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Abstract We formulate a probabilistic framework for si-
multaneous region-based 2D segmentation and 2D to 3D
pose tracking, using a known 3D model. Given such a
model, we aim to maximise the discrimination between
statistical foreground and background appearance models,
via direct optimisation of the 3D pose parameters. The
foreground region is delineated by the zero-level-set of a
signed distance embedding function, and we define an en-
ergy over this region and its immediate background sur-
roundings based on pixel-wise posterior membership prob-
abilities (as opposed to likelihoods). We derive the differ-
entials of this energy with respect to the pose parameters
of the 3D object, meaning we can conduct a search for the
correct pose using standard gradient-based non-linear min-
imisation techniques. We propose novel enhancements at the
pixel level based on temporal consistency and improved on-
line appearance model adaptation. Furthermore, straightfor-
ward extensions of our method lead to multi-camera and
multi-object tracking as part of the same framework. The
parallel nature of much of the processing in our algorithm
means it is amenable to GPU acceleration, and we give de-
tails of our real-time implementation, which we use to gen-
erate experimental results on both real and artificial video
sequences, with a number of 3D models. These experiments
demonstrate the benefit of using pixel-wise posteriors rather
than likelihoods, and showcase the qualities, such as robust-
ness to occlusions and motion blur (and also some failure
modes), of our tracker.

V.A. Prisacariu (�) · I.D. Reid
Department of Engineering Science, University of Oxford,
Oxford, UK
e-mail: victor@robots.ox.ac.uk

I.D. Reid
e-mail: ian@robots.ox.ac.uk

Keywords Level set · Region based · Pose recovery · 3D
tracking · Cuda · GPGPU · Real time · Segmentation ·
Tracking

1 Introduction

Fast and accurate image segmentation and pose tracking are
two fundamental tasks in computer vision. Many current
studies treat these two tasks independently, but there are few
articles which study the tasks simultaneously and even fewer
which consider the problem of real time performance. In the
current work, we develop a method for model-based seg-
mentation and tracking based on the assumption that, given
an accurate 3D model of an object, its segmentation from
any given image is fully defined by its pose. We seek the
six degree of freedom rigid transformation that maximises
an energy function based on the posterior foreground and
background membership probabilities of each pixel in the
image, thus computing the pose and segmentation of the ob-
ject simultaneously, using a single, unified energy function.
We describe an implementation that achieves real-time per-
formance.

From a segmentation point of view, our work can be seen
as related to Cremers et al. (2006). Whereas Cremers et al.
(2006) used a prelearned latent space of 2D shapes to con-
strain the evolution of the level set function, here we gener-
ate the shapes by projecting a 3D model. Like that work, our
method is level set and region-based. However, unlike Cre-
mers et al. (2006), and inspired instead by Bibby and Reid
(2008), we aim to maximise the posterior per-pixel proba-
bility of foreground and background membership, as a func-
tion of pose. Bibby and Reid (2008) showed that this yields a
better behaved energy function (in the 2D case), when com-
pared to standard level set formulations such as Cremers et
al. (2007). In our case we assume a known 3D model and
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one or more calibrated cameras, and seek the six degree of
freedom rigid transformation that maximises the pixel-wise
posterior energy function.

Our primary interest lies in the pose tracking ability of the
system. A comprehensive review of monocular model-based
tracking was conducted by Lepetit and Fua (2005) and so
here we consider only relevant highlights. A variety of fea-
tures has been used for 3D pose tracking, including edges,
point features, optic flow and regions. By far the most pop-
ular methods to date have been edge-based, in which the
aim is to find the pose in which the projection of model
edges aligns best with edges found in an image. This is per-
haps because of the natural viewpoint invariance afforded
by the edges, and also because the extent of edges in an im-
age means that correspondence search can be done in 1D,
rather than over two dimensions of the image as for point
features. In this class of pose tracking systems the seminal
work of Harris (1993) and Lowe (1992) inspired later similar
efforts from Drummond and Cipolla (1999) and Marchand
et al. (1999). These systems were all restricted to polyhe-
dral and simple surface models. Point-based methods can
model more general shapes and typically proceed by first
establishing correspondences between projected point lo-
cations and image points. The rise of effective descriptors
for point features that exhibit a degree of viewpoint invari-
ance (e.g. Lowe 2004 or Lepetit et al. 2005) has seen real-
time methods for point-based model-based tracking become
more effective, such as Wagner et al. (2008) or Ozuysal et
al. (2006) (where the model is also learned online), or even
using the combination of points and edges, such as Ros-
ten and Drummond (2005). Region-based methods such as
Hager and Belhumeur (1998), or Jurie and Dhome (2002)
are more accurately categorised as 2D–2D template track-
ers, since 6D pose of a planar object is estimated, rather than
a fully 3D object. In contrast, region-based methods such as
Rosenhahn et al. (2007) seek alignment of the projection of
the occluding boundaries of the object with a regional seg-
mentation of the image. This approach has the advantage
that it tends to be less disrupted by occlusions, clutter and
motion blur than edge-based methods. Furthermore, these
techniques have been shown to work with arbitrarily shaped
objects. One issue when using only regions, however, is that
often a good segmentation is required before the pose re-
covery, meaning that a poor segmentation will lead to poor
pose recovery results. Also, the silhouette to pose mapping
is multimodal i.e. the same silhouette can be generated by
multiple poses.

The most closely related work to our own is based on si-
multaneous segmentation and tracking using region-based
criteria (Rosenhahn et al. 2007; Schmaltz et al. 2007a;
Dambreville et al. 2008). Rosenhahn et al. (2007) adapt an
infinite dimensional active contour in a single iterative step,

in two stages: first the contour, represented by a zero level-
set of a 2D embedding function with a shape term (to en-
courage similitude between the segmentation and the ex-
pected silhouette of the object given the current pose), is
evolved to find a segmentation, in the expectation that the
contour will then match the projection of the occluding con-
tour of the 3D object. Second, each point on the contour
is back-projected to a ray (represented in Plücker coordi-
nates), and the pose is sought that best satisfies the tangency
constraints that exist between the 3D object and these rays.
In some respects it bears similarity to Harris’ RaPiD sys-
tem (Harris 1993), with the level set evolution to find the
extremal contour replacing Harris’ 1D searches for edges.
This two-stage iteration places only soft constraints on the
evolution of the contour i.e. the minimisation of the energy
function is done in an infinite dimensional space (with some
encouragement), rather than in the space of possible con-
tours. Furthermore our experience with the two-stage itera-
tion is that the 2D–3D pose matching does not have a large
basin of convergence. This method is extended in Brox et al.
(2009) where the region statistics are augmented with SIFT
features and optical flow and in Gall et al. (2008) where an
image synthesis stage is added.

Schmaltz et al. (2007a) proposed a cleaner approach.
Here, the unconstrained contour evolution stage is removed,
and the minimisation takes place by evolving the contour
(approximately) directly from the 3D pose parameters. The
direction of contour evolution is determined by the relative
foreground and background membership likelihoods of each
point, while the amount of evolution is apparently a “tun-
able” parameter. The pose is then determined using the same
method as Rosenhahn et al. (2007).

The work most closely related to ours, Dambreville et
al. (2008), proposes a direct minimisation over the pose
parameters. It is based on an energy function summing
two integrals—one over the foreground, one over the back-
ground. Differentiating these integrals with respect to the
pose parameters is achieved using the Leibniz-Reynolds
transport theorem, yielding an integral along the occluding
contour and two surface integrals. These surface integrals
collapse to zero because the authors choose to represent the
statistics of the two regions of the image with the functions
used by Vese and Chan (2002).

In our work we use the pixel-wise posterior foreground
and background membership approach of Bibby and Reid
(2008) (which would not yield a convenient collapse of the
above-mentioned term). Rather than formulate our energy
over the sum of separate integrals for foreground and back-
ground, we use the Heaviside step function, evaluated on
the 2D embedding function of the contour, to delineate fore-
ground and background in the integral. This has two signifi-
cant advantages: (i) the maths is simpler, and permits greater
flexibility in the choice of optimisation method while still al-
lowing for real-time speeds; and (ii) more importantly, it is
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Fig. 1 Representation of the object showing: the contour of the pro-
jection C and the corresponding contour around the visible part of the
3D model, the foreground region Ωf and the background region Ωb ,
a 2D point x on the contour and its corresponding 3D point in the object
coordinate frame X

trivial to replace the Heaviside step function with a blurred
version, and in consequence we can very naturally allow for
a degree of uncertainty in the location of the contour.

An early version of this work was presented in a prelim-
inary conference paper, Prisacariu and Reid (2009). In the
present paper we elaborate this work, show extensions to
multiple objects and views, compare multiple minimisation
algorithms, add temporal consistency to the per pixel poste-
riors probabilities and provide more detailed experiments.

The remainder of the paper is structured as follows: we
begin by briefly describing the geometry and setting up our
notational conventions, in Sect. 2. In Sect. 3 we provide a ba-
sic introduction to level set functions. In Sect. 4 we describe
the mathematical foundations, while in Sect. 5 we derive our
algorithm and discuss its implementation. In Sect. 6 we con-
sider various qualitative and quantitative evaluations of our
method, on both real and synthetic data, and we conclude in
Sect. 7.

2 Notation

Let the image be denoted by I and the image domain by
Ω ⊂ R

2. An image pixel x = [x, y] has a corresponding
image value I(x) = y (in our experiments an RGB value),
a 3D point X = [X,Y,Z]T = RX0 + T ∈ R

3 in the camera
coordinate frame and a point X0 = [X0, Y0,Z0]T ∈ R

3 in
the object coordinate frame. R and T are the rotation ma-
trix and translation vector respectively (representing the un-
known pose) and are parameterised by 7 parameters (4 for
rotation and 3 for translation), denoted by λi . We use quater-
nions to represent rotation, so we use 4 parameters to capture
the 3 degrees of freedom of the rotation.

We assume the camera calibration parameters (for each
camera) to be known. Let (fu, fv) be the focal distance ex-
pressed in horizontal and vertical pixels (Bouguet 2008) and

(uo, vo) the principal point of the camera. In the case of mul-
tiple cameras, the extrinsics were obtained using the Matlab
Calibration Toolbox (Bouguet 2008).

The contour around the visible part of the object in 3D
projects to the contour C in the image (marked with red in
Fig. 1). We embed C as the zero level-set of the function
Φ(x) (Osher and Sethian 1988). The contour C also seg-
ments the image into two disjoint regions: foreground de-
noted by Ωf and background denoted by Ωb . Each region
has its own statistical appearance model, P(y|Mf ) for fore-
ground and P(y|Mb) for background.

Finally, by He(x) we denote the smoothed Heaviside step
function and by δe(x) the smoothed Dirac delta function.

3 Level Set Functions

Level set functions (Osher and Sethian 1988) provide a sim-
ple framework for modelling the shape and evolution of
curves. Curves break up, merge, move or disappear during
the course of their evolution. When using the conventional
representation i.e. explicit representation of a curve, compli-
cated methods have to be developed to model its behaviour.
The level set method handles all these topological changes
very easily.

Consider a 2D closed curve C, separating a domain Ω

into an interior region Ωf and an exterior region Ωb (like
the ones referred to in Sect. 2). A level set function Φ is a
Lipschitz continuous function, implicitly defining a curve as
its zero level. For our 2D closed curve C, this is to say that
C = {(x, y) ∈ R

2|Φ(x,y) = 0} corresponds to the location
of the embedded curve. This is called the implicit represen-
tation of the curve C.

In remainder of this work we use a subset of these im-
plicit functions, namely signed distance functions. A dis-
tance function d(x) is defined as:

d(x) = min
xc∈C

|x − xc| (1)

A signed distance function is a level set function for which
Φ(x) = −d(x),∀x ∈ Ωf and Φ(x) = d(x),∀x ∈ Ωb . These
impose an extra condition on the level set function, namely
|∇Φ(x,y)| = 1.

Figure 2 shows an example of a level set embedding func-
tion defined on a 2D domain.

4 Segmentation and Pose Tracking

It is common in region-based segmentation for a closed
curve to be evolved such that the discrepancy between the
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Fig. 2 Example level set function embedding the contour of the projection of a soft-drink can 3D model. The size of the image containing the
contour is 640 × 480

statistics of the foreground region and those of the back-
ground region is maximised:

E =
∫

Ωf

rf (I (x),C)dΩ +
∫

Ωb

rb(I (x),C)dΩ (2)

where rf and rb are two monotonically decreasing func-
tions, measuring the matching quality of the image pixels
with respect to the foreground and background models.

In level-set region-based segmentation (Cremers et al.
2007) the energy function is rewritten as:

E(Φ) =
∫

Ω

He(Φ)rf (x) + (
1 − He(Φ)

)
rb(x)dΩ (3)

As stated before, the level-set embedding function Φ(x) is
taken to be a signed distance function (or an approximation
thereof).

Typically, rf and rb are given by the likelihood of a
pixel property (such as colour) under a given model, i.e.
r(x) = P(y|M), with M being either Mf or Mb . In con-
trast, Bibby and Reid (2008) proposed a generative model
of image formation that leads to a subtly different (and more
effective) energy function, which can be interpreted in terms
of the posterior (as opposed to likelihood) of each pixel’s
foreground or background membership. Assuming pixel-
wise independence, and replacing integration with summa-
tion, the energy given by the negative log (posterior) proba-
bility of the shape of the contour (encoded by the embedding
function Φ), given the image data, is:

P(Φ|I) =
∏
x∈Ω

(
He(Φ)Pf + (

1 − He(Φ)
)
Pb

)
⇒ (4)

E(Φ) = − log(P (Φ|I)) (5)

= −
∑
x∈Ω

log
(
He(Φ)Pf + (

1 − He(Φ)
)
Pb

)
(6)

where Pf and Pb are defined as:

Pf = P(y|Mf )

ηf P (y|Mf ) + ηbP (y|Mb)
(7)

Pb = P(y|Mb)

ηf P (y|Mf ) + ηbP (y|Mb)
(8)

with ηf and ηb being the areas of the foreground and back-
ground regions respectively:

ηf =
∑
x∈Ω

He

(
Φ(x)

)
ηb =

∑
x∈Ω

(
1 − He

(
Φ(x)

))
(9)

In the standard level set formulation, the contour would
be evolved in an unconstrained space, so we would compute
the derivative of E(Φ) with respect to time. Instead, we dif-
ferentiate with respect to the pose parameters λi , aiming to
evolve the contour in a space parameterised by them:

∂E

∂λi

= −
∑
x∈Ω

Pf − Pb

He(Φ)Pf + (1 − He(Φ))Pb

∂He(Φ)

∂λi

(10)

∂He(Φ(x, y))

∂λi

= ∂He

∂Φ

(
∂Φ

∂x

∂x

∂λi

+ ∂Φ

∂y

∂y

∂λi

)
(11)

= δe(Φ)
[

∂Φ
∂x

∂Φ
∂y

][
∂x
∂λi

∂y
∂λi

]
(12)

Note that Pf and Pb depend on the ratio between the
ηf and ηb areas, so they potentially change with the shape
Φ and the pose λ, in particular with the pose parameter λ

governing scale. However, the derivatives of Pf and Pb are
numerically very small. For example, the total value of any
∂Pf

∂λi
is smaller than that of a single per point derivative of

the rest of the energy function. We therefore treat them as
constants.
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At each iteration of the algorithm we re-compute Φ as
the signed-distance function from the projected contour. The
differentials ∂Φ

∂x
and ∂Φ

∂y
follow trivially, using centred finite

differences.
Every 2D point x on the contour of the (true) projection

of the 3D model has at least one corresponding 3D point X.
For each of these points we can write:

[
x

y

]T

=
[
fu

X
Z

+ u0

fv
Y
Z

+ v0

]T

(13)

Therefore:

∂x

∂λi

= fu

∂

∂λi

X

Z
= fu

1

Z2

(
Z

∂X

∂λi

− X
∂Z

∂λi

)

∂y

∂λi

= fv

∂

∂λi

Y

Z
= fv

1

Z2

(
Z

∂Y

∂λi

− Y
∂Z

∂λi

) (14)

We choose to parameterise the rotation with quaternions.
While this has the disadvantage of being an overparameter-
isation, and with requirement to normalise the parameters
periodically to 1 (we do this after each frame), it resulted in
better performance over using the axis-angle representation.

Every 3D point X in camera coordinates has a corre-
sponding 3D point X0 in object coordinates:

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦ = R

⎡
⎢⎢⎣

X0

Y0

Z0

1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

tx
ty
tz
0

⎤
⎥⎥⎦ (15)

with

R =

⎡
⎢⎢⎣

1 − 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw 0

2qxqy + 2qzqw 1 − 2q2
x − 2q2

z 2qyqz − 2qxqw 0

2qxqz − 2qyqw 2qyqz + 2qxqw 1 − 2q2
x − 2q2

y 0
0 0 0 1

⎤
⎥⎥⎦

(16)

where qx, qy, qz, qw are the quaternion rotation parameters
and tx, ty, tz are translation parameters.

Finally, the differentials of the 3D points in camera space
with respect to the pose parameters are shown in Table 1.

4.1 Optimisation Algorithm

There are several optimisation methods at our disposal. In
this work we detail our results with gradient descent and
conjugate gradients.

The obvious first choice is gradient descent. This method
uses only the first derivative, yielding fast iterations. Unfor-
tunately a very small step size must be used to avoid jump-
ing over minima. We use a step size of approximately 0.5 de-
grees for rotation and 10 pixels in either direction (including

z scaled with focal length), for translation. These step sizes
were chosen experimentally.

The nonlinear conjugate gradients method uses only the
first derivative (like gradient descent) but instead of going
downhill in the direction of the local gradient, it uses the
conjugate direction. To obtain the conjugate of the current
direction, a β function is defined and the direction dk at
step k is computed as dk = −gk + dk−1βk , where gk is the
value of the derivative of the function to be minimised and
dk−1 is the direction used at the previous step. The two most
popular choices (Hager and Zhang 2005) for this function
are the Polack-Ribiere βPR

k = 〈gk,gk−gk−1〉
‖gk−1‖2 and the Fletcher-

Reeves βFR
k = ‖gk‖2

‖gk−1‖2 formulae, where 〈·, ·〉 is the scalar

product, ‖·‖2 is the L2 norm and gk and gk−1 are the deriva-
tives of the function to be minimised at the current and pre-
vious iterations. Throughout our testing we noted that the
Polack-Ribiere formula leads to faster convergence in the
case of rotation, but the Fletcher-Reeves function often leads
to faster convergence in the case of translation. We did not
observe the Fletcher-Reeves jamming phenomenon (Hager
and Zhang 2005), but we did have cases where the Polack-
Ribiere formula did not lead to a correct minimum. In this
work we use the hybrid β function proposed by Gilbert and
Nocedal (1992) which, throughout our testing, provided the
best results of both βFR

k and βPR
k while still yielding conver-

gence: βGN
k = max{−βFR

k ,min{βPR
k , βFR

k }}.
We do not use any preconditioning. The standard precon-

ditioner used in nonlinear conjugate gradients is the Hes-
sian matrix, or an approximation obtained by a Broyden-
Fletcher-Goldfarb-Shanno (BFGS) iteration (Press 2007).
Since a preconditioner needs to be positive definite, we need
to test if our Hessian matrix is positive definite at every iter-
ation. This, along with the computation of the Hessian ma-
trix, increases iteration time considerably, without leading to
a significant reduction in the number of iterations required
for convergence.

Another problem with nonlinear conjugate gradients is
that if the function is not close to quadratic, iterations tend
to lose conjugacy and require a reset in the steepest gradi-
ent direction. This is usually done after a preset number of
iterations. In this work we evaluate (at every iteration) the
energy function after a gradient descent iteration and after
a conjugate gradient descent iteration and choose the one
which leads to the smallest value for the energy function.
This guarantees fast convergence but increases the compu-
tation time for each iteration, as the energy function needs
to be evaluated twice at each iteration.

The number of iterations needed for convergence de-
pends on the algorithm used, on the complexity of the 3D
model, on the step size and, of course, on the distance be-
tween the current pose estimate and the final pose estimate.
For a simple model (with few triangles), like the one shown
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Table 1 Partial differentials of
the 3D point in the camera
frame X with respect to the pose
parameters

λi
∂X
∂λi

∂Y
∂λi

∂Z
∂λi

tx 1 0 0

ty 0 1 0

tz 0 0 1

qx 2qyY0 + 2qzZ0 2qyX0 − 4qxY0 − 2qwZ0 2qzX0 + 2qwY0 − 4qxZ0

qy 2qxY0 − 4qyX0 + 2qwZ0 2qxX0 + 2qzZ0 2qzY0 − 2qwX0 − 4qyZ0

qz 2qxZ0 − 2qwY0 − 4qzX0 2qwX0 − 4qxY0 + 2qyZ0 2qxX0 + 2qyY0

qw 2qyZ0 − 2qzY0 2qzX0 − 2qxZ0 2qxY0 − 2qyX0

Fig. 3 Setup (image, model used and initialisations) for the conver-
gence experiment

in Fig. 3, when using gradient descent, the algorithm typi-
cally converges in up to 8 iterations per frame (in the case of
a fixed step) or 2–3 when a line search is used. More com-
plex models require more iterations. For example, for a 3D
model of a hand, like the one in Fig. 5, the algorithm typi-
cally converges within 20 simple gradient descent iterations.
Since our algorithm is region-based, the convergence speed
is dictated by the size of the regions. If the pose is defined
by a small feature on the silhouette, e.g. the tip of a finger
from a hand, convergence will be slower, because the area
of overlap will be smaller.

The speed of convergence also depends on how close the
energy function is to a quadratic function. When recover-
ing translation (i.e. when the energy function is close to be-
ing quadratic) we observed that conjugate gradients achieves
convergence about 3 times faster than gradient descent. In
the rotation case (when the energy function is far from be-
ing quadratic) the conjugate gradients needs more resets and
actual convergence is slower (in time) than gradient descent,
even though the number of iterations is still smaller. In Ta-
ble 2 we depict our timing results for the translation and ro-
tation cases on a sample case where both rotation and trans-
lation were very far from the correct values (50 degrees on
the x and y axis and 70 degrees on the z axis for rotation
and about 5% overlap for translation). Note that this is an ex-
treme case and for tracking the starting point would typically
be an order of magnitude or more closer to the true value,
with corresponding less computational effort (see Sect. 6).
The setup for this experiment is depicted in Fig. 3.

To summarise, while conjugate gradients does often lead
to a smaller number of iterations (as high as 3 times less it-
erations than gradient descent), it also takes 2–3 times the
processing time of gradient descent, per iteration. In our ex-
periments we use gradient descent unless otherwise stated.

To check for convergence we consider the magnitude of
the derivatives of the energy function with respect to the
pose parameters. When it is smaller than a preset threshold
(15 in our tests) we stop iterating.

4.2 Multiple Objects

To track multiple objects we minimise a separate energy
function (6) for each object. Each object has its own level
set embedding function Φ and foreground and background
membership probability (therefore also its own normalis-
ing factors ηf and ηb and foreground and background his-
tograms, P(y|Mf ) and P(y|Mb)). The object-level energy
function becomes:

Ej(Φj ) = −
∑
x∈Ω

log
(
He(Φ

j )P
j
f +(

1−He(Φ
j )

)
P

j
b

)
(17)

where j is the object.
When tracking multiple objects quite often they occlude

each other, or at least parts of each other. If pixels belonging
to an object are considered in the energy function of another
object, an incorrect pose will be obtained for the second ob-
ject. Since we extract the full 6 DoF pose of each object,
reasoning about the relative depths and occlusions in the
multi-object case is trivial. We use the current estimate of
the poses to render all tracked objects and select only the
visible pixels from each 2D projection, in a manner similar
to Schmaltz et al. (2007b).

4.3 Multiple Views

Our system can use multiple views of the same 3D object(s)
to achieve better tracking. All the pixels, from all the views,
contribute towards the minimisation of a single energy func-
tion (for each object), yielding a single set of pose param-
eters. There are however different foreground and back-
ground probabilities and different level sets functions. For
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Table 2 Number of iterations and timing details required for conver-
gence when using gradient descent with (GD) and without (GD-LS)
a line search step and conjugate gradients with (CG) and without (CG-
LS) a line search step. The time per iteration for translation is smaller

than that for rotation because computing the derivatives with respect
to rotation requires considerably more mathematical operations (about
10 times more). The setup for this experiment is depicted in Fig. 3

Translation Rotation

GD GD-LS CG CG-LS GD GD-LS CG CG-LS

Number of iterations 120 40 39 36 132 60 57 54

Processing time per iteration (ms) 4.45 12.2 13.5 14.1 4.65 12.6 13.8 14.2

Total time for convergence (ms) 534 489 528 508 613 760 791 769

V views, the energy function becomes:

E(Φ1, . . . ,ΦV )

= −
V∑

v=1

∑
x∈Ω

log
(
He(Φ

v)P v
f + (

1 − He(Φ
v)

)
P v

b

)
(18)

where v is the view.
When tracking multiple objects from multiple views, the

object-level energy function becomes:

Ej(Φj,1, . . . ,Φj,V ) = −
V∑

v=1

∑
x∈Ω

log
(
He(Φ

j,v)P
j,v
f

+ (
1 − He(Φ

j,v)
)
P

j,v
b

)
(19)

where j is the object and v is the view.
We obtained the intrinsic camera parameters for each

camera and the extrinsic parameters between the cameras
using the Matlab Calibration Toolbox (Bouguet 2008).

4.4 Invisible Points

When a 3D model is rotated or translated, surfaces may ap-
pear or disappear, as the pose transitions between so-called
“generic” views (Freeman 1993; Binford 1981). The singu-
lar poses between generic views are characterised by am-
biguous back-projections: a back-projected image contour
point may have multiple tangencies with the object. In these
cases the rate of change of the image contour with respect to
the pose parameters is not only dictated by the closest points
on the 3D model (from the camera) but also by the (infinites-
imally invisible) furthest points (see Fig. 4). In these transi-
tion cases we include terms from both the closest and the
most distant points to give greater robustness when mov-
ing between different generic views of the object. To our
knowledge this aspect has not been considered in any of the
previous literature on region-based 3D tracking.

Fig. 4 Importance of considering the most distant points. As the cam-
era moves from (a) to (b) the evolution of the silhouette is not dictated
by the closest points, highlighted in (a), but rather by the most distant
point, highlighted in (b)

Equation (14) becomes:
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∂Zd
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(20)

where Zc and Zd are the depth values for the closest point
and most distant points in the model that project to [x, y].

While we do acknowledge that only either the closest or
the most distant point (not both of them) may influence the
contour at any given time, checking all possible hypotheses
would be intractable, because for each pixel in the 3D ren-
dering both hypotheses would need to be checked, leading
to a total of 2N hypotheses, where N is the total number of
pixels inside the 3D rendering. Our solution provides a good
approximation, as proven empirically in Sect. 6.
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4.5 Temporal Consistency

So far we have treated pixels as being independent in space
and time. The former could be dealt with using a MRF, but
at the cost of much slower evaluation. In contrast here we
introduce temporal dependence using a recursive Bayes fil-
ter:

P(Mt
j |Yt ) = P(yt |Mt

j ,Yt−1)P (Mt
j |Yt−1)

P (yt |Yt−1)
(21)

where Mj , j ∈ {f,b} is the foreground/background model,
yt the value of pixel y at time t and Yt = [yt ,yt−1, . . .] the
values of pixel y up to time t .

Following the Bibby and Reid (2008) generative model,
we assume conditional independence and write:

P(Mt
j |Yt )

= P(yt |Mt
j )P (Mt

j |Yt−1)

P (yt |Yt−1)

= P(yt |Mt
j )

∑
i∈{f,b}(p(Mt

j |Mt−1
i )p(Mt−1

i |Yt−1))

P (yt |Yt−1)

(22)

where

P(yt |Yt−1) =
∑

i∈{f,b}
P(yt |Mt

i )P (Mt
i |Yt−1) (23)

The recursion is initialised by P(M0) = P(Mj ).
To estimate P(Mt

j |Mt−1
i ) for i ∈ {f,b} and j ∈ {f,b} we

write:

P(Mt
j |Mt−1

i ) = ζji

ζ
(24)

where ζ is the total number of pixels in the image and ζji ,
i ∈ {f,b} and j ∈ {f,b} is the number of pixels that were of
type i at the previous frame and are of type j at the current
frame. For example a pixel is considered foreground (i.e. of
type f ) at time t if P(yt |Mt

f ) > P (yt |Mt
b).

In this work we only enforce first order temporal con-
sistency i.e. Yt = yt , which means that the current value of
the foreground or background posterior depends only on the
value at the previous time step.

4.6 Online Adaptation

In this work we use the same adaptation equation as our pre-
vious work, Prisacariu and Reid (2009).

P t(y|Mi) = (1 − αi)P
t−1(y|Mi) + αiP

t (y|Mi) (25)

where i = {f,b}.

In our earlier work (Prisacariu and Reid 2009), we up-
dated the histogram only when the minimisation of the en-
ergy function had converged. This does not guarantee that
the histograms will not be corrupted, as the minimisation
of the energy function might have converged to an incor-
rect pose. Here we use the distance transform as a measure
of the uncertainty in the contour: pixels far from the con-
tour and inside the projection will most likely be foreground,
while pixels far from the contour and outside the projection
will most likely be background. We set a threshold distance
and update the foreground and background histograms only
where the absolute value of the distance transform is bigger
than this threshold. This threshold is equal to the size of the
band in which we evaluate energy function (fixed at 16 pix-
els, in all our experiments). While this might mean that we
do not update with some pixels that actually are foreground
or background, it does allow us to use much higher adap-
tation rates and ensure more stable tracking. In Prisacariu
and Reid (2009) the foreground adaptation rate was usually
less than 1% (αf = 0.01). Here we can easily increase the
foreground learning rate to as high as 5% (αf = 0.05) and
tracking is still stable (the histograms do not get corrupted).
This allows more rapid changes in appearance which in turn
produce more reliable tracking. The background adaptation
rate remains unchanged (αb = 0.02), because the corrupting
influence of the foreground pixels was already negligible.

5 Implementation and Performance Analysis

Here we discuss a number of implementational issues and
analyse the computational requirements of the algorithm.

In the present work the appearance models are repre-
sented by RGB histograms using 32 bins per channel. We
use 640 × 480 images for all experiments. Each iteration
proceeds as follows:

– Render the 3D model with the current estimate of the
pose. The rendering pipeline is similar to that of OpenGL
except that we generate two depth buffers: one for the
closest points in the 3D model (from the camera) and one
from the most distant points. To generate the most distant
points we use a reversed Z-buffer algorithm i.e. instead
of choosing only the pixel with the smallest depth, we
choose the one with the biggest depth.

– Compute the contour of the projection and the signed dis-
tance transform of this contour.

– Compute the partial derivatives of the signed distance
transform.

– Compute the partial derivatives of the energy function.
– In the gradient descent case: make a step change to the

pose in the direction of the gradient. The step size may
be found using a line search algorithm or be a preset ad-
justable parameter.
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Fig. 5 The average processing time when using the model on top with
the image on the bottom is 2.91 ms. The resolution of the images is
640 × 480 and the model has 680 triangles

– In the conjugate gradient case: make a step change to the
pose in the direction of the gradient and in the direction
of the conjugate gradient. Evaluate the energy function in
both cases and choose the minimum. The step size may
also be found using a line search algorithm or be a preset
adjustable parameter.

Most of the tasks involved in one iteration of our algo-
rithm operate per-pixel, so we can achieve significant gains
by exploiting the high degree of parallelism. We use the
CUDA framework (NVIDIA 2009) to implement various
steps on a GPU. Average processing time per iteration (when
using gradient descent) lies between 2.5 and 5 ms using a
Geforce GTX 285 video card, for a 640 × 480 RGB image,
depending on the size of the 3D rendering and the complex-
ity of the 3D model. The more pixels being rendered, the
bigger the processing time. However, the energy function
is only evaluated in a band around the contour so the al-
gorithm scales well with image size. For example, for the
model shown in Fig. 5, the average processing time per it-
eration is 2.91 ms. Table 3 summarises the average amount
of time taken by each stage of the evaluation, for a single it-

Table 3 Detailed processing time for one iteration of the minimisation
of our energy function, when using gradient descent without the line
search (so no evaluation of the energy function is necessary)

Processing stage Time

Rendering the 3D model 0.64 ms

Finding the contour of the 2D projection 0.18 ms

Distance transform of the contour of the 2D projection 1.50 ms

Computation of ∂Φ
∂x

and ∂Φ
∂y

0.15 ms

Computation of all ∂E
∂λi

0.44 ms

eration of the gradient descent. Since the processing is done
by the GPU, the host CPU is free to do other tasks during
processing.

5.1 3D Rendering Engine

For every iteration of our algorithm, the 3D model must be
rendered with a given pose and projection matrix. The dis-
tance transform needs to be computed only in the region of
the image where the object is located. If a standard render-
ing engine is used, this region of interest must be computed
after the rendering. Also, to our knowledge, it is not straight-
forward for OpenGL or DirectX to render multiple Z-buffers
(requiring multiple separate renderings). We chose to imple-
ment our own 3D rendering engine so the region of interest
is computed at render time. We can also easily add support
for multiple Z-buffers. Finally, since there is no need to con-
sider lighting or texturing (which would have been costly in
a CPU implementation), our custom rendering engine oper-
ates at a similar speed to OpenGL or DirectX (a difference
of less than 1 ms, in our tests).

Figure 6 shows the steps undertaken by our rendering en-
gine to draw a single image pixel, from a known 3D point.
Just like OpenGL, first the 3D point must be converted from
the object coordinate system to the camera coordinate sys-
tem, using (15). In the second and third steps (13) is used
to obtain the normalised device coordinates for the x and y

coordinates of the pixels. The normalised z coordinates have
the following expression:

zNDC = f + n

f − n
+ 2f n

f − n

1

Z
(26)

where f and n are the distances with respect to the far and
near planes, respectively. We use f = 400 and n = 1. In this
coordinate system the x, y and coordinates are mapped to
the range (−1,1). This is a non-linear mapping, meaning
that closer points have higher resolution than more distant
points.

In the viewpoint transform the 3D coordinates are mapped
into the 2D area of the rendering window.

We assume the 3D model to be a triangle mesh. We use
interpolation to obtain the x, y and z values for the points
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Fig. 6 3D rendering pipeline

Fig. 7 Typical algorithm run for one frame. Left—initialisation, middle—intermediate iteration, right—final result

inside the triangles. The Z-buffer algorithm is used twice
for each pixel in the image, to select the z value for both the
closest and the most distant 3D point which project to that
2D pixel.

In the multi-object case multiple renderings are gener-
ated: one for each object separately and one with all the ob-
jects together—the depth map.

Prisacariu and Reid (2009) implemented a software ren-
derer (so CPU based, rather than GPU based). The software
rendering combined with the transfer from host memory to
GPU memory accounted for about half of the total process-
ing time per iteration. In this work we implemented a GPU
version of the rendering engine, by using a separate thread
for each triangle in the model. For the Z-buffer implementa-
tion we use global memory atomic write operations to avoid
any possible read-write-modify hazards. Note that it is also
possible to use one thread per pixel, rather than one thread
per triangle. This would mean that each thread would have to
check its membership to each triangle, which would quickly
become prohibitively expensive as the number of triangles
increases. Preprocessing steps could be used to establish
which pixels belong to which triangles, but these would also
take extra processing time.

In most cases, the GPU implementation is much faster
than the CPU implementation. It also scales much better
with the number of triangles in the mesh. For example, the
model in Fig. 8 (which has 8886 triangles), was rendered in
5.6 ms with the CPU renderer and in 2 ms with the GPU ren-
derer. The only case where the CPU implementation is faster
is when model has few triangles (less than 100) but lots of
pixels, i.e. its projection is big (more than 100 × 100). In
this case there are considerably more atomic operations than

Fig. 8 Failure due to the symmetry of the object. (a)—left: recovered
pose, right: rendered frame, (b)—left: recovered pose, right: rendered
frame

threads, so the parallelisation is ineffective. Our current im-
plementation chooses dynamically between the two render-
ing engines. This accounts for the difference in processing
time per iteration between that reported in Table 2 and that
reported in Table 3, because in the experiments which led
to the results shown in Table 2 the algorithm used the CPU
renderer, while for those shown in Table 3, the algorithm
used the GPU renderer.

5.2 GPU Contour Extraction

We compute the contour of the projection by convolving the
projection image with Scharr kernels, and keeping only the
pixels which are outside the projection. The Scharr kernels
(Scharr 2000) are:

Horizontal:

⎡
⎣+3 +10 +3

0 0 0
−3 −10 −3

⎤
⎦
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Fig. 9 Robustness to motion blur. Left—original image, right—recovered position

Vertical:

⎡
⎣ +3 0 −3

+10 0 −10
+3 0 −3

⎤
⎦

This implementation would have been impractical us-
ing a sequential algorithm, but it is very parallelisable. Our
parallel implementation uses one thread per pixel. In the
multi-object case (where a rendering of each object sepa-
rately is known) the contour is extracted for each object sep-
arately.

5.3 GPU Distance Transform

To compute the distance transform we use an algorithm sim-
ilar to Felzenszwalb and Huttenlocher (2004). The distance
transform is computed in two passes of the contour image:
first by columns and then by rows. Our parallel implemen-
tation uses one thread for each column and then one thread
for each row in the image. The second pass does not take
full advantage of the CUDA framework capabilities because
memory access is not coalesced.

In the multi-object case a distance transform is computed
for each object.

5.4 GPU Finite Differences and Energy Function
Evaluation

The computation of the partial derivatives of the signed dis-
tance transform uses central finite differences, parallelised
by using one thread per pixel. The partial derivatives of the
energy function are also computed by using one thread per
pixel and then transferred back to host memory.

6 Results

We tested our method on a variety of models and video se-
quences. In this section we demonstrate some of the quali-
ties of our method, such as robustness to initialisation, mo-
tion blur and occlusions. We also demonstrate the advantage
of including the most distant points of the object in the eval-
uation of the energy function. We showcase the difference
between using the pixel-wise posteriors formulation of the
level set framework and the classical log likelihood formu-
lation. We compare our method with the one of Brox et al.
(2009), which is at or close to the current state of the art
in 3D pose tracking. Although Brox et al. (2009) combine
region-based tracking with optical flow and SIFT features
while we only use the silhouette, we achieve similar or bet-
ter results, but with a processing time that is hundreds of
times smaller. Finally we compare the poses recovered by
our method for each frame of a video with the ones obtained
by a SLAM (Simultaneous Location and Mapping) system,
over the same video.

The source code for our implementation is available on-
line at http://www.robots.ox.ac.uk/ActiveVision.

Figure 7 shows an example of our method performing
segmentation on a single frame.1 Here we are able to suc-
cessfully recover translational changes in x and y of up to
±40% of the object size, a similar amount in z (scale) and
rotational changes of 50 degrees on the x and y axis and
70 degrees on the z axis. Depending on the model and im-
age data, we were able to recover rotations up to 90 degrees
on each axis. With regard to translation, the algorithm usu-
ally converges as long as the projection of the 3D model
intersects the object in the image (also depending on the
model and of course the image data itself). When the projec-

1The 3D model of the space-shuttle was obtained from http://
www.nasa.gov/.

http://www.robots.ox.ac.uk/ActiveVision
http://www.nasa.gov/
http://www.nasa.gov/
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Fig. 10 Effect of temporal consistency on the posterior probabilities.
The top row shows the original images. In the second and third row,
we plot the per pixel difference Pf − Pb where Pf − Pb > 0, scaled

to [0,255]. The separation between the foreground and background
regions is better when imposing temporal consistency (third row)

Fig. 11 Film strip showing our method tracking a hand. Our algorithm can track the hand in this sequence at around 20 fps

tion overlaps with the object in the image, even by a small
amount, a pressure develops in the energy function with the
effect of increasing this overlap, effectively pulling the ob-
ject in the right direction.

Figure 8 shows a failure scenario for our method. It is an
artificially generated video sequence in which the camera is
rotated around a human head. The segmentation is correct
but the pose is wrong. This problem arises because the ob-
ject is symmetrical; the contour alone is insufficient to deter-
mine the pose unambiguously. This is of course a limitation
of all pose recovery algorithms based solely on the occlud-
ing contour.

In standard edge based tracking, because of motion blur,
edges often disappear, or have unstable positions. This leads

to an advantage of a region-based tracker over an edge based
tracker: its robustness to motion blur. In Fig. 9 we use a soft-
drink can and 3D model to showcase a typical scenario when
our method is able to successfully track the 3D object while
any local feature based pose recovery algorithm would have
most likely failed.

Figure 10 shows the effect of imposing temporal con-
sistency on the posterior probabilities. We plot the per
pixel difference Pf − Pb , where Pf − Pb > 0, scaled
to [0,255]. Brighter pixels correspond to a larger differ-
ence between Pf and Pb . When imposing temporal con-
sistency, the separation between the two regions is bet-
ter, which leads to a faster and more accurate pose recov-
ery.
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Fig. 12 Film strip showing 5 frames from a video sequence in which
the camera moves above a soft-drink can in a circular motion. Between
frames 25 and 55 the view of the can moves to directly above, with
the side obscured, back to a view with the side visible again. When

allowing only the closest points to influence the contour evolution, the
pose incorrectly flips (above). In contrast the behaviour is correct when
the furthest points are also considered (below)

Fig. 13 Performance analysis: probability of convergence to the correct pose generated from over 200,000 experiments

A potential source of problems when using strong prior

3D (or 2D) shape knowledge in tracking and pose recov-

ery are discrepancies between the model and the real target.

Figure 11 shows frames from a sequence where we track a

human hand with an approximate model. Tracking is still ac-

curate because our method is region-based and probabilistic.

Rapid motions produce big differences in pose between
successive frames. Because of the large basin of conver-
gence our method can often recover the pose even in these
cases. The algorithm does have slow convergence when sur-
faces appear and disappear so recovery of rapid motions in
these cases is more difficult. Note that we do not use a mo-
tion model, though this could easily be incorporated. This
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Fig. 14 Film strip consisting of 10 frames from a video which show-
cases the PWP3D behaviour when subjected to occlusions and high
levels of noise. For the first 6 frames (when both the top and bottom
parts of the soft-drink can are visible) the pose is correct, even though
most of the interior part of the object is occluded. When the bottom

part of the can becomes occluded the pose becomes incorrect. The
object moves “up” in the image because there is no longer a reason for
it to stay “down”. The algorithm converges back to the correct position
once the bottom part stops being occluded

would greatly help in the prediction of the appearance and
disappearance of surfaces.

The evolution of the contour of the projection is not al-
ways dictated by the visible part of the object. Surfaces may
appear and may disappear. As mentioned in Sect. 4, we also
take into consideration the most distant points which project
to the contour of the projection, in the energy function. Fig-
ure 12 shows excerpts of a video sequence where the camera

rotates above a soft-drink can. The view of the can moves to
directly above, with the side obscured, back to a view with
the side visible again. When allowing only the closest points
to influence the contour evolution, the pose incorrectly flips.
In contrast the behaviour is correct when the furthest points
are also considered.

We used our video sequences to perform a critical per-
formance analysis comparing the performance of both the



Int J Comput Vis (2012) 98:335–354 349

Fig. 15 Comparison between our method (above) the one presented
by Brox et al. (2009). Although Brox et al. (2009) combine region-
based tracking with optical flow and SIFT features to achieve tracking,
while we use only the silhouette, our results are very similar, if not

better. Note that here we use a single view (above, first row), and re-
project in the other (above, second row), while in Brox et al. (2009)
three views are used (from which we included 2 here)

Fig. 16 Filmstrip showing 6 frames from our PTAM comparison video. We used a checker board pattern to calibrate our results with the PTAM
(Klein and Murray 2007) ones

pixel-wise posteriors energy function that we use in this pa-
per and the log likelihood one (like that of Cremers et al.
(2007) and Dambreville et al. (2008)), for 3D tracking. For
each frame we computed 120 perturbations around the cor-
rect pose (20 for each pose parameter), in total more than
200,000 experiments. We measured whether each algorithm
converged and how many iterations were required for con-
vergence to the true pose,2 with success defined by a differ-
ence of at most 5 degrees in rotation and 5% of object size in

2Without access to the ground truth, the true pose was measured sub-
jectively.

translation. Figure 13 summarises the results. Though there

is little choice between the objective functions for recov-

ery of translation in x and y axis (i.e. parallel to the im-

age plane), the pixel-wise posteriors energy function outper-

forms the log likelihood objective function for recovering

translation in the z axis and for all 3 rotation axes. Finally,

the number of iterations necessary for convergence (when

convergence was possible) is considerably higher when us-

ing log likelihood (for both rotation and translation). For

these experiments we used cuboid objects, like the one in

Fig. 4.
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Fig. 17 Comparison between camera pose output when using PTAM (Klein and Murray 2007) and PWP3D

In Fig. 14 we depict a film strip showing the behaviour
of PWP3D when subjected to high degrees of occlusion and
noise. When both the top and bottom parts of the soft-drink
can are visible, the pose is correct, even though most of

the interior part of the object is occluded. When the bot-
tom part of the can becomes occluded the pose becomes
incorrect. The object moves “up” in the image because there
is no longer a reason for it to stay “down”. The algorithm
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Fig. 18 Multi view tracking. The top two rows show the two views.
When processing only the first view (top row) the results are incorrect
(third row) because the silhouette to pose mapping is ambiguous (mul-

tiple silhouettes can be generated by the same pose). When using two
views the ambiguities are eliminated and the results are correct for both
views (bottom two rows)

converges back to the correct position once the bottom part
stops being occluded. Throughout our testing PWP3D has
consistently been able to recover from an incorrect pose in
no more than 10 frames.

We compared our method with the one proposed by Brox
et al. (2009), which is at or close to the current state of
the art in 3D model based tracking. The authors use three
cues for point correspondences: region-based, dense optical
flow-based and SIFT-based. In Fig. 15 we show the results
obtained by our method (above) and the one in Brox et al.
(2009) (below). The results are very similar, even though we
track only the silhouette. Our algorithm is also considerably
faster (we can track this object at around 100 ms per frame
while the authors report processing a frame in about 80 s).
It is important to note that here we use a single view (above,
first row), and reproject in the other (above, second row),
while in Brox et al. (2009) three views are used (from which

we included 2 in Fig. 15). Brox et al. (2009) will of course
achieve better results when the pose is more ambiguous (i.e.
when more poses project to the same silhouette), but this
experiment still demonstrates the efficacy of our method.

Our system obtains the pose parameters for a 3D object
relative to a fixed camera. This is the same as obtaining the
pose of a 3D camera relative to a stationary object. SLAM
systems build a sparse 3D map of the environment and cal-
culate the pose of a 3D camera relative to that map. There-
fore we can obtain a measure of accuracy for PWP3D by
comparing it against a SLAM system. Neither SLAM nor
PWP3D provide the exact pose of the camera but the two
systems should converge to very similar results. In Fig. 17
we depict the pose parameters obtained by our system and
those obtained by the PTAM (Parallel Tracking and Map-
ping) system of Klein and Murray (2007), which is at or
close to the current state of the art in structure from mo-
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Fig. 19 Our algorithm tracking two objects, a soft drink can and a hand. The top film strip shows the hand occluding the soft drink can. The
bottom film strip shows the opposite, the soft drink can occluding the hand. The third row in each film strip shows the resulting depth map

tion. In Fig. 16 we show a few frames from the video we

used to compare our system with PTAM. The two are very

close with the exception of two regions in rotation on X and

Z (around frame 350 and 460) and one region on transla-

tion in Z (around frame 500). Note that SLAM/PTAM uses

many features to obtain the pose of the camera whereas

PWP3D uses just the silhouette. The differences in rotation

are caused by the fact that we are tracking only the silhouette

and, in those regions, the object was viewed from the side.

A tilt in the X or Z direction had no effect on the silhouette.

The difference in translation on Z is caused by a high degree
of motion blur, which corrupted the features used by PTAM.

In Fig. 18 our algorithm uses two views to disambiguate
the pose of a hand. The top two rows show the two views.
The straight on view (top row) of the hand is ambiguous
i.e. multiple poses can generate the same silhouette. Row
three shows the pose obtained by our algorithm when pro-
cessing only the first view (top row). The algorithm is con-
fused by the ambiguity in the pose-silhouette function and
converges to a wrong result. When adding the second view
(second row) the pose-silhouette function is disambiguated
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and the pose is recovered successfully in both views (last
two rows). Processing time suffers considerably, as process-
ing two views is twice as slow as using a single view. Multi-
ple threads and/or video cards (one for each view) could be
used to speed up the algorithm.

Figure 19 shows our algorithm tracking two objects,
a soft drink can and a hand. In the top film strip the hand
occludes the soft drink can, while in the second film strip the
soft-drink hand occludes the hand. Tracking is consistent in
both cases. Processing time does again suffer considerably.
Tracking two objects is about 2.5 times slower than tracking
a single object, two times slower because two energy func-
tions are computed, plus the extra processing required for
generating and using the depth map.

7 Conclusions

In this article we have described a novel model-based 3D
tracker, constructed on the assumption that the segmenta-
tion of an object in an image is fully defined by the 6 DoF
pose space of its known 3D model. The method is based
on the computation of the derivatives of a level set based
segmentation energy function with respect to the pose pa-
rameters of the known 3D model. Segmentation and pose
are then recovered by standard nonlinear optimisation tech-
niques, such as gradient descent and conjugate gradients, re-
sulting in a fully variational, probabilistic, one shot, level set
minimisation. Inspired by Bibby and Reid (2008) we have
adopted the use of pixel-wise posteriors (in contrast to likeli-
hoods) and shown that, as in the 2D case addressed by Bibby
and Reid (2008), we achieve performance gains also in the
3D case. In addition, we have introduced further improve-
ments at the pixel level such as consideration of temporal
consistency and improved online adaptation of foreground
and background appearance models. Importantly, we have
also demonstrated that, because of its highly parallel nature,
our algorithm is amenable to real-time implementation us-
ing GPU acceleration, making this one of the few model and
region based 3D trackers to achieve real time performance.
Our method shares the benefits of region based segmentation
with shape priors, such as robustness to occlusion, noise or
motion-blur, while still allowing for large changes in rota-
tion and translation to be successfully recovered, and these
aspects have been experimentally demonstrated. We have
shown how straightforward extensions lead to the ability
to track multiple objects from multiple views, which over-
comes ambiguities created by the fact that we only use sil-
houette information in finding the 6D pose.

Though we have made some improvements to the online
appearance model adaptations allowing for more aggressive
updating, we are still only using a single, global appearance
model of the tracked object. More interestingly, one could

take advantage of the fact that appearance of a 3D object is
a function of pose, and we believe that (online) learning of
such an appearance model may be both feasible and bene-
ficial. Several techniques also exist for learning manifolds
of 2D shapes by use of dimensionality reduction techniques,
an example being our work on shape spaces of Prisacariu
and Reid (2011a) and shared shape spaces of Prisacariu and
Reid (2011b). By combining our algorithm with such a tech-
nique, we could potentially find not only the 3D pose of the
object, but also its shape, and such an idea may well extend
to articulated and/or deformable objects. Tracking articula-
tions would also be possible by extending our method in the
spirit of Kohli et al. (2008), combined with a multi view for-
mulation such as the one of Liu et al. (2011).
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