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Abstract The Bag-of-Words (BoW) model—commonly
used for image classification—has two strong limitations:
on one hand, visual words are lacking of explicit meanings,
on the other hand, they are usually polysemous. This paper
proposes to address these two limitations by introducing an
intermediate representation based on the use of semantic at-
tributes. Specifically, two different approaches are proposed.
Both approaches consist in predicting a set of semantic at-
tributes for the entire images as well as for local image re-
gions, and in using these predictions to build the interme-
diate level features. Experiments on four challenging image
databases (PASCAL VOC 2007, Scene-15, MSRCv2 and
SUN-397) show that both approaches improve performance
of the BoW model significantly. Moreover, their combina-
tion achieves the state-of-the-art results on several of these
image databases.

Keywords Image classification · Bag-of-words model ·
Semantic attribute · Visual words disambiguation

1 Introduction

Image classification, including object and scene classifica-
tion, is a central area in computer vision research. Among
the recent advances made on image classification, perhaps
the most significant one is the representation of images by
the statistics of local features, in particular through the in-
troduction of histograms of textons (Leung and Malik 2001)
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and the bag-of-words (BoW) model (Csurka et al. 2004;
Sivic and Zisserman 2003) which is borrowed from natu-
ral language processing. In the BoW model, local features
extracted from images are first mapped to a set of visual
words obtained by vector quantizing the feature descrip-
tors (e.g. with k-means). An image is then represented as
a histogram of visual words occurrences. Combined with
some powerful classifiers such as the Support Vector Ma-
chine (SVM), the BoW model has demonstrated impres-
sive performances on several challenging image classifi-
cation tasks (Everingham et al. 2007; Griffin et al. 2007;
Xiao et al. 2010).

As it is presented above, the BoW model suffers from two
strong limitations. First, despite the fact that visual words
are more meaningful than single pixels, they still lack any
explicit semantic meanings. However, extracting semantic
features is a very important characteristic in human visual
system. Humans learn about new object categories by using
existing knowledge of visual categories, which is often en-
coded as high-level semantic attributes (Rosch et al. 1976).
For example, if a new animal is seen, it can be connected to
some previously learned concepts (e.g. grey, head, hooves
and wings) which can be used to recognize this animal. Be-
sides colors and object parts, this kind of shared semantic at-
tributes might describe common scenes (e.g. road), common
shapes (e.g. box) and common materials (e.g. wood). Sec-
ond, like textual words in natural languages, visual words
are also frequently polysemous, i.e. the same visual word
could have different meanings. As a simple example, we
could imagine that two local features which represent simi-
lar image structures (e.g. windows) are assigned to the same
visual word, one being sampled from a ‘car’ while the other
is sampled from a ‘plane’.

In this paper, we propose to address the above mentioned
limitations of the BoW model by (a) predicting semantic at-
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Fig. 1 Illustration of semantic attribute prediction. For the attributes
which describe the global properties of images (e.g., outdoor, city,
etc.), the attribute classifiers are applied to entire images. For the at-
tributes which describe the local characteristics of images (e.g. sky,
tree, etc.), the attribute classifiers are applied to a set of image regions.
The figure is better viewed in color (Color figure online)

tributes for both entire images and image regions (illustrated
in Fig. 1) and (b) using them as additional information for
the BoW model. Specifically, we train a set of classifiers for
individual visual semantic attributes—whose list has been
manually specified—from BoW features, and use them to
make predictions on new images or image regions. We then
use the outputs of these classifiers as a low-dimensional im-
age descriptor which has explicit semantic meanings. The
performance of this semantic descriptor alone is close to that
of much higher dimensional BoW histogram, while the com-
bination of both consistently improves their performances.
As to the problem of visual word disambiguation, we pro-
pose two methods to utilize the context which is defined as
the occurrence probabilities of a set of semantic attributes
on entire images or image regions. In the first method, a sin-
gle vocabulary is learned from local features (e.g. SIFT) for
all contexts (attributes). Then we select one context for each
visual word to reduce its ambiguity. In the second method,
multiple vocabularies are learned from local features, each
of which corresponds to a single context. Visual words in
these context-specific vocabularies are less ambiguous than
those in the universal vocabulary. For a specific classifica-
tion task, only the relevant contexts are selected, resulting in
a low dimensional final image descriptor.

The organization of this paper is as follows: In Sect. 2,
we review related works on semantic attributes, semantic vo-
cabulary and visual word disambiguation. Then, we explain
how we utilize semantic information to construct image de-
scriptors with explicit semantic meanings (Sect. 3) and then
how we disambiguate visual words (Sect. 4). Experiments

and results are conducted in Sect. 5, followed by conclusion
and discussion in the last section.

2 Related Works

The recent literature abounds with approaches making in-
teresting use of visual semantic attributes and giving proofs-
of-concept. Roughly speaking, these methods can be divided
into two categories. One is representing objects or images by
vectors of semantic attributes, which are usually in a much
lower dimensional space than BoW histograms. The other
is learning semantic vocabularies that are more discrimina-
tive than traditional vocabularies (e.g. those computed by k-
means). In the following, a comprehensive review of these
methods is given. Besides, we also review the methods re-
lated to visual words disambiguation.

Visual Semantic Attributes Farhadi et al. (2009) were
among the first to propose to use a set of visual semantic
attributes such as hairy and four-legged to identify familiar
objects, and to describe unfamiliar objects when new images
and bounding box annotations are provided. At the same
time, Lampert et al. (2009) showed that high-level descrip-
tions in terms of semantic attributes can also be used to rec-
ognize object classes without any training image, once the
semantic attribute classifiers have been trained from other
classes of data. Kumar et al. (2009) have also proposed to
describe faces by vectors of visual attributes (e.g., gender,
race, age, hair color) which are predicted by using corre-
sponding attribute classifiers.

In addition to describing objects semantically, several
works described the whole image by semantic features,
for image retrieval or image classification tasks. Vogel and
Schiele (2007) used visual attributes describing scenes to
characterize image regions and combined these local seman-
tics into a global image description, used for the retrieval of
natural scene images. Wang et al. (2009) proposed to repre-
sent images by their similarities with Flickr image groups
which have explicit semantic meanings, and showed that
these semantic features give similar or even better perfor-
mance than pure visual features, for different image classi-
fication tasks. Torresani et al. (2010) used the outputs of a
large number of object category classifiers to represent im-
ages and showed good performances for both image classi-
fication and image retrieval tasks. A similar idea was also
adopted in Li et al. (2010a), in which an image is repre-
sented as the localized outputs of object detectors. In these
methods, classifiers are trained for each individual seman-
tic attribute and the classifier outputs are used to represent
images. Besides using attribute classifiers, some researchers
proposed to utilize the hierarchical structure of semantic at-
tributes to represent images (Li et al. 2010b) or measure the
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similarity of images (Deselaers and Ferrari 2011). For exam-
ple, Li et al. (2010b) built a semantically meaningful image
hierarchy by using both visual and semantic information,
and represent images by the estimated distributions of con-
cepts over the entire hierarchy. Deselaers and Ferrari (2011)
represented an image by the labels of its nearest neighbors
in ImageNet dataset and measured the semantic similarity of
two images through ImageNet hierarchy.

In this work, we also use semantic classifiers to describe
images. However, we additionally propose to use the se-
mantic attributes to disambiguate visual words in the BoW
framework.

Semantic Vocabulary Several attempts have been made to
embed semantic information into the vocabulary. Vogel and
Schiele (2007) proposed to manually assign to each im-
age region a semantic label (e.g. sky, water, grass), and
then constructed a semantic vocabulary based on these la-
beled image regions. The visual words in this vocabulary
have explicit semantic meanings. However, the manual la-
beling prevents to use this method in large-scale applica-
tions. Liu et al. (2009) proposed a two-steps procedure to
construct semantic vocabularies. First, visual words (also
called mid-level features) are obtained by vector quantiz-
ing the local features (using k-means), as in the traditional
BoW model. Second, mid-level features are embedded into
a lower dimensional semantic space using diffusion maps
and then clustered again by k-means to obtain a seman-
tic vocabulary. Ji et al. (2010) considered both visual and
semantic similarities of local features. The semantic sim-
ilarities of local features are learned from 60,000 labeled
Flickr images as well as the correlation of image labels
provided by WordNet. In addition, the methods based on
topic models such as Probabilistic Latent Semantic Analy-
sis (pLSA) (Bosch et al. 2006; Saghafi et al. 2010) or La-
tent Dirichlet Allocation (LDA) (Fei-Fei and Perona 2005;
Sivic et al. 2008) represent an image as a mixture distribu-
tion of hidden topics which are more related to meaningful
concepts than the visual words.

The above mentioned works utilize either additional se-
mantic annotation of images (Ji et al. 2010; Vogel and
Schiele 2007) or manifold structure of mid-level feature
space (Bosch et al. 2006; Fei-Fei and Perona 2005; Liu et al.
2009; Saghafi et al. 2010; Sivic et al. 2008) to learn the more
semantic meaningful vocabulary. Our method bear similari-
ties with the former, but our aim is not only to learn seman-
tic meaningful vocabulary but also to make the visual word
less ambiguous (and therefore more discriminative) which
is more important for image classification tasks.

Visual Words Disambiguation To deal with synonymy and
polysemy, one solution is to eliminate the most and least

frequent words which are supposed to be the most ambigu-
ous ones, as proposed in Sivic and Zisserman (2003). An-
other solution is to utilize task-specific information: as an
example, supervised learning methods can be used to ob-
tain category-specific vocabularies (Moosmann et al. 2007).
In addition, Yuan et al. (2007) combined the spatially co-
occurrent visual words to form visual phrases, which usu-
ally have higher level meanings and therefore are less am-
biguous. A similar idea was also presented in Zheng et al.
(2008).

Synonymy can be caused by the quantization process
used to obtain the visual vocabulary. Indeed, the hard as-
signment of the standard BoW model can lead to large loss
of information if some visual words have close represen-
tations. To address this problem, soft assignment in which a
local feature is assigned to different number (including zero)
of visual words was proposed (van Gemert et al. 2010) and
can help to address synonymy.

Polysemy of visual words is partly due to the discard of
spatial information. Hence, the use of spatial information
can help to disambiguate visual words. A typical example
is the well-known spatial pyramid matching (Lazebnik et al.
2006), in which multiple histograms are constructed from
increasing finer sub-regions and then concatenated to give
the image representation.

Topic models, such as the Probabilistic Latent Seman-
tic Analysis (pLSA) (Hofmann 1999), also address polysemy
(Sivic et al. 2005). For example, both the topics of ‘bird’ and
‘equipment’ can give high probability to the word ‘crane’,
but the occurrence probabilities of different topics reduce
this uncertainty. In contrast to the topic model, our method
uses semantic contexts rather than topics learned from data
collection. Please refer to Sect. 4 for more details.

As context plays a major role in the disambiguation of
natural language words, our opinion is that it can be also
useful for visual word disambiguation. In Delaitre et al.
(2010), the foreground (object of interest) and background
are modeled separately, resulting in two BoW histograms
which are combined by summing the corresponding ker-
nels. In Ullah et al. (2010), videos are decomposed into re-
gions with different semantic meanings, from which multi-
ple region-specific BoW histograms are computed and con-
catenated. Both Delaitre et al. (2010) and Ullah et al. (2010)
showed promising results on action recognition tasks. The
differences between our method and them are twofold. First,
in our method, BoW histograms are context-specific rather
than region-specific. Second, our method compresses mul-
tiple histograms rather than computing multiple kernels for
them (Delaitre et al. 2010) or concatenating them (Ullah et
al. 2010), resulting therefore in a more compact image rep-
resentation.

In another related work (Khan et al. 2009) proposed to
use some category-specific color attention maps to weight
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local shape features and then concatenate multiple his-
tograms. Our method for visual word disambiguation also
uses the idea of weighting local features. However, we adopt
semantic contexts (rather than color) to generate attention
maps and reduce the dimension of final image descriptors
by selecting the relevant contexts (rather than concatenate
all histograms). In Xiao et al. (2010), four geometry contexts
(ground, vertical, porous and sky) were adopted to build ge-
ometry specific histograms. Different from it, our method
uses much more contexts and combines multiple context-
specific histograms by context selection rather than concate-
nating them as in Xiao et al. (2010). Experiments in Sect. 5.4
show that our method performs better than the geometry
specific histograms.

Finally, compared with our previous works on semantic
attributes (Su et al. 2010; Su and Jurie 2011) correspond-
ing to Sects. 3 and 4.1 respectively, this paper makes three
extensions. First, we extend the method for visual word dis-
ambiguation described in Su and Jurie (2011) by learning
a specific vocabulary for each context and selecting con-
texts for each classification task by simulated annealing (see
Sect. 4.2). Second, we give a more comprehensive review
of the semantic-related methods for image classification.
Third, we give more experimental results to validate the
benefit of using semantic information for image classifica-
tion.

3 Image Representation by Semantic Attribute
Features

In this work, six groups of visual semantic attributes are in-
troduced to cover the spectrum of (1) global scenes (e.g.,
train station, bedroom), (2) local scene elements (e.g. sky,
tree), (3) color (e.g., green, red), (4) shape (e.g. box, cylin-
der), (5) material (e.g. leather, wood) and (6) object (e.g.
face, motorbike). It makes a total of 110 different attributes.
We define these semantic attributes by hand with the inten-
tion of providing abundant semantic information for image
description. Figure 2 gives the full list of semantic attributes
and some typical images. These semantic attributes can be
divided into two categories. The attributes in the group of
global scene (group 1) describe the characteristics of whole
images we refer to them as global attributes, while the at-
tributes in other groups (groups 2 to 6) describe the char-
acteristic of image regions we refer to them as local at-
tributes.

We learn a set of independent attribute classifiers (SVMs
with Battacharyya kernel), each of which corresponds to a
semantic attribute, and use them to construct semantic image
descriptors. For global attributes, the classifiers are learned
on whole images described by BoW histograms. For local

Fig. 2 Semantic attributes, grouped by type, including some illustra-
tive training images. The values in parentheses are the number of se-
mantic attributes within corresponding groups. In this paper, the at-
tributes of global scene are refereed as global attributes, while the at-
tributes of local scene, color, shape, material and object are referred as
local attributes

attributes, the classifiers are learned from some randomly
sampled image regions described again by BoW histograms.
In the training process, the label of a region is the same as
the label of the image from which it is sampled. In practice,
the Battacharyya kernel is implemented by square-rooting
BoW histograms before training SVMs (the equivalence was
proved in Perronnin et al. 2010). Using more complex ker-
nels (e.g. chi-square—Chapelle et al. 1999) does not signif-
icantly improve neither the accuracy of attribute classifiers
nor the performance of resultant semantic image descriptor
(see Fig. 7).

As to the training images, there are two cases. For the se-
mantic attributes that appear in PASCAL 2007 and Scene-15
databases (e.g. motorbike, bedroom), the training images as
well as the annotations are directly obtained from the train-
ing images of these databases. For other semantic attributes,
training images are automatically downloaded from Google
image search by using the name of attribute as query. We
manually reject the irrelevant images, leaving about 400 rel-
evant images for each attribute. When training a classifier for
a given attribute, the images of this attribute are considered
as positive samples. The images of other attributes within
the same group are considered as negative samples. Take the
attribute wood as an example; its images are used as posi-
tive samples, while the images of other materials are used
as negative samples. However, there exist two exceptions:
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indoor/outdoor and city/landscape. For these two attributes,
the images of indoor and city are used as positive samples
respectively, while the representative images of outdoor and
landscape are used as negative samples respectively.

Similar to the training process, there are also two cases in
attribute prediction, when processing test images. For global
attributes, the predictions are the result of running the at-
tribute classifiers on the whole image. For local attributes,
the predictions are generated by running the attribute clas-
sifiers on some randomly sampled image regions and then
pooling the classifier outputs (see Fig. 1). We evaluated
the performances of two pooling methods: average pool-
ing which averages the classifier outputs of image regions
and maximum pooling which assign to each context only
the maximum score of image regions, and experimentally
demonstrate that the average pooling performs better. It is
worthwhile to point out that, in the prediction process, the
classifier outputs are transformed into probabilities by sig-
moid function (refer to Chang and Lin 2011). An image is
finally represented by a 110-d descriptor, each element of
which can be considered as the occurrence probability of the
corresponding semantic attribute. This image descriptor has
two advantages compared with BoW histogram. First, it has
explicit semantic meanings while BoW histogram does not.
Second, its dimensionality is much lower than that of BoW
histograms (usually up to several thousands). In the exper-
iment section, we show that this semantic image descriptor
performs close to BoW histogram. Furthermore, when com-
bining it with BoW histogram, the performance always in-
creases, which demonstrates that they are complementary to
each other.

4 Visual Words Disambiguation by Semantic Contexts

As pointed out in the introduction, context plays a major role
in the disambiguation of natural language words. By anal-
ogy, this motivates us to put a special emphasis on extracting
contextual information from images with the idea of using it
to disambiguate visual words. Here we use the local seman-
tic attributes defined in the previous section to describe the
local characteristics of image, which are referred as seman-
tic contexts. In the following, we will introduce two methods
to embed semantic contexts into BoW histogram and there-
fore reduce the ambiguity of visual words.

4.1 Context Embedding with a Single Vocabulary

In this first method, a single vocabulary is learned from a
set of local features (e.g. SIFT) which are extracted from
image patches with randomly selected positions and scales.
The main idea of our method for visual words disambigua-
tion is illustrated in Fig. 3. Specifically, for an image, we
construct multiple BoW histograms, each of which corre-
sponds to a visual semantic context: in this case, a given
visual word has different occurrence frequencies when dif-
ferent contexts are considered. For example, in Fig. 3, the
occurrence frequency of the visual word denoted by square
is higher in context sky than in tree, because this visual word
often appears in sky area. By embedding contextual infor-
mation, the visual words in each single histogram are less
ambiguous. Considering the huge resulting dimensionality if
these context-specific histograms were combined (e.g. con-
catenated), we propose to reduce the dimensionality which

Fig. 3 Construction of context embedded BoW histogram. For an im-
age, multiple probability maps are generated by the pre-learned con-
text classifiers to measure the occurrence probabilities of correspond-
ing contexts. Then, a BoW histogram is constructed for each context

by weighting local features according to its probability map. Finally,
a context selection process is used to choose a single context for each
visual word and therefore result in a compact image descriptor. Note
that in this method, the same vocabulary is used for all contexts
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selects only a single context for each visual word. The resul-
tant histogram is called context-embedded BoW histogram
(contextBoW-s for short) which has the same dimensional-
ity as the standard BoW histogram. Here ‘-s’ denotes ‘single
vocabulary’ in order to distinguish with that of multiple vo-
cabularies (introduced in the next section).

In the following, we first formulate the process of embed-
ding semantic contexts into BoW model, and then introduce
how to construct the context-embedded BoW histogram by
using previously learned attribute classifiers (also referred
as context classifiers).

4.1.1 Formulation of Embedding Contexts into BoW Model

Let {fi, i = 1, . . . ,N} be the set of local features extracted
from image I , where N is the total number of local features.
The visual vocabulary consists of V visual words denoted
by {vj , j = 1, . . . , V }. The traditional BoW feature, for vj ,
measures the occurrence probability of vj on image I , say
p(vj |I ). In practice, p(vj |I ) is usually computed as the oc-
currence frequency of visual word vj on image I by:

p(vj |I ) = 1

N

N∑

i=1

δ(fi, vj ), (1)

where

δ(fi, vj ) =
{

1 if j = argminj=1,...,V d(fi, vj ),

0 else
(2)

and d is a distance function (e.g. the L2 norm).
As mentioned in Sect. 1, a visual word can have different

meanings in different contexts. Marginalizing p(vj |I ) over
different contexts gives:

p(vj |I ) =
C∑

k=1

p(vj |ck, I )p(ck|I ), (3)

where ck is the kth context, C is the number of contexts,
p(vj |ck, I ) is the context-specific occurrence probability of
vj on image I , and p(ck|I ) is the occurrence probability of
context ck on image I .

Equation (3) is similar to that in Probabilistic Latent
Semantic Analysis (pLSA) (Hofmann 1999). But different
from pLSA, we do not assume the conditional indepen-
dence that, conditioned on the context ci , visual words vi

are generated independently from the specific image I , i.e.,
p(vj |ck, I ) �= p(vj |ck). Instead, we believe that the words
generated by a given context are characteristic signatures of
the image. As an illustration, if for a particular image, a win-
dow-like visual word occurs simultaneously with the blue
context, it could be a good cue for hypothesizing the pres-
ence of a plane in the image. Another difference from pLSA
is that we do not consider contexts as latent variables, which

we believe would be hard to estimate, but define them of-
fline and predict them for every image by using the context
classifiers.

It is worthwhile to point out that the second term of
Eq. (3) (p(ck|I )), which is equivalent to the semantic im-
age descriptor (using here only the local attributes) proposed
in Sect. 3, can also provide rich information to describe the
image as shown by Vogel and Schiele (2007). For example,
knowing an image is composed of one third of sky, one third
of sea and one third of beach, brings a lot of information
regarding the content of this image. Thus, when classify-
ing images, p(vj |ck, I ) and p(ck|I ) are combined to take
advantage of the complementary information embedded in
them. In this work, the combination is performed at decision
level, i.e. by training classifiers on p(vj |ck, I ) and p(ck|I )

separately and then combining their scores (e.g. with the
weighted sum rule, product rule or max rule). The detailed
description of these combination rules can be found in Kit-
tler et al. (1998).

4.1.2 Implementation of Context-Embedded BoW
Histogram

In this work, p(vj |ck, I ) is constructed by modeling the
probabilistic distribution of context ck on image I . In prac-
tice, the probabilistic distribution is estimated by randomly
dividing image I into a set of regions Ip and predicting the
occurrence probabilities of ck in these regions. By denoting
Ip(fi) the set of image regions which cover the local fea-
ture fi , we define:

p(vj |ck, I ) = 1

N

N∑

i=1

δ(fi, vj )p
(
ck|Ip(fi)

)
, (4)

where p(ck|Ip(fi)) can be considered as the weight of local
feature fi . In practice, p(ck|Ip(fi)) is computed by aver-
aging the outputs of context classifier for ck on the regions
within Ip(fi). Here the classifier outputs have already been
transformed into probabilities (see Sect. 3).

Concatenating p(vj |ck, I ) for all visual words and con-
texts would lead to a V × C-dimensional descriptor. In this
work C is 75 (i.e. the number of local contexts) since only
the local contexts are used to construct p(vj |ck, I ) while V

is usually from hundreds to thousands. Training classifiers
using this high dimensional descriptor would be very time-
consuming especially when the non-linear kernel is used.
Our intuition is that, for a given classification task, a given
visual word usually appears only within a limited set of con-
texts. For example, as in Fig. 3, the visual word denoted
by square almost exclusively appears in the context sky and
river. In practice, we show in Sect. 5 that using only one
context per visual word already gives very good results. By
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doing that, for a given classification task, an image is finally
represented by
[
p(v1|ck1 , I ), . . . , p(vj |ckj

, I ), . . . , p(vV |ckV
, I )

]
,

where ckj
is the selected context for visual word vj and the

given classification task.
Up to now, the only remaining problem is how to choose

a single context for each visual word (i.e. the ckj
). This is

a feature selection problem and in theory any criterion can
be used for that, e.g. max-likelihood. Although more con-
sistent with the proposed probabilistic framework, the max-
likelihood criterion does not allow to use category labels
of images and therefore performs worse than some super-
vised ones in practice. In this work, we adopt a supervised
t-test based criterion. Specifically, for each visual word vj

and each context ck , we assume that the value of p(vj |ck, I )

follows the Gaussian distribution N (μ+
j,k, σ

+
j,k) on positive

images and N (μ−
j,k, σ

−
j,k) on negative images. It is wor-

thy pointing out that while the probability p(vj |ck, I ) is
bounded between 0 and 1, we observe by experiments that
its distribution is usually near-Gaussian. Thus, the assump-
tion is approximately satisfied. For a given visual word, we
compute the t-test between these two distributions for ev-
ery possible context and take the context giving the highest
value. It therefore selects the context for which the represen-
tation of positive images is as different as possible from the
representation of negative images, i.e. the most discrimina-
tive context. As this context selection process is supervised,
the selected context depend on the classification task to be
addressed. That is to say, the context selected for ‘aeroplane’
classification and ‘person’ classification will be very differ-
ent. The whole procedure of constructing contextBoW-s is
summarized in Algorithm 1.

4.2 Context Embedding with Multiple Vocabularies

As above mentioned, another choice for visual word disam-
biguation is to learn a specific vocabulary for each semantic
context. In this case, each visual word is learned within a
given context and therefore is much less ambiguous. For ex-
ample, if a window-like visual word is learned within the
context sky, it is very likely to be a plane window rather
than a car window, and will therefore be modeled more ac-
curately. In the following, we will introduce how to learn
context-specific vocabulary and construct compact image
representations by selecting the best contexts for a specific
classification task.

4.2.1 Learning Context-Specific Vocabulary

In the traditional vocabulary learning process, local features
extracted from a set of images are uniformly sampled (at
random positions or regularly) and then vector quantized

Algorithm 1 Construction of ContextBoW-s
Input: Image I , visual vocabulary {vj , j = 1, . . . , V }, lo-
cal attribute classifiers {φk, k = 1, . . . ,C}
Extract a set of local features {fi, i = 1, . . . ,N} from im-
age I .
for i = 1, . . . ,N do

Construct Ip(fi) = {gl, l = 1, . . . ,Li} which is the set
of image regions covering fi .
for k = 1, . . . ,C do

Compute p(ck|Ip(fi)) = 1
Li

∑Li

l=1 φk(H(gl)) where
H(gl) is the BoW histogram built on region gl .

end for
end for
for j = 1, . . . , V , k = 1, . . . ,C do

Compute p(vj |ck, I ) = 1
N

∑N
i=1 δ(fi, vj )p(ck|Ip(fi)).

end for
for j = 1, . . . , V do {offline context selection}

for k = 1, . . . ,C do
Compute (μ+

j,k, σ
+
j,k) and (μ−

j,k, σ
−
j,k) for a classifi-

cation task.
end for
Select the context with the highest t-test score

kj = arg min
k=1,...,C

(μ+
j,k−μ−

j,k)
2

σ+
j,k

2+σ−
j,k

2

end for
Output: ContextBoW-s
[p(v1|ck1, I ), . . . , p(vj |ckj

, I ), . . . , p(vV |ckV
, I )]

to get visual words. Differently, when learning our context-
specific vocabulary, the sampling of local features is based
on the distribution of this context on images. Specifically,
more local features are sampled at the image regions with
higher context-occurring probabilities (brighter image re-
gions in Fig. 3). In practice, this process is implemented by
assigning each local feature fi a probability p(ck|Ip(fi))

(defined in Sect. 4.1.2) and sampling local features based on
their probabilities, which is formulated as follows,

s(fi) =
{

1 if p(ck|Ip(fi)) ≥ ri ,

0 else,
(5)

where s(fi) indicates whether the local feature fi is selected
or not and ri are random numbers which are uniformly sam-
pled between 0 and 1.

After sampling local features for each context, k-means
is used multiple times, to build one specific vocabulary
per context. At the end, an image can be represented by
multiple context-specific BoW histograms. The construction
of context-specific BoW histogram is the same as that in
Sect. 4.1.2 (see Eq. (4)).
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4.2.2 Context Selection by Simulated Annealing

As in Sect. 4.1.2, concatenating all context-specific BoW
histograms would lead to a V × C-dimensional descriptor.
Training a classifier based on such high dimensional de-
scriptors would be very time consuming, especially when
non-linear kernels are used. However, we can not perform
context selection for each visual word, as introduced in
Sect. 4.1.2, because the visual words are context specific
rather than unique for all contexts. In this work, we adopt
a divide and conquer strategy to learn the final image clas-
sifier. More specifically, we train a classifier for each con-
text based histogram, which is of much lower dimensional-
ity, and then combine all the classifiers by averaging their
outputs. The benefit of this strategy is also noted in Gehler
and Nowozin (2009).

Although the divide and conquer strategy effectively re-
duce the dimensionality of features used for each classifier,
constructing multiple histograms and running multiple clas-
sifiers in test phase is very time consuming. Furthermore,
for a specific classification task, the contexts are not equally
important. For example, when classifying ‘aeroplane’, the
context sky is much more useful than building. This pro-
vides a possibility to select only a subset of useful contexts
(classifiers) without losing much performance. It is worthy
pointing out that the context selection is performed for each
classification task separately in the training stage rather than
for each individual test image. The context selection process
is introduced in the follows.

Let {hk, k = 1, . . . ,C} denotes the classifier trained on
the kth context-specific BoW histogram. wk ∈ {0,1}, i =
1, . . . ,C indicates whether the kth context is selected (“1”
means selected). F(h) is an evaluation function whose out-
put is the performance of classifier h on the classification
task to be addressed, where h = ∑C

k=1 wkhk is a linear com-
bination of the selected classifiers. The performance mea-
sure is the average precision or the classification accuracy,
depending on the tasks (see Sect. 5 for details). Our aim is to
get the optimal value of W = [w1,w2, . . . ,wC] which max-
imizes F(h):

W ∗ = arg max
W

F(h). (6)

It is a combinatorial optimization problem; therefore the
exhaustive search is computationally prohibitive when the
number of contexts C is large (75 in our case). Thus, in this
work, we adopt simulated annealing which is a stochastic
optimization method to search for the global optima. As to
the number of selected contexts, there are two options. It
can be either considered as a parameter set by hand or cho-
sen by simulated annealing automatically. In this work, we
choose the former setting with which we can control the di-
mensionality of final image descriptor and therefore make

fair comparisons with other methods (e.g. spatial pyramid
matching).

In our work, the simulated annealing process starts from
a random initial state. During each iteration, the new state
(wk) is generated by randomly selecting a context and flip its
indicator wk . Meanwhile, we need to do another flip to guar-
antee that the number of selected contexts does not change.
A cooling temperature is involved in the iterative process
which works like that: the choice between the previous and
current state is almost done by chance when the temperature
is large, but increasingly tends to select the best of the two
states as the temperature goes to zero. This cooling mecha-
nism prevents the simulated annealing from stacking at local
optima and therefore makes it outperform the simpler greedy
search (validated by experiments in Sect. 5.5).

After context selection, an image can be eventually rep-
resented by a small set of context-specific BoW histograms.
Image classification is performed by running the classifiers
trained on these context-specific BoW histograms and av-
eraging their outputs. We refer to the selected histogram
as contextBoW-m to distinguish with contextBoW-s intro-
duced in Sect. 4.1. The whole procedure of constructing
contextBoW-m is summarized in Algorithm 2.

Algorithm 2 Construction of ContextBoW-m
Input: Image I , context-specific vocabulary {vk,j , k = 1,

. . . ,C, j = 1, . . . , V }, local attribute classifiers {φk, k =
1, . . . ,C}.
Extract a set of local features {fi, i = 1, . . . ,N} from im-
age I .
for j = 1, . . . , V , k = 1, . . . ,C do

Compute p(vk,j |ck, I ) = 1
N

∑N
i=1 δ(fi, vk,j )p(ck|

Ip(fi))

end for
Solve W ∗ = arg maxW F(

∑C
k=1 wkhk) {offline context

selection}
where hk is the classifier trained on {p(vk,j |ck, I ), j =
1, . . . , V }, W = [w1,w2, . . . ,wC], wk ∈ {0,1} indicates
whether the kth context is selected, and F(h) gives the
performance of classifier h on the classification task to be
addressed.
Output: ContextBoW-m
{p(vk,j |ck, I ),wk = 1, j = 1, . . . , V }

4.2.3 Relation to Spatial Pyramid Matching

Recall that the way we embed contextual information into
BoW model is based on weighting local features (see
Eq. (4)). It is similar to the well-known spatial pyramid
matching (SPM) (Lazebnik et al. 2006) which divides an
image into grids and build a histogram for each grid. This
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Fig. 4 Context selection from both semantic contexts and SPM chan-
nels. For an image, multiple probability maps are generated by both
context classifiers and SPM channels, from which multiple BoW his-
tograms are constructed. Then, a context selection process is used to

choose a small number of the most discriminative contexts for a spe-
cific classification task. Finally, multiple BoW histograms are com-
bined at decision level

process can be also considered as weighting local features:
at a given level, features within a given bin are weighted by
1 while others are set to 0. However, there are two differ-
ences between our method and SPM. First, in our method,
the weights of the local features are continuous rather than
binary. Secondly, the weights in SPM are the same for all
images, while the weights given by the context classifiers are
image-specific. Although less flexible than context-based
weights, the binary weights in SPM are more stable which is
also favorable. Thus, we add the SPM grids into the context
selection process to balance the tradeoff between flexibil-
ity and stability. It is worthwhile to point out that, different
from traditional SPM, we learn a specific vocabulary for
each SPM grid based on local features within this grid. The
context selection process with both semantic contexts and
SPM grids is illustrated Fig. 4.

5 Experiments

This section presents the experimental validation of the pro-
posed methods. The databases used for the experiments as
well as some parameters of our algorithms are given in
Sect. 5.1. Then we show the accuracy of the attribute clas-
sifiers and give some examples of attribute prediction in
Sect. 5.2. The performance of semantic image descriptor,
contextBoW-s, contextBoW-m as well as the demonstration
of some aspects of the algorithms are given Sects. 5.3, 5.4
and 5.5 respectively. Finally, Sect. 5.6 gives the comparison
with state-of-the-art results.

5.1 Experimental Setup

Databases Four publicly available image databases are
used for the experiments: PASCAL VOC 2007 (Ever-
ingham et al. 2007), Scene-15 (Lazebnik et al. 2006),

MSRCv2 (Winn et al. 2005) and SUN-397 (Xiao et al.
2010).

PASCAL VOC 2007 is the last challenge for which the
test data annotations are publicly available. The dataset con-
tains 9963 images for 20 object classes, which were col-
lected from users uploads to the Flickr website. The dataset
has already partitioned into “training”, “validation” and
“testing” sets. For the challenge’s classification task, the
goal is to determine whether or not each test image con-
tains at least one instance of each object class of interest.
Performance is measured by calculating the average preci-
sion (AP) for each class, and the mean average precision
over the 20 categories (mAP), following the protocols given
in Everingham et al. (2007).

Scene-15 database contains 15 scene categories, each
of which has 200 to 400 gray-level images. These images
come from the COREL collection, personal photographs,
and Google image search. Following the experimental setup
used in Lazebnik et al. (2006), 100 images per category are
randomly sampled as training samples (remaining as test-
ing samples). One-versus-all strategy is used for multiclass
classification and the performance is reported as the average
classification rate on the 15 categories.

MSRCv2 is an object category database. We follow the
experimental setup used in Zhang and Chen (2009) which
chose 9 categories out of 15: cow, airplane, face, car, bike,
book, sign, sheep and chair in order to make objects from
different categories not to appear in the same image. In the
experiments, 15 training images and 15 testing images are
randomly sampled for each category. One-versus-all strat-
egy is used for multiclass classification and the performance
is reported as the average classification rate on 9 categories.

SUN-397 database contains 397 scene categories, each
of which has at least 100 images collected from the In-
ternet. Following the experimental setup used in Xiao et
al. (2010), 50 images per category are randomly sampled
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as training samples (remaining as testing samples). One-
versus-all strategy is used for multiclass classification and
the performance is reported as the average classification rate
on the 397 categories.

Local Features Four types of local features, the ones pro-
posed in Farhadi et al. (2009), are used in our experiments:
SIFT, Texton filterbanks (36 Gabor filters at different scales
and orientations), LAB and Canny edge detection. Specifi-
cally, SIFT features are computed for 2000 image patches
with randomly selected positions and scales (with scales
from 16 to 64 pixels), and are quantized to 1024 k-means
centers. Texton and LAB features are computed for each
pixel, and quantized to 256 and 128 k-means centers re-
spectively, while Canny edge features are quantized to 8
orientation bins. Combining these features gives a 1416-
dimensional BoW feature vector.

Attribute Classifiers As mentioned in Sect. 3, attribute
classifiers are learned by linear SVM (here we use the imple-
mentation of LIBSVM—Chang and Lin 2011), the inputs to
which are BoW feature vectors constructed by pooling local
features within image regions (for region-level classifiers) or
whole images (for image-level classifiers). In order to esti-
mate the occurrence probabilities of contexts, we use non-
negative SVM scores obtained by fitting a sigmoid function
to the original SVM decision value (Chang and Lin 2011).

Fig. 5 Illustration of three-level spatial pyramid. Number in each bin
denotes its index

The SVM parameter C is set to 10, which has been deter-
mined by fivefold cross-validation. As to the image regions
used for computing local contexts, on each training image
we sampled 100 regions with random positions and scales
(with scales from 20 % to 40 % of the image size). When
training a local context classifier, 10,000 regions are ran-
domly selected from positive and negative training images
respectively. When training the global context classifiers, the
average number of positive training images is about 400 and
the same number of negative training images are randomly
selected.

Image Classification For image classification, a SVM
classifier with chi-square kernel (also implemented by us-
ing LIBSVM) is learned for each category. The value of the
SVM parameter C and the normalization factor γ of chi-
square kernel are determined by fivefold cross-validation.
As to spatial pyramid matching (SPM), we use a three-level
pyramid, 1 × 1, 2 × 2, 3 × 1 (totally 8 channels as shown in
Fig. 5).

5.2 Evaluation of Attribute Classifiers

The prediction of semantic attributes plays the key role in
our method. Thus, in this subsection, we evaluate the per-
formances of attribute classifiers and give some examples of
attribute prediction.

Figure 6 shows the accuracy achieved by individual at-
tribute classifiers, which are computed by fivefold cross-
validation on training images. When training and testing at-
tribute classifiers, the negative examples were sampled to
balance the positive examples, so making a random predic-
tion would give a 50 % accuracy. As illustrated in Fig. 6,
most of the classifiers achieve higher than 80 % accuracy;
the lowest accuracies are seen on the material attributes,

Fig. 6 Accuracy of individual attribute classifiers computed by five-
fold cross-validation on training images. The colors show the groups of

attributes: global scene, local scene, color, shape,

material, part. The figure is better viewed in color (Color fig-
ure online)
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while on average the global scene attribute classifiers per-
form the best. Using more negative training samples pro-

Fig. 7 Influence of the number of negative training samples and of
the type of kernel on (a) the accuracy of attribute classifiers and (b)
the final image classification performance given by those attribute
classifiers. In (b), the performance is measured as the mAP of semantic
image descriptor on PASCAL VOC 2007 dataset

duces attribute classifiers with slightly better accuracy but
does not improve the performance of the generated semantic
image descriptor (see Fig. 7). As mentioned in Sect. 3, the
attribute classifiers are learned by SVM with Battacharyya
kernel. It is shown in Fig. 7 that Battacharyya kernel sig-
nificantly outperforms linear kernel but the more complex
chi-square kernel does not lead to better performance. Thus,
Battacharyya kernel gives the best trade-off between com-
putational cost and performance.

We will use these attribute classifiers to make soft pre-
dictions of attribute occurrence, and use those predictions
as features to build semantic image descriptor and disam-
biguate the visual words. In Fig. 8, we give some examples
of attribute prediction. In many cases where the prediction
is not accurate enough, it is possible to understand why the
attribute classifier made the predictions. For example, the
car and road regions of the image given in Fig. 8(a) make
scene looking like a parking lot, the photo frames hanging
on the wall look, in Fig. 8(c), similar to windows and doors,
the grass and stone in Fig. 8(e) make the scene similar to a
cemetery image.

5.3 Evaluation of Semantic Image Descriptor

Recall that the semantic descriptors for local attributes are
computed by running attribute classifiers on image regions
and then pooling the classifier outputs. We experiment both
average pooling and maximum pooling to construct the se-
mantic descriptor (75-d). The performances of average pool-
ing on PASCAL 2007 is 52.3 % (mAP), which is much bet-
ter than that of maximum pooling, i.e. 46.8 %.

Figure 9 gives the performances of different groups of se-
mantic attributes. The attributes of global scene, local scene
and object perform better than others. The worse perfor-
mances of color and shape attributes are mainly due to their

Fig. 8 Examples of semantic attribute prediction. For each image, we give the strongest prediction of global attribute (underlined) and the top 5
predictions of local attributes. The value after each prediction denotes the confidence given by the corresponding attribute classifier
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lower dimensionalities while the worse performance of ma-
terial attributes lies in the difficulty of predicting them (see
Fig. 6).

Table 1 summarizes the performances of semantic de-
scriptor, BoW histogram, and their combinations by differ-
ent rules. Three conclusions can be drawn from Table 1.
First, semantic descriptors perform close to BoW histogram
while their dimensionality (110-d) is much lower than that
of BoW histogram (1416 × 8 = 11328 − d). Second, com-
bining semantic descriptors with BoW histogram improves
the performance, which validates that they are complemen-
tary to each other. Third, the weighted sum rule performs
best to combine them.

For a more detailed comparison, Fig. 10 gives the per-
formance achieved by semantic descriptors, BoW histogram
and their combination (weighted sum) on every object cat-
egory of PASCAL 2007 and Scene-15 datasets. On the ma-

Fig. 9 Performances of different groups of semantic attributes. We do
not give the performance of ‘color’ attributes on Scene-15 dataset be-
cause it contains only grey-level images. Values marked off by brackets
denote the number of attributes in the corresponding group. The figure
is better viewed in color (Color figure online)

jority of categories, semantic descriptors perform worse than
BoW histogram, while on eight categories (‘bird’, ‘bottle’,
‘chair’, ‘dog’, ‘person’, ‘potted plant’, ‘suburb’, ‘coast’)
semantic descriptors performs better. The performance on
each category is increased by combining the two feature
types, instead of using only one of them.

In Bosch et al. (2006), images are represented by the mix-
ing coefficients of topics, obtained with pLSA. This repre-
sentation bears similarities with the proposed semantic de-
scriptors. Thus, we re-implement the method in Bosch et
al. (2006) and compare it with our semantic descriptor. To
be fair, the number of topics is set to the dimensionality
of semantic descriptor and the same classifier is used for
classification. The performance of this pLSA-based descrip-
tor is 52.8 % (mAP) on PASCAL 2007 which is worse
than those of semantic descriptor (refer to Table 1). In ad-
dition, we compare our method with another attribute-based
method (Wang et al. 2009). In this method, an image is rep-
resented by a descriptor of 103 dimensions, each of which
corresponds to the similarity of this image to a Flickr image
group. Although its dimensionality is a little lower, our se-
mantic descriptor gives much better performance (55.1 %)

Table 1 Performance of semantic descriptors, standard BoW+SPM
model and their combination by weighed sum, product and max rules.
The optimal weight in the weighted sum rule is learned on the valida-
tion set of Pascal 2007 database

PASCAL 2007 Scene-15 MSRCv2 SUN-397

Semantic 55.1 79.1 ± 0.9 82.8 ± 2.8 25.4 ± 0.6

BoW+SPM 59.2 83.3 ± 0.7 86.2 ± 2.3 30.9 ± 0.4

Weighted sum 62.2 86.1 ± 0.3 88.0 ± 2.6 33.8 ± 0.4

Product 61.8 85.4 ± 0.6 86.9 ± 2.2 33.3 ± 0.5

Max 60.9 83.1 ± 0.4 86.6 ± 1.8 33.1 ± 0.5

Fig. 10 Average precision achieved using bag of words features, semantic descriptors and their combination, on PASCAL VOC 2007 and Scene-15
datasets
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Fig. 11 Selection frequencies of different contexts for three categories: ‘cow’, ‘motorbike’ and ‘living room’. The contexts with high frequency
are marked by their names

on PASCAL 2007 than this 103-d similarity-based descrip-
tor (44.9 % reported in Wang et al. 2009).

5.4 Evaluation of ContextBoW-s

5.4.1 Qualitative Results

In this subsection, we give some examples illustrating the
context selection process. As mentioned in Sect. 4.1, we
choose only one context for each visual word, the most rel-
evant for the category to be classified. Hence, for each cat-
egory, we can count the number of times each context is
selected, and higher frequencies means higher relevance for
this category. Figure 11 gives the frequencies of contexts
for category ‘cow’, ‘motorbike’ and ‘living room’. It can
be seen that even if the relevance of different contexts vary
greatly, the contexts that are related to the category to be
classified tend to have higher relevance. Take Fig. 11(b) as
an example, besides motorbike, the context street and wheel
also play an important role in ‘motorbike’ classification.

As explained before, the context selection depends on
the classification task to be addressed. It means an image
is described differently for different classification tasks. For
example, in Fig. 12, for ‘motorbike’ classification, the two
most relevant contexts are motorbike and street. This result
can be easily explained. For ‘person’ classification, the con-
texts black and sky dominate the image description. These
two local contexts seem to have no relation with ‘person’,
whereas one possible explanation is that in daily life people
often wears dark or blue clothes.

5.4.2 Parameter Evaluation

In the computation of context-embedded BoW histogram
(contextBoW-s), the number of randomly sampled image re-
gions (i.e. the size of Ip) is an important parameter. Hence,
we do several experiments on the validation set of PASCAL
2007 to evaluate the effect of the number of regions as well
as the way too chose their locations (random sampling vs.
regular grid). From these experiments, we can conclude that

Fig. 12 Probability maps of the two top-ranked contexts for different
classification tasks. The value of each pixel on the probability map is
computed by averaging the outputs of corresponding context classifiers
on the image regions covering this pixel

sampling regions on a regular grid does not give better re-
sults than sampling them randomly. However, random sam-
pling raises questions about the stability of results and the
number of regions to sample. If we sample 10, 50 and 100
regions per image, the mAP are respectively 56.2 %, 56.8 %
and 57.3 %. Taking more than 100 regions does not improve
the results significantly. Regarding stability, the standard de-
viations observed over 5 runs, if we sample 10, 50 or 100
regions per image, are respectively 0.5 %, 0.3 % and 0.2 %.
Hence, if 100 regions are randomly sampled, the choice for
these regions does not have a great effect on the performance
of contextBoW-s.

As mentioned in Sect. 4.1, we rank contexts for each
visual word and select only the best one, resulting in
the V -dimensional descriptor (contextBoW-s). Although
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it is also possible to use more contexts (e.g., top 2, 3
or 5) for each visual word, with the cost of higher di-
mensionality of image description, Fig. 13 shows that it
does not result in a significant performance improvement
(at most 0.2 %). Furthermore, instead of context selec-
tion, we can use other dimensionality reduction meth-
ods, such as Principal Component Analysis (PCA) or Lin-
ear Discriminant Analysis (LDA), to obtain a low dimen-
sional image descriptor. To validate the effect of them,
we use PCA and LDA to project the C-dimensional de-
scriptor (p(v|c1, I ),p(v|c2, I ), . . . , p(v|cC, I )) for each vi-
sual word into a lower dimensional subspace. Figure 13
gives the performance of PCA (up to 5-d) and LDA (only
1-d due to the binary classification task on PASCAL 2007
database), which are worse than that our context selection.
In short, selecting a single context for each visual word
gives the best tradeoff between performance and dimension-
ality.

Finally, we evaluate the influence of the number of visual
words. It can be seen from Fig. 14 that, as the number of vi-
sual words increases, the performance of context-embedded
BoW histogram (on validation set of PASCAL 2007) contin-
ues to increase. However, when the number of visual words
exceeds 1024, the performance saturates. Thus, the number
of visual words is set to 1024 for the following experiments,
on all three databases. Note that Fig. 14 gives the perfor-
mance of the visual words learned from SIFT features. Sim-

Fig. 13 Performance comparison of different dimension reduction
methods on the validation set of PASCAL 2007. Top N means that
the top-ranked N contexts are kept. The numbers after PCA and LDA
denote the dimensionality of the subspace

ilar experiments have also been done for texton and LAB
features to determine the optimal number of visual words
(256 and 128 respectively).

5.4.3 Comparison with Standard BoW+SPM Model

In this subsection, we compare our methods with the stan-
dard BoW model. Table 2 summarizes the performances of
BoW model, contextBoW-s, semantic descriptor and their
combination on three databases. Here the spatial pyramid
(SPM) is applied on both BoW model and contextBoW-s to
enhance their performances. It can be concluded from Ta-
ble 2 that, by embedding contextual information, the per-
formance of BoW model is improved, say 2.8 % on PAS-
CAL 2007, 2.1 % on Scene-15, 2.3 % on MSRCv2 and
1.6 % on SUN-397. As observed in previous experiments,
although semantic descriptors do not give better perfor-
mance than BoW model, combining them with contextBoW-
s leads to additional improvement, demonstrating that they
are somewhat complementary. Finally, the improvement of
our method (contextBoW-s+semantic) to BoW model is
5.3 % on PASCAL 2007, 4.5 % on Scene-15, 4.5 % on
MSRCv2 and 3.8 % on SUN-397.

For more detailed comparisons, Fig. 15 gives the perfor-
mance improvement for each category of PASCAL 2007
and Scene-15 databases. It can be seen that contextBoW-s
performs better than BoW model on 31 of 35 categories

Fig. 14 Performances of ContextBoW-s with different number of vi-
sual words learned from SIFT features. The experiment is done on the
validation set of PASCAL 2007

Table 2 Performance comparison between our methods and the standard BoW+SPM model

PASCAL 2007 Scene-15 MSRCv2 SUN-397

BoW+SPM 59.2 83.3 ± 0.7 86.2 ± 2.3 30.9 ± 0.4

Semantic 55.1 79.1 ± 0.9 82.8 ± 2.8 25.4 ± 0.6

ContextBoW-s 62.0 85.4 ± 0.5 88.5 ± 2.4 32.5 ± 0.7

ContextBoW-s+
semantic

64.5 87.8 ± 0.5 90.7 ± 1.8 34.7 ± 0.5

Result from
dataset creator

59.4
(Everingham et al. 2007)

81.4
(Lazebnik et al. 2006)

80.4 ± 2.5
(Zhang and Chen 2009)

38.0
(Xiao et al. 2010)
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Fig. 15 Performance improvement of our methods over the standard BoW+SPM model on PASCAL 2007 database

Fig. 16 Selection frequencies of different contexts for category ‘bottle’ and ‘car’, as well as Scene-15 database. The contexts with high frequency
are marked by their names

(except for ‘bus’, ‘cat’, ‘highway’ and ‘kitchen’), whereas
contextBoW-s+semantic performs better than BoW model
on all categories. In particular, for category ‘potted plant’,
the improvement of average precision is more than 10 %. We
believe the reason of this large improvement is that potted
plants are very diverse in appearance and have small sizes;
therefore their classification mainly depends on the contex-
tual information.

5.5 Evaluation of ContextBoW-m

5.5.1 Qualitative Results

In this subsection, we first give some examples illustrating
the context selection at task-level. As mentioned in Sect. 4.2,
we select a subset of contexts for each individual classifica-
tion task by using simulated annealing. As it is a stochas-
tic process, we ran the context selection procedure 10 times
for each classification task and then reported the selection
frequency of every context. In this experiment, there is no
constraint on the number of selected contexts and 8 SPM
channels are also involved in the context selection process.
Figure 16 shows the selection frequencies of contexts for
‘bottle’, ‘car’ and Scene-15 database. Note that, different

from PASCAL 2007 dataset in which the binary classifica-
tion tasks are independent from each other, the multi-class
classification task in Scene-15 dataset is considered as a
whole for which the context selection is performed. Simi-
lar to the previous observation, the contexts which are more
relevant to the classification task tend to be selected. For ex-
ample, in Fig. 16(a), some indoor contexts (e.g., wall, door
and screen) play an important role in ‘bottle’ classification
since bottle often appears in indoor scenes. Another inter-
esting observation is that the importance of SPM channels
also depends on the classification task itself. For example,
in Fig. 16(a), SPM channels of entire image play more im-
portant role in ‘bottle’ classification since bottles usually ap-
pear in clutter backgrounds whose characteristics are better
modeled by entire image than image regions. In Fig. 16(b),
the bottom region of an image (probably road) is much more
important than other parts for ‘car’ classification. It can be
also observed from Fig. 16 that SPM channels plays a more
important role in scene classification than in object classifi-
cation. This is reasonable because the spatial configurations
of scene images are more consistent than those of object im-
ages.
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Fig. 17 Performances of contextBoW-m with SPM channels, semantic contexts and both. In these cases, the feature dimensionality of con-
textBoW-m is kept the same for fair comparison

5.5.2 Comparison Between SPM Channels and Semantic
Contexts

As mentioned in Sect. 4.2, some SPM channels are also
involved in the context selection process. Some qualitative
results have already shown the complementarities of SPM
channels and semantic contexts (see Fig. 16). In the follow-
ing, we will quantitatively evaluate the effect of additional
SPM channels in context selection. Figure 17 gives the per-
formance of our method in three different settings, i.e., SPM
channels, semantic contexts and both. In the first setting,
8 SPM channels (1 × 1, 2 × 2, 3 × 1) are used without any
selection process. It is worth pointing out that the SPM used
here is a little different from the traditional one as differ-
ent vocabulary is learned for each channel and the combi-
nation of different channels is performed at decision level
rather than at feature level. In the second and third settings,
to keep the final image description the same dimensionality
as that in the first setting, the number of contexts selected by
simulated annealing is also set to 8. It can be observed from
Fig. 17 that when classifying outdoor scenes (e.g. mountain,
street) or objects in outdoor scenes (e.g. boat, car) the se-
mantic contexts often give good results without using SPM
channels. On the contrary, when classifying indoor scenes
(e.g. bedroom, kitchen) and objects in indoor scenes (e.g.
bottle, sofa) the SPM channels performs similar to semantic
contexts and combining them improves the performances.
The reason behind this observation is that there are much
more attributes in our method to describe outdoor scenes
than indoor scenes, therefore when classifying indoor scenes
and objects the SPM channels are needed as a supplement.
Furthermore, the global layout of indoor images is more sta-
ble and representative of images.

5.5.3 Evaluation of Context Selection

In context selection, the number of selected contexts is an
important parameter. Figure 18 gives the performances of
contextBoW-m with different number of contexts. In this
experiment, the candidate contexts include both semantic
contexts and SPM channels. Besides, in order to validate
the effectiveness of simulated annealing, we also compare
it with random selection, greedy search and logistic regres-
sion. Since logistic regression learns a weight for each con-
text, we can either combine all contexts by weighted sum or
select contexts with higher weights (the absolute values are
considered). It can be seen from Fig. 18 that simulated an-
nealing gives better performance than other methods. More-
over, the performance of using selected contexts quickly ap-
proaches that of combining all contexts uniformly (horizon-
tal solid line in Fig. 18), which validates the importance of
context selection. It is worthy noting that combining all the
contexts by weighted sum performs worse than selecting a

Fig. 18 Performances of contextBoW-m on PASCAL 2007 dataset
with different number of contexts. The horizontal solid and dash
lines denote the performance of combining all contexts with uniform
weights and the weights learned by logistic regression respectively
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subset of contexts according to the weights. The reason we
think is that the weight optimization is not directly related
to the final performance measure (e.g. mAP).

5.5.4 Comparison with Standard BoW+SPM Model

Table 3 summarizes the performances of BoW+SPM model,
contextBoW-s, contextBoW-m and their combination with
semantic descriptors. The number of selected contexts in
contextBoW-s is set to 8 so that the dimensionality of im-
age representation is the same as that of BoW+SPM and
ContextBoW-m. It can be concluded that, by learning a
vocabulary for each context, contextBoW-m not only out-
performs standard BoW+SPM model but also outperforms
contextBoW-s in which a single vocabulary is learned for
all contexts. Moreover, the performance of contextBoW-m
can be enhanced by combining it with semantic descrip-
tors. Finally, the improvement of our method (contextBoW-
m+semantic) to BoW+SPM model is 7.4 % on PASCAL
2007, 6.5 % on Scene-15, 6.3 % on MSRCv2 and 4.7 % on
SUN-397.

We also compare the contextBoW-m with the geometry
texton histograms (Xiao et al. 2010) which are built us-
ing texton features and four geometry contexts. To be fair,
we build the contextBoW-m using only texton features. As

in Xiao et al. (2010), the SVM with chi-square kernel is used
to learn the final classifier. On SUN-397 dataset, the per-
formance of this reduced contextBoW-m is 27.4 % which
is better than that of geometry texton histograms (23.5 %)
of Xiao et al. (2010).

5.6 Comparison with State-of-the-Art Results

It is worthwhile to point out that the results of our method
(contextBoW-m+semantic) on PASCAL 2007, Scene-15
and MSRCv2 databases are better than the state-of-of-art
results on these databases (as illustrated in Fig. 19). More
specifically, on PASCAL 2007, our method achieves the
mAP of 66.6 %, which is better than Yang et al. (2009) (re-
porting 62.2 %), Harzallah et al. (2009) (reporting 63.5 %),
Zhou et al. (2010) (reporting 64.0 %), as well as the top re-
sults obtained at the PASCAL 2007 challenge (Everingham
et al. 2007) (59.4 %).

On Scene-15, our method achieves the mean classifica-
tion accuracy of 89.8 %, which is better than 88.1 % reported
in Xiao et al. (2010), while we use much less features than
they do (they combine 8 different types of features for the
experiments on Scene-15) and outperforms the 81.4 % re-
ported in Lazebnik et al. (2006).

Table 3 Performance comparison between standard BoW+SPM model and different combinations of our methods

PASCAL 2007 Scene-15 MSRCv2 SUN-397

BoW+SPM 59.2 83.3 ± 0.7 86.2 ± 2.3 30.9 ± 0.4

Semantic 55.1 79.1 ± 0.9 82.8 ± 2.8 25.4 ± 0.6

ContextBoW-s 62.0 85.4 ± 0.9 88.5 ± 2.4 32.5 ± 0.7

ContextBoW-m 64.2 87.5 ± 0.9 90.6 ± 2.2 33.8 ± 0.5

ContextBoW-m+
semantic

66.6 89.8 ± 0.7 92.5 ± 2.0 35.6 ± 0.4

Result from
dataset creator

59.4
(Everingham et al. 2007)

81.4
(Lazebnik et al. 2006)

80.4 ± 2.5
(Zhang and Chen 2009)

38.0 (Xiao et al. 2010)

Fig. 19 Comparison between
our method
(contextBoW-m+semantic) and
several state-of-the-art
approaches
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On MSRCv2, our method achieves the mean classifica-
tion accuracy of 92.5 %, which is much better than the
80.4 % and 83.9 % reported in Zhang and Chen (2009) and
Morioka and Satoh (2010) respectively.

On SUN-397, our method achieves the mean classifica-
tion accuracy of 35.6 % which is worse than the 38.0 %
reported in Xiao et al. (2010), but we use much less features
than they do (they combine 15 different types of features for
the experiments on SUN-397).

5.7 Summary

This subsection summarizes the conclusions drawn from the
performed experiments.

First, we have observed that learned from manually la-
beled images, the attribute classifiers are able to give mean-
ingful attribute predictions for unseen images (see Fig. 8).
When learning attribute classifiers, the choices of kernels
and the number of randomly sampled negative samples does
not have big influence on the final classification performance
(see Fig. 7).

Second, semantic image descriptor performs only a little
worse than BoW histograms but with much lower dimen-
sionality; its combination with BoW histogram leads to sig-
nificant performance improvement (see Table 1).

Third, the performance of BoW histograms can be
significantly improved by embedding semantic informa-
tion, i.e. by learning context-specific vocabularies and
building context-specific BoW histograms (see Tables 2
and 3). Moreover, the context-embedded BoW histograms
(contextBoW-s and contextBoW-m) are also complemen-
tary to the semantic image descriptor (see Tables 2 and 3).

Fourth, context selection (t-test score for contextBoW-s
and simulated annealing for contextBoW-m) gives the best
trade-off between the performance and dimensionality of
context-embedded BoW histogram (see Figs. 13 and 18).

Finally, our method performs better or similarly to the
state-of-the-art results on all the used databases.

6 Conclusion and Discussion

In this paper, we have presented two novel methods to im-
prove the performance of the bag-of-words model for image
classification, via the prediction of semantic attributes. One
is combining bag-of-words histograms with semantic image
descriptors at decision level. The other is embedding se-
mantic information into the visual vocabulary. Extensive ex-
perimental results demonstrated that both methods enhance
the performance of bag-of-words model by a large margin.
Moreover, combining two methods brought even further im-
provement. In short, our method outperformed bag-of-words
model by 7.4 % on PASCAL VOC 2007, 6.5 % on Scene-
15, 6.3 % on MSRCv2 and 4.7 % on SUN-397, and also

achieved the state-of-the-art results on these challenging im-
age databases.

At last, we will give some discussions on our method.
The first one is about its practicality. Indeed, it takes some
time to collect images and train classifiers for semantic at-
tributes. However, this is an off-line training phase and the
attribute classifiers are generic and task-independent; there-
fore they can be reused. In the testing phase, since the at-
tribute classifiers are linear SVMs, the construction of the
probabilistic distribution of contexts is quite efficient. Thus,
the computation time of context-embedded BoW histogram
is comparable to that of traditional bag-of-words histogram.
As to the training images of attribute classifiers, in current
method, they are collected by web search and then manu-
ally labeled. However, it would also be possible to train at-
tribute classifiers directly from the top ranked images which
includes outliers, at the cost of degrading the classifier ac-
curacy. This approach would become more compelling if
larger numbers of attributes were used in future work.

In our method, the local attribute classifiers and the se-
mantic information embedded in them play a key role in
enhancing the traditional BoW histogram. To validate this
point, we tried to learn the local attribute classifiers on re-
gions sampled from random training images and then repeat
the same procedure to build context-embedded BoW his-
togram. In this case, the attribute classifiers do not have any
semantic meaning. Experimental results on PASCAL VOC
2007 database shows that the mAP of context-embedded
BoW histogram built by using random attribute classifier
is about 4 % to 6 % worse that of ContextBoW-s and
ContextBoW-m built by using semantic attribute classifiers.

Let’s recall that the local attribute classifiers are learned
from randomly sampled image regions and the label of a
region is directly inherited from the image from which it is
sampled. This strategy makes the training data noisy. For ex-
ample, some of the regions of a sky labeled image may not
contain any sky. Thus, one of our future works is to adopt
more accurate annotations or more powerful learning algo-
rithms (e.g. multiple instance learning) to address the noisy
training data and therefore enhance the accuracy of the indi-
vidual semantic attribute classifiers.
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