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Abstract We present the first method to handle curvature
regularity in region-based image segmentation and inpaint-
ing that is independent of initialization.

To this end we start from a new formulation of length-
based optimization schemes, based on surface continuation
constraints, and discuss the connections to existing schemes.
The formulation is based on a cell complex and considers ba-
sic regions and boundary elements. The corresponding opti-
mization problem is cast as an integer linear program.

We then show how the method can be extended to include
curvature regularity, again cast as an integer linear program.
Here, we are considering pairs of boundary elements to re-
flect curvature. Moreover, a constraint set is derived to en-
sure that the boundary variables indeed reflect the boundary
of the regions described by the region variables.

We show that by solving the linear programming relax-
ation one gets reasonably close to the global optimum, and
that curvature regularity is indeed much better suited in
the presence of long and thin objects compared to standard
length regularity.
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1 Introduction

Regularization is of central importance for many inverse
problems in computer vision including image segmenta-
tion and inpainting (Mumford and Shah 1989; Chan and
Vese 2001; Masnou and Morel 1998; Bertalmío et al. 2001;
Tschumperlé 2006; Bornemann and März 2007; Cao et al.
2012). The introduction of higher-order regularizers in re-
spective energy minimization approaches is known to give
rise to substantial computational challenges. Some of the
most powerful approaches to image segmentation are based
on region integrals with regularity terms defined on the re-
gion boundaries (Blake and Zissermann 1987; Mumford and
Shah 1989; Nitzberg et al. 1993; Boykov and Jolly 2001;
Chan and Vese 2001; Esedoglu and March 2003; Klodt et
al. 2008). While many such methods make use of length as a
regularity term, only few use curvature regularity. This is in
contrast to psychophysical experiments on contour comple-
tion (Kanizsa 1971) where curvature was identified as a vi-
tal part of human perception. Note that curvature regularity
is qualitatively different from length regularity. As shorter
boundary curves are preferred in the length case, this causes
the well-known shrinking bias. This is not the case for cur-
vature, since the total curvature of any closed, convex curve
is equal to 2π .

Length regularization has become an established para-
digm as there exist many powerful algorithms for com-
puting optimal solutions for such energy functionals, ei-
ther using discrete graph-theoretic approaches based on the
min-cut/max-flow duality (Greig et al. 1989; Boykov and
Jolly 2001) or using continuous PDE-based approaches us-
ing convex relaxation and thresholding theorems (Nikolova
et al. 2006). Region-based problems for segmentation us-
ing curvature regularity have typically been optimized using
local optimization methods only (cf. Nitzberg et al. 1993;
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Fig. 1 With the proposed method, long and thin structures are much better handled than with length-based approaches

Fig. 2 Curvature regularity on the level lines improves inpainting

Esedoglu and March 2003). As a consequence, experimental
results highly depend on the choice of initialization. More-
over, these methods do not offer any insights concerning
how close the computed solution is to the (unknown) global
solution.

In this paper, we propose a relaxed version of region-
based segmentation which can be solved optimally. The key
idea is to cast the problem of region-segmentation with cur-
vature regularity as an integer linear program (ILP). By solv-
ing its LP-relaxation and thresholding the solution we ob-
tain a solution to the original integer problem and are able
to evaluate a bound on its quality with respect to the glob-
ally optimal solution. In addition, we show that the method
readily extends to the problem of inpainting.

Figure 1 demonstrates that the proposed method allows
segmenting objects in a way which preserves perceptually
important thin and elongated parts. The found solution is
within 1.3% of the global optimum. Figure 2 demonstrates
the superior performance of curvature regularity over length
regularity in a corresponding inpainting experiment.

Existing Work on Curvature Regularity. For contour- or
edge-based segmentation methods researchers have suc-
cessfully developed algorithms to optimally impose curva-
ture regularity using shortest path approaches (Amini et
al. 1990) or ratio cycle formulations (Schoenemann and

Cremers 2007) on a graph representing the product space
of image pixels and tangent angles (Parent and Zucker
1989). In the region-based settings considered, curvature
is usually handled by local evolution methods (Chan et
al. 2002; Esedoglu and March 2003; Nitzberg et al. 1993;
Tschumperlé 2006). Among the methods that pre-date our
conference publication (Schoenemann et al. 2009), the only
exception we are aware of is the inpainting approach of Mas-
nou and Morel (1998) who can optimize the L1-norm of the
curvature in the absence of regional data terms using dy-
namic programming.

In this paper we propose an LP-relaxation approach to
minimize curvature in region-based settings. In contrast to
Masnou and Morel (1998) it allows imposing arbitrary func-
tions of curvature and arbitrary data terms. The algorithmic
formulation is based on the concepts of cell complexes and
surface continuation constraints which have been pioneered
by Sullivan (1994) and Grady (2010) in the context of 3D-
surface completion.

The present paper is based on our preliminary work in
Schoenemann et al. (2009), but contains several novelties.
Firstly, we show that the constraint system in Schoenemann
et al. (2009) needs to be augmented by additional constraints
in order to ensure that the boundary of the region-based
segmentation is correctly estimated. Secondly, we discuss
the connections of our method, when restricted to length
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regularity, with standard methods for length regularity and
compare experimentally. In addition, the original inpainting
method has improved by incorporating a boundary estima-
tion scheme.

There has been a subsequent paper by El-Zehiry and
Grady (2010) which optimizes the same model as in our
original paper, but applies quadratic pseudo-Boolean opti-
mization (QPBO) with ternary cliques for obtaining the so-
lution. In the case of a square grid, QPBO is able to ef-
ficiently compute a solution with curvature regularization,
and with a subsequent probing stage often the global op-
timum is found. However, the discretization artefacts are
severe for a cell complex of squares. For better connec-
tivities one has to use fourth order cliques (Strandmark
and Kahl 2011), and the resulting optimization problem be-
comes much harder (QPBO rarely gets close to the global
optimum).

A preliminary version of this work was previously pre-
sented at a conference (Schoenemann et al. 2009). A similar
treatment of boundaries and cooccurrence of edges (albeit
at longer range) was more recently also adopted in the con-
text of object detection (Toshev et al. 2010). More recently,
a spatially continuous relaxation of curvature regularity on
the basis of Menger-Melnikov curvature has been proposed
(Goldlücke and Cremers 2011).

The source code associated to this paper is freely avail-
able under the name RegionCurv at http://www.maths.lth.
se/matematiklth/personal/tosch/download.html and at https:
github.com/PetterS/regioncurv. The results were produced
with release version 0.8, but the latest release (0.905)
with the option -boundary-constraints simple gives
equivalent results. To allow future researchers an easy com-
parison, we will also provide binaries on our homepage.

2 Length-Based Segmentation Problems

To detail the proposed method for curvature regularity, we
first introduce a novel method for length-based segmen-
tation problems. In practice there are more efficient algo-
rithms for this problem (Boykov and Kolmogorov 2003;
Nikolova et al. 2006), but in contrast to them the presented
one is easily extended to curvature. A comparison to the
known techniques is given at the end of this section.

Given an image I : Ω → R, the problem is to segment it
into two regions, foreground and background. Here “region”
means an arbitrary subset of Ω , i.e. there can be several dis-
connected components and each one can have holes. Hence,
each point x ∈ Ω is to be assigned a region u(x) ∈ {0,1}
where 0 denotes background, 1 foreground.

The desired segmentation is defined as the global opti-
mum of an energy function, consisting of two terms. The
first one is called the data term and specified by a function

g0(x) for points belonging to the background and a function
g1(x) for the foreground. Both functions will generally de-
pend on the input image I . In addition there is a regularity
term that penalizes the length of the segmentation boundary
by a weighting parameter ν ≥ 0. The arising energy mini-
mization problem to be solved is

min
u:Ω→{0,1}

∫
Ω

g0(x)
[
1 − u(x)

]
dx +

∫
Ω

g1(x)u(x) dx + ν|C|,
(1)

where C = ∂{x | ∇u(x) = 0} is the set of points where u

is discontinuous (i.e. “jumps” from 0 to 1) and |C| denotes
its one-dimensional measure. In other words, C is a set of
closed lines (which may include parts of the boundary of Ω)
and |C| denotes the sum of the length of all lines.

For convenience, we reformulate (1) by splitting the in-
tegrand of the first term into a constant term and one de-
pending on u. Defining g(x) = g1(x) − g0(x) the resulting
functional is

min
u:Ω→{0,1}

∫
Ω

g(x)u(x) dx + ν|C| + const. (2)

In the following we will ignore the constant except when
evaluating relative gaps between a lower bound and the en-
ergy of some segmentation.

2.1 Discretization

In this paper we consider discretized segmentation prob-
lems where instead of optimizing infinitely many values
{u(x) | x ∈ Ω} we only consider finitely many “basic re-
gions”, henceforth called cells, and jointly assign all points
in a cell to the same segment. Note that in practice we will
always get a discrete input image I , where the cells are given
by pixels. Hence, the data term by itself will produce such
an assignment even for the continuous problem. This is no
longer true when the regularity term is added, but in prac-
tice the discretized energy function can be designed to ac-
count for this phenomenon (Boykov and Kolmogorov 2003;
Nikolova et al. 2006).

We require that our set of cells—denoted F —be a cell
complex and a partitioning of Ω , i.e. that (1) no two cells
overlap and (2) the union of all cells yields Ω . An example
is given in Fig. 3(a).

The presented approach makes use of another essential
part of a cell complex: boundary segments. These are the
line segments that form the borders of the cells. Usually a
boundary segment has two neighboring cells, except for seg-
ments at the border of Ω where there is only one. The set of
all boundary segments is denoted E . As will be shown be-
low we need to consider both possible ways of traversing a
boundary segment. Hence, for each boundary segment we
consider two oriented boundary segments, also called line

http://www.maths.lth.se/matematiklth/personal/tosch/download.html
http://www.maths.lth.se/matematiklth/personal/tosch/download.html
http://https:github.com/PetterS/regioncurv
http://https:github.com/PetterS/regioncurv
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segments in the following. The set of all these segments is
denoted E O and �(e) will denote the length of a line seg-
ment e.

In essence, the data term will be defined in terms of the
cells, the regularity term in terms of the boundary segments.
To approximate the continuous problem sufficiently well,
cells should generally not correspond to pixels. Instead, as
detailed in Fig. 4 we split the pixels into either 4 or 32 cells,
induced by lines with 8 and 16 different directions respec-
tively. In the following we will refer to this as 8- and 16-
connectivity.

2.2 An Integer Linear Program

The presented method casts a discretized version of (1) as
a so-called integer linear program, i.e. minimizing a lin-
ear cost function over integral variables and subject to linear
constraints. There are two sets of variables: firstly, for each
cell f ∈ F there is a region variable yf

R ∈ {0,1} with 0 in-
dicating that the cell belongs to the background, 1 to the
foreground. The second set contains a boundary variable
ye
B ∈ {0,1} for every oriented boundary segment e ∈ E O .

Here we want ye
B to be 1 only if exactly one of the adja-

cent cells belongs to the foreground. Now we are already in
a position to express the cost function:

cT
R yR + cT

B yB, (3)

Fig. 3 The basic concepts of our method. (a) A cell complex. (b) The
method considers oriented cells and oriented boundary elements

Fig. 4 Splitting a pixel into cells using lines with 8 and 16 different
directions

where cR contains entries

cf
R =

∫
f

g(x) dx,

and cB contains entries ce
B = ν �(e). Since in our case cells

are always subsets of a single pixel this weight is simply the
function g(·) evaluated at the pixel times the area of the cell.

As ν is positive minimizing (3) by itself would set all
boundary variables to 0, so we need constraints. Indeed, up
to a few ambiguities (see next section) the region bound-
ary is completely specified by the region variables and the
boundary variables serve to render the cost function linear.
They are forced to describe the correct boundary by the lin-
ear constraint system that we now describe. In words it can
be stated as

Surface Continuation Constraint: Whenever a cell
is part of the foreground, along each of its bound-
ary segments the foreground must either continue with
another foreground cell or with an appropriately ori-
ented boundary segment.

Formalizing these constraints (one for each boundary
segment) involves the concept of orientations for both cells
and boundary segments. For boundaries we have already in-
troduced this concept, but it is essential for the constraint
system that we (arbitrarily) define a “positive” and a “nega-
tive” orientation for each boundary segment.

For a cell, an orientation denotes one of the two possibil-
ities for traversing its boundary line—clockwise or counter-
clockwise. Here it is essential that all cells have the same
orientation.

Now, to formalize the surface continuation constraint
we define the notion of positive and negative incidence of
cells f ∈ F and line segments l ∈ E O to boundary seg-
ments e ∈ E . Ultimately the constraint will then state that
the weighted sum of “active” cell incidences must be equal
to the weighted sum of “active” boundary incidences, where
active refers to elements where the associated indicator vari-
able is 1.

While introducing the employed notation we illustrate
it on the following example, where we focus on the bold
boundary segment, called e, and assign e an upward orien-
tation.
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Incidence of cells and boundary segments is defined for
all pairs of cells f and boundary segments e, in terms of an
integer value m

f
e ∈ {−1,0,1}. For a specific e, most cells f

will not border on e, which is denoted by m
f
e = 0. Since we

are operating on a two dimensional cell complex, at most
two cells can have a non-zero value for a fixed e. Whether
this is a 1 or a −1 is defined by the orientation of the cell: if,
when traversing the boundary segments of a cell in the asso-
ciated orientation, one traverses e in its assigned (positive)
orientation, we set m

f
e = 1. Otherwise, i.e. when traversing

e in the opposite (negative) orientation, we set m
f
e = −1. In

our example above, we have mA
e = 1 and mB

e = −1. If the
cell complex contained more cells, then for any such f we
would have m

f
e = 0.

The incidence of a line l and a boundary segment e is
denoted by the integer ml

e ∈ {−1,0,1} and again defined for
all pairs of line segments and edges. It is 0 for almost all
such pairs, solely the two oriented line segments belonging
to an edge e take a non-zero value ml

e. Here the one that
agrees with e in orientation gets a coefficient of ml

e = 1, the
oppositely oriented edge a coefficient of ml

e = −1. In our
example, we have m

l1
e = −1 and m

l2
e = 1. For all other line

segments lk where k ≥ 3 we have m
lk
e = 0.

The constraint system can now be stated as
∑
f ∈F

m
f
e y

f
R =

∑
l∈E O

ml
e yl

B ∀e ∈ E . (4)

In our example, the constraint for the bold edge reads

yA
R − yB

R = y
l2
B − y

l1
B . (5)

In the case where yA
R = 1 and yB

R = 0, i.e. cell A is fore-

ground and cell B is background, y
l2
B will be forced to 1,

whereas y
l1
B will be set to 0. If instead B is foreground and

A background, this will force y
l1
B to be 1 and y

l2
B to be 0. If

both A and B belong to the same component, the constraint
leaves some freedom for the boundary variables: they can
now both be 0 or both be 1. The latter is undesirable, but
will not happen as long as the length weight is strictly pos-
itive. However, when we integrate curvature below we will
need extra constraints to prevent this case.

Finally, we summarize the integer linear program to be
solved as:

min
y

cT
R yR + cT

B yB

s.t.
∑
f ∈F

m
f
e y

f
R =

∑
l∈E O

ml
e yl

B ∀e ∈ E

y
f
R ∈ {0,1} ∀f ∈ F

yl
B ∈ {0,1} ∀l ∈ E O.

(6)

As we will show now this problem can be efficiently solved
by computing a graph min-cut.

2.3 Relation to Graph Cuts

Discrete approaches to image segmentation are very well
studied in computer vision and the vast majority uses pixels
as their cells. However, they do usually not express (length)
regularity in terms of the boundary segments of these cells—
this would imply a four-connectivity.

Instead, these approaches are based on graphs where the
cells correspond to nodes and the length term is represented
in terms of edges that connect pairs of nodes (Boykov and
Kolmogorov 2003). We denote the set of nodes P , where
each p ∈ P represents the center point of a cell f ∈ F .
Analogous to the above integer program, each center p of
a cell is associated a binary variable yp ∈ {0,1} indicating
foreground and background. The smoothness term is mod-
eled by a set of edges N (also called neighborhood) and for
length regularity can be expressed as:

|C| ≈ 1

k(N )

∑
(p,q)∈N

1

‖p − q‖
(
1 − δ(yp, yq)

)
,

where k(N ) is a normalization constant1 that ensures that
the weights remain comparable when the size of the neigh-
borhood is enlarged.

Minimizing this energy can be written as a minimum cut
problem, which again can be written as

min
yP ∈{0,1}|P |

cT
R yP +

∑
(p,q)∈N

wp,q |yp − yq |.

It is well-known, e.g. (Dantzig and Thapa 1997), that such
absolutes can be rewritten as linear programs, i.e. this prob-
lem can be equivalently written as

min
yP ,a±

cT
R yP +

∑
(p,q)∈N

wp,q (a+
p,q + a−

p,q)

s.t. yp − yq = a+
p,q − a−

p,q ∀(p, q) ∈ N

yP ∈ {0,1}|P |, a+
p,q, a−

p,q ≥ 0 ∀(p, q) ∈ N .

If we assume that the neighborhood links exactly all pairs of
neighboring cells (i.e. those that share a boundary segment),
these are exactly our surface continuation constraints (5).
Since graph cuts can be optimized globally efficiently it fol-
lows that (6) is polynomial-time solvable.

In summary, what we have proposed so far is a restriction
of graph cuts to graphs that are planar when source and sink
are removed. This restriction is crucial for (our solution of)
the problem we really want to solve: to integrate curvature
regularity into the framework.

1This makes sense only if N is spatially invariant (except for pixels
near the image border), which we assume here. In this case one can set
k(N ) = ∑

q:(p,q)∈N 1/‖p − q‖, where p is an arbitrary pixel in the
image interior.
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Fig. 5 Comparison of standard graph cuts and the novel subdivision
scheme, both run with the same length weight and an 8-connectivity.
(Input image shown in Fig. 11.) The major difference is in the lower
right quadrant, near the right leg of the tripod

In contrast to standard applications of graph cuts our
method relies on subdiving pixels. In the case of a very
strong data term a boundary pixel will probably not be split
into a foreground and a background part. Standard graph
cuts might then be the better way to reflect the length reg-
ularity term. However, in practice boundary pixels usually
have weak data terms due to partial overlap. Figure 5 shows
the resulting segmentations of both schemes, where the in-
put image can be found in Fig. 11. Here it can be seen that
the novel scheme gives access to a higher resolution and pro-
duces slightly different segmentations. These are actually of
lower energy than for the standard scheme. Hence, if any-
thing we have gained something with the novel formulation.

2.4 Relation to Sullivan’s Method

Sullivan (1992, 1994) gave a method for finding a surface
of minimal (weighted) area in 3D-space2 subject to the con-
straint that the surface span a given (set of) boundary lines.
His method also relies on a cell complex and can be written
as a polynomial-time solvable minimum cost flow problem.
Further, the method allows integrating volume terms.

In essence, what we have done so far is a restriction
of this method to 2D and where the set of prescribed
boundary elements is empty (these objects would be one-
dimensional). However, there is one major difference: in
Sullivan’s method all variables are unrestricted,3 whereas
we have the constraints y

f
R ∈ {0,1} and yl

B ∈ {0,1}. And of
course our main goal is to integrate curvature regularity.

2In fact, he considered general N -D spaces, but this is not important
here.
3Cf. (Sullivan 1994, page 21, top). Sullivan’s volume terms are non-
negative.

3 Handling Curvature Regularity

We now show how the described integer linear program can
be generalized to curvature regularity, i.e. to the model

min
u:Ω→{0,1}

∫
Ω

g(x)u(x) dx + ν |C| + λ

∫
C

∣∣κC(x)
∣∣pdH1(x).

(7)

Here λ > 0 is a curvature weight, κC(x) stands for the cur-
vature of the line C at a given point x of the line and p > 0
is an arbitrary exponent (usually p = 2 is a good choice).
The notation dH1(x) signifies that the integral is over a set
of lines and that it is independent of the parameterization of
these lines.

We emphasize that our method allows more general reg-
ularity terms, namely arbitrary positive functions depending
on position, direction and absolute curvature. In particular
this allows spatially weighted regularity terms.

Clearly, the combination of length and curvature intro-
duces another free parameter (λ in addition to ν), which
gives more room to adjust to a specific input image. We em-
phasize that for this work we use ν merely as a stabilizer
to speed up the computations. That is, we choose it small
enough to not have a significant impact on the results.

3.1 Discretizing the Problem

Again, our solution is based on a cell complex and the data
term is handled in the exact same way as above. That is,
we again have region indicator variables yf for all f ∈ F .
We were able to express the length regularity in terms of
(single) boundary segments. For curvature, this is not pos-
sible: all boundary segments are straight lines, hence have
curvature 0 everywhere. The only points where non-zero
curvature can occur are the meeting points of two bound-
ary segments. Hence it is common to consider pairs of line
segments (Parent and Zucker 1989; Amini et al. 1990) to
express curvature regularity. So far, however, this was not
compatible with region terms.

For every pair l1, l2 of adjacent line segments with
compatible orientations we now have an indicator variable
yl1,l2
B ∈ {0,1}. Here we follow the convention that the line

segment that is traversed earlier is also listed first in the
pair. Getting back to our example on page 56, we have the
pairs (l1, l6) and (l1, l9) starting with l1, whereas (l8, l1) and
(l5, l1) end with l1. Note that e.g. (l1, l7) is not a valid pair
as the orientations do not match.

We get a cost function of the form

cT
R yR + cT

B yB, (8)

where yB now contains all the pairwise variables. We pro-
ceed to describe the entries of the corresponding cost vec-
tor cT

B .
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Fig. 6 The angle θ is the basis for computing the curvature of the pair
of black lines

3.2 Computing the Weights

Computing curvature from two adjacent line segments is
based on considering the direction change, measured by the
angle θ in Fig. 6.

There are basically two ways to compute the term |κ|p
from this angle: firstly, we can just take the power p of the
angle (which should be measured in arc length). The second
method is based on the work of Bruckstein et al. (2001), and
makes also use of the lengths �(l1) and �(l2) of the two lines:

min
{
�(l1), �(l2)

}( θ

min{�(l1), �(l2)}
)p

.

The original idea of Bruckstein et al. was to take the longest
straight lines pre- and succeeding a direction change. In
our context we can only consider elementary boundary seg-
ments, so we do not have the same convergence properties.
In practice we found that both weights work fine and Bruck-
stein et al’s weights significantly reduce the running time of
the employed linear programming solver.

Denoting either of the two arising weights as wl1,l2 , we
get one of two components for the cost entry cl1,l2 . Together
with length regularity this entry is

cl1,l2 = wl1,l2 + 1
2

(
�(l1) + �(l2)

)
.

There are however some special cases involving the image
border, a point that we neglected in Schoenemann et al.
(2009): firstly, at the four corners of a rectangular domain
Ω we will want to set the curvature weight to 0. Note that
we still penalize the angle in which a region boundary meets
the domain boundary ∂Ω .

A second point relates to the length weight: whenever one
(or two) of the line segments in a pair is part of the domain
border, its length should be set to 0. Otherwise there would
be a bias towards associating the cells at the image border to
the background.

3.3 An Adequate Constraint System

As before for length regularity, the linear cost function (8)
needs to be minimized subject to suitable constraints to

closely reflect the discretized model function. In Schoen-
emann et al. (2009) we presented two sets of constraints,
with the aim to ensure that the boundary variables indeed
describe a boundary of the region variables. In this work we
show that two more sets of constraints are needed, where
the second one becomes necessary only when several cells
meet in a single point. In particular, we will show that in this
case there are several valid boundaries and that our method
searches for the one with least cost.

Firstly, we adapt the surface continuation constraints to
the new kind of boundary variables. To this end, we define
the incidence m

l1,l2
e of a line segment pair and a boundary

segment e ∈ E . This value is defined as 0 unless l1 is an
orientation of e (note that l2 is irrelevant for this value).
Otherwise the value is the same as the previously defined
incidence of l1 and e. Hence, the surface continuation con-
straints read
∑
f ∈F

m
f
e y

f
R =

∑
l1,l2∈E O

ml1,l2
e y

l1,l2
B ∀e ∈ E . (9)

For our example cell complex on page 56, the surface con-
straint for the bold edge now reads

yA
R − yB

R = y
l2,l3
B + y

l2,l4
B − y

l1.l6
B − y

l1,l9
B . (10)

These constraints alone leave a lot of freedom. In partic-
ular, we could choose line pairs without direction changes
everywhere. Hence, these constraints alone merely account
for length regularity. What is really wanted is that for every
active y

l1,l2
B both l1 and l2 belong to the region boundary in-

duced by the region variables. This is ensured by two sets of
constraints, where the first is called boundary continuation.
In words it can be stated as

Boundary Continuation Constraint: If a pair of line
segments l1, l2 is active, there must be a succeeding
pair l2, l3 that is also active. Likewise there must be a
preceding active pair l0, l1.

These constraints ensure that the active line pairs actually
define closed paths. They are identical to the constraints aris-
ing for the computation of shortest paths in a graph such as
(Amini et al. 1990) and are stated as
∑
l0

y
l0,l1
B =

∑
l2

y
l1,l2
B ∀l1 ∈ E O.

Now we have paths, but we cannot guarantee that all parts of
these paths are actually region boundaries. Indeed, we invite
the reader to check that the configuration in Fig. 7(a) sat-
isfies all constraints introduced so far. Moreover, for small
length weights and squared curvature the cost of this config-
uration will be lower than those of the desired configuration
shown in part (b). To exclude cases such as (a) from the op-
timization, we add a new set of constraints:
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Fig. 7 Without the boundary consistency constraints the configuration
in (a) is valid and—for squared curvature and without length penal-
ty—cheaper than the desired one in (b). With boundary consistency
(b) remains feasible, but (a) is excluded, as desired

Fig. 8 Determining boundaries is ambiguous: (a) a segmentation
where two cells meet in a point. (b) A low-cost boundary configu-
ration, where different pairs are indicated by different colors. (c) An
equally valid, but more expensive boundary

Boundary Consistency Constraint: For every bound-
ary segment, only one of the two possible orientations
can be active.

To formalize this, we denote by e→ and e← the positive
and negative orientation of a boundary segment e. Then the
constraint can be written as
∑
l1

y
l1,e

←
B +

∑
l2

y
e→,l2
B ≤ 1 ∀e ∈ E .

Similar sets of constraints can be derived, e.g.
∑

l1
y

e←,l1
B +∑

l2
y

l2,e
→

B ≤ 1, but experimentally we found them to be re-
dundant. Moreover, if e is part of the domain border ∂Ω then
one of the orientations will never occur in a desired config-
uration. We simply disregard the corresponding variables.

Recently, Strandmark and Kahl (2011) proposed an al-
ternative constraint system to ensure consistency. This turns
out to give a tighter relaxation and is available in Region-
Curv version 0.905.

With these constraints, there is still one issue left to take
care of, and it affects cases where several cells meet in a

Fig. 9 If three or more cells meet in a point, self-intersecting bound-
aries can define valid segmentations. If these are undesired, a fourth
constraint set is needed. The different colors denote different phases
when traversing the line. There is only one line

point. In this case, as shown in Fig. 8, there are several valid
boundary configurations. As long as only two cells meet,
the given constraint system ensures that indeed the configu-
ration with lower cost is selected. However, as soon as there
are three or more cells meeting in a point, this constraint
system will allow configurations with crossings, as exempli-
fied in Fig. 9. Should we really avoid such configurations?
There is actually no obvious answer if one has in mind that,
in the theory of continuous plane curves, the set enclosed
by a positively oriented closed curve can be defined as the
points of positive index (also called winding number) (Rudin
1987). In the example of Fig. 9, the index of each point in a
black triangle with respect to the outer curve defined by the
arrows is one, so it makes sense to consider the curve as a
region boundary.4 For the sake of comparison and complete-
ness, we provide in Sect. 6, Fig. 13 a couple of experiments
done either with or without crossing prevention. In the for-
mer case, we add a new set of constraints:

Crossing Prevention Constraint: If two pairs of line
segments cross, only one of them may be active.

Denoting C the set of crossing line pairs, this constraint
is easily formalized as

y
l1,l2
B + y

l3,l4
B ≤ 1 ∀(l1, l2, l3, l4) ∈ C.

In practice these constraints are ignored in a first phase.
Afterwards, the (usually very few) violated constraints are
added in passes and the system is re-solved, until there are
no more violated constraints. In our experiments we never
needed more than 9 passes. However, solving the arising
programs can be quite time consuming, even when starting
from the previous configuration.

4The index of a point on a discrete grid with respect to a discrete curve
can also be computed, see for instance the winding number algorithm
at www.softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm.

http://www.softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm
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In summary, region-based segmentation with curvature
regularity is now expressed as the integer linear program

min
yR,yB

cT
R yR + cT

B yB

s.t.
∑
f ∈F

m
f
e y

f
R =

∑
l1,l2∈E O

ml1,l2
e y

l1,l2
B ∀e ∈ E

∑
l0

y
l0,l1
B =

∑
l2

y
l1,l2
B ∀l1 ∈ E O

∑
l1

y
l1,e

←
B +

∑
l2

y
e→,l2
B ≤ 1 ∀e ∈ E

y
f
R ∈ {0,1} ∀f ∈ F , y

l1,l2
B ∈ {0,1} ∀l1, l2 ∈ E O,

and the optional constraints

y
l1,l2
B + y

l3,l4
B ≤ 1 ∀(l1, l2, l3, l4) ∈ C.

A first evaluation of this new scheme was given in Fig. 1
which shows that curvature regularity is better suited to en-
sure connected regions in the presence of long and thin
objects. Note that the found solutions for curvature are
generally not globally optimal. Details on the optimization
scheme are given in Sect. 5 and more experiments will be
given in Sect. 6. First, however, we discuss how to handle
the problem of image inpainting.

4 Inpainting

In image inpainting we are given an image I : Ω → R

together with a damaged region Ωd ⊂ Ω . This damaged re-
gion can have arbitrarily many connected components and
each of these can enclose holes. The task is to fill the dam-
aged region with values that fit nicely with the values of I

outside the damaged region.
To this end, the above integer linear program is gener-

alized to give a structured inpainting approach, where we
consider the continuous model (Masnou and Morel 1998;
Masnou 2002; Chan et al. 2002)

min
u:Ω→{0,1}

∫ Iu

Il

∫
Cu,t

∣∣κCu,t (x)
∣∣p dH1(x) dt (11)

s.t. u(x) = I (x) ∀x ∈ Ω \ Ωd,

where Il and Iu are the minimal and maximal intensities
of I along the border of the damaged region, Cu,t = {x |
u(x) = t} is the set of level lines for level t of u(·) and again
p > 0 is an exponent for curvature.

For the case of absolute curvature (p = 1) and that Ωd

consists of singly-connected components (i.e. the compo-
nents do not enclose holes), an efficient global optimization

scheme was given in Masnou and Morel (1998), Masnou
(2002). We are interested in the more general problem of ar-
bitrary domains and exponents p > 0. In particular, p = 2 is
usually a better model.

4.1 Discretization

As before for image segmentation, our strategy is to dis-
cretize the model (11) by introducing cells and pairs of
boundary segments. However, the cells are no longer lim-
ited to two labels: the intensity uf of cell f ∈ F can be any-
where between Il and Iu. We follow the strategy in Masnou
and Morel (1998), Masnou (2002) and consider only inte-
gral values inside this range. The result is a fully discrete
labeling problem.

Naturally, one also needs to change the right-hand-side
values of the inequality constraints. Moreover, for inpainting
we always include the crossing prevention constraints since
by definition level lines cannot cross.

To make sure that the boundary variables truly reflect
level lines, it would be advisable to associate each cell mul-
tiple variables, reflecting level sets. Then, there would be a
binary variable yk

f for every integral value Il ≤ k ≤ Iu where
a value of 1 reflects that the intensity uf of the cell is at
least equal to k (i.e. uf ≥ k). For k′ > k this would naturally
entail the constraints yk′

f ≥ yk
f . Moreover, there would be

binary variables yk
l1,l2

that would be forced to be consistent
with the level variables exactly as for binary segmentation.

This strategy is however not practicable for the domain
sizes we want to address: the problem is way too large scale.
Recently Schoenemann et al. (2011) managed to reduce the
problem to a practicable size by grouping intensities into
bins, a compromise between totally neglecting the problem
and correctly handling it (available in RegionCurv version
0.905).

For the present work, we settle for one integral variable
y

f
R ∈ {Il, . . . , Iu} for every cell f ∈ F , directly reflecting the

intensity uf of the face. In addition, there are boundary vari-
ables reflecting the intensity differences between neighbor-
ing cells. Inside the damaged domain they can be restricted
to values y

l1,l2
B ∈ [0, Iu − Il]. For the fixed part, we only con-

sider cells that border on the damaged region. At their other
borders the respective boundary variables can take values
in {0, . . . , Iu}. In practice it is advisable to first subtract the
constant Il from the entire image (note that each connected
component of Ωd can be processed independently).

As shown5 in Fig. 10 this strategy does generally not give
level lines, but it is a reasonable approximation. The arising

5Many thanks to Yubin Kuang for providing these images.
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Fig. 10 Best viewed in color. Estimated boundary variables for the
given intensity profiles. Colors denote different pairs (not all pairs are
shown) (a) With the proposed approximation we do not always get
level lines. Here the boundary variables may jump between different
intensity levels. (b) With level variables one would get the correct so-
lution, but the computational demands are too high in practice

integer linear program is stated as

min
yR,yB

cT
ByB

s.t.
∑
f ∈F

m
f
e y

f
R =

∑
l1,l2∈E O

ml1,l2
e y

l1,l2
B ∀e ∈ E

∑
l0

y
l0,l1
B =

∑
l2

y
l1,l2
B ∀l1 ∈ E O

∑
l1

y
l1,e

←
B +

∑
l2

y
e→,l2
B ≤ Iu ∀e ∈ E

y
l1,l2
B + y

l3,l4
B ≤ Iu ∀(l1, l2, l3, l4) ∈ C

y
f
R = If − Il ∀f ⊂ Ω \ Ωd

y
f
R ∈ {0, . . . , Iu − Il} ∀f ⊂ Ωd

y
l1,l2
B ∈ {0, . . . , Iu − Il} ∀ l1, l2 ∈ E O.

(12)

Note that we have one such program for every connected
component of Ωd .

4.2 Estimating Incoming Level Lines

A correct estimation of the direction of the level lines touch-
ing from outside the inpainting domain Ω is important,
since the method aims at prolonging them with no addi-
tional curvature, if possible. We follow the simple and ef-
ficient method proposed by Bornemann and März (2007)
after the work of Weickert (1998, 2003) on the robust de-
termination of coherence directions in an image: at a point
x ∈ Ω \Ωd , the coherence direction is the normalized eigen-
vector associated to the minimal eigenvalue of the structure
tensor (Bornemann and März 2007):

J (x) = (Kρ ∗ (1Ω \ Ωd∇Iσ ⊗ ∇Iσ ))(x)

(Kρ ∗ 1Ω \ Ωd)(x)
(13)

where ∗ denotes convolution, 1Ω \ Ωd is the characteristic
function of Ω \ Ωd and Iσ is defined as

Iσ = Kσ ∗ (1Ω \ ΩdI)

Kσ ∗ 1Ω \ Ωd

, (14)

and Kρ , Kσ are Gaussian smoothing kernels with standard
deviations ρ and σ . Experimentally, setting σ = 1.5, ρ = 4
yields a reliable estimation of the incoming level lines direc-
tions along ∂Ωd .

5 Optimization Strategies

In general, solving integer linear programs is an NP-hard
problem (Schrijver 1986). In some cases, where there are
linear inequality constraints Ax ≤ b and the matrix A is to-
tally unimodular one can find the global optimum by solv-
ing the linear programming relaxation (Schrijver 1986), i.e.
the problem one obtains when dropping all integrality con-
straints on the variables. For instance, a constraint yi ∈ {0,1}
will be relaxed to yi ∈ [0,1]. The arising problem can be
solved in (weakly) polynomial time using interior point
methods (Ye 1997).

Several of the discussed systems are in fact polynomial-
time solvable, in particular the length-based problems and
the boundary continuation constraints by themselves. The
integer linear program for curvature regularity is however
not in this class. Still, experimentally we found that solv-
ing the linear programming relaxation often gives nearly in-
tegral solutions. Moreover, the relaxation value provides a
(usually quite tight) lower bound on the original problem.
We proceed to discuss this strategy in detail.

5.1 Solving the Linear Programming Relaxation

There are two popular ways of solving general linear pro-
grams. Firstly, there is the dual simplex method (Dantzig
and Thapa 1997), based on refactorizing the constraint sys-
tem. It is usually the most memory saving method and
in practice superior to the primal simplex method. For
some variants of the simplex method exponential worst-
case run-times have been proved. On practical problems the
method often works very well, and there are competitive
and freely available implementations, e.g. the solver Clp.6

We found it quite useful for an 8-connectivity, but for a 16-
connectivity—and very low length weights—we got accept-
able running times only for some of the images we tried.
In other cases the solver was terminated after several days
without having solved the problem. In the end we chose the
length weights high enough to get acceptable running times.

6http://www.coin-or.org/projects/Clp.xml.

http://www.coin-or.org/projects/Clp.xml
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The results we get indicate that these settings actually pro-
vide a very good model.

On the other hand, there are interior point methods which
usually perform Newton-iterations on a primal-dual formu-
lation of the problem. This entails frequent matrix inver-
sions, solved via the sparse Cholesky decomposition. We are
not aware of a freely available solver that performs well on
large scale problems such as ours. Hence, we tested several
commercial packages and found Gurobi and FICO Xpress
to be well-suited solvers for our problem. Generally the run-
ning times of commercial interior point solvers are quite
predictable. The downside is the memory consumption: we
found that a little more than twice the memory consumption
of a simplex solver is needed for our problem, where we
tested with an 8- and a 16-connectivity.

For segmentation, the combination of licensing issues
and the high memory demands made us use the simplex
method. For inpainting, where the memory demands are
lower, the interior point methods proved superior.

5.2 Obtaining and Evaluating Integral Solutions

Solving the linear programming relaxation provides a frac-
tional solution as well as a lower bound on the original in-
tegral problem. Since the fractional solutions are often close
to integral, we derive an integral solution by simply thresh-
olding the region variables. This already defines a segmen-
tation, but we would also like to know its energy, so we have
to infer the associated boundary variables.

We already discussed the complications in case two or
more cells meet in a point (see Sect. 3.3). Our method will
then select the cheapest allowed boundary configuration ac-
cording to the selected constraint set. In contrast, meth-
ods based on low-order factors (El-Zehiry and Grady 2010;
Strandmark and Kahl 2011) will take the sum of all config-
urations here.

Due to these difficulties we so far did not implement a
specialized routine to compute the energy of a segmenta-
tion, although this should be possible. Instead, we simply
re-run the linear programming solver, this time with all re-
gion variables fixed according to the segmentation. Note that
this strategy was also pursued in Schoenemann et al. (2009),
so the gaps reported there are w.r.t. the integer program, not
the model itself.

In case crossing prevention was selected we again add
violated constraints in passes. In addition, we fix all “im-
possible” boundary variables to 0, where impossible refers
to pairs of line segments where along one of the line seg-
ments the segmentation stays constant. In the vast majority
of cases this produced an integral solution and hence the op-
timal boundary configuration. In a few cases we got up to 12
fractional variables. We presently assume that the computed
cost is close enough to the actual cost.

6 Experiments

In this section we evaluate the proposed scheme for both im-
age segmentation and inpainting, where in all cases we con-
sider the intensity range [0,255]. For image segmentation
we also evaluate how close to the global optimum we got.
Here, we report relative gaps between the computed lower
bound and the computed energy of the derived integral so-
lution. A word of warning is appropriate here: the relative
gaps depend on the order of magnitude of the optimal en-
ergy, i.e. adding a constant to the energy will reduce the rel-
ative gap. For many problems in computer vision a natural
energy scale is given. However, this is not the case for image
segmentation, at least not for data-terms based on squared
differences, where the mean-values are kept fix rather than
optimized.

In a second point, we report the percentage of variables
that were assigned fractional values to illustrate that the ma-
jor part is assigned integral labels.

The experiments were run on a 3.0 GHz Core2 Duo ma-
chine equipped with 8 GB of memory. For segmentation we
used the dual simplex method in the solver Clp, for inpaint-
ing we used the interior point method of Gurobi.

6.1 Image Segmentation

For binary image segmentation, we show experiments for a
totally unsupervised problem and an interactive one where
seed nodes are given.

Unsupervised Image Segmentation For unsupervised im-
age segmentation we use data functions g0, g1 as in the
piecewise constant functional of Mumford and Shah (1989),
i.e. where the intensity of an image point is compared to the
mean value of a region. This results in the model:
∫

Ω

(
I (x) − μ0

)2[1 − u(x)
]
dx +

∫
Ω

(
I (x) − μ1

)2
u(x) dx

+ ν|C| + λ

∫
C

∣∣κC(x)
∣∣2

dH1(x). (15)

We set the mean values μ0,μ1 to the minimal and maximal
intensity in the given image, respectively.

Figure 11 shows results of our method on images of
size 128 × 128 and 160 × 107, respectively, using an 8-
connectivity. Here we provide results for different curvature
weights and it can be seen that even for very high weights
long and thin structures are preserved. At the same time,
the relative gap increases with the curvature weight. Sur-
prisingly, the percentage of fractional variables decreases.

These results took roughly 4 hours computing time,
where up to 9 passes were needed. Though we re-used the
existing solution, the first passes often took as long as solv-
ing the initial program.
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Fig. 11 Evaluation of the proposed method for unsupervised image segmentation and an 8-connectivity. Shown are segmentations for different
curvature weights and how close they are to the lower bound (and hence the global optimum)

Interactive Image Segmentation Next we turn to the prob-
lem of interactive image segmentation for color images,
where in addition to an image I : Ω → R

3 we are given
a set of foreground and background seed nodes as specified
by a user. Since our focus is on evaluating the novel method,
we did not refine the seed nodes. Hence, for each image the
seed nodes were specified only once.

From the given seed nodes, we estimate normalized his-
tograms of color values, resulting (after smoothing) in dis-
tributions pF (·) and pB(·) that are then used in the model:

−
∫

Ω

log
(
pF

(
I (x)

))[
1 − u(x)

]
dx, (16)

−
∫

Ω

log
(
pB

(
I (x)

))
u(x) dx + ν|C| + λ

∫
C

∣∣κC(x)
∣∣2

dH1(x).

(17)

This function is minimized over all u : Ω → [0,1] that are
consistent with the seed nodes.

For the experiments, we use a 16-connectivity and fix the
ratio of the curvature weight λ over the length weight ν to
20.0. The presented results were then obtained within half a
day and using between 6 and 8 GB of memory.

Figure 12 compares our results with a simple threshold-
ing scheme and the length based method of Sect. 2. These
results clearly show the tendency of length-based methods

to suppress long and thin objects. With curvature regularity
this is remedied.

Effects of the Constraint Sets Above we indicated that
it is debatable whether self-intersecting region boundaries
should be allowed or not. In Fig. 13 we explore both of these
possibilities as well as the constraint system without bound-
ary consistency we used in Schoenemann et al. (2009). For
these images there were significant differences, for others,
like the giraffe image, none at all. For the boat the results
clearly improve when forbidding self-intersections, for the
other image they grow slightly worse.

Evidently, adding boundary consistency has only a mi-
nor impact on the thresholded solution. In fact, the relax-
ation values increased only marginally. However, the rela-
tive gaps as well as the percentage of fractional variables in-
creases with the number of enforced constraints, so clearly
the formulations are not equivalent. When using the con-
straints proposed in Strandmark and Kahl (2011) instead of
our boundary consistency constraints, we expect that these
figures will reduce and the integral solutions found for the
different constraint systems will differ more significantly.

For unsupervised image segmentation Fig. 14 shows that
adding boundary consistency does have an effect: the num-
ber of sharp angles is reduced when adding the constraints.
Also, the relaxation values differ significantly, here. Still,
adding the constraints from Strandmark and Kahl (2011)
should help here, too.



Int J Comput Vis (2012) 99:53–68 65

Fig. 12 Comparison of length-based and curvature-based methods.
Left column: input images with seed nodes super-imposed. Mid-
dle left: thresholding scheme. Middle right: length-based segmen-
tation (proposed method). In all cases ν = 1. Right: length- and

curvature-based segmentation (proposed method) and how close the
results are to the global optimum. In all cases we set λ = 4 and
ν = 0.2. Images taken from the Berkeley database http://www.eecs.
berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Fig. 13 Without crossing prevention there is a bias towards triple points. For the top row significantly different segmentations are obtained with
and without the constraints. For the bottom row there are only minor changes

Fig. 14 Unsupervised image segmentation with and without boundary
consistency. The number of sharp angles decreases when adding con-
sistency. We used a length weight of ν = 10000, an 8-connectivity and
crossing prevention

6.2 Inpainting

We now turn to the problem of inpainting, where we use in-
terior point solvers. Figures 15 and 16 show that our method
is well-suited for structured inpainting, and that length reg-
ularity generally does not work well.

In this work we have improved upon our work (Schoen-
emann et al. 2009) by previously estimating the direction of
incoming level lines and giving a tighter constraint system.
Figure 17 shows that these changes really improve the re-
sults.

7 Conclusion

We have presented new theory and methods for length- and
curvature-based regularization, both for image segmentation
and inpainting. For curvature (in a region-based context) we
are the first to propose a global approach in the sense that it
is independent of initialization.

The results clearly demonstrate that curvature regularity
outperforms length-regularity in the presence of long and
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Fig. 15 For inpainting curvature is much better suited than length regularity

Fig. 16 Our method applied to structured inpainting. Images taken from http://www.robots.ox.ac.uk/~vgg/data/data-various.html

Fig. 17 Comparison of the proposed inpainting method (left column)
and the one we proposed in Schoenemann et al. (2009) (right column).
The domain is as in Fig. 15

thin objects. Experimentally we showed that for segmenta-

tion our strategy of solving a linear programming relaxation

is usually within 5% of the global optimum. In some cases

it even finds the global optimum.
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