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Abstract Despite their ubiquitous presence, little has been
investigated about the scale variability—the relative varia-
tions in the spatial extents of local structures—of 3D geo-
metric data. In this paper we present a comprehensive frame-
work for exploiting this 3D geometric scale variability in
range images that provides rich information for characteriz-
ing the overall geometry. We derive a sound scale-space rep-
resentation, which we refer to as the geometric scale-space,
that faithfully encodes the scale variability of the surface ge-
ometry, and derive novel detectors to extract prominent fea-
tures and identify their natural scales. The result is a hier-
archical set of features of different scales which we refer to
as scale-dependent geometric features. We then derive novel
local shape descriptors that represent the surface structures
that give rise to those features by carving out and encoding
the local surface that fall within the support regions of the
features. This leads to scale-dependent or scale-invariant lo-
cal shape descriptors that convey significant discriminative
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information of the object geometry. We demonstrate the ef-
fectiveness of geometric scale analysis on range images, and
show that it enables novel applications, in particular, fully
automatic registration of multiple objects from a mixed set
of range images and 3D object recognition in highly clut-
tered range image scenes.
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1 Introduction

Real-world objects and scenes consist of geometric struc-
tures of varying scales. A scene may contain various ob-
jects of different dimensions and each individual object may
consist of local structures of varying spatial extents. For in-
stance, a forest comprises of a variety of trees of different
heights and widths and each tree is made up of a trunk,
branches, and leaves, whose spatial extents vary from meters
to centimeters. At a finer scale, each individual leaf has ge-
ometric details such as a stem and veins of another order of
magnitude smaller in size. This scale variation of local geo-
metric structures often define the characteristic geometry of
the object or scene. For instance, in a human face, both the
tip of the nose and dimples are discriminative geometric fea-
tures suitable for representing the underlying surface. The
spatial extents of such geometric features, however, signifi-
cantly differ from one another—they lie at entirely different
scales. If extracted properly, this geometric scale variabil-
ity is a source of significant additional information for ac-
curately describing and discriminating the geometry of the
object or scene.
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Geometric scale variability, however, has received little
attention in the past: deemed as perturbations that need to
be accounted for using multi-scale approaches which, for
instance, exhaustively try a pre-determined set of spatial
extents of the same spatial operator. In sharp contrast to
such approaches that are inevitably tailored to the specific
data and applications, our goal is to derive a comprehen-
sive computational framework for leveraging the geomet-
ric scale variability as another source of information in gen-
eral applications. In this paper, we focus on extracting scale-
dependent 3D geometric features, a unified set of geometric
features detected at their own intrinsic scales, and encod-
ing scale-dependent/-invariant geometric structures around
these features with local shape descriptors. To this end, we
derive a novel representation of the surface geometry, anal-
ogous to the 2D image scale-space, that faithfully encodes
and makes explicit the scale variability of the surface geom-
etry at hand, which we refer to as the geometric scale-space
(Novatnack and Nishino 2007, 2008).

We wish to emphasize that our focus is on deriving a
sound foundation for analyzing and exploiting the 3D ge-
ometric scale-variability in range images, the main source
of 3D geometric data in computer vision. To this end, our
goal is to derive a canonical scale-space representation, fea-
ture detectors and local shape descriptors based upon the
surface geometry captured in range images. This approach
should not be mistaken with those of other feature detec-
tors and shape descriptors that are tailored to represent 3D
models, which usually have different goals such as 3D shape
retrieval where the objective is to represent the entire shape
compactly so that objects similar to a query object can be
found.

We consider the normal field of a range image, which we
refer to as the normal map, as the base representation of the
surface geometry captured in the range image. We then com-
pute the geometric scale-space by convolving the normal
map with Gaussian kernels of increasing standard deviation,
where the kernel is defined in terms of the geodesic distance.
A rich set of scale-dependent features can then be extracted
from the geometric scale-space. In particular, we derive a de-
tector to extract geometric corners at different scales. In or-
der to establish these detectors we carefully derive the first-
and second-order partial derivatives of the normal map. We
then derive an automatic scale selection method analogous
to that of image scale-space theory to identify the natural
scale of each feature and to unify all features into a single
set. The result is a set of scale-dependent 3D geometric fea-
tures that provide a rich and unique basis for representing
the 3D geometry of the original data. We demonstrate the
effectiveness of the geometric scale-space analysis and the
resulting scale-dependent features by experimentally evalu-
ating its localization accuracy, repeatability, and robustness
against noise and sampling density variation.

We derive a novel scale-dependent local 3D shape de-
scriptor which encodes the geometric information within the
natural support region of each feature. This natural support
region is defined as a geodesic disc with radius that is pro-
portional to the estimated scale of the corner point. We carve
out the local surface within the natural support region and
map its normal field onto the tangent plane and interpolate
in order to form a regular and dense description of the local
surface. The set of scale-dependent local 3D shape descrip-
tors collectively form a sparse hierarchical representation of
the surface geometry.

Next, we show how this compact yet discriminative de-
scriptor can be used to robustly match and align a set of
range images with a consistent global scale, fully leveraging
the hierarchy induced by the scale variation. We also show
how we may define a local 3D shape descriptor that is in-
variant to the variation of the inherent local scale of the ge-
ometry, which can be used to register a set of range images
with unknown or inconsistent global scales. We demonstrate
the discriminative power encoded in the descriptors by us-
ing it to fully automatically register an unordered mixed set
of range images corresponding to multiple objects—to au-
tomatically reconstruct multiple 3D models from a pile of
range images. The results clearly demonstrate the power of
leveraging 3D geometric scale variability in computer vision
applications.

Finally, we show how the hierarchy induced by the scale
variation can be exploited along with the highly discrimina-
tive local 3D shape descriptors to perform 3D object recog-
nition in cluttered range image scenes. Unlike 3D shape re-
trieval, the goal for 3D object recognition is to correctly
identify and localize 3D objects in scenes scanned from a
single viewpoint that may contain multiple objects occlud-
ing each other. Thus, local shape descriptors are fundamen-
tal to the success of 3D object recognition as occlusion and
clutter must be handled robustly, whereas global shape de-
scriptors may suffice for 3D shape retrieval task. To this end,
we utilize a tree-based matching scheme and introduce novel
constraints based on the added geometric scale information
that imposes a hierarchical coarse-to-fine structure to the
tree-based matching and effectively culls the otherwise ex-
ponentially large search space of correspondences between
model and scene features (Bariya and Nishino 2010). We
further demonstrate the effectiveness of our approach of an-
alyzing and encoding the scale-variability present in range
images by performing recognition experiments on an exten-
sive dataset of real as well as synthetic scenes with vary-
ing levels of occlusion and clutter. Preliminary results of
the work reported in this paper have been published in No-
vatnack and Nishino (2007, 2008) and Bariya and Nishino
(2010).
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2 Related Work

Several methods have been proposed in the past that ac-
count for the geometric scale variability in 3D feature de-
tection. Most of these methods are loosely based on the 2D
scale-space theory—the analysis of scale variability in in-
tensity images. In 2D scale-space theory, the space of im-
ages across different scales, the scale-space, is constructed
by successively convolving the image with Gaussian ker-
nels of increasing standard deviation (Koenderink 1984;
Lindeberg 1994; Weickert et al. 1999; Witkin 1984). Rich
visual features, including corners, edges, and blobs, can then
be detected in this scale-space and their intrinsic scales can
be identified (Lindeberg 1998).

Previous methods essentially apply the 2D scale-space
theory to 3D geometric data by replacing pixel intensities
with the 3D vertex coordinates of the mesh model. How-
ever, directly “smoothing” the 3D points, for instance with
Gaussian kernels (Mokhtarian et al. 2001) or mean cur-
vature flow (Schlattmann 2006), modifies the extrinsic ge-
ometry of the original model. This can lead to alterations
of the global topology of the geometric data, in particular
through fragmentation of the original model (Taubin 1995),
which leads to an erroneous scale-space representation.
Most past methods also use the Euclidean distance between
3D points as the distance metric in the operator for con-
structing the scale-space representation (Gelfand et al. 2005;
Lalonde et al. 2005; Li and Guskov 2005; Pauly et al. 2006).
This, however, can lead to the creation of erroneous features
in the scale space, due to local topological changes within
the support region of the operator.1

Several methods, mostly, for extracting scale-invariant
or multi-resolution features or descriptors from range im-
ages based on smoothing 3D coordinates or curvature val-
ues of the vertices have been proposed in the past (Brady
et al. 1985; Ponce and Brady 1985; Morita et al. 1992;
Akagunduz and Ulusoy 2007; Li and Guskov 2007; Dinh
and Kropac 2006). For instance, Li and Guskov (2007) de-
tect multi-scale interest points for the purpose of object
recognition by applying a smoothing operator directly to the
3D point and normal pairs; Gelfand et al. (2005) detect a set
of geometric features at multiple scales by varying the radius
of a volumetric surface descriptor; and Dinh and Kropac
(2006) create a set of multi-resolution spin images (Johnson
and Hebert 1999) by varying the bin size and the support
size in a predetermined discrete range. Recently, Unnikrish-
nan and Hebert (2008) detected interest regions and their
support sizes using a filtering operator that works in the in-
put unorganized point cloud domain. In contrast, we analyze

1For instance, if two surfaces from different parts of the model lie close
to each other, the support region of the scale-space operator will mis-
takenly include both surfaces.

the surface geometry assuming that the connectivity of the
3D points is known, which can be estimated even for unor-
ganized point clouds as we show in Sect. 7.4.2.

In addition, there are a wide variety of 3D shape descrip-
tors that have been previously proposed (Stein and Medioni
1992; Chua and Jarvis 1997; Johnson and Hebert 1999;
Sun and Abidi 2001; Frome et al. 2004; Skelly and Sclaroff
2007). Many of these suffer from the limitation that they are
sensitive to the sampling density of the underlying geometry
and the size of their support region cannot be canonically
determined. Although these methods may achieve certain
scale-invariance for the specific applications in mind, they
are prone to topological errors induced by the lack of canon-
ical scale analysis. Our fundamental belief is that the local-
ization of the local structures to encode (feature detection)
and the manner in which they are encoded (descriptor con-
struction) should both incorporate the geometric scale vari-
ability and thus should be handled in an integrated frame-
work such that the right amount of local structure is encoded
at the most effective locations. In that regard, past methods
do not fully exploit the rich discriminative information en-
coded in the scale-variability of local geometric structures
that can in turn lead to novel computational methods for pro-
cessing range images.

We demonstrate the effectiveness of our geometric scale
analysis by using the resulting local scale-dependent/in-
variant descriptors for range image registration. Range im-
age registration is a fundamental step of geometry process-
ing in computer vision applications, for instance, to obtain
3D models from scanned data, to navigate based on 3D sens-
ing, etc. In particular, we demonstrate exploiting the geo-
metric scale variability to fully automatically register multi-
ple 3D models from an unordered mixed set of range images
of different objects—obtaining 3D models from a casually
gathered pile of range images—that shall become a crucial
capability given the increased use of raw 3D data in com-
puter vision applications. This is in sharp contrast to previ-
ous work on fully automatic range image registration that
assume that the given set of range images capture a single
object or scene (Chen et al. 1999; Huber and Hebert 2003;
Mian et al. 2004; Gelfand et al. 2005; Makadia et al. 2006;
ter Haar and Veltkamp 2007).

We further demonstrate the effectiveness of our approach
by utilizing the resulting scale-dependent/invariant local 3D
shape descriptors for 3D object recognition, which falls
under one of the fundamental goals of computer vision.
Many of the previously proposed 3D shape descriptors that
have been used for 3D object recognition such as splash
(Stein and Medioni 1992), point signatures (Chua and Jarvis
1997), spin images (Johnson 1997), etc. suffer from any of
a number of limitations such as sensitivity to the sampling
rate and noise, low discriminating capability, robustness to
occlusion and clutter and that the size of their support re-
gion cannot be canonically determined. Moreover, none of
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the past approaches have explicitly explored the use of geo-
metric scale-variability of local surface structures present in
the data for 3D object recognition.

Following the publication of the preliminary results of
our framework (Novatnack and Nishino 2007, 2008), sev-
eral alternative constructions of the geometric scale-space
have been proposed. For instance, Zou et al. (2009) repre-
sent the surface geometry with its Gaussian curvature field
and directly smoothes it with Ricci flow to satisfy the causal-
ity assumption.2 In contrast, our method represents the sur-
face geometry with a regular and dense 2D embedding of
the surface normal field and constructs the scale-space with
successive Gaussian smoothing. This representation has the
advantage of carrying directional information leading to rich
descriptors, in addition to the fact that normals are less prone
to noise since they are the first derivatives, enabling finer lo-
calization of features that are independent of the given range
image resolution, and being simpler to implement that holds
the potential of efficient implementation on the GPU that we
leave as our future work. Most important, a 2D representa-
tion of the surface geometry and its scale-space is natural
and suitable for range images, which are the main source of
geometric data in computer vision applications, since they
are already 2D projections of the 3D surface.

3 Geometric Scale-Space

Geometric structures that characterize the geometry cap-
tured in a range image reside on the surface. For this reason,
we must construct a representation that faithfully encodes
the scale variability on the surface, i.e., its surface geome-
try and not its embedding (point coordinates), and allows us
to analyze geometric structures across different scales. We
choose to represent the geometry of a given surface with its
surface normals. By deriving and applying a scale-space op-
erator that accounts for the geodesic distances on the sur-
face, we build a scale-space of this surface normal field,
which we refer to as the geometric scale-space.

3.1 2D Representation of the Surface Geometry

We assume that each point in a range image encodes a
3D coordinate of a surface point of the scene geometry
R : D → R

3, where D is a 2D domain in R
2. We build the

geometric scale-space of a range image by first constructing
a normal map N on the same domain. In order to obtain the
normal map N, we first approximate the underlying surface
by triangulating the range image and then compute a surface
normal for each vertex.

2Note that flow-based analysis of scalar fields on a 3D surface is not
new and has been studied in the past, e.g., Kimmel (1997).

We have chosen surface normals as our base representa-
tion due to the fact that they are less affected by noise as
compared to higher-order derivative quantities such as cur-
vature. Furthermore, they convey directional information of
the surface geometry as opposed to scalar quantities such as
mean or Gaussian curvature. Note that 3D coordinates can-
not be used since they form the extrinsic geometry of the
surface and altering their values will consequently alter the
actual geometry of the surface.

In order to accurately construct a geometric scale-space
of a range image that faithfully encodes the scale-variability
of the underlying surface geometry, we define all operators
in terms of the geodesic distance rather than the Euclidean
distance. The geodesic distance between points in the range
image can be directly approximated from the range image it-
self; given two points u,v ∈ D we approximate the geodesic
distance d(u,v) as

d(u,v) ≈
∑

ui∈P (u,v),�=v

∥∥R(ui ) − R(ui+1)
∥∥, (1)

where P is a list of vertex points in the range image on the
path between u and v. If the path between u and v crosses
an unsampled point in the range image then we define the
geodesic distance as infinity. We also parse the range image
and detect depth discontinuities by marking vertex points
whose adjacent points lie further than a predetermined 3D
distance and define the geodesic distance as infinity if the
path crosses such points. Thus, we approximate the geodesic
distance as the length of the line segments on the surface
joining the two points of interest. Such an approximation is
acceptable when the two points are not too far, which is true
in our case as most of our analysis is local. Alternatively,
other methods such as Fast Marching (Kimmel and Sethian
1998) could also be used.

3.2 Building the Geometric Scale-Space

Given the normal map N, we construct the geometric scale-
space of the range image that encodes the evolution of
the surface normals on the range image as it is gradually
smoothed. We define this as computing the (2-)harmonic
flow of a harmonic map from R

2 to S
2 (Tang et al. 2000).

The harmonic map is the minimizer of the harmonic energy,

min
N:R2→S2

∫∫

D

‖∇N‖2 ds dt, (2)

and the harmonic flow corresponds to the gradient-descent
flow of the Euler-Lagrange equation of the harmonic energy,

∂Ni

∂t
= �Ni + Ni‖∇N‖2 (i = 1,2,3), (3)

where Ni is the i-th component of N and t corresponds to
the scale level in the geometric scale-space.



236 Int J Comput Vis (2012) 99:232–255

Fig. 1 The geometric
scale-space of a range image of
a Buddha model (a). As the
standard deviation increases
from (b)–(d), finer details of the
surface structures are smoothed
away. The red, green and blue
color channels, in (b)–(d),
encode the direction of the
surface normals in the x, y and
z directions respectively (Color
figure online)

The existence and uniqueness of the harmonic map for
R

2 → S
2 has been shown (Freire 1995; Struwe 1985). Thus

we are able to construct a unique geometric scale-space
based on the normal map.3 However, it has been shown that
the harmonic flow is only partially regular and can create
singularities in finite time. This means that the geometric
scale-space computed based on the normal map may not
satisfy the causality assumption—“any feature at a coarse
level of resolution is required to possess a cause at a finer
level of resolution” (Koenderink 1984). However, the cases
where the harmonic flow is known to blow up are when
the initial data (original normal map in our case) is highly
symmetric and at least C1-continuous (Chang et al. 1992;
Hardt 1991), which is very rare for real-world geometric
data. Deriving the exact conditions that lead to non-causal
geometric scale-space is a difficult problem which we leave
as future work. For all the models in our experiments, we
did not observe any singularities created in the computed
geometric scale-space.

To construct a geometric scale-space, with a discrete set
of scale levels, instead of iteratively computing the gradient-
descent flow of (3), we convolve the normal map with a
Gaussian kernel and renormalize the normals at each level.4

As in 2D scale-space theory (Lindeberg 1994), the standard
deviation of the Gaussian is monotonically increased from
fine to coarse scale levels and naturally corresponds to the
relative scale of the underlying geometric structure.

We use the geodesic distance as the distance metric to
construct a geometric scale-space that encodes the surface

3On the other hand, the harmonic energy for B
3 → S

2 has infinite num-
ber of solutions (Coron 1990) and hence a unique geometric scale-
space cannot be constructed if the Euclidean distance is used.
4Observe that (3) can be seen as a diffusion equation with an additional
term rooting from the unit vector constraint. The iterative computation
of harmonic flow is usually computed by first computing the gradient-
descent flow for the diffusion term and renormalizing the vectors at
each step (Cohen et al. 1987).

geometry. Given a 2D isotropic Gaussian centered at a point
u ∈ D, we define the value of the geodesic Gaussian kernel
at a point v as

g(v;u, σ ) = 1

2πσ 2
exp

[
−d(u,v)2

2σ 2

]
(4)

where d : R
2 × R

2 → R is the geodesic distance between
the 3D surface points φ(u) and φ(v).

Using this geodesic Gaussian kernel, we compute the
normal at point u for scale level σ as

Nσ (u) =
∑

v∈W N(v)g(v;u, σ )

‖∑
v∈W N(v)g(v;u, σ )‖ , (5)

where W is a set of points in a window centered at u. The
window size is also defined in terms of the geodesic distance
and is set proportional to σ at each scale level. In our imple-
mentation, we grow the window from the center point while
evaluating each point’s geodesic distance from the center to
correctly account for the points falling inside the window.

Figure 1 shows the geometric scale-space of a range im-
age. A scale-space operator of increasing standard devia-
tion is applied to the original range image (a), corresponding
to discrete scale levels of its geometric scale-space (b)–(d).
Finer surface structures, e.g., the wrinkles on the drape, are
smoothed out early on while more prominent structures with
coarser scales, such as the necklace, remain intact. The re-
sulting geometric scale-spaces directly represent the inher-
ent scale-variability of local geometric structures captured
in range images and serves as rich basis for further scale-
variability analysis of the underlying geometry.

4 Scale-Dependent Geometric Features

Given this geometric scale-space representation of a range
image, we may now detect salient features in the geomet-
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ric scale-space that characterize the underlying 3D geome-
try across different scales. For this, we first derive the first-
and second-order partial derivatives of the normal map Nσ

of a range image. A novel corner detector can then be de-
rived using these partial derivatives. We then devise an auto-
matic scale-selection algorithm to identify the natural scale
of each feature and unify the features detected at each scale
into a single set of scale-dependent geometric features.

4.1 Derivatives of the Normal Map

We first derive the first-order partial derivatives of the 2D
normal map in the horizontal (s) and vertical (t) directions.
In the following, we describe them only for the horizontal
(s) direction. The partial derivatives in the vertical direction
(t) may be derived by simply replacing s with t .

At any point in the normal map of a range image, the hori-
zontal direction corresponds to a unique direction on the tan-
gential plane at the corresponding 3D point. The first-order
derivative is thus the directional derivative of the normal
along this specific direction in the tangential plane, known
as the normal curvature. In the discrete domain D the normal
curvature in the horizontal (Cs ) direction at a point u = (s, t)

may be computed by numerical central angular differentia-
tion:

Ns(u) = ∂N(u)

∂s
= Cs(u)

≈
1
2θ(u−1,u+1)

L(u−1,u+1)

≈ sin( 1
2θ(u−1,u+1))

L(u−1,u+1)
, (6)

where u±1 = (s ± 1, t), θ(u−1,u+1) is the angle between
the normal vectors N(u−1) and N(u+1), and L(u−1,u+1) is
the chord length between the 3D points φ(u−1) and φ(u+1).
Note that the half-angle between the adjoining surface nor-
mals are assumed to be small such that its value can be
approximated with its sinusoidal value. This approximation
enables fast computation as

sin

(
1

2
θ(u−1,u+1)

)
=

√
1 − N(u−1)N(u+1)

2

from the half angle formula, but more important, it enables
similar computation for the second order derivative as we
show next. And because the normal curvature is a function
of adjacent points in the 2D domain D the chord length L

is simply the geodesic distance between these points. After
applying the discrete geodesic distance in (4), we obtain

Ns(u) ≈ sin( 1
2θ(u−1,u+1))

d(u−1,u+1)
. (7)

Note that because the angle between the two normal vectors
is in the range [0,π], the first-order derivative is nonnegative
at both convex and concave surface points—it is unsigned.

The second-order derivative of the normal map can be
derived as

Nss(u) = ∂2N(u)

∂s2
= ∂Cs(u)

∂s
. (8)

After applying the chain rule to (6) we obtain

Nss(u) ≈ ∂θ(u−1,u+1)

∂s

cos( 1
2θ(u−1,u+1))

L(u−1,u+1)

− ∂L(u−1,u+1)

∂s

2 sin( 1
2θ(u−1,u+1))

L(u−1,u+1)2
.

If we assume that the sampling rate between every ad-
jacent point in D is uniform, the derivative of the chord
length L will be zero, and the second term vanishes. This
assumption implies that in the local two-neighborhood, 3D
distances to the adjacent surface points are approximately
the same. This approximation would not hold for adjacent
points with large depth variation, in which case we can com-
pute the second term with an additional computational cost.
After applying numerical central differentiation to θ and us-
ing the half angle formula, the second-order derivative re-
duces to

Nss(u) ≈ θ(u−2,u) − θ(u+2,u)

d(u−1,u+1)

×
√

1
2 (1 + N(u−1) · N(u+1))

d(u−1,u+1)
. (9)

This form is particularly attractive as it enables us to com-
pute the second-order derivative in terms of the original nor-
mal vectors, and the change in the local angle. The noise as-
sociated with higher-order derivatives is reduced as we have
avoided an additional numerical differentiation of the first-
order derivatives.

4.2 Corners

We wish to detect geometrically meaningful corners points
that have high curvature isotropically or in at least two dis-
tinct tangential directions. The rich geometric information
encoded in the normal maps enables accurate detection of
these two types of 3D corners using a two-step geometric
corner detector.

We begin by computing the Gram matrix M of first-order
partial derivatives of the normal map Nσ at each point. The
Gram matrix at a point u is defined as

M(u;σ, τ)

=
∑

v∈W

[
Nσ

s (v)2 Nσ
s (v)Nσ

t (v)

Nσ
s (v)Nσ

t (v) Nσ
t (v)2

]
g(v;u, τ ), (10)
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where W is the local neighborhood around the point u. In
our implementation, we set W to include neighboring points
with geodesic distances within 3σ times the median edge
length. M has two parameters, one that determines the par-
ticular scale in the scale-space representation (σ ), and one
that determines the weighting of each point in the Gram
matrix (τ ). In our experiments, we set τ = σ/2. The cor-
ner response at a point u is defined as the maximum eigen-
value of M. However, due to the unsigned first-order deriva-
tive the resulting corner set will contain not only the afore-
mentioned two desired types of geometric corners, but also
points lying on 3D edges.

The second-order derivatives of the normal map can be
used to prune the corners lying along the 3D edges. We
first prune the corner points that are not centered on zero-
crossings in both the horizontal and vertical directions. Next
we keep only those points where the variance of the second-
order partial derivatives in the neighborhood of u are within
a constant factor of each other. The closer this constant fac-
tor is to 1, the greater the geometric variance of the selected
corner points in both tangential directions.

4.3 Scale Selection

Once features are detected in each scale of the geometric
scale-space, they can be unified into a single set. Although
a feature may have a response at multiple scales, it intrin-
sically exists at the scale where the response of the feature
detector is maximum. By determining this intrinsic scale for
each feature, we obtain a comprehensive scale-dependent
3D geometric feature set.

In order to find the intrinsic scale of a feature we search
for the maximum of the normalized feature response across
a set of discrete scales, analogous to the 2D automatic scale
selection method (Lindeberg 1998). The derivatives are nor-
malized to account for a decrease in the derivative magni-
tude as the normal maps are increasingly blurred. We define
the normalized first-order derivatives Ñσ

s and Ñσ
t as

Ñσ
s = σγ Nσ

s and Ñσ
t = σγ Nσ

t , (11)

where γ is a free parameter that is set empirically.5 The cor-
responding normalized second-order derivatives are defined
as

Ñσ
ss = σ 2γ Nσ

ss and Ñσ
tt = σ 2γ Nσ

tt . (12)

Figure 2 shows that the normalized first derivative mag-
nitude, used for scale selection, achieves a single local max-

5In our implementation, we use γ = 1 for the first derivatives and γ =
2 for the second.

Fig. 2 Normalized first derivative magnitudes at three potential corner
locations plotted for a range of scales. The magnitudes show peaks at
the natural scales for each corner, and these peaks are maximal inside
a large scale range

imum across a large range of scales.6 Normalized feature re-
sponses are computed by substituting the normalized deriva-
tives into the corner detector. The final scale-dependent geo-
metric feature set is constructed by identifying the points in
scale-space where the normalized feature response is maxi-
mized along the scale axis and locally in a spatial window.

Figure 3 shows the set of scale-dependent corners de-
tected on two range images of the Happy Buddha. Note that
the corners are well dispersed across scales, and that there
are a large number of corresponding corner points at the cor-
rect corresponding scales. The scale-dependent geometric
features accurately encode the geometric scale-variability
and can clearly be used as a unique representation of the un-
derlying geometry. These suggest that we should be able to
establish robust correspondences across range images once
we establish local shape descriptors centered around these
corner points, as we will derive in Sect. 5.

4.4 Robustness of Scale-Dependent Features

We experimentally evaluate the effectiveness of our frame-
work for exploiting geometric scale-variability in range im-
ages in the form of scale-dependent features. We examine
the accuracy by evaluating the repeatability and localization
errors of the detected features across different range images
of the same 3D object. In addition, we examine the robust-
ness of the feature detection with different levels of noise
and sampling rate of the underlying geometry by evaluat-
ing the repeatability and localization of the features along
two dimensions, within each range image (intra) and across

6In our experiments, we use scales up to σ = 5. Also note that, as we
use geodesic distance for building the scale-space and its derivatives,
depth discontinuities will never contribute to a corner or descriptor.
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Fig. 3 Scale-dependent corners computed based on geometric
scale-space analysis of two range images. The range images are de-
picted with their normal fields. The scale-dependent corners are col-
ored according to their inherent scales. Red, yellow, green, turquoise
and blue dots indicate the corners detected from the coarsest to the
finest scales (Color figure online)

neighboring range image views (inter). The scale-dependent
corners were detected on a total of 15 range images of the
Happy Buddha model (see Fig. 9(a) for examples) and 12
range images of the Armadillo model. The average inter-
repeatability of the corners for the Happy Buddha range im-
ages was 68.7 % and 66.49 % for the Armadillo range im-
ages. We first brought each pair of neighboring range im-
ages (adjacent views) into a common coordinate frame by
aligning them using known transformation parameters. The
inter-repeatability for such a pair of neighboring range im-
ages is then computed as the ratio of the number of cor-
responding corners found to the total number of corners
in the overlapping region of the pair of range images. We
count corresponding corners as those detected closest to
each other within a pre-determined distance set as a fac-
tor of the median edge length between adjacent 3D points
in the range images which was about 3 mm in these cases.
The mean localization error for the Happy Buddha and Ar-
madillo range images were 1.32 mm and 1.38 mm respec-
tively. The median edge length for both set of range images
was approximately 0.35 mm. The height of the Happy Bud-
dha and Armadillo models are 175.8 mm and 197.4 mm
respectively. The low localization errors together with the
high repeatability indicates that the local geometric struc-
tures are reliably detected across varying scales and the re-

sulting scale-dependent corners can likely provide powerful
means to compute transformations between range images
and 3D models.

4.4.1 Noisy Surface Geometry

We evaluate the robustness of the scale-dependent feature
detection to noisy input geometric data by adding Gaussian
noise with increasing standard deviation to (a) the surface
normals and (b) the depth value of the 3D points in the range
image. Figure 4(a) shows the scale-dependent corners de-
tected on one range image of the Happy Buddha model with-
out any added noise and as Gaussian noise is added to the
surface normals with standard deviation of 0.02, 0.04, 0.06,
0.08 and 0.1. Although the corners detected at the finest
scales are affected as the noise level increases, the corners
detected at the coarser scales stay highly consistent.

We compute the intra-repeatability and localization error
between the base (noiseless) range image and the noisy ver-
sion of the same range image, as the percentage of scale-
dependent corners detected on the base range image that
have a corresponding corner on the noisy range image and
the 3D Euclidean distance between corresponding pair of
corners respectively. Inter-repeatability and localization er-
ror are computed between neighboring range images of the
same model at the same noise level. Figure 5 shows the com-
parison of average repeatability and localization error, both
intra and inter, with additive Gaussian noise to the surface
normals for 12 range images of the Armadillo model, 15
range images each of the Happy Buddha and Dragon mod-
els as well as the overall set of these range images. Figure 6
shows the same comparison, for the same set of range im-
ages of the Armadillo, Happy Buddha and Dragon as well as
the overall set of these range images, when Gaussian noise
is instead added to the depth value of the 3D points of the
range image. The standard deviation of the added Gaussian
noise were chosen as a percentage of the average standard
deviation of the depth values of the 3D points for each range
image set. In this case, we added Gaussian noise with stan-
dard deviation corresponding to 0.1–0.5 % with increments
of 0.1 %. For both cases, noisy surface normals and noisy
depth values, the repeatability stays high for the same view
(intra) and stays almost constant across different views (in-
ter) despite the noise. The localization error also gracefully
increases as the noise level increases. These results demon-
strate the robustness of the scale-dependent feature detection
and localization.

4.4.2 Varying Sampling Densities

We demonstrate the robustness of the scale-dependent cor-
ner detection to changes in surface sampling density by
computing scale-dependent geometric corners. Figure 4(b)
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Fig. 4 (a) Scale-dependent geometric corner points detected in one
view of the Happy Buddha model as noise is incrementally added to
the surface normals of the range image. The standard deviation of the
Gaussian noise range from 0 (left most) to 0.08 (right most) with 0.04
increments. The scale-dependent geometric corners are localized re-
liably despite the significant noise. Red, yellow, green, turquoise and
blue dots indicate the corners detected from the coarsest to finest scales.
(b) Scale-dependent corners detected for one view of the Happy Bud-

dha model as the range image is subsampled. The original range image
(left most) is subsampled to 80 % of its original number of points (right
most) with 10 % decrements. Despite the significant reduction in the
sampling of the surface geometry, coarser level corners are coherent.
The differences in the size of the three range images shown here is to
highlight the difference in the number of sampled points and do not
represent any change in the model size (Color figure online)

Fig. 5 Average intra and inter repeatability (left) and localization er-
ror (right) of scale-dependent geometric corners for 12 range images of
the Armadillo model, 15 range images each of the Happy Buddha and
Dragon models and the overall set of all these range images with vary-
ing degrees of additive Gaussian noise applied to the surface normals.

The repeatability stay high for the same view and stays almost constant
across different views. The localization error also increases gracefully
as the noise level increases. These results demonstrate the robustness
of the scale-dependent corner detection and localization

shows the scale-dependent corners detected on one range

image of the Happy Buddha model (left most) and when

the same range image is subsampled at increasing rates. The

3D coordinates for each subsampled range image point was

obtained by inverse warping to the original range image and

by using bilinear interpolation. As can be seen in Fig. 4(b),

the corners detected at the coarser scales are highly con-

sistent. Further analysis regarding the repeatability and lo-

calization error, both intra and inter, of the detected cor-

ners for Armadillo, Happy Buddha and Dragon range im-

age sets as well as the overall set of all range images, is

shown in Fig. 7. Similar to the case with noisy range images,
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Fig. 6 Average intra and inter repeatability (left) and localization error
(right) of scale-dependent geometric corners for the Armadillo, Happy
Buddha and Dragon range image sets and the overall set of all these

range images with varying degrees of Gaussian noise applied to the
depth values of the 3D points

Fig. 7 Average intra and inter repeatability (left) and localization er-
ror (right) of scale-dependent geometric corners for 12 range images
of the Armadillo model, 15 range images each of the Happy Buddha

and Dragon models and the overall set of all these range images, under
varying sampling densities. The repeatability and localization errors
decrease gracefully as the subsampling is increased

intra-repeatability and localization error were computed be-
tween each range image and its sampled version, and inter-
repeatability and localization error were computed between
neighboring range images at the same sampling density.
The results show that the scale-dependent corners can be
detected and localized with accuracy that decreases grace-
fully with increasing subsampling. The drop-off in intra-
repeatability from the original set of range images to their
corresponding sampled versions can be attributed to a sig-
nificant reduction in the number of corners detected at the
finer scales of the sampled range images, due to the loss of
fine scale geometry caused by the sampling and the inter-
polation. For example, for the view of the Happy Buddha

shown in Fig. 4(b), the range image sampled at 95 % of the
original contains approximately 9 % fewer corners and two-
thirds of this loss is at the finest scale.

5 Scale-Dependent/Invariant Local Shape Descriptors

Once we detect scale-dependent features via geometric
scale-space analysis, we can now carve out and encode
the local region of the surface that characterizes the local
geometric structure surrounding the feature, in particular,
a representative corner point, in the form of a compact lo-
cal shape descriptor. The associated inherent scale of each
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scale-dependent corner directly tells us the natural spatial
extent (the support size) of the underlying local geomet-
ric structure. This information can then in turn be used to
identify the size of the neighborhood of each corner that
should be encoded in any local shape descriptor. For ex-
ample, in the spin images descriptor, we may set the size
of the neighborhood to be encoded in the descriptor based
on the associated inherent scale of the scale-dependent cor-
ner point being represented. Here, we propose a novel local
shape descriptor that carves out the region within the natu-
ral spatial extent of the feature and is insensitive to changes
in the sampling rate. We will derive novel scale-dependent
and scale-invariant local 3D shape descriptors, which retain
the geometric scale-variability as a hierarchical representa-
tion or achieve scale-invariance, respectively. We focus on
extracting such local shape descriptors to represent range
images, in particular, for range image registration and 3D
object recognition, which we present in the sections that fol-
low.

5.1 Exponential Map

We construct both our scale-dependent and scale-invariant
local 3D shape descriptors by mapping and encoding the lo-
cal neighborhood of a scale-dependent corner to a 2D do-
main using the exponential map. The exponential map is a
mapping from the tangent space of a surface point to the sur-
face itself (Carmo 1976). Given a unit vector w lying on the
tangent plane of a point u, there is a unique geodesic 	 on
the surface such that 	(0) = u and 	′(0) = w. The exponen-
tial map takes a vector w on the tangent plane and maps it
to the point on the geodesic curve at a distance of 1 from u,
or Exp(w) = 	(1). Following this, any point v on the sur-
face in the local neighborhood of u can be mapped to u’s
tangent plane, often referred to as the Log map, by deter-
mining the unique geodesic between u and v and computing
the geodesic distance and polar angle of the tangent to the
geodesic at u in a predetermined coordinate frame {e1, e2}
on the tangent plane. This ordered pair is referred to as the
geodesic polar coordinates of v.

The exponential map has a number of properties that are
attractive for constructing a 3D shape descriptor, most im-
portant, that it is a local operator. Although fold-overs7 may
occur if this neighborhood is too large, the local nature of
the descriptors implies this will rarely happen. In practice
we have observed fold-overs on an extremely small number
of features, mostly near points of depth discontinuities in
range images. Although the exponential map is not, in gen-
eral, isometric, the geodesic distance of radial lines from the

7A fold-over can occur if the local neighborhood of the corner which
gets encoded in the descriptor has multiple points at the same geodesic
distance from the corner and in the same direction on the tangent plane.

feature point are preserved. This ensures that corresponding
scale-dependent corners will have mostly consistent shape
descriptors among different views, e.g., different range im-
ages. In addition, because the exponential map is defined at
the feature point, it does not rely on the boundary of the en-
coded neighborhood like harmonic images does (Zhang and
Hebert 1999).

5.2 Scale-Dependent Descriptors

We construct a scale-dependent local 3D shape descriptor
for a scale-dependent corner at u whose scale is σ by map-
ping each point v in the neighborhood of u to a 2D domain
using the geodesic polar coordinates G defined as

G(u,v) = (
d(u,v), θT (u,v)

)
, (13)

where again d(u,v) is the geodesic distance between u and v
and θT (u,v) is the polar angle of the tangent of the geodesic
between u and v defined relative to a fixed bases {e1, e2}.
In practice we approximate this angle by orthographically
projecting v onto the tangent plane of u and measuring the
polar angle of the intersection point. We define the neigh-
borhood of each feature that is encoded in the descriptor as
points within a geodesic distance of 3σi times the median
edge length, where σi is the intrinsic scale of the feature.
The radius of the scale-dependent descriptor is also set pro-
portional to the inherent scale of the scale-dependent corner
σ to encode geometric information in the natural support re-
gion of each scale-dependent corner. In our implementation,
we set the width and height of the scale-dependent descrip-
tor to 30σi pixels.

After mapping each point in the local neighborhood of u
to its tangent plane we are left with a sparse 2D representa-
tion of the local geometry around u. We interpolate a geo-
metric entity, the surface normals, encoded at each vertex to
construct a dense and regular representation of the neighbor-
hood of u at scale σ . We rely on the triangulation of the local
neighborhood on the tangent plane, obtained from the trian-
gulation of the range image, in order to aid in the interpola-
tion of the surface normals on the tangent plane. Note that
this makes the descriptor insensitive to resolution changes
of the range images.

We also choose to encode the surface normals from the
original range image, rotated such that the normal at the cen-
ter point u points in the positive z direction. The resulting
dense 2D descriptor is invariant up to a single rotation (the
in-plane rotation on the tangent plane). We resolve this am-
biguity by aligning the maximum principal curvature direc-
tion at u to the horizontal axis e1 in the geodesic polar co-
ordinates, resulting in a rotation-invariant shape descriptor.
We approximate this by first computing the eigenvectors of
the covariance matrix of 3D points within the local neigh-
borhood and by using the first eigenvector intersected with
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Fig. 8 Scale-dependent corners
and scale-dependent local 3D
shape descriptors computed
based on geometric scale-space
analysis of two range images.
The range images are depicted
with their normal fields. The
scale-dependent corners are
colored according to their
inherent scales, with red and
blue corresponding to the
coarsest and finest scales,
respectively. The
scale-dependent local 3D shape
descriptors capture local
geometric information in the
natural support regions of the
scale-dependent features. Here,
the colors in the descriptors
represent the direction of the
normals encoded in the
descriptors (Color figure online)

the tangent plane as the positive horizontal axis. The sign of
the eigenvector, however, is ambiguous and may be flipped
(Bro et al. 2008). In order to remove any ambiguity as a re-
sult of this, we also constrain the first eigenvector to point in
the same side of the tangent plane as the plane normal.

Once this local basis has been fixed, we re-express each
point in terms of the normal coordinates, with the scale-
dependent corner point u at the center of the descriptor. We
refer to this dense 2D scale-dependent descriptor of the lo-
cal 3D shape as Gσ

u for a scale-dependent corner at u and
with scale σ . Figure 8 shows subsets of scale-dependent lo-
cal 3D shape descriptors computed at scale-dependent cor-
ners in two range images of the Happy Buddha.

5.3 Scale-Invariant Descriptors

The scale-dependent local 3D shape descriptors collectively
provide a faithful sparse representation of the surface geom-
etry in different range images when their global scales are
the same or are known, e.g., when we know that the range
images are captured with the same range finder. In order to
enable comparison between range images that do not have
the same global scale, we also derive a scale-invariant local
3D shape descriptor Ĝσ

u .
We may safely assume that the scales of local geomet-

ric structures relative to the global scale of a range image
remains constant as the global scale of a range image is al-
tered. Note that this assumption holds as long as the geome-
try captured in the range image is rigid and does not undergo
any deformation, for instance, as it is captured with possibly
different range sensors. We may then construct a set of scale-
invariant local 3D shape descriptors by first building a set
of scale-dependent local 3D shape descriptors and then nor-
malizing each descriptor’s size to a constant radius. In our

implementation, we set the width and height of the scale-
invariant descriptor to 50 pixels. Such a scale-invariant rep-
resentation of the underlying geometric structures enables us
to establish correspondences between a pair of range images
even when the global scale is different and unknown.

5.4 Matching Descriptors

Since each descriptor is a dense 2D image of the surface nor-
mals in the local neighborhood, we may define the similarity
of the local 3D shape descriptors as the normalized cross-
correlation of surface normal fields using the angle differ-
ences,

S
(
Gσ

u1
,Gσ

u2

)

= π

2
− 1

|A ∩ B|
∑

v∈A∩B

arccos
(
Gσ

u1
(v) · Gσ

u2
(v)

)
, (14)

where A and B are the set of points in the domain of Gσ
u1

and
Gσ

u2
, respectively. Here, the similarity measure is defined in

terms of the scale-dependent descriptors, but the definition
for the scale-invariant descriptors is the same with Ĝ substi-
tuted for G.

5.5 Advantages of the Scale-Dependent/Invariant Local
Shape Descriptors

The scale-dependent/invariant descriptors have a number of
advantages over other previously proposed 3D shape de-
scriptors such as splash (Stein and Medioni 1992), point
signatures (Chua and Jarvis 1997) and spin images (Johnson
1997). The dense nature of the scale-dependent/invariant de-
scriptor means that it does not suffer from the sensitivity to
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the sampling rate as the other descriptors do. An extension
to spin images (Johnson et al. 1998) shows robustness to the
sampling rate. Also, unlike the other descriptors, the size of
the support region for the proposed descriptor can be canoni-
cally determined and is set proportional to the intrinsic scale
of the feature point it is describing. This further implies that
these other descriptors are not as robust against occlusion
and clutter.

In the spin images descriptor, for example, setting the
support region too large for a range image containing multi-
ple objects occluding each other can result in the descriptor
using points corresponding to multiple objects. Thus such
a descriptor corrupted by clutter cannot be relied upon for
an accurate match and nor can a descriptor with a support
region too small as this results in a lot of similar descrip-
tors. We present a comparison on the performance of our
approach with that of the spin images approach for the pur-
pose of 3D object recognition in cluttered scenes in Sect. 7.

6 Range Image Registration

The novel scale-dependent and scale-invariant local 3D
shape descriptors contain rich discriminative information re-
garding the local geometric structures. As such, these de-
scriptors provide strong cues for matching and aligning 3D
geometric data. We will demonstrate this by focusing on reg-
istering range images, an integral step in various 3D geome-
try processing applications such as 3D model construction.

6.1 Pairwise Matching and Alignment

The hierarchical structure of the set of scale-dependent local
3D shape descriptors can be leveraged when aligning a pair
of range images {R1,R2} with the same global scale. Note
that if we know that the range images are captured with the
same range scanner, or if we know the metrics of the 3D co-
ordinates, e.g. centimeters or meters, we can safely assume
that they have, or we can covert them to, the same global
scale.

Once we have a set of scale-dependent local 3D shape
descriptors for each range image, we construct a set of pos-
sible correspondences by matching each descriptor to the n

most similar.8 The consistency of the global scale allows us
to consider only those correspondences at the same scale
in the geometric scale-space, which greatly decreases the
number of correspondences that must be later sampled. We
find the best pairwise rigid transformation between the two
range images by randomly sampling this set of potential cor-
respondences and determining the one that maximizes the
area of overlap between the two range images, similar to

8In our experiments, n is set in the range of 5–10.

RANSAC (Fischler and Bolles 1981). However, rather then
sampling the correspondences at all scales simultaneously,
we instead sample in a coarse-to-fine fashion, beginning
with the descriptors with the coarsest scale and ending with
descriptors with the finest scale. This enables us to quickly
determine a rough alignment between two range images, as
there are, in general, fewer features at coarser scales.

For each scale σi , starting from the coarsest scale σmax ,
we randomly construct N(σmax − σi + 1) sets of 3 cor-
respondences, where each correspondence has a scale be-
tween σmax and σi . For each correspondence set C we esti-
mate a rigid transformation T , using the method proposed
by Umeyama (1991), and then add to C all those correspon-
dences (uj ,vj , σj ) where ‖T · R1(uj ) − R2(vj )‖ ≤ α and
σj ≤ σi . Throughout the sampling process we keep track
of the transformation and correspondence set that yield the
maximum area of overlap. Once we begin sampling the
next finer scale σi−1 we initially test whether the correspon-
dences at that scale increase the area of overlap induced by
the current rigid transformation. This allows us to quickly
add a large number of correspondences at finer scales effi-
ciently without drawing an excessive number of samples.

Figure 9(a) shows the results of applying our pairwise
registration algorithm to two range images of the Happy
Buddha captured from different views.9 The number of cor-
respondences is quite large and the correspondences are dis-
tributed across all scales. Although the result is an approx-
imate alignment, since for instance slight perturbations in
the scale-dependent feature locations may amount to slight
shifts in the resulting registration, the large correspondence
set established with the rich shape descriptors leads to very
accurate estimation of the actual transformation.

We may align a pair of range images {R1,R2} with dif-
ferent global scales using the scale-invariant local 3D shape
descriptors, which amounts to estimating the 3D similar-
ity transformation between the range images. Since we no
longer know the relative global scales of the range images,
we must consider the possibility that a feature in one range
image may correspond to a feature detected at a different
scale in the second range image. Our algorithm proceeds by
first constructing a potential correspondence set that con-
tains, for each scale-invariant local 3D shape descriptor in
the first range image R1, the n most similar in the sec-
ond range image R2. We find the best pairwise similarity
transformation by applying RANSAC to this potential cor-
respondence set. For each iteration the algorithm estimates
the 3D similarity transformation (Umeyama 1991) and com-

9For this pairwise registration of the Happy Buddha, our Python/C++
implementation on a commodity 2.66 GHz Intel Core2Duo machine
required on average 1 minute to complete the registration process in-
cluding computation of the geometric scale space, corners, descriptors
and pairwise alignment with 5000 RANSAC iterations.
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Fig. 9 (a) Aligning two range images with the same global scale us-
ing a set of scale-dependent local 3D shape descriptors. On the left we
show the 67 point correspondences found with our matching algorithm
and on the right the result of applying the rigid transformation esti-
mated from the correspondences. (b) Aligning two range images with
inconsistent global scales and resolutions using a set of scale-invariant

local 3D shape descriptors. On the left we show the point correspon-
dences found with our matching algorithm and on the right the results
of applying the estimated 3D similarity transformation. Both the scale-
dependent and -invariant descriptors realize very accurate and efficient
automatic pairwise registration of range images

putes the area of overlap. The transformation which results
in the maximum area of overlap is considered the best.

Figure 9(b) shows the result of applying our algorithm to
two range images of the Buddha model of different views
with a relative global scale and resolution difference of ap-
proximately 1.8. The two range images were obtained by
resampling and scaling the vertex coordinates of one of the
range images by a factor of 0.55. Despite the considerable
difference in the relative global scale and resolution, we can
recover the similarity transformation accurately without any
initial alignments or assumptions about the models and their
global scales.

6.2 Multiview Matching and Alignment

Armed with the pairwise registration using scale-
dependent/-invariant descriptors, we may derive a fully au-
tomatic range image registration method that exploits the
geometric scale-variability.

Given a set of range images {R1, . . . ,Rn}, our fully auto-
matic range image registration algorithm first constructs the
geometric scale-space of each range image. Scale-dependent
features are detected at discrete scales and then combined
into a single comprehensive scale-dependent feature set,
where the support size of each feature follows naturally from
the scale in which it was detected. Each feature is encoded
in either a scale-dependent or scale-invariant local shape de-
scriptor, depending on whether the input range images have
a consistent global scale or not. We then apply the appropri-
ate pairwise registration algorithm, presented in the previous
sections, to all pairs of range images in the input set to re-
cover the pairwise transformations. We augment each trans-
formation with the area of overlap resulting from the trans-
formation. Next we construct a graph similar to the model

graph (Huber and Hebert 2003), where each range image
is represented with a vertex and each pairwise transforma-
tion and area of overlap is encoded in a weighted edge. We
prune edges with an area of overlap less than a predeter-
mined threshold. In order to construct the final set of meshes
{M1, . . . , Mm} we compute the maximum spanning tree of
the model graph and register range images in each connected
component using their estimated corresponding transforma-
tions. The alignment obtained by our algorithm is approxi-
mate yet accurate enough to be directly refined by any ICP-
based registration algorithm without any human interven-
tion, resulting in a fully automatic range image registration
algorithm. We show the effectiveness of exploiting geomet-
ric scale-variability in range image registration with a num-
ber of examples in the following section.

6.3 Range Image Registration Results

The novel scale-dependent and scale-invariant local 3D
shape descriptors contain rich discriminative information re-
garding the local geometric structures. As a practical exam-
ple, we show the effectiveness of these descriptors in range
image registration, one of the fundamental steps in geome-
try processing. We show that the scale-dependent and scale-
invariant descriptors can be used to register a set of range
images both with and without global scale variations, with-
out any human intervention. Most importantly, we show that
we can register a mixed set of range images corresponding
to multiple 3D models (with each range image containing
a single view of a single model) simultaneously and fully
automatically.10

10In all our experiments, we randomized the order of the range images
to ensure that no a priori information is given to the algorithm.
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Fig. 10 Fully automatic registration of 15 views of the Happy Buddha
model and 12 views of the Armadillo model using scale-dependent lo-
cal descriptors. For each object, the first image shows the initial set
of range images. Note that no initial alignment is given and they are
situated as is. The second image shows the approximate registration
obtained with our framework, which is further refined with multi-view

ICP (Nishino and Ikeuchi 2002) in the third image. Finally a water
tight model is built using a surface reconstruction algorithm (Kazhdan
et al. 2006) in the fourth image. The approximate registration obtained
with our framework is very accurate and enables direct refinement with
ICP-based methods which otherwise require cumbersome manual ini-
tial alignment

Fig. 11 Automatic registration of a set of range images of multiple
objects: total 42 range images shown on the left most, consisting of
15 views of the Happy Buddha model, 12 views of the Armadillo, and
15 views of the Dragon model. The scale-dependent local 3D shape
descriptors contain rich discriminative information that enables auto-

matic discovery of the three disjoint models from the mixed range im-
age set. Note that, to show the accuracy of our registration, the results
shown here have not been post-processed with a global registration al-
gorithm

6.3.1 Range Images with Consistent Global Scale

Figure 10 illustrates the results of applying our framework
independently to 15 views of the Happy Buddha model and
12 views of the Armadillo model, with consistent global
scales. Scale-dependent local shape descriptors were de-
tected at 5 discrete scales, σ = {0.5,1,1.5,2,2.5}, in the
geometric scale-space. The approximate registration results
after applying our matching method using scale-dependent
local 3D shape descriptors are refined using multi-view ICP
(Nishino and Ikeuchi 2002) and a watertight model is com-
puted using a surface reconstruction method for oriented
points (Kazhdan et al. 2006). We may quantitatively eval-
uate the accuracy of our approximate registration using the
local 3D shape descriptors by measuring the displacement
of each vertex in each range image from the final water-
tight model. The average distances for all the vertices in all
range images for the Armadillo and Happy Buddha mod-
els, relative to the diameter of the models, were 0.17 %
and 0.29 % percent, respectively. The results show that the
scale-dependent local 3D shape descriptors provide rich in-
formation leading to accurate approximate registration that
enables fully automatic registration without any need of ini-
tial estimates.

Next, we demonstrate the ability of our framework to si-
multaneously register range images corresponding to multi-
ple 3D models. In order to automatically discover and reg-
ister the individual models from a mixed set of range im-
ages, we prune the edges on the model graph that corre-
spond to transformations with an area of overlap less then
some threshold. In practice, we found this threshold easy to
set as our framework results in approximate alignments that
are very accurate. Figure 11 summarizes the results. Note
that no refinement using global registration algorithms has
been applied to these results to display the accuracy of our
method, but can easily be applied without any human inter-
vention.

6.3.2 Range Images with Inconsistent Global Scale

Our framework is also capable of fully automatically reg-
istering a number of range images with unknown global
scales. Figure 12 illustrates the results of applying our
framework to 15 views of the Happy Buddha and Dragon
models. Each range image was globally scaled by a ran-
dom factor between 0.75 and 1 and subsampled at the same
rate using bilinear interpolation to simulate the reduction in
range image resolution when scanning objects at increasing
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Fig. 12 Automatic registration of 15 views of the Happy Buddha and
Dragon models each with a random global scaling from 0.75 to 1. Each
view was also subsampled by the same factor to reduce the range image
resolution. For each model we visualize the initial set of range images
on the left and the approximate alignment obtained by our framework

on the right, prior to any post-processing with ICP. Even with the sub-
stantial variations in the global scale and resolution, the scale-invariant
local 3D shape descriptors enables us to obtain accurate (approximate)
registrations without any assumptions about the initial poses

Fig. 13 Automatic approximate registration of 66 randomly scaled
and subsampled range images consisting of 15 views each of the Happy
Buddha and Dragon models, and 12 views each of the Armadillo, Chi-
nese Lion, and Eros models (shown on the left together). Each range
image was scaled and subsampled at a randomly chosen rate between

0.75 and 1.0. The scale-invariant local 3D shape descriptors enable au-
tomatic approximate registration of the 5 models from this mixed set of
range images without any prior information even with significant scale
and resolution variations

distances. For each pair of adjacent range images the av-
erage errors in the estimated scales after our approximate
registration using scale-invariant local 3D shape descriptors
were 0.48 % for the Dragon and 1.02 % for the Happy Bud-
dha model. These results show that even with substantial
variations in the global scale, our method successfully aligns
the range images with high accuracy, which is good enough
for subsequent refinement with ICP-based methods as in the
examples shown in Fig. 10 without any manual intervention.

Figure 13 shows the results of applying our framework
to 66 range images corresponding to views of five differ-
ent models that have been randomly scaled by a factor be-
tween 0.75 and 1. Each view was also subsampled at the
same rate to reduce the range image resolution. Despite the
scale and resolution variations, our scale-invariant represen-
tation of the underlying local geometric structures enables
us to automatically register all five models without any hu-
man intervention.

7 Three-Dimensional Object Recognition

Next, we show how the hierarchy induced by the scale vari-
ation of local geometric structures may be employed in aid-
ing accurate 3D object recognition. The goal of 3D object

recognition is to correctly identify objects that are present
in a 3D scene, usually in a depth/range image, and to es-
timate the location and orientation of each object. 3D ob-
ject recognition has been of interest for industrial automatic
assembly but with the availability of portable laser range
scanners and especially consumer range scanners such as
the Microsoft Kinect, scene understanding of cluttered range
image scenes is an important problem to address. We show
that by fully leveraging the additional information provided
by the scale variability in the matching phase in addition
to employing our scale-dependent/invariant local 3D shape
descriptors that encode the natural support region for each
feature, we can achieve accurate recognition results even in
highly cluttered range image scenes.

7.1 Scale-Dependent Model Library and Scenes

We first construct a model library of the 3D models of the
objects we are interested in recognizing in the target scenes.
In order to compute a scale-dependent representation of
each object, we first synthesize range images from a number
of uniformly distributed views of the 3D model of the ob-
ject. The number of views are chosen so that there is overlap
between each adjacent pair of views such that all areas of
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the 3D model are captured in at least one of the synthesized
range images. For each synthesized range image, we com-
pute scale-dependent corners at a number of discrete scales.
To determine the set of scales to use for the geometric scale
space analysis, we choose five proportionately spaced dis-
crete scales such that only 5 % to 10 % of the detected scale-
dependent corners are from the coarsest scale. As a conse-
quence, only the most salient geometric features are detected
at the coarsest scale. We then compute a scale-invariant local
3D shape descriptor for each scale-dependent corner.

We then represent each object in the model library
with its 3D model and a single consolidated set of scale-
dependent corners that captures all views of the object and
their corresponding descriptors. To do this, each subset of
scale-dependent corners computed from each view of the
object are brought to a single coordinate frame by using
the known transformations between the synthesized views.
We remove any duplicate features resulting from the over-
laps between any two views of the object. Any two corners
within a small distance threshold of each other, detected at
the same intrinsic scale and with a degree of similarity above
a certain threshold value are considered to be a single feature
and one of them is removed.

The scenes to be recognized are range images and thus
do not require any preprocessing beside the computation
of scale-dependent corners and their corresponding scale-
invariant local 3D shape descriptors. The set of scales used
to construct the geometric scale-space are determined in the
same way as the model scales.

7.2 Constrained Interpretation Tree Matching

Given the scale-dependent representations of the models
and scene, we perform matching using an interpretation tree
structure (Grimson et al. 1990; Flynn and Jain 1991) that
embodies all possible correspondences between model and
scene features. For each model Mi to be searched for in a
scene S, we create an interpretation tree IT i . At the root of
the tree, there are no correspondences. We build each suc-
cessive level of the tree by picking a scale-dependent corner
from the model and representing its correspondences with
highly similar corners from the scene as nodes in the tree.
Each node in the tree embodies a hypothesis regarding the
presence of the given model in the scene, formed by the set
of correspondences at that node and all its parent nodes. And
descent in the tree implies an increasing level of commit-
ment to a particular hypothesis (Flynn and Jain 1991).

The search space of all correspondences represented by
the entire interpretation tree may be exponentially large for
complex scenes (Grimson 1988). For example, for a model
with m primitives and a scene with n primitives, there
may be n nodes at the first level of an unconstrained tree,
n2 nodes at the second level and so on. Hence constrain-
ing and pruning the tree becomes crucial to keep the search

space tractable. Here, we exploit the rich discriminative in-
formation encoded in the scale-dependent features to impose
the following constraints on the tree to keep the search space
tractable. From here on, we refer to a scale-dependent cor-
ner computed at location u and with scale σ for a model Mi

and scene S as Mσ
i,u and Sσ

u and their corresponding scale-

invariant local 3D shape descriptor as M̂σ
i,u and Ŝσ

u , respec-
tively.

7.2.1 Scale Hierarchy

The scale-dependent corners induce a hierarchy among
the set of computed corners based on the intrinsic scale
of each corner. The scale-dependent corners detected at
coarser scales represent variations in the underlying geom-
etry that are of prominent size and those at finer scales
represent smaller variations. Correspondingly, the scale-
invariant local 3D shape descriptors corresponding to the
scale-dependent corners detected at the coarser scales also
encode a larger neighborhood around the detected corner
and convey relatively greater discriminative information.
We prioritize such feature by matching the scale-dependent
corners detected at the coarsest scale first, followed by
those detected at increasingly finer scales. As shown in
Fig. 14, any pair of model corners Mσ1

i,u1
and Mσ2

i,u2
used

to build the successive levels of the tree are chosen so that
σ1 ≥ σ2. This lends a hierarchical structure to the interpreta-
tion tree and does away with ambiguities regarding which
model primitive to choose to build the next level of the
tree.

7.2.2 Valid Correspondences

Any two scale-dependent corners that represent the same un-
derlying geometric structure must have the same intrinsic
scale. Therefore, we only allow correspondences between
two corners if both have the same intrinsic scale. Thus,
a correspondence between Mσa

i,uo
and Sσb

up
may be valid only

when they have the same intrinsic scale, σa = σb . We forgo
this constraint for scenes that do not necessarily contain the
models at the same scale.

We also take advantage of the high discriminability of
the scale-invariant local 3D shape descriptors and allow cor-
respondences to be established between features only when
their corresponding descriptors are highly similar. A corre-
spondence between Mσa

i,uo
and Sσb

up
is considered valid only

when the similarity measure between their corresponding
scale-invariant local 3D shape descriptors M̂σa

i,uo
and Ŝσb

up
is

above a similarity threshold st .
To account for the possibility that a model corner Mσ

i,u
might not be present in a scene, we establish a correspon-
dence between each Mσ

i,u and a NULL entity as in Flynn and
Jain (1991), Grimson (1988) and add this correspondence to
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Fig. 14 Schematic of our
scale-hierarchical interpretation
tree. For each level, a new
model corner with the highest
intrinsic scale is chosen and at
most childmax matches with the
most similar scene corners that
satisfy the scale, similarity and
geometric constraints are added
for each branch in the previous
level. The hypothesis with the
most overlap area is chosen for
verification

the tree as a child node for every node in the previous level.
Furthermore, we also set a limit childmax , on the number of
valid correspondences that can be added as child node to any
particular node in the previous level.

7.2.3 Geometric Constraint

Since each node in the tree represents a set of correspon-
dences at that node and all its parent nodes, we can com-
pute a transformation T for any such node so that the pairs
of model and scene corner points that form the set of cor-
respondences are aligned with each other. As a correct set
of correspondences should yield an accurate transformation,
any correspondence cnew between model corner Mσa

i,uo
and

scene corner Sσb
up

being considered to be added to the tree
as a node must be consistent with the transformation T for
its potential parent node. We enforce this constraint by only
allowing correspondences to be added to the tree that satisfy
‖T · Mσa

i,uo
− Sσb

up
‖ ≤ ε, where ε is a threshold value.

7.2.4 Pruning

We prune the tree when the number of nodes in any level
of the tree goes above a threshold value Nmax . Only Npruned

nodes which represent the strongest hypotheses are then kept
in the tree. We define the strength of a hypothesis by the
cardinality of its correspondence set |C| and the average
transformation error induced by its corresponding transfor-
mation T , in aligning model and scene corner points in the
correspondence set C. To facilitate this, we sort all nodes
in the level of the tree to be pruned based on the cardinal-
ity of the correspondence set represented by each node in a
descending order. Within this sorted list of nodes, the nodes
with correspondence sets of the same size are then further

sorted in an ascending order based on the average transfor-
mation error induced by the hypothesis. The first Npruned

nodes in this sorted list is then kept with the rest pruned off.

7.3 Hypothesis Verification and Segmentation

Among the hypotheses represented by the leaf nodes of the
tree IT i , we choose only hmax of the strongest hypothesis
for verification which entails using the geometric transfor-
mation T defined by it to transform the 3D model of our
library object Mi into the scene and evaluating its accuracy
given by the area of overlap A(Hn) between the transformed
model and the scene. We then choose the hypothesis that
produces the maximum area of overlap as the best hypothe-
sis Hbest, which we refine using ICP. We compute the accu-
racy of Hbest as,

α(Hbest) = A(Hbest)

Ma(Hbest)
, (15)

where, A(Hbest) is the area of overlap between model Mi

transformed by Hbest and the scene S, and Ma(Hbest) is the
total visible surface area of the model Mi , within the bound-
ing box of the scene S, after being transformed by Hbest.

We then accept Hbest as being correct if α(Hbest) is above
a threshold αt , otherwise we reject it. This essentially means
that at least 100αt % of the transformed model within the
scene boundaries needs to be visible in the scene. If Hbest

is rejected, then we conclude that model Mi is not present
in the scene S. If Hbest is accepted, we segment the scene
S by removing vertices that fall in the overlapping region
referenced by A(Hbest). We remove all scale-dependent cor-
ners from the scene that fall in A(Hbest) from consideration
for the recognition of the next model Mi+1 in our model li-
brary. As a result, the space of all possible correspondences
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for subsequent recognition of the remaining models in our
library, is vastly reduced.

We then proceed with the recognition process by build-
ing a new constrained interpretation tree ITi+1 for the next
model Mi+1 in our library. We continue this process either
until we have built an interpretation tree for all the models
in the model library or until there are two or fewer scale-
dependent corners available in the scene as a result of the
segmentation of the scene, in which case a unique hypothe-
sis cannot be computed.

7.4 Scale-Dependent Recognition Results

We demonstrate the effectiveness of our approach by per-
forming recognition experiments on cluttered real range im-
age scenes from two datasets, the University of Western
Australia (UWA) (Mian et al. 2006) and Queen’s Univer-
sity (Qu-een’s) (Taati et al. 2007; Lab QURCV 2009). These
two datasets are the most comprehensive publicly available
datasets to date, containing scenes, scanned from a single
viewpoint, with multiple 3D objects occluding each other
and thus creating clutter.

In our implementation, we relax the constraint for a cor-
respondence between Mσa

i,uo
and Sσb

up
to be considered as

valid based on its intrinsic scales and instead regard their
correspondence as valid if σa and σb are within a single rel-
ative intrinsic scale of each other. For all the experiments,
we use the following set of parameter values: st = 75 % of
self-similarity measure, childmax = 5 (including the NULL
node), ε = between 3 or 4 times the resolution of the syn-
thesized range images used in building the model library,
Nmax = 2000000, Npruned = 2000, hmax = 20 and αt = 0.3.
Also, to compute the scale-dependent representation of each
model, we synthesize range images from eight uniformly
distributed views around the vertical axis of the model.

7.4.1 UWA Dataset

The UWA dataset contains five 3D models and 50 real
scenes with four or five of the models causing clutter and
occlusion. Figure 15(a) and (b) shows the recognition rate
on the 50 real scenes, as a function of occlusion and clutter
respectively. We define occlusion and clutter for each model
in a scene as Mian et al. (2006):

occlusion = 1 − model surface patch area in scene

total model surface area
, (16)

clutter = 1 − model surface patch area in scene

total surface area of scene
. (17)

We manually segmented each of the scenes to compute
the ground truth occlusion and clutter values for each ob-
ject in each scene. We were able to recognize objects with

significant occlusion and clutter as shown in Fig. 16. The av-
erage recognition rate of our approach was 93.58 % which is
comparable to the 95 % overall recognition rate achieved by
Mian et al. (2006) on real and synthetic data. Their overall
recognition rate, however, was based not only on the 50 clut-
tered real scenes used here but also on a much larger number
of synthetic scenes of simple clutterless views of single ob-
jects which we did not have access to.

To achieve rigorous and fair evaluation in comparison, we
compare our results with the recognition results on the ex-
act same dataset of cluttered scenes presented in Mian et al.
(2006)11 for their tensor matching approach and the spin im-
ages recognition algorithm (Johnson and Hebert 1999). As
in Mian et al. (2006), we exclude the Rhino model from our
recognition results as the spin images algorithm completely
failed to recognize the Rhino in any of the scenes as it con-
tained large holes as a result of being scanned from insuf-
ficient views. The recognition rate of our approach in this
case was 97.5 % and we outperform tensor matching and
spin images, which have recognition rates of 96.6 % and
87.8 % respectively, with up to 84 % occlusion. Figure 15(c)
shows the recognition rate of our approach as a function of
occlusion on the 50 real scenes, excluding results from the
Rhino model, for a direct comparison with tensor matching
and spin images reported in Mian et al. (2006).

7.4.2 Queen’s Dataset

The Queen’s dataset contains five models and 80 scenes in
point cloud format. Each model was present in four scenes
with a single model, 18 scenes with three models, 16 scenes
with four models and 10 scenes with all five models. For
each model, the normals were available for each of the ver-
tices. The scenes, however, were in an unstructured point
cloud form and the vertices did not have associated normals.
The scenes in this dataset, hence, point out a limitation of the
presented approach, that of the requirement of a range image
or a structured point cloud. We, therefore, needed to prepro-
cess these models and scenes such that we may analyze their
geometric scale-space and perform 3D object recognition on
the scenes.

To that end, we compute a triangulated surface mesh for
each model with the Marching Cubes algorithm using Mesh-
Lab (2010). Similarly, we obtain a triangulated surface mesh
for each of the scenes after estimating the normal for each
vertex based on its local neighborhood. Note that, unlike for
the models, surface normals were unavailable in the dataset
for the scenes. We then use the triangulated surface mesh to
synthesize a range image for each scene. For a number of
scenes, however, some regions of the scene were lost during

11This was confirmed by correspondence with Mian et al. (2006).
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Fig. 15 Recognition rates of our scale-dependent approach on 50 real
scenes from the UWA dataset with respect to (a) occlusion and (b) clut-
ter. There are no false positives and the false negatives occur close to
100 % occlusion. Our method achieves consistently high recognition
rate across different amounts of occlusion and clutter. Results exclud-

ing the rhino are presented in (c) for direct comparison with Mian et al.
(2006), which we outperform. Please refer to Fig. 19(b) in Mian et al.
(2006) for accurate plots for tensor matching and spin images as the
plots here are approximate from Mian et al. (2006)

the surface generation process and thus these regions were
absent from the generated surface mesh.

Figure 18 shows our recognition results for four scenes
from the Queen’s dataset. As illustrated in Fig. 18(c) and (d),
significant regions of the scene corresponding to some of the
models were lost during the surface generation process, the
Kid and Zoe models in this instance. Not surprisingly, the
Kid and Zoe models could not be recognized in these scenes.
Despite this and the significant amount of clutter and oc-
clusion present in the scenes, our average recognition rate
for all the models in the Queen’s dataset on the 80 scenes
was 82.43 %. The recognition rates for the individual mod-
els were: 77.08 % for the Angel, 87.5 % for the BigBird,
87.5 % for the Gnome, 83.33 % for the Kid and 76.6 % for
the Zoe model. Figure 17 shows the recognition rate of our

approach on the 80 scenes as a function of occlusion and
clutter.

For a direct comparison with the results reported in Taati
(2009), we report our results for the same subset of 55
scenes used for evaluation in Taati (2009).12 Our average
recognition rate in this case was 81.96 %. In comparison,
the best reported average recognition rate in Taati (2009)
using the spin images descriptor was 53.8 % and using an-
other proposed shape descriptor, the vector quantized vari-
able dimensional local shape descriptor (VD-LSD(VQ)),
was 83.8 %. We believe the slightly lower recognition rate
for our approach can largely be attributed to the loss of
surface regions during the surface generation step we em-
ployed. It can also partially be attributed to the fact that we

12This was confirmed by correspondence with Taati (2009).
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Fig. 16 Scale-dependent recognition results on four scenes from the
UWA dataset. All objects that have been recognized are replaced with
their 3D models in different colors. Only the Chef in (d), which was

over 92 % occluded, was not recognized. Our method successfully rec-
ognizes the remaining objects despite the significant clutter and occlu-
sion, and localizes each object very accurately

Fig. 17 Recognition rates of
our scale-dependent approach
on 80 real scenes from the
Queen’s dataset with respect to
(a) occlusion and (b) clutter

Fig. 18 Scale-dependent recognition results on four scenes from the
Queen’s dataset. All objects that have been recognized are replaced
with their 3D models in different colors. Only the Kid in (c) and Zoe
in (d), the yellow and brown colored models in (a), (b) respectively,

were not recognized. In both these cases, significant regions of the
scene corresponding to these models were lost during the surface gen-
eration process. All other models were recognized and localized accu-
rately despite the significant clutter and occlusion (Color figure online)

only synthesized range image views around the vertical axis

of each model while building our model library and thus did

not explicitly capture the top and bottom views of the mod-

els, which were present in some of the scenes. And although

our analysis assumes that connectivity between 3D points in

the data is given, which was not the case for the original data

in this case, we were still able to achieve recognition rates

much higher than that for the spin images.
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Fig. 19 Recognition rates of
our scale-invariant approach
with respect to (a) occlusion and
(b) clutter, on real scenes and
synthetic scenes containing
globally scaled library objects.
To our knowledge, we are the
first to show systematic results
on scale-invariant 3D object
recognition

Fig. 20 Four synthetic scenes
with objects randomly scaled
between 60 % to 150 % of their
original sizes. Despite the global
scale variation, occlusion and
clutter, our method successfully
recognizes most objects in the
scene and localizes them very
accurately

7.5 Scale-Invariant Recognition Results

We perform recognition experiments on all 50 real scenes
from the UWA dataset as well as 30 synthesized range im-
age scenes, which we created, where models from the UWA
dataset are scaled from 60 to 150 percent of their size. For
this set of experiments, we allow for correspondences be-
tween corners to be established across all scales and use
a similarity transformation T̂ to allow for scale-invariant
recognition. All parameter values are set the same as the pre-
vious experiments.

As illustrated in Fig. 20, we are able to recognize scaled
library objects in range image scenes with significant occlu-
sion and clutter. Figure 19(a) and (b) shows the recognition
rate of our scale-invariant approach as a function of occlu-
sion and clutter respectively. We achieve a recognition rate
of 89.08 % on the synthetic scenes and an overall recogni-
tion rate of 89.29 %. The reduced recognition rate in com-
parison to the case of same global scale between models and
scene (in Sect. 7.4.1) can be interpreted as the direct conse-
quence of the increased search space of correspondences by
allowing scaling as part of the transformation.

We have demonstrated that our framework is capable
of performing scale-invariant recognition tasks in complex
scenes as well. To our knowledge, we are the first to show
systematic results on scale-invariant 3D object recognition.

We believe our scale-invariant recognition approach has
broad practical implications as the model library may be
built with a suitably scaled object model and scaled objects
can be accurately recognized in a scene. Such an ability is
crucial given the wide spread use of range sensors with var-
ious modalities ranging from laser range sensing to stereo
and to consumer depth cameras, which will lead to abundant
depth data of various global scales.

8 Conclusion

In this paper, we proposed the use of the scale variation of
local geometric structures as an additional dimension that
can be exploited for various computer vision applications.
To that end, we presented a novel framework for analyz-
ing and leveraging the scale variability of geometric struc-
tures that are captured in a range image. In particular, we
introduced the geometric scale-space to unveil and analyze
the geometric scale variability, derived methods for detect-
ing geometric features of varying scales and for identifying
their scales. We also introduced a novel local shape descrip-
tor that encodes the discriminative local geometric structures
according to their natural scales.

Furthermore, we demonstrated how this added dimension
provided by the scale of local geometric structures may be
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exploited as a discriminative property in establishing cor-
respondences between local geometric structures in range
images. We showed the power of geometric scale analysis
by using the scale-dependent/invariant local 3D shape de-
scriptors in range image registration, which shows that even
fully automatic registration of multiple 3D objects from an
unordered set of mixed range images can be achieved. We
further demonstrated the effectiveness of geometric scale-
space analysis by performing accurate 3D object recogni-
tion in highly cluttered range image scenes containing mul-
tiple objects occluding each other in varying degrees. The
scale of local geometric structures provide an added layer
of discriminability when used together with local shape
descriptors. We believe the geometric scale-space analysis
as well as the resulting features and descriptors provide a
solid foundation for fully leveraging scale variability as an-
other dimension of geometric data in various computer vi-
sion applications. Software that implements the 3D geo-
metric scale-space analysis introduced in this paper, includ-
ing feature and descriptor computation, and fully automat-
ically range image registration, can be downloaded from
https://www.cs.drexel.edu/~kon/3DGSS.
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