�C+ → Z defined as

f1(g) = {
j |gj > gi, j 
= i, (i, j) ∈ [1, . . . ,C]}. (7)

This classification, already provides competitive results, es-
pecially with actions that do not share too many spatio-
temporal structures, see Sect. 4. The second layer, that due to
the significant further reduction in dimensionality (to C, the
number of classes), is computationally negligible, improves
the classification even further.

3.3.2 Labeling After Level 2

There are cases where there are known shared (local) move-
ments between actions, or cases where a video is composed
of more than one action (e.g., running and then kicking a
ball). As discussed before, the first layer is not yet exploit-
ing inter-relations between the actions. Inspired in part on
ideas from Sprechmann and Sapiro (2010), we develop a
classification scheme for the second level. Let

R(�,g) = min
b�0

1

2
‖�b − g‖2

2 + τ S(b), (8)

then, we classify the video as

f2(g) = {
j |R

(
�j ,g

)
< R

(
�i ,g

)
,

j 
= i, (i, j) ∈ [1, . . . ,C]}. (9)

Here, we classify by selecting the class yielding a minimum
reconstruction and complexity as given by R(�j ,g), corre-
sponding to the energy associated to the j th class. Notice
that in this procedure only a single vector g in �C+ needs to
be sparsely represented for the whole video being classified,
which is computationally very cheap of course.

3.4 Comparison of Representations for Classification

The bag-of-features approach is one of the most widely used
techniques for action classification. It basically consists of

applying K-means clustering to find K centroids, i.e., visual
words, that are representative of all the training samples.
Then, a video is represented as a histogram of visual word
occurrences, by assigning one of the centroids to each of the
extracted features in the video using (most often) Euclidean
distance. These K centroids are found using a randomly se-
lected subset of features coming from all the training data.
While this has the advantage of not having to learn C sub-
problems, it is not explicitly exploiting/modeling label in-
formation available in the given supervised setting. There-
fore, it is difficult to interpret directly the class relationships
in these global, high dimensional histograms (K is usually
in the 3,000–4,000 range). In addition, the visual words ex-
pressed as histograms equally weight the contribution from
the data samples, regardless of how far these are from the
centroids. For example, an extracted descriptor or feature
from the data that does not correspond to any of the classes
(e.g., background), will be assigned to one of the K cen-
troids in the same manner as a descriptor that truly pertains
to a class. Therefore, unless a robust metric is used, fur-
ther increasing the computational complexity of the meth-
ods, this has the disadvantage of not properly accounting for
outliers and could significantly disrupt the data distribution.
In the proposed method, each of the data samples is repre-
sented as a sparse linear combination of dictionary atoms,
hence represented from union of subspaces. Instead of rep-
resenting an extracted feature with its closest centroid, it is
represented by a weighted combination of atoms, thus bet-
ter managing outliers. Analogue to a Mixture of Gaussians
(MoG), the bag-of-features representation can be considered
as a hard-thresholded MoG, where only one Gaussian dis-
tribution is allowed per sample, and its associated weight
equals to one.

The learning process at the first level of the proposed
model uses samples (vectorized spatio-temporal patches)
from each action independently (in contrast to learning a
global dictionary), and later encodes them as linear com-
binations of the learned dictionary atoms from all classes,
where the class contribution is explicitly given in the ob-
tained sparse codes. Since each data sample from a specific
class can be represented by a different subset of dictionary
atoms, the resulting sparse codes can have significant varia-
tions in the activation set. Sum-pooling in a per-class man-
ner achieves invariance to the class subset (atom) selection.
These sum-pooled vectors are used to quantify the associa-
tion of the samples with each class (activity), and a signifi-
cant dimensionality reduction is obtained by mapping these
codes into a C-dimensional space (in contrast to performing
explicit dimension reduction as in some of the techniques
described above). We learn all the representations in a non-
negative fashion. This is done for two reasons. First, we use
the absolute value of the temporal gradient (to allow the
same representation for samples with opposite contrast), so
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Fig. 2 Front and rear views of the first three principal components
corresponding to the per-class �1-norm of data samples (using all the
training videos from the KTH dataset) after the first level of sparse

coding in our algorithm. The samples in green correspond to the walk
class, the samples in blue correspond to the jog class, and the samples
in red correspond to the run class (Color figure online)

all data values are nonnegative. Second, each data sample is

normalized to have unit magnitude. After the per-class sum-

pooling, this allows a mapping that is close to a probability

space (the �1 norm of the sparse codes will be close to one).

Therefore, the coefficients associated with each class give a

good notion of the probability of each class in the extracted

features.

Consider the example illustrated in Fig. 2. Shown are the

first three principal components of all the C-dimensional

sum-pooled vectors corresponding to the jog, run, and walk

actions from the KTH dataset (details on this standard

dataset will be presented in the experimental section). As

we can see, some of the data points from each class intersect

with the other two classes, corresponding to shared move-

ments, or spatio-temporal structures that may well live in

any of the classes’ subspaces, a per-sample effect which we

call action mixtures. Also, the actions have a global structure

and position relative to each other within the 3D spatial co-

ordinates, which appears to be related to the subjects’ veloc-

ity (jog seems to be connected to walk and run). Therefore,

this local characterization obtained at the first level, where

the data points are mapped into a mixture space, indeed have

a global structure. Thus, the purpose of the second level is

to model an incoming video by taking into account its entire

data distribution relative to this global structure, consider-

ing relationships between classes (actions), and expressing it

sparsely using dictionary atoms that span the space of the in-

dividual actions. Such cross-action learning and exploitation

is unique to the proposed model, when compared to those

described above, and is achieved working on the natural low

dimensional C-space, thereby being computationally very

efficient.

4 Experimental Results

We evaluate the classification performance of the proposed
method using 4 publicly available datasets: KTH, UT-Tower,
UCF-Sports, and YouTube. The results presented include
performance rates for each of the two levels of modeling,
which we call SM-1 for the first level, and SM-2 for the sec-
ond level. Separating both results will help in understand-
ing the properties and capabilities of the algorithm in a per-
level fashion. Remember that the additional computational
cost of the second layer is basically zero, a simple sparse
coding of a single low dimensional vector. Additionally, to
illustrate the discriminative information available in the per-
class sum-pooled vectors S, we include classification results
of all datasets using a χ2-kernel SVM in a one-against-the
other approach, and we call this SM-SVM. In other words,
the output from the first level of the proposed algorithm is
the input to SM-SVM. For each classifier, we built the ker-
nel matrix by randomly selecting 3,000 training samples.
We report the mean accuracy after 1,000 runs. Finally, for
comparison purposes, we include the best three performance
rates reported in the literature. Often, these three are differ-
ent for different datasets, indicating a lack of universality in
the different algorithms reported in the literature (though of-
ten some algorithms are always close to the top, even if they
do not make the top 3). Confusion matrices for SM-1 and
SM-2 are also included for further analysis.

Table 1 shows the parameters used in SM-1 and SM-2
for each of the datasets in our experiments. The values were
chosen so that good empirical results were obtained, but
standard cross-validation methods can be easily applied to
obtain optimal parameters. Note how we used the same basic
parameters for all the very distinct datasets. The first three
columns specify the amount of randomly selected spatio-
temporal patches per video clip, the threshold used for inter-
est point detection, and the size of the spatio-temporal over-
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Table 1 Parameters for each of
the datasets. The first three
columns are related to feature
extraction parameters. The last
four columns specify sparse
coding/dictionary-learning
parameters

Dataset Feature extraction Sparse modeling

n/clip η m λ τ kj lj

KTH 30000/#clips 0.20 15 × 15 × 9 20/
√

m 1/C 768 32

UT-Tower 30000/#clips 0.10 15 × 15 × 9 20/
√

m 1/C 768 32

UCF-Sports 30000/#clips 0.20 15 × 15 × 9 20/
√

m 1/C 768 32

YouTube 40000/#clips 0.20 15 × 15 × 9 20/
√

m 0.5/C 768 64

Fig. 3 Sample frames from the KTH dataset

lapping patches, respectively. The last four columns spec-
ify the sparsity parameters and the number of dictionary
atoms used for SM-1 and SM-2 modeling, respectively. Note
how for simplicity we also used same dictionary size for all
classes. We now present the obtained results.

4.1 KTH

The KTH dataset4 (Schuldt et al. 2004) is one of the most
popular benchmark action data. It consists of approximately
600 videos of 25 subjects, each performing C = 6 actions:
box, clap, jog, run, walk, and wave. Each of these actions
were recorded at 4 environment settings: outdoors, outdoors
with camera motion (zoom in and out), outdoors with cloth-
ing change, and indoors. We followed the experimental set-
tings from Schuldt et al. (2004). That is, we selected subjects
11–18 for training and subjects 2–10, and 22 for testing (no
training performed on this set). Figures 3 and 4 show sample
frames from each of the actions and the learned dictionaries
for both layers, respectively. Notice, Fig. 4, how the second
level encodes the �1 energy distributions of each class with
respect to the other classes.

Table 2 presents the corresponding results. We obtain
97.9 %, 94.4 % and 96.3 % with SM-SVM, SM-1 and SM-
2, respectively. Confusion matrices for SM-1 and SM-2 are
shown in Fig. 5. As expected, there is some misclassifica-
tion error occurring between the jog, run, and walk actions,

4http://www.nada.kth.se/cvap/actions/.

all which share most of the spatio-temporal structures. SM-
2 performs better, since it combines all the local informa-
tion with the global information from S and g, respectively.
The three best performing previous methods are Wang et al.
(2011) (94.2 %), Kovashka and Grauman (2010) (94.5 %),
and Guo et al. (2010) (97.4 %). The method described in
Wang et al. (2011) performs tracking of features using dense
sampling. The method in Kovashka and Grauman (2010)
requires bag-of-features using several detectors at several
levels, dimensionality reduction with PCA, and also uses
neighborhood information, which is much more sophisti-
cated than our method. The closest result to our method is
97.4 %, described in Guo et al. (2010). Their method is sim-
ilar in nature to ours, as it uses features derived from optical
flow representing entire videos, further highlighting the need
for global information for higher recognition. As mentioned
before, there is no cross-class learning in such approach.

4.2 UT-Tower

The UT-Tower dataset5 (Chen et al. 2010) simulates an
“aerial view” setting, with the goal of recognizing human
actions from low-resolution remote sensing (people’s height
is approximately 20 pixels on average), and is probably from
all the tested datasets the most related to standard surveil-
lance applications. There is also camera jitter and back-
ground clutter. It consists of 108 videos of 12 subjects, each
performing C = 9 actions using 2 environment settings. The
first environment setting is an outdoors concrete square, with
the following recorded actions: point, stand, dig, and walk.
In the second environment setting, also outdoors, the follow-
ing actions were recorded: carry, run, wave with one arm
(wave1), wave with both arms (wave2), and jump. We con-
verted all the frames to grayscale values. A set of automati-
cally detected bounding box masks centered at each subject
are provided with the data, as well as a set of automatically
detected tracks for each subject. We used the set of bounding
box masks but not the tracks. All results follow the standard
for this dataset Leave One Out Cross Validation (LOOCV)
procedure. Figure 6 shows sample frames for each action.

Table 3 presents the results. We obtained 98.1 %, 97.2 %,
and 100 % for SM-SVM, SM-1, and SM-2, respectively.

5http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html.

http://www.nada.kth.se/cvap/actions/
http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html
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Fig. 4 Learned action
dictionaries from the KTH
dataset for both levels

Table 2 Results for the KTH
dataset Method Overall accuracy (%)

Wang et al. (Wang et al. 2011) 94.2

Kovashka et al. (Kovashka and Grauman 2010) 94.5

Guo et al. (Guo et al. 2010) 97.4

SM-SVM 97.9

SM-1 94.4

SM-2 96.3

Fig. 5 Confusion matrices from classification results on the KTH dataset using SM-1 and SM-2. The value on each cell represents the ratio
between the number of samples labeled as the column’s label the total number of samples corresponding to the row’s label

Fig. 6 Sample frames from the UT-Tower dataset

The only confusion in SM-1 occurs between the point and
stand classes and between the wave1 and wave2 classes (see
Fig. 7), since there are evident action similarities between
these pairs, and the low resolution in the videos provides a
low amount of samples for training. The methods proposed
in Vezzani et al. (2010) and Gall et al. (2011) both obtained
93.9 %. In Vezzani et al. (2010), the authors use a Hid-
den Markov Model (HMM) based technique with bag-of-
features from projected histograms of extracted foreground.

The method in Gall et al. (2011) uses two stages of random
forests from features learned based on Hough transforms.
The third best result was obtained with the method in Guo
et al. (2010) as reported in Ryoo et al. (2010). Again, our
method outperforms the other methods with a simpler ap-
proach.

4.3 UCF-Sports

The UCF-Sports dataset6 (Rodriguez et al. 2008) consists
of 150 videos acquired from sports broadcast networks. It
has C = 10 action classes: dive, golf swing, kick, weight-
lift, horse ride, run, skateboard, swing (on a pommel horse

6http://server.cs.ucf.edu/~vision/data.html#UCFSportsActionDataset.

http://server.cs.ucf.edu/~vision/data.html#UCFSportsActionDataset
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Table 3 Results for the
UT-Tower dataset Method Overall accuracy (%)

Guo et al. (Guo et al. 2010; Ryoo et al. 2010) 97.2

Vezzani et al. (Vezzani et al. 2010) 93.9

Gall et al. (Gall et al. 2011) 93.9

SM-SVM 98.1

SM-1 97.2

SM-2 100

Fig. 7 Confusion matrices from classification results on the UT-Tower dataset using SM-1 and SM-2

Fig. 8 Sample frames from the
UCF-Sports dataset

and on the floor), swing (on a high bar), and walk. Figure 8
shows sample frames for each action. This dataset has cam-
era motion and jitter, highly cluttered and dynamic back-
grounds, compression artifacts, and variable illumination
settings at variable spatial resolution, and 10 fps. We fol-
lowed the experimental procedure from Wang et al. (2009),
which uses LOOCV. Also as in Wang et al. (2009), we ex-
tended the dataset by adding a flipped version of each video
with respect to its vertical axis, with the purpose of increas-
ing the amount of training data (while the results of our algo-
rithm are basically the same without such flipping, we here
preformed it to be compatible with the experimental settings
in the literature). These flipped versions were only used dur-
ing the training phase. All videos are converted to gray level
for processing. We also used the spatial tracks provided with
the dataset for the actions of interest.

Classification results are presented in Table 4, and we
show the SM-1 and SM-2 confusion matrices in Fig. 9. We
obtained 94.7 %, 96.0 %, and 97.3 % overall classification

rates with SM-SVM, SM-1, and SM-2, respectively. In this
case, all three SM methods achieve higher classification ac-
curacies than those previously reported in Kovashka and
Grauman (2010), Le et al. (2011), and Wang et al. (2011).
We observe misclassification errors in the run and horse ride
classes for the SM-1, and are alleviated by SM-2.

4.4 YouTube

The YouTube Dataset7 (Liu et al. 2009) consists of 1,168
sports and home videos from YouTube with C = 11 types of
actions: basketball shooting, cycle, dive, golf swing, horse
back ride, soccer juggle, swing, tennis swing, trampoline
jump, volleyball spike, and walk with a dog. Each of the ac-
tion sets is subdivided into 25 groups sharing similar envi-
ronment conditions. Similar to the UCF-Sports dataset, this
is a more challenging dataset with camera motion and jitter,

7http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html.

http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html
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Table 4 Results for the
UCF-Sports dataset Method Overall accuracy (%)

Le et al. (Le et al. 2011) 86.5

Wang et al. (Wang et al. 2011) 88.2

Kovashka et al. (Kovashka and Grauman 2010) 87.5

SM-SVM 94.7

SM-1 96.0

SM-2 97.3

Fig. 9 Confusion matrices from classification results on the UCF-Sports dataset using SM-1 and SM-2

Fig. 10 Sample frames from
the YouTube dataset

highly cluttered and dynamic backgrounds, compression ar-
tifacts, and variable illumination settings. The spatial resolu-
tion is 320 × 240 at variable 15–30 fps. We followed the ex-
perimental procedure from Liu et al. (2009), that is, a group-
based LOOCV, where training per action is based on 24 out
of 25 of the groups, and the remaining group is used for clas-
sification. We also converted all frames to grayscale values.
Figure 10 shows sample frames from each action.

Table 5 shows the overall classification results of our
proposed method and comparisons with the state of the art
methods, and Fig. 11 shows the confusion matrices corre-
sponding to SM-1 and SM-2. We obtain overall classifica-
tion rates of 83.8 %, 86.3 %, and 89.5 % from SM-SVM,
SM-1, and SM-2, respectively.

The accuracy attained by SM-SVM is in the same ball-
park as the best reported results using dense trajectories,

which again incorporates dense sampling at multiple spatio-
temporal scales using more sophisticated features, in addi-
tion to tracking. Again, the global and local nature of SM-
2 greatly helps to achieve the highest accuracy, as it de-
creased the scattered instances of misclassification obtained
by SM-1 by implicitly imposing sparsity in a grouping fash-
ion.

4.5 Computation Time

The computational efficiency of the model comes from per-
forming simple temporal gradient and thresholding opera-
tions in the feature extraction step, and simple decision rules
from classification that come directly from the sparse cod-
ing of the data. The experiments were conducted on an Intel
Core 2 Duo (2.53 GHz) with 4 GB of memory using MAT-
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Table 5 Results for the
YouTube dataset Method Overall accuracy (%)

Le et al. (Le et al. 2011) 75.8

Wang et al. (Wang et al. 2011) 84.2

Ikizler-Cinbis et al. (Ikizler-Cinbis and Sclaroff 2010) 75.2

SM-SVM 83.8

SM-1 86.3

SM-2 89.5

Fig. 11 Confusion matrices from classification results on the YouTube dataset using SM-1 and SM-2

LAB. Using the training videos in Schuldt et al. (2004) from
the KTH dataset, it took 4,064 seconds overall, that is, fea-
ture extraction, learning, and classification. The most time
consuming part was the sparse coding, with 2045 seconds,
followed by dictionary learning, with 993 seconds in total.
The overall feature extraction procedure took 441 seconds.
Testing on a single 120 × 160 × 100 video, it took a to-
tal of 17 seconds, where 3.39 seconds correspond to feature
extraction, and 11.90 seconds correspond to classification,
thus taking approximately 15 seconds of computation over-
all, or 6.7 frames per second.

4.6 Summary

Summarizing these results, we reported an increase in the
classification accuracy of 0.5 % in KTH, 2.8 % in UT-Tower,
9.1 % in UCF-Sports, and 5.3 % in YouTube. While the prior
state-of-the-art results where basically obtained with a vari-
ety of algorithms, our proposed framework uniformly out-
performs all of them without per-dataset parameter tuning,
and often with a significantly simpler modeling and classifi-
cation technique. These results clearly show that the dimen-
sion reduction attained from A to S and the local to global
mapping do not degrade the discriminative information, but
on the contrary, they enhance it.

To further stress the generality of our algorithm, we have
not tuned parameters for any of the datasets. Some parame-
ters though could be adapted to the particular data, e.g., the

patch size should be adapted to the spatial and temporal res-
olution of the videos if taken from the same camera.

Following the simplicity of the framework here pre-
sented, one might be tempted to go even simpler. For exam-
ple, we could consider replacing the learned dictionaries by
simpler vector-quantization. We have investigated that and
obtained that for example, for the UCF-Sports dataset, the
results are significantly worse, attaining a classification ac-
curacy of 18 %.

Finally, we have observed that the natural nonnegativity
constraint often improves the results, although sometimes
the improvement is minor, and as a consequence, we opted
to leave it as part of the framework.

5 Concluding Remarks

We presented a two-level hierarchical sparse model for the
modeling and classification of human actions. We showed
how modeling local and global observations using concepts
of sparsity and dictionary learning significantly improves
classification capabilities. We also showed the generality
of the algorithm to tackle problems from multiple diverse
publicly available datasets: KTH, UT-Tower, UCF-Sports,
and YouTube, with a relatively small set of parameters (uni-
formly set for all the datasets), a single and simple feature,
and a single spatio-temporal scale.
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Although simple in nature, the model gives us insight
into new ways of extracting highly discriminative informa-
tion directly from the combination of local and global sparse
coding, without the need of explicitly incorporating discrim-
inative terms in the optimization problem and without the
need to manually design advanced features. In fact, the re-
sults from our experiments demonstrate that the sparse coef-
ficients that emerge from a multi-class structured dictionary
are sufficient for such discrimination, and that even with a
simple feature extraction/description procedure, the model
is able to capture fundamental inter-class distributions.

The model’s scalability could become a challenge when
the number of classes is very large, since it will significantly
increase the size of the dictionary. In such case, it would
be useful to integrate newly emerging algorithms for fast
sparse approximations such as those proposed by Gregor
and LeCun (2010) and Xiang et al. (2011), hence render-
ing the model more efficient. We are also interested in in-
corporating locality to the model, which could provide ad-
ditional insight for analyzing more sophisticated human in-
teractions. In addition, using a combination of features (e.g.,
multiscale) as the learning premise would help in dealing
with much more complex data acquisition effects such as
multi-camera shots and rapid scale variations such as those
present in the Hollywood-2 human actions dataset (Marsza-
łek et al. 2009). We are also exploiting time-dependencies
for activity-based summarization of motion imagery.
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