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Abstract This paper addresses the problem of fully auto-
mated mining of public space video data, a highly desir-
able capability under contemporary commercial and secu-
rity considerations. This task is especially challenging due
to the complexity of the object behaviors to be profiled, the
difficulty of analysis under the visual occlusions and am-
biguities common in public space video, and the computa-
tional challenge of doing so in real-time. We address these
issues by introducing a new dynamic topic model, termed
a Markov Clustering Topic Model (MCTM). The MCTM
builds on existing dynamic Bayesian network models and
Bayesian topic models, and overcomes their drawbacks on
sensitivity, robustness and efficiency. Specifically, our model
profiles complex dynamic scenes by robustly clustering vi-
sual events into activities and these activities into global be-
haviours with temporal dynamics. A Gibbs sampler is de-
rived for offline learning with unlabeled training data and a
new approximation to online Bayesian inference is formu-
lated to enable dynamic scene understanding and behaviour
mining in new video data online in real-time. The strength
of this model is demonstrated by unsupervised learning of
dynamic scene models for four complex and crowded pub-
lic scenes, and successful mining of behaviors and detection
of salient events in each.
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1 Introduction

The proliferation of cameras in modern society is producing
an ever increasing volume of video data which is thus far
only weakly and inefficiently exploited. Ideally, users would
like the ability to mine large volumes of recorded data to
extract useful information about behaviour patterns of in-
dividuals and groups in the area under surveillance; and to
monitor the scene for saliency in real-time in order to pro-
vide the potential for immediate response. Learning spatio-
temporal behaviour patterns from videos of a public space
is frequently of intrinsic commercial or security interest for
users to gain more knowledge about activity patterns in pub-
lic spaces which they are responsible for. For instance, re-
tailers may be interested in shoppers browsing habits, while
managers of public infrastructure sites might be interested in
understanding typical behaviors. The learned behavior pat-
terns may then be exploited for online analysis of the site
state and for detection of salient activity pattern requiring
further investigation. The alternative is the expensive and
laborious manual analysis of the data and customization of
detection software—which is prohibitive for many installa-
tions.

In practice, large volumes of recorded video data are fre-
quently only stored passively for record purposes because of
the challenges in developing such automatic and robust anal-
ysis methods. There are in general three challenges: dealing
with the variety of potentially interesting behaviors, achiev-
ing sufficient robustness for practical use and real-time on-
line operation.
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Behavioral Complexity The nature of behavioural patterns
in a given scene, and importantly, the classes of ‘subjectively
interesting behaviour’ to a user with a specific task could be
defined by a wide variety of factors: the activity of a single
object over time (e.g., its track), the correlated spatial states
of multiple objects (e.g., a piece of abandoned luggage is
defined by separation from its owner) or both spatial and
temporal considerations (e.g., traffic flow at an intersection
has a particular order dictated by the lights). In addition, the
spatial or temporal range over which correlations might be
important may be short or long. Building models general
and flexible enough to represent all these aspects of behavior
is an open research question.

Robustness & Sensitivity Typical public space surveillance
scenarios involve noisy, ambiguous and cluttered input.
They may also exhibit extreme lighting variations and a vari-
ety of different object classes, poses and dynamics. A robust
model is one which copes gracefully with these challenges.
However, classical approaches to visual surveillance build
upon a segmentation, classification, identification and track-
ing pipeline which may be brittle under these circumstances.

An important related issue is sensitivity: how well a sys-
tem can discover behaviors of interest if they are for exam-
ple, visually subtle, very short in duration or co-occurring
with other less interesting behaviors. In practice there is a
difficult tradeoff between these two requirements. To be use-
ful, a monitoring system needs to be both sufficiently robust
and sensitive.

Computational Tractability To enable prompt response to
important or unusual events, any automatic analysis should
be performed real-time; thereby constraining the range of
potential usable techniques.

In light of all these issues we present in this paper a new
model, which we term a “Markov Clustering Topic Model”
(MCTM), to address the problem of unsupervised mining
of multi-object spatio-temporal behaviours in crowded and
complex public scenes. Our approach draws on existing the-
oretical work on probabilistic topic models (PTMs) and dy-
namic Bayesian networks (DBNs) to achieve a robust hier-
archical model of behaviors and their dynamics. The overall
three-layer architecture is as follows: A codebook of sim-
ple visual events (e.g., foreground pixel presence or mov-
ing pixel presence) is learned, so as to generate discrete in-
put features from video. Co-occurring events are automati-
cally composed into activities (e.g., a pedestrian crossing the
road). Co-occurring activities are automatically composed
into complex multi-object behaviors (e.g., street intersection
interactions), and these behaviors are considered correlated
in time. By introducing a Markov chain to model behaviour
dynamics, we define a DBN generalization of a static topic
model.

Our model is learned offline from unlabeled training data
with Gibbs sampling. The hierarchical and temporal struc-
ture of our model addresses the challenge of modeling com-
plex dynamic multi-object behaviors. The issues of robust-
ness and sensitivity are addressed by the topic model rep-
resentation and temporal correlation, and a new inference
algorithm permits online real-time operation. The result is a
framework which can address the problem of unsupervised
profiling and mining of multi-object spatio-temporal be-
haviours in crowded and complex public scenes by discover-
ing underlying spatio-temporal regularities. The framework
can provide domain knowledge about a scene in the form
of learned patterns; detect the occurrence of learned activi-
ties and behaviors online; and importantly, detect irregular
patterns that can be consistently interpreted as ‘salient be-
haviours’ by human users. A system based on our model can
answer queries such as: “Give me a summary of the typi-
cal activities, behaviours and dynamics in this scene”, “Esti-
mate how many different activities and behaviors are exhib-
ited in this scene”, “Show me a (ranked) list of interesting
(irregular) events from the past 24 hours”, “Alert me when-
ever any sufficiently interesting (irregular) event occurs” and
“Learn a model of this example behaviour, and tell me if it
occurs.”

The rest of this paper is organized as follows: Sect. 2
gives an overview of related research and highlights the
contribution of the work. Section 3 gives a detailed expla-
nation of the theoretical and implementation details of our
framework. Section 4 discusses how to exploit our frame-
work for semi-supervised learning. We then evaluate our
approach on tasks including learning (Sect. 5.2), unusual
activity detection (Sect. 5.3), classification (Sect. 5.4) and
semi-supervised classification (Sect. 5.5) using four diverse
datasets collected from crowded public spaces. The paper
concludes in Sect. 6 with discussion including the limita-
tions of the proposed model and future work.

2 Related Work

Our goals are related to the general field of video mining, in
which research has traditionally focused on content based
indexing and summarization systems and event detection
systems. Indexing and summarization systems try to catego-
rize each segment of a video, often obtained by shot change
detection (Meng and Chang 1996) or by content (e.g., pres-
ence of a particular object) to permit searching and brows-
ing (Pritch et al. 2008). Event detection systems search for
particular defined events of interest (e.g., people falling) in
video (Chang et al. 2008; Xie et al. 2008). There has been
much recent progress on these problems as evidenced by
the successful responses to the TRECvid (3) semantic in-
dexing (e.g., Inoue et al. 2009) and event detection (e.g., Hu
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et al. 2009) challenges. Nevertheless, most of these event
detection approaches engineer—for each scenario—features
that are very high level (e.g., body part detectors) and hard-
coded rules to detect specific target events (e.g., embracing,
loitering or pointing); or large-vocabulary bags of interest
points (1). In this paper we are specifically interested in
unsupervised learning of models for complex multiple ob-
ject behaviors captured in public space surveillance videos
of varying view range and composition, etc. In this case,
many standard video mining approaches are inappropriate
because of the constraint to specific pre-defined events or
over-specificity to scene composition.

Recent research on learning behavior models for un-
derstanding video has broadly fallen into object-centric
detection and tracking approaches (Hu et al. 2004), and
non-object-centric approaches. Tracking based approaches
(Berclaz et al. 2008; Sillito and Fisher 2008; Hu et al. 2006;
Wang et al. 2006; Dee and Hogg 2004; Stauffer and Grim-
son 2000; Johnson and Hogg 1996) explicitly represent
the spatial state of visual objects over time. This allows
them to easily model behaviours like typical paths, and de-
tect events readily defined in terms of trajectories such as
counter-flow (Berclaz et al. 2008), u-turns (Hu et al. 2006)
or goal consistency (Dee and Hogg 2004). However, such
models only work well if complete tracks can be reliably
obtained in training and test data which as we have dis-
cussed, is difficult in crowded public spaces. To improve
tracker robustness, scenario specific models of typical dy-
namics have been learned (Ali and Shah 2008; Berclaz
et al. 2008). To improve robustness of activity models to
tracking failures, non-parametric representations of track
statistics have also been exploited (Basharat et al. 2008;
Saleemi et al. 2009). Nevertheless, a major limitation of
tracking based approaches in general is the difficulty in
modeling behaviours characterized by coordinated activity
of multiple objects, which may be the defining characteristic
of an interesting behavior in video.

To improve robustness to missed detections and broken
tracks, and to enable multi-object spatio-temporal correla-
tion modeling, statistical methods have been devised to pro-
cess directly on image data (Boiman and Irani 2007), quan-
tized optical flow (Wang et al. 2009; Kim and Grauman
2009; Hospedales et al. 2009) or other low level ‘event’ fea-
tures in video (Duong et al. 2005; Xiang and Gong 2008b;
Li et al. 2008; Zhong et al. 2004; Benezeth et al. 2009;
Hospedales et al. 2009). These methods have typically em-
ployed non-parametric indexing (Boiman and Irani 2007),
Dynamic Bayesian Networks (DBNs) such as a Hidden
Markov Models (HMM) (Duong et al. 2005; Xiang and
Gong 2008a, 2008b), Markov Random Fields (MRFs) (Kim
and Grauman 2009; Benezeth et al. 2009) or probabilistic
topic models (PTMs) (Li et al. 2008) such as Latent Dirich-
let Allocation (LDA) (Blei et al. 2003) or extensions (Wang

et al. 2009; Hospedales et al. 2009). Non-parametric in-
dexing approaches (Boiman and Irani 2007) are robust be-
haviour models, but suffer from scalability issues in having
to store and search a whole video patch database, and can-
not model important and meaningful spatio-temporal corre-
lations between events (e.g., exclusive use of an intersection
by traffic flowing in different directions with regulated or-
der). DBNs are natural for modeling dynamics of behaviour
(Xiang and Gong 2006, 2008a, 2008b) and, with hierarchi-
cal structure, also have the potential to perform clustering
of both simple activities and more complex behaviours si-
multaneously (Duong et al. 2005). Nevertheless, modeling
the temporal order of noisy visual events explicitly is risky,
because noise in the event representation can easily prop-
agate through the model, and be falsely detected as salient
(Li et al. 2008; Wang et al. 2009). Another strategy is to
learn a MRF over a space-time volume, which can model
permitted local spatio-temporal correlations (Benezeth et
al. 2009; Kim and Grauman 2009), and also improve ro-
bustness by smoothing salient event detections (Kim and
Grauman 2009). However, flat and non-hierarchical mod-
els like Benezeth et al. (2009), Kim and Grauman (2009)
cannot represent the composition of simpler local actions
into more complex behaviors (e.g., traffic intersection mod-
eling). Moreover, because they only correlate a small win-
dow of time, they lack the potential for long term temporal
behaviour reasoning.

To overcome the problems of robustness and multi-object
behavior modeling, PTMs (Blei et al. 2003) were borrowed
from text document analysis. These “bag of words” mod-
els represent visual event co-occurrence (Li et al. 2008)—
potentially hierarchically (Wang et al. 2009)—but com-
pletely ignore temporal order information. Therefore robust-
ness to noise is at the cost of discarding vital dynamic infor-
mation about behaviour. PTMs also suffer from ambiguity
in determining the temporal window extent for collecting the
bag of words. Large windows risk overwhelming behaviours
of shorter duration, and small windows risk breaking up be-
haviours arbitrarily. This is especially damaging since cor-
relation between bags is not modeled. The hierarchical PTM
models developed in Li et al. (2008) and Wang et al. (2009)
have also tended to be computationally expensive, preclud-
ing the desired usage scenario for real-time monitoring of
salient events in a public space.

The most similar work to ours is that of Wang et al.
(2009), who use a hierarchical and non-parametric Dirichlet
process (DP) topic model of behavior. Our approach differs
in three important ways: (i) We model behavior dynamics,
while Wang et al. (2009) uses a static topic model. This en-
sures sensitivity to dynamics (ordering) of behaviours, and
also provides some generality in sensitivity to behaviours of
longer and shorter time-scale; (ii) Our parametric approach
permits semi-supervised learning to detect specific known
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interesting behaviors unlike the purely outlier detection ap-
proach in Wang et al. (2009) and (iii) MCTM performs real-
time online inference, unlike Wang et al. (2009).

The idea of introducing various kinds of dynamics into
topic models has been exploited recently for text document
analysis. Griffiths et al. (2007), Wallach (2006), Gruber et al.
(2007) develop models to temporally correlate words within
(rather than across) documents (corresponding to video clips
in our case). This makes sense for text where the word to-
kens come in a one dimensional stream, but is not clearly
suitable for video where a (variable sized) set of visual
events occurs at each time. Blei and Lafferty (2006) model
continuous change (rather than switching) of the parame-
ters correlating words and topics. This models longer term
changes in the statistics of the observation model of the cor-
pus and could correspond to adapting to weekly or seasonal
trends in video, but not the live dynamics of behaviors which
we are interested in.

3 Unsupervised Spatio-Temporal Video Mining

3.1 Video Representation

We wish to construct a generative model capable of au-
tomatically mining and screening irregular spatio-temporal
patterns as ‘salient behaviours’ in video data captured from
single fixed cameras monitoring public spaces with people
and vehicles at both far and near-field views (see Sect. 5.1).
These camera views contain multiple groups of heteroge-
neous objects, occlusions, and shadows, challenging seg-
mentation and tracking based methods. Instead, local mo-
tions are used as low level input features. Specifically, a
camera view is divided into C × C pixel cells, and optical
flow computed in each cell. When the magnitude of a flow
vector is greater than a threshold Tho, it is deemed reliable
and quantized into one of four cardinal directions. A dis-
crete visual event is defined based on the position of the cell
and the motion direction. This is similar to the representa-
tions used in Wang et al. (2009), Kim and Grauman (2009),
Zhong et al. (2004).

For a 320 × 240 video frame with cell size of 10 × 10,
a total of Nx = 32 × 24 × 4 = 3072 different discrete vi-
sual events may therefore occur in combination. For visual
scenes where objects may remain static for sustained pe-
riod of time (e.g., people waiting for trains at a underground
station), we also use background subtraction to generate a
fifth—stationary foreground pixel—state for each cell, giv-
ing a visual event codebook size of 3840. This illustrates the
flexibility of our approach: it can easily incorporate other
kinds of ‘metadata’ features that may be relevant in a given
scene. The input video is uniformly segmented into one-
second clips, and the input to our model at second t is the
bag of all Nt visual events occurring in video clip t , denoted
as xt = {x1,t , . . . , xi,t , . . . , xNt ,t }.

3.2 Markov Clustering Topic Model (MCTM)

One of the most popular approaches to topic modeling is
Latent Dirichlet Allocation (LDA) (Blei et al. 2003), which
we first review for reference. LDA (Fig. 1(a)) is a genera-
tive model of text documents xm, m = 1..M . A document m

is represented as a bag of i = 1..Nm unordered words xi,m,
each of which is distributed according to a discrete distri-
bution p(xi,m|φ,yi,m) with parameter φ indexed by the cur-
rent topic of discussion yi,m. Topics are chosen from a per-
document Dirichlet distribution θm. Inference of latent top-
ics y and parameters θ and φ given data xm effectively clus-
ters co-occurring words into topics. This topic based repre-
sentation of text documents can facilitate e.g., querying and
similarity matching: by searching for documents contain-
ing similar topics to the topics of some query words, or by
searching for documents of similar topical content to a query
document. Due to the topical representation, similarities be-
tween queries and documents can be discovered even with
few actual word tokens in common. For mining behaviours
in video, we assume that visual events correspond to words,
simple actions (co-occurring events) correspond to topics,
and complex behaviours (co-occurring actions) correspond
to document categories.

We model the occurrence of a sequence of clips (doc-
uments) D = {xt } where t = 1..T as having a three layer
latent structure: events, actions and behaviours, as illus-
trated by the graphical model in Fig. 1(b). The number
of possible actions and behaviors in the dataset are as-
sumed to be known and fixed as Ny and Nz respectively,
although this assumption will be relaxed later in Sect. 3.5.
The generative model is defined as follows: Suppose each
clip t exhibits a particular category of behaviour zt . The
behaviour zt is assumed to vary systematically over time
from clip to clip according to some unknown discrete dis-
tribution, p(zt |zt−1,ψ) (denoted Discr(·)) with parame-
ter ψ . Within each clip t , a bag of Nt simple actions
{yi,t }Nt

i=1 are chosen (each independently) based on the clip
category, yi,t ∼ p(yi,t |zt , θ). Finally, each observed visual
event xi,t is chosen based on the associated action yi,t ,
xi,t ∼ p(xi,t |yi,t , φ). All the discrete distribution parameters
{φ,ψ, θ} are treated as Dirichlet distributed unknowns (de-
noted Dir(·)) with symmetric hyper-parameters {α,β, γ }.
The complete generative model is specified by:

p(ψz|γ ) = Dir(ψz;γ ),

p(θz|α) = Dir(θz;α),

p(φy |β) = Dir(φy;β),

p(zt+1|zt ,ψ) = Discr(zt ;ψzt ),

p(yi,t |zt , θ) = Discr(yi,t ; θzt ),

p(xi,t |yi,t , φ) = Discr(xi,t ;φyi,t
).
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The joint distribution of variables {xt ,yt , zt }T1 and parame-
ters θ,ψ, θ given the hyper-parameters α,β, γ is:

p({xt ,yt , zt }T1 , φ,ψ, θ |α,β, γ )

= p(φ|β)p(ψ |γ )p(θ |α)

·
∏

t

(
∏

i

p(xi,t |yi,t , φ)p(yi,t |zt , θ)

)
p(zt |zt−1,ψ).

(1)

The hyper-parameters {α,β, γ } effectively specify an a
priori belief about how sparsely the visual events, actions
and behaviors are distributed, e.g., how much visual events
should be shared between topics and actions shared between
behaviors. These can be optimized during MCMC learn-
ing (Griffiths et al. 2007; Wallach et al. 2009), but as we
observed they did not strongly affect our experimental re-
sults, we simply fix them as in Griffiths and Steyvers (2004),
Rosen-Zvi et al. (2004), Gruber et al. (2007), Wang et al.
(2009). In the next sections, we will describe the learning
and inference procedures for this model. To learn the typi-
cal actions and behaviors in a dataset, we will compute the
posterior over all the parameters, p(θ,ψ,φ|x1:t ). For detect-
ing the occurrence of learned behaviors in the video, we will
compute the behavior posterior p(zt |x1:t ); and for detecting
salient events, we will compute the predictive likelihood of
each new data-point, p(xt |x1:t−1). The Bayesian parameter
inference will increase robustness to over-fitting, and the in-
termediate action layer yt will increase robustness to occlu-
sion and noise compared to modeling visual events directly.
The variety of discoverable behaviour patterns and sensitiv-
ity to saliency will be enhanced by the compositional hier-
archical structure and Markovian behaviour model.

3.3 Model Inference and Learning

As for LDA, exact inference in our model is intractable, but
it is possible to derive a collapsed Gibbs sampler (Gilks et
al. 1995) for approximate MCMC learning of the param-
eters and inference of the latents p(y1:T , z1:T |x1:T ). The
Dirichlet-Multinomial conjugate structure of the model al-
lows the parameters {φ, θ,ψ} to be integrated out automat-
ically in a Gibbs sampling procedure. The Gibbs sampling
update for the action yi,t is derived by integrating out the
parameters φ and θ in its conditional probability given the
other variables:

p(yi,t |y\i,t , z1:T ,x1:T )

∝ n−
xi,t ,yi,t

+ β
∑

x n−
x,yi,t

+ Nxβ

n−
yi,t ,zt

+ α
∑

y n−
y,zt

+ Nyα
. (2)

Here y\i,t denotes all the variables y1:T excluding yi,t ; n−
x,y

denotes the counts of feature x being associated to ac-
tion y; n−

y,z denotes the counts of action y being associated

Fig. 1 Graphical models representing: (a) Standard LDA model (Blei
et al. 2003), (b) Our MCTM model

to behaviour z. Superscript “−” denotes counts excluding
item (i, t). Nx is the size of the visual event codebook, and
Ny the number of simple actions. Detailed derivation of all
the learning equations are given in the Appendix.

The Gibbs sampling update for the behaviour cluster zt

is derived by integrating out parameters ψ and θ in the con-
ditional p(zt |y1:T , z\t ,x1:T ), and must account for the pos-
sible transitions between zt−1 and zt+1 along the Markov
chain of clusters:

p(zt |y1:T , z\t ,x1:T )

∝
∏

y �(ny,zt + α)�(n−·,zt
+ Nyα)

∏
y �(n−

y,zt
+ α)�(n·,zt + Nyα)

n−
zt ,zt−1

+ γ

n−
zt ,zt−1 + Nzγ

· nzt+1,zt + I(zt−1 = zt )I(zt = zt+1) + γ

n·,zt + I(zt−1 = zt ) + Nzγ
. (3)

Here nz′,z represents the counts of behaviour z′ following
behaviour z, n·,z �

∑
z′ n·,z, and Nz is the number of clus-

ters. I is the identity function that returns 1 if its argu-
ment is true, and � is the gamma function. Note that we
do not obtain the simplification of gamma functions as in
standard LDA (Griffiths and Steyvers 2004) and (2), be-
cause the inclusive and exclusive counts may differ by more
than 1, but this is not prohibitively costly, as (3) is com-
puted only once per clip. Iterations of (2) and (3) entail in-
ference by eventually drawing samples from the posterior
p({yt , zt }T1 |{x}T1 , α,β, γ ). Parameters {φ,ψ, θ} may be es-
timated from the expectation of their distribution given a full
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set of samples (Rosen-Zvi et al. 2004; Griffiths and Steyvers
2004):

φ̂s
y = nx,y + β

n·,y + Nxβ
, (4)

θ̂ s
z = ny,z + α

n·,z + Nyα
, (5)

ψ̂s
z = nz′,z + γ

n·,z + Nzγ
. (6)

3.4 Online Inference and Saliency Detection

A limitation of the sampling approach to learning and in-
ference described above (also adopted by Li et al. 2008;
Wang et al. 2009), is that they are offline, batch procedures.
This is fine for a calibration step, however as we have seen, a
subsequent key goal for real applications is online behavior
classification and saliency detection. Given a learned scene
profile ((4)–(6)), we therefore formulate a new online fil-
tered inference algorithm for our MCTM which will permit
on-the-fly classification of behavior and saliency detection.

Given a training dataset of Ttr clips, we have generated
Ns samples {{yt , zt }Ttr

t=1, φ̂
s , ψ̂s, θ̂ s}Ns

s=1 from the posterior

distribution of latents in our model p({yt , zt }Ttr
t=1|{x}Ttr

1 , α,

β, γ ). We address online inference (rather than learning),
and assume that no further adaptation of the parameters
is necessary, i.e. the training dataset is representative, so
p(φ,ψ, θ |xt ′>Ttr) = p(φ,ψ, θ |x1:Ttr). We can then perform
Bayesian filtering in the Markov chain of clusters to infer
the current clip’s behaviour p(zt |x1:t ) by approximating the
required integral over the parameters (7) with sums over
their Gibbs samples (8) (since these are drawn from the re-
quired distribution p(φ,ψ, θ |x1:t )). Conditioned on each set
of (sampled) parameters, the other action yi,t and behaviour
zt variables decorrelate, so these can be summed out effi-
ciently by in an online recursion for the behavior category
of each clip:

p(zt+1|x1:t+1)

=
∑

zt

∫

φ,θ,ψ

p(xt+1, zt+1|zt , φ, θ,ψ,x1:t )p(zt , φ, θ,ψ |x1:t )
p(xt+1|x1:t )

,

(7)

≈ 1

Ns

∑

s,zt

p(xt+1|zt+1, φ
s, θs)p(zt+1|zt ,ψ

s)p(zt |x1:t )
p(xt+1|x1:t )

.

(8)

Bayesian saliency (or irregularity), is measured by the
marginal likelihood of the new observation given all the oth-
ers, p(xt+1|x1:t ). This can be determined from the normal-
ization constant of (8), or explicitly as:

p(xt+1|x1:t )

=
∑

zt

∫

φ,θ,ψ

p(xt+1|zt ,ψ, θ,φ,x1:t )p(zt , φ,ψ, θ |x1:t ),

≈ 1

Ns

∑

s,zt+1,zt

p(xt+1, zt+1|ψs, θs, φs, zt )p(zt |x1:t ). (9)

Without the iterative sweeps of the Gibbs sampler, even
summing over samples s, behaviour inference (or clip cat-
egorization) and saliency detection can be performed online
and in real-time by the matrix multiplies and sums defined
in (8) and (9). Note that in practice (8) may suffer from
label switching (Bishop 2006; Gilks et al. 1995), so a sin-
gle sample should be used for interpretable results (Griffiths
and Steyvers 2004). Equation (9) is independent of label
switches and should be used with all samples. This incre-
mental approach has no direct analogy in vanilla LDA (Blei
et al. 2003) (Fig. 1(a)), as the per document parameter θ re-
quires iterative computation to infer. We compare the com-
putational cost of our MCTM, LDA (Blei et al. 2003), Dual-
HDP (Wang et al. 2009) and HMMs in Sect. 5.7. Finally, to
account for the fact that clips t contain varying numbers Nt

of visual events xi,t (and hence have varying “base” proba-
bility), when searching for saliency in the test data, we com-
pute a normalized predictive likelihood π for each clip:

logπ(xt+1|x1:t ) = 1

Nt+1
logp(xt+1|x1:t ). (10)

Our measure of saliency (predictive likelihood)
π(xt |x1:t−1) of test clip xt given training video data x1:Ttr

and previous test data xt−1>Ttr indicates irregularity if it is
low. π(xt |x1:t−1) can be low for four different reasons, re-
flecting the following salient aspects of the data:

Events: Individual xi,t rarely occurred in training data x1:Ttr .
Actions: Events in xt rarely occurred together in the same

activity in x1:Ttr .
Behaviours: xt occurred together in topics, but such topics

did not occur together in clusters in x1:Ttr .
Dynamics: xt occurred together in a cluster zt , but zt did

not occur following the same clusters zt−1 in x1:Ttr .

Such detections are made possible because the hierarchi-
cal structure of our model represents behaviour at differ-
ent levels (events, actions, behaviours, behaviour dynam-
ics). In Sect. 5.3, we will refer to clips with rare events as
intrinsically unlikely, those with rare actions and behaviors
as behaviourally unlikely, and those with rare behavioural
dynamics as dynamically unlikely. For convenience, Algo-
rithm 1 summarizes the basic learning and inference proce-
dure for our MCTM.

3.5 Model Order Determination

We have discussed methods for learning and inference in our
model. The final question a user might ask is what if there
is so little prior domain knowledge about a space to surveil
that one cannot even estimate the number of typical actions
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Algorithm 1 MCTM Algorithm Summary

Learning (Offline)
Input: Visual event detections for every clip, {xt }Ttr

t=1.

Initialize {zt ,yt }Ttr
t=1 randomly.

Repeat Niter = 1000 times:

– For every time t :

1. Resample p(zt |y, z\t ,x) (3).
2. For every observation i at t :

– Resample p(yi,t |y\i,t , z1:T ,x) (2).
3. At every 100th iteration:

– Record independent sample s = {zt ,yt }Ttr
t=1.

– Estimate model parameters ((4), (5) and (6)).

Output: Parameter estimates {φ̂s , ψ̂s, θ̂ s}Ns

s=1.

Inference for a new clip t (Online)
Input: Parameter samples {φ̂s , ψ̂s, θ̂ s}Ns

s=1, previous poste-
rior p(zt−1|x1:t−1), visual event detections xt .

1. Compute behavior profile p(zt |x1:t ) (8).
2. Compute saliency π(xt |x1:t−1) (10).

Output: Behavior inference p(zt |x1:t ), saliency
π(xt |x1:t−1).

or behaviours exhibited in the scene, and hence cannot spec-
ify the model complexity M = {Ny,Nz}? In this section, we
show how these model complexity parameters can be auto-
matically determined from the data.

From a Bayesian modeling perspective (Bishop 2006;
Gilks et al. 1995), the ideal model M should be selected as
the one which maximizes the marginal likelihood p(Dtr|M)

of the training data Dtr; or the marginal likelihood of a held-
out test dataset Dte given the training data p(Dte|Dtr,M).1

The challenge is that this requires integrating out any latent
variables in the model (y1:T and z1:T in our case). In sam-
pling approaches to learning, a model’s marginal likelihood,
p(D|M) is often estimated by the harmonic mean of the
Gibbs sample likelihoods (Gilks et al. 1995). The harmonic
mean approach is commonly used in practice because of its
simplicity and efficiency (Griffiths and Steyvers 2004), al-
though it is well known to be highly unstable (Gilks et al.
1995; Wallach et al. 2009). In our case, its extreme variance
rendered it useless for model comparison. Instead, we use
the test dataset likelihood

p(Dte|Dtr,M) =
Tte∏

t=1

p(xte
t |xte

1:t−1,D
tr,M), (11)

1Note that the marginal likelihood of each model is affected by the
chosen Dirichlet hyper-parameters (α,β, γ ), which can also be opti-
mized for each model during sampling using the Gibbs-EM method
in Wallach et al. (2009); or fixed and the most likely model under this
constraint can be determined (Griffiths and Steyvers 2004).

which is efficiently computable for our model using the pre-
dictive likelihood (9) derived in Sect. 3.4. The model to use
is then chosen as M∗ = argmaxM p(Dte|Dtr,M) with confi-
dence p(Dte|Dtr,M∗)/p(Dte|Dtr,M ′) where M ′ is the sec-
ond most likely model. Since models M in our framework
have complexity varying with both Ny and Nz, this requires
learning and selecting from a two dimensional grid of mod-
els across a large range of Ny and Nz. This is computation-
ally expensive, but need only be done offline and once per
dataset.

3.6 An Illustrative Example

To convey intuition into the modeling assumptions, compu-
tational mechanisms and capabilities of our model, we now
illustrate its behaviour on a simple synthetic dataset. This
will also allow us to verify its behaviour in a situation where
there is an obviously correct interpretation of the data. We
consider data of the flavor that might be found at a traffic in-
tersection. Figure 2(a) illustrates the four true prototype be-
haviours in this dataset, corresponding to variants of “cross-
ing” and “turning”. Importantly, and similarly to some real
intersections, only two possible turns are allowed (“bottom
left” and “top right” in this case), and the behaviours occur
in a particular order (illustrated by the arrows). By sampling
from the generative model, we obtain the ordered samples
illustrated in Fig. 2(b), which will be the input data x1:T .
Note that in the prototype and sample illustrations, brighter
cells mean more observations are likely and observed re-
spectively. In the following analysis we assume for simplic-
ity that the model order is known to be Ny = Nz = 4, al-
though we have seen how to compute this as well (Sect. 3.5).

Model Learning Our model can concisely explain this
dataset (Fig. 2(b)) in terms of an ordered sequence of be-
havior patterns z1:T each made up of a constrained combi-
nation yt of prototype actions φ. To illustrate this, we gen-
erated T = 1000 training examples xtr

1:T including those in
Fig. 2(b), and performed unsupervised learning in our model
by Gibbs sampling p(y1:T , z1:T |xtr

1:T ) ((2) and (3)). These
samples encode distributions over the parameters {φ, θ,ψ},
which can be estimated for visualization by (4)–(6). The
learned actions φ̂ correctly represent the correlated activ-
ity along each of the “roads” leading to the intersection
(Fig. 2(c)), while the learned behaviors θ̂ selectively com-
pose particular actions (arrows) to represent exclusively the
four permitted crossing and turning behaviours (Fig. 2(d)).
The typical order in which behaviours occur is discovered
correctly and encoded in the transition matrix ψ̂ (com-
pare arrows indicating probable transitions in Fig. 2(a), (d)
and (e)). Note that the Nz ×Nz transition matrix in Fig. 2(e)
should be interpreted as columns representing starting be-
haviors, and the brightness of each row indicating how likely
each subsequent behavior is.
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Fig. 2 Illustration of how our model works using a synthetic data
example. (a) True prototype “intersection” behaviours used to gener-
ate (b) noisy input data, x1:T . Learned model parameters are (c) ac-

tions/topics φ which are composed into (d) behaviours/clusters θ , cor-
related by (e) behaviour dynamics transition matrix ψ . (f–h) Salient
examples detected by the learned model

Alternative Models We can contrast the MCTM’s rep-
resentation of this data against that of two related mod-
els, a hidden Markov model (HMM) (Bishop 2006), and
vanilla LDA (Blei et al. 2003). The HMM successfully
learns clusters similar to Fig. 2(d) directly without the inter-
mediate representation of actions. In contrast, LDA learns
only a topic/action based representation of the data similar
to Fig. 2(c), without knowledge of their composition con-
straints. The HMM learns a behavior dynamics similar to
Fig. 2(e), while LDA learns no temporal model.

As we have seen in Sect. 3.5, alternative models should
be quantitatively compared by the marginal likelihood of a
set of held out test data xte

1:T under each model after train-
ing, p(xte

1:T |xtr
1:T ,M) ((9) for MCTM). Table 1 summarizes

the relative marginal likelihood of the test set for each of
the three models—for which a larger value indicates a bet-
ter representation and improved generalization. To under-
stand why MCTM provides the best representation, con-
sider that by not learning correlation between topics, LDA
wastes some of its predictive probability mass on behaviour
events which never happen (e.g., “top left turns”). (Note
that this moreover means it cannot detect such events as
salient.) The HMM learns the clusters and their dynamics
directly without the intermediate topic representation. The
point-estimation of parameters leads to over-fitting and poor
performance by the HMM compared to the MCTM. More
subtly, the HMM is not the best representation of even this
simple data, because it does not fully exploit the shared
structure of the behaviors. For example, the horizontal cross-
ing and bottom right turn behaviours share a component:
the “right road” activity. Therefore this component of the
each behaviour should be represented jointly by the same
parameter to minimize over-fitting and maximize parameter

learning accuracy. This is exactly what MCTM does and the
HMM does not.

Saliency Detection To illustrate salient event detection, we
randomly inserted 15 atypical frames into a 1000 sample test
set. The model identified salient samples by thresholding
logp(xte

t |xte
1:t−1,xtr

1:T ,M) at the 2% level. Overall, 10 of the
15 atypical frames were in the top 2% most salient frames
detected by MCTM. We highlight an illustrative selection of
four events in the test dataset which were detected as salient
(Fig. 2(f)–(h)). Figure 2(f) illustrates a very noisy sam-
ple which included three previously unseen visual events.
Figure 2(g) illustrates a sample which contained common
events in correlations corresponding to the learned actions
(yellow highlights). The correlation in these actions (“bot-
tom right turn”), however, did not correspond to a learned
behaviour (Fig. 2(d)). Finally, Fig. 2(h) illustrates two se-
quential frames which individually contained valid actions
and behaviours (yellow highlights), but which were unlikely
to occur in sequence (compare Fig. 2(d)). In our experi-
ments, the LDA model did not detect the salient frames
illustrated in Figs. 2(g) and (h) because recognizing their
saliency necessitates a model of correlation between actions
and temporal behavior dynamics respectively—which are
not modeled by LDA. This is significant, as the examples
in Figs. 2(g) and (h) might correspond to dangerous real-life
behaviors such as running a red light.

4 Semi-supervised Learning for Behavior Detection

4.1 Supervised vs. Unsupervised Behavior Categorization

We have considered learning an unsupervised behavior
model for a scene (Sect. 3.3), and using this to detect salient
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Table 1 Log-likelihood of synthetic test data under each model

Model Relative Log-likelihood

MCTM 0

HMM −30 ± 7

LDA −1704 ± 205

video segments as those with unexpected events, actions
or behaviors (Sect. 3.4, (9)); and to classify video seg-
ments into one of the common behavior classes according to
the observed activity (Sect. 3.4, (8)). Our unsupervised ap-
proach to these tasks is appropriate for a new and unknown
scene as hands-off deployment of a system to discover typi-
cal behaviors and track their statistics as well as find unusual
events is desirable.

In a context with more prior knowledge about the scene,
a slightly different task can be posed which our model can
also address: that of detecting known moderately unusual
behaviors based on a few labeled examples. Consider the sit-
uation in which there are some particular behavior(s) which
are known a-priori to occur from time to time in the moni-
tored public space, and which we are interested to detect fu-
ture instances of—for example, common driving violations.
In this case, saliency is no longer necessarily defined by ex-
treme irregularity and hence low likelihood, so our detec-
tion approach in (9) does not apply. At the same time, topics
or behaviors specifically representing the situation of inter-
est are unlikely to be allocated be the unsupervised learning
framework,2 so the classification approach in (8) is unlikely
to work either.

For these reasons, some kind of human input is therefore
necessary to define a known behavior as interesting for de-
tection. Performing fully supervised learning, however re-
quires prohibitive manual effort for two reasons: (i) label-
ing is time-consuming and expensive, and (ii) extra manual
analysis of the scene is required, because examples of all the
typical clusters are needed for supervised learning, not just
examples of the single salient behavior of special interest.
As a good compromise, we will show next how our frame-
work can be used in a semi-supervised manner to learn to
detect particular behaviors of interest from a few labeled ex-
amples with minimal manual effort.

2To see why, consider that the framework as described in Sects. 3.3
and 3.4 is used to sample a likely hierarchical clustering of the data
into actions and behaviors according to p(z1:T ,y1:T |x1:T ). Given this
objective function—which purely tries to find a good density estimate
for x1:T —a particular behavior of interest to a human user is unlikely
be allocated its own unique behaviour cluster if it is under-represented
in the data, or if it is visually very similar to another more common
behavior.

4.2 Semi-supervised Learning in MCTM

To perform semi-supervised learning with our model, a few
examples of behavior(s) of interest can be labeled in the
training set. The only modifications to Algorithm 1 required
are that prior to learning, the supervised samples l are ini-
tialized to their correct behaviors lz rather than randomly,
and during learning the labeled behavior examples are con-
sidered observed, and not updated by the sampler (3). All
the action layer variables (2) are still updated in the same
way to find a good intermediate action representation un-
der the additional constraint of the specified behavior labels.
The model thus samples from p(z\l ,y1:T |zl,x1:T ) rather
than p(z1:T ,y1:T |x1:T ) as before. It is possible to label some
examples of a specific behavior of interest, and allow the
model to determine the best clustering of the others under
this constraint, or to define all the interesting behaviors and
label examples of each.

5 Experiments

5.1 Datasets and Settings

Experiments were carried out using video data from four
complex and crowded public scenes. QMUL Street Inter-
section Dataset: This contained 45 minutes of 25 fps video
of a busy street intersection where three traffic flows in dif-
ferent directions are regulated by the traffic lights, in a cer-
tain temporal order (see Fig. 4(a)–(e)). The frame size is
360 × 288. Pedestrian Crossing Dataset: This also con-
sists of 45 minutes of 360×288 pixel 25 fps video, and cap-
tures a busy street intersection with particularly busy pedes-
trian activity (see Fig. 4(f)–(i)). Typical behaviours here are
pedestrian crossings alternating with two main traffic flows.
Subway Platform Dataset: A total of 30 minutes of videos
from the UK Home Office i-LIDS dataset (2) is selected
for the third experiment. Though equally busy, the visual
scene in this dataset differs significantly from the other two
in that it is indoor and features mainly people and trains
(see Fig. 4(j)–(n)). In addition, the camera was mounted
much closer to the objects and lower, causing more severe
occlusions. Typical behaviours in this scene include peo-
ple waiting for the train on the platform, and getting on or
off the train. The video frame size is 640 × 480 captured
at 25 fps. MIT Traffic Dataset: This contains 90 minutes
of 360 × 288 pixel 30 fps video of a street corner (previ-
ously studied by Wang et al. 2009). Here the traffic flow is
less busy but less regulated than the first street intersection
dataset, and there are three pedestrian crossings visible.

We used 5 minutes from each dataset for training, and
tested ((8) and (10)) on the remaining data. The cell size
for both of the three street datasets was 8 × 8, and 16 × 16
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Fig. 3 (Color online) Example
topics/actions learned in each of
the three scenarios illustrated by
the most likely visual events for
each φ̂s

y . Arrow directions and
colors represent flow direction
of the event

for the subway dataset due to the bigger frame size. Opti-
cal flow computed in each cell was quantized into 4 direc-
tions for the street datasets and 5 for the subway dataset,
with the fifth corresponding to stationery foreground ob-
jects common in the subway scene. The clip length for col-
lecting the bag of words was defined as 1 second for the
first three datasets, and 10 seconds for the traffic dataset
to facilitate comparison with (Wang et al. 2009). We ran
the Gibbs sampler ((2) and (3)) for a total of 1000 sweeps,
discarding the first 500 as burn-in, and then taking 5 sam-
ples at a lag of 100 as independent samples of the posterior
p({yt , zt }T1 |x1:Ttr , α,β, γ ).

Although we can learn suitable model complexity
{Ny,NZ} (Sect. 3.5), for ease of illustration we specify the
number of actions and behaviors in each case. We set the
number of actions to Ny = 8 and number of behaviours as
Nz = 4; except for the pedestrian crossing dataset, where we
used Nz = 3 because there are clearly three traffic flows, and
Nz = 5 for the traffic dataset to facilitate comparison with
Wang et al. (2009). The significance of these complexity
parameters is that larger Ny and Nz induce a more fine-
grained decomposition of scene behaviour. Dirichlet hyper-
parameters were also fixed at {α = 8, β = 0.05, γ = 1}
for all experiments to encourage composition of specific

actions into general topics (Griffiths and Steyvers 2004;
Rosen-Zvi et al. 2004), but these can be also be estimated
during sampling by the method in Wallach et al. (2009).

5.2 Unsupervised Scene Interpretation

Clustering Visual Events Into Actions The actions learned
by our MCTM correspond to co-occurring visual events.
These actions are typically associated with patterns of mov-
ing objects. Figure 3 shows some example actions y dis-
covered by way of plotting the visual events x in the top
50% of the mass of the distribution p(x|y, φ̂s

y) (4). Note that
each action has a clear semantic meaning. In the street inter-
section dataset, Figs. 3(a) and (b) represent vertical left lane
and horizontal rightwards traffic respectively, while Fig. 3(c)
represents the vertical traffic vehicles turning right at the fil-
ter. In the pedestrian crossing dataset, Figs. 3(d) and (e) il-
lustrate two independent vertical traffic flows, and Fig. 3(f)
represents diagonal traffic flow and pedestrians crossing at
the lights while the flows of (d) and (e) have stopped. For
the subway dataset, Fig. 3(g) includes people leaving (yel-
low arrows) from a stopped train (cyan dots on the train).
Figure 3(h) includes people walking up the platform and
Fig. 3(i) shows people sitting on the bench waiting. Finally,
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for the traffic dataset Fig. 3(j) represents horizontal traffic
approaching from the right, and Figs. 3(k) and (l) represent
right turns by vertical traffic approaching from below and
above respectively.

Discovering behaviours and their dynamics Co-occurring
topics are automatically clustered into behaviours z via vec-
tor θz (5), each of which corresponds to a complex behaviour
pattern involving multiple interacting objects. Complex be-
haviour clusters discovered for the four dynamic scenes in
the 5 minutes of training data are depicted in Fig. 4. Specif-
ically, Figs. 4(a) and (b) represent horizontal left and right
traffic flows respectively, including right turn traffic (com-
pare horizontal only traffic in Fig. 3(b)). Figures 4(c) and (d)
represent vertical traffic flow with and without interleaved
turning traffic. The temporal duration and order of each traf-
fic flow is also discovered accurately. For example, the long
duration and exclusiveness of the horizontal traffic flows (a)
and (b)—and the interleaving of the vertical traffic (c) and
vertical turn traffic (d)—are clear from the learned transition
distribution ψ̂s (Fig. 4(e)).

For the pedestrian crossing dataset, three behaviour clus-
ters are learned. Figure 4(f) shows diagonal flow of far traffic
and downwards vertical traffic flow at the right, excluding
the crossing zone where there is pedestrian flow (horizon-
tal yellow arrows). Figures 4(g) and (h) show outer diago-
nal and vertical traffic, and inner vertical traffic respectively
with no pedestrians crossing. The activity of the pedestrian
crossing light is evident by the switching between (f) and (g)
in the learned transition distribution (Fig. 4(i), top left).

In the traffic dataset, behaviours representing straight
horizontal flow are learned in Figs. 4(j). Note that left and
right flows are together in a single cluster because they oc-
cur together, unlike the same flows in the street intersection
dataset (Figs. 4(a) and (b)). Horizontal traffic can also turn,
which is modeled by the behavior in Fig. 4(k). The remain-
ing three behaviors are vertical traffic flows. Figure 4(l) rep-
resents straight vertical flow for both lanes. Figures 4(m)
and (n) represent turning right from above and below re-
spectively. Since the first two (horizontal) and second three
(vertical) flows in this scene can occur in any sequence,
the transition matrix dynamics (Fig. 4(o)) are less clearly
structured. One feature of the matrix is the high probability
of off-diagonal transitions between the first two behaviors
(Fig. 4(o); ‘j’ and ‘k’), indicating that the horizontal traf-
fic is light enough that there is regular alternation between
flowing straight and turning traffic, rather than having many
turning cars queue up and wait for a break to turn which
resulted in the typically longer periods in the intersection
dataset (Fig. 4(e)).

The four behaviour categories discovered in the subway
scene were: People walking towards (yellow & red arrows)
an arriving train (green arrows on train) (Fig. 4(p)); People

boarding a stopped train (cyan dots on the track) or leav-
ing the station (Fig. 4(q)); People leaving the station while
the trains wait (Fig. 4(r)) (in this dataset, the train usually
waited for longer than it took everyone to board; hence this
cluster); People waiting for the next train by sitting on the
bench (Fig. 4(s)). Our model is also able to discover the cy-
cle of behaviour on the platform triggered by arrival and de-
parture of trains (Fig. 4(t)). For example, the long duration
of waiting periods between trains, broken primarily by the
train arriving state (p), (Fig. 4(t), fourth column).

5.3 Online Video Screening

After the model was learned for each scenario, new video
data was screened online. The overall behaviours were iden-
tified using (8), and visual saliency (irregularity) measured
using (10). Figure 5 shows an example of online processing
on test data from the street intersection dataset. The MAP
estimated behaviour ẑt at each time is illustrated by the col-
ored bar, and reports the traffic phase: turning, vertical flow,
left flow and right flow. The top graph shows the likelihood
π(xt |x1:t−1) of each clip as it is processed online. Three ex-
amples are shown including two typical clips (turning ver-
tical traffic and flowing vertical traffic categories) and one
irregular clip where a vehicle drives in the wrong lane. Each
is highlighted with the flow vectors (blue arrows) on which
computation is based.

We manually examined the top 2% most surprising clips
(obtained by ranking π(xte

t |xte
1:t−1,xtr

1:T )) screened by the
model in the test data. Here we discuss some examples of
flagged surprises. In Fig. 6(a) and (b), another vehicle drives
in the wrong lane. This is surprising, because that region of
the scene typically only includes down and leftward flows.
This clip is intrinsically, (Sect. 3.4) unlikely, as these events
were rare in the training data under any circumstances. In
Fig. 6(c) and (d), a police car breaks a red light and turns
right through opposing traffic. Here the right flow of the
other traffic is a typical action, as is the left flow of the po-
lice car. However, their conjunction (forbidden by the lights)
is not. Moreover some clips in this multi-second series alter-
nately suggest left and right flows, but such dynamics are un-
likely under the learned temporal model (Fig. 4(e)). There-
fore this whole series of clips is behaviorally and dynami-
cally unlikely given global and temporal constraints entailed
by π(xt |x1:t−1).

Another behavioral (action concurrence) and dynamic
surprise to the model is the jay-walker in Fig. 6(e–f). Here
a person runs across the intersection to the left, narrowly
avoiding the right traffic flow. Both left and right flows are
typical, but again their concurrence in a single document, or
rapid alteration in time is not. Figure 6(g) shows the detec-
tion of a jay-walker triggered by intrinsically unlikely hor-
izontal motion across the street. In contrast, Fig. 6(h) illus-
trates two plausible pedestrian actions of crossing left and
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Fig. 4 Behaviour and dynamics learn from each of the four scenarios.
The most likely visual words/events for each behaviour θ̂ s

z are illus-

trated. Dynamics ψ̂s
z are illustrated by transition matrices (e), (i) and

(n) where brighter shading corresponds to greater probability of be-
havior transition and row labels refer to the associated behavior figure

right at the crosswalk, but occurring at the same time as the
vertical traffic flow. This is multi-object situation is behav-
iorally irregular. In Fig. 6(i) a train arrives, and three peo-
ple typically (Fig. 4(j)) walk towards the train for boarding.
However, unusually, other people walk away from the train
down the platform, a behaviorally unlikely concurrence. In
Fig. 6(k), the train is now stationary. While most people per-
form the typical paired action of boarding (Fig. 4(k)), others
walk away from the train down the platform, a multi-object
behaviour detected due to low likelihood π(xt |x1:t−1).

Figures 6(c–f) illustrate an important feature of our
model that gives a significant advantage over non-temporal
LDA based models (Li et al. 2008; Wang et al. 2009): Our
model is intrinsically less constrained by bag-of-words size,
i.e. determining a suitable temporal window (clip) size. With
standard LDA, larger bag sizes would increase the chance
that vertical and horizontal flows here were captured concur-
rently and therefore flagged as surprising. However, larger

bag sizes also capture much more data, risking loosing in-
teresting events in a mass of normal ones. Our model facil-
itates the use of a small one second bag size, by providing
temporal information so as to penalize unlikely behaviour
switches. As a result, our model can discover not only quick
events such as Fig. 6(a) and (b) that might be lost in larger
bags, but also longer time-scale events such as Fig. 6(c–f)
that could be lost in many independently distributed smaller
bags.

For the traffic dataset we illustrate the top 5 most un-
likely clips discovered by our model for the purposes of di-
rect comparison with Wang et al. (2009) who evaluate their
HDP model in this way on this dataset. Intrinsically unlikely
events include a car cutting into the other lane in making
a left turn (Fig. 7(a)) and a pedestrian jay-walking across
the bottom street (Fig. 7(d)). More interestingly, the other
three clips are unlikely behavioral concurrences involving
near collisions: a pedestrian crossing through traffic start-
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Fig. 5 An example of online
processing

Fig. 6 Sample salient clips discovered. Arrows/dots indicate input events and boxes highlight regions discussed in the text

ing to flow (Fig. 7(b)); and pedestrians on the crossing very
near horizontal (Fig. 7(c)) and vertical (Fig. 7(e)) traffic.
The reported top 5 most unlikely clips discovered by the
HDP model in (Wang et al. 2009) reflected more obvious
single-object events of pedestrians and cyclists jay-walking.
In contrast, the three near collisions ranked in the top 5 by
our MCTM suggesting that it has greater sensitivity to more
subtle and interesting multi-object behaviors than (Wang et
al. 2009).

Quantitative Evaluation To demonstrate the breadth of ir-
regular behavioral patterns our model is capable of consis-
tently identifying, some of which are visually subtle and
difficult to detect even by human observation, we provide
a human interpreted summary of the categories of screened

salient clips in Tables 2–5. We compare the results with two
alternatives, LDA (Blei et al. 2003) with Ny topics, and a
HMM with Nz states. The LDA model was trained using
the visual event counts directly like MCTM, and the HMM
learned a Nx dimensional Gaussian distribution over the
count histograms for each clip. Clips with no clear salient
behaviour were labeled “uninteresting”. These were vari-
ously due to camera glitches, exposure compensation, birds,
very large trucks, and limited training data to accurately
profile typical activities. There is no algorithmic way to
determine “why” (i.e. events, action, behaviour, dynamics)
clips were surprising to the model, so we do not attempt
to quantify this. Table 2 shows that for the street intersec-
tion dataset, our MCTM outperforms the other two models
especially in the more complex behaviour categories of red-
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Fig. 7 Top 5 salient clips discovered by MCTM for the traffic dataset. Arrows indicate unusual actions or behaviors

Table 2 Summary of meaningful clip types discovered by each model
for the street intersection dataset. Overall true positive (interesting) and
false positive rates (uninteresting) are also given

Street Intersection MCTM LDA HMM Total

Break Red Light 4 0 3 13

Illegal U-Turn 5 2 1 15

Jaywalking 1 0 0 1

Drive Wrong Way 12 14 12 15

Unusual Turns 6 1 4 10

Uninteresting 27 38 35 2663

Overall TPR 52% 31% 37%

Overall FPR 1.0% 1.4% 1.4%

light-breaking, u-turns and jay-walking. In these cases, the
saliency of the behaviour is defined by an atypical concur-
rence of actions and/or sequence of behaviours over time,
i.e. a surprise is defined by complex spatio-temporal cor-
relations of actions rather than simple individual actions. In
contrast, conventional LDA can infer actions, but cannot rea-
son about their concurrence or temporal sequence simulta-
neously. HMMs can reason about sequences of behaviours,
but with point (EM) learning, and lacking the intermediate
action representation, HMMs suffer from severe over-fitting.
All the models do fairly well at detecting intrinsically un-
likely words which are visually well-defined independently,
e.g. wrong way driving (Fig. 6(a)).

For the pedestrian crossing dataset, the result is shown
in Table 3. Atypical pedestrian behaviours were jay-walking
far from the crosswalk (intrinsically unlikely visual events),
and crossing at the crosswalk but through oncoming traf-
fic (unlikely action concurrence; Fig. 4(f) vs. (g), (h)). Our
MCTM was more adept than both LDA and HMM at de-
tecting the more subtle behaviours. This is due to the same
reasons of simultaneous hierarchical and temporal modeling
of actions and improved robustness due to Bayesian param-
eter learning compared to HMMs especially.

The traffic dataset detection results are summarized in Ta-
ble 4. The most frequently detected unusual events by all
models were the rather obvious and intrinsically unlikely
pedestrian jay-walking events. Our MCTM and LDA were
slightly better than the HMM at detecting the subtler intrin-

Table 3 Summary of meaningful clip types and detection rates dis-
covered by different models for the pedestrian crossing dataset

Pedestrian Cross MCTM LDA HMM Total

Jaywalking 17 11 9 33

Through Traffic 9 5 3 16

Uninteresting 29 39 43 2674

Overall TPR 53% 33% 24%

Overall FPR 1.1% 1.5% 1.6%

Table 4 Summary of meaningful clip types and detection rates dis-
covered by different models for the traffic dataset

Traffic MCTM LDA HMM Total

Jay-walking 4 4 4 20

Out of Lane 1 1 0 1

Near Collision 3 3 2 8

Uninteresting 3 3 5 510

Overall TPR 27% 27% 21%

Overall FPR 0.6% 0.6% 0.9%

sic event of a car drifting out of lane, and the behavioural
concurrence events of near collisions between crossing cars
and people on the pedestrian crossings.

Finally, for the subway dataset (Table 5) the only in-
teresting behaviours observed were people moving away
from the train during clips where typical behaviour was
approaching trains and boarding passengers. These were
detected by our model and not by the others. Further re-
sults and online processing illustration can be seen at:
http://www.eecs.qmul.ac.uk/~tmh/MCTM/.

5.4 Online Behavior Classification

Thus far we have evaluated our MCTM’s performance at
detecting various kinds of unusual salient behaviors. Users
may be also be interested in monitoring the statistics of dif-
ferent common behaviours in the surveilled space online.
Our model can provide this information for no further com-
putational cost as classification is essentially performed as a

http://www.eecs.qmul.ac.uk/~tmh/MCTM/
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Table 5 Summary of meaningful clip types and detection rates dis-
covered by different models for the subway platform dataset

Subway Platform MCTM LDA HMM Total

Contraflow 2 0 0 2

Uninteresting 36 38 38 1155

Overall TPR 100% 0% 0%

Overall FPR 3.1% 3.3% 3.3%

byproduct of saliency detection (8). To evaluate the classi-
fication ability of our MCTM, we created ground truth for
the traffic flow category in the street intersection scene (left,
right, vertical, vertical turning). For comparison, we evalu-
ated the ability of the LDA and HMM models (as described
in Sect. 5.3) to classify the same states. Note that vanilla
LDA does not provide a classification directly, so we post-
processed the posterior topic profile of the training data with
K-means (K = Nz = 4) to learn a complete classifier. For
testing we computed the topic profile for each clip, and used
the learned K-means topic classifier to estimate the behav-
ior category. Confusion matrices for each model are given in
Table 6. MCTM outperforms the other models with 78% av-
erage classification accuracy across all the classes compared
to 69% for both LDA and HMM.

5.5 Semi-supervised Behavior Learning

To see how semi-supervised learning facilitates behavior de-
tection, we consider an example from the street intersec-
tion dataset. In the real intersection there are four regu-
lated light phases: left, right, vertical only and a vertical fil-
ter stage—where only turning vertical traffic is permitted.
For this data, the fourth cluster learned by the unsupervised
model in Sect. 5.2 is a mixture of straight vertical traffic and
turning vertical traffic (Fig. 4(d)). This is a sensible clus-
tering given the statistics of the data, because the filtering
only stage is very brief, and also very similar to the illegal
but moderately common behavior of vertical traffic turning
through the opposing flow. Assume that we are interested
in detecting explicitly the known illegal behavior of turning
through the oncoming flow. To do this, the behavior needs
to be represented explicitly and separately to both the ver-
tical flow and to the filtering only stage, necessitating five
behaviours in total.

To show that unsupervised learning is inadequate, we
tried to learn an unsupervised model with Nz = 5 behav-
iors, but it does not converge to the desired solution because
without prior information, there are various other likely
ways to partition this dataset into 5 behaviors. For exam-
ple, Figs. 8(a)–(e) illustrate an unsupervised clustering of
behaviors which represents instead which lane vertical traf-
fic used (Fig. 8(c) vs. (d)) or whether the vertical up flow

occurred in conjunction with vertical down flow (Fig. 8(d)
vs. (e)). Because the filter stage is very brief and relatively
under represented in the dataset, and because it is very sim-
ilar to the illegal—but not entirely unusual—behaviour of
turning through oncoming traffic, the unsupervised learner
does not cluster behaviors on these grounds.

To solve the task scenario in which we care specifi-
cally about detecting this “common but illegal” behavior,
we specified ground truth (behaviour cluster zt ) for 18 ex-
ample clips l (5% of the training data) of the vertical traf-
fic turning through the oncoming flow, and re-learned the
model. As illustrated in Fig. 8, the semi-supervised approach
now builds a model for this behaviour class (Fig. 8(j)), as
well as the other most likely classes under this constraint
(which now sensibly represent vertical only and filtering
only stages (Fig. 8(h) and (i)). The model learning is thus
guided by domain knowledge towards a maxima in which
the interesting behaviour of turning through oncoming traf-
fic, is represented as a cluster, and can be discovered explic-
itly by evaluating p(zt = 5|x1:t ). Of course, a few examples
of all clusters can also be specified to define an exhaustive
set of specific behaviours if the statistics of the whole set
of behaviours are of interest. Note that this also alleviates
the label switching problem in MCMC (Gilks et al. 1995;
Griffiths and Steyvers 2004), so that the turn-through be-
haviour will be represented by the same specified cluster in
every sample.

5.5.1 Known Behavior Classification

We evaluated the performance of our semi-supervised learn-
ing approach by repeating the classification task of Sect. 5.4,
but with the five classes of interest. The results are quanti-
fied in Table 7. Clearly our semi-supervised approach has
the best performance overall (81%) average accuracy. This
is because of the crucial improvement of performance in dis-
tinguishing the easily confuse-able situations of traffic turn-
ing at the lights (Fig. 8(i)) and the interesting dangerous be-
havior of turning through other oncoming traffic (Fig. 8(j)).
In contrast, the other models’ optimization criteria of un-
constrained likelihood-maximization leads them to cluster
the data in ways which do not distinguish the behavior of
interest (e.g., Fig. 8(a)–(e), T and VT confusion).

The potential for semi-supervised use of our model is im-
portant, because it allows it to be used very flexibly: for fully
automatic profiling and saliency detection without prior do-
main knowledge; or by cheap semi-supervised specification
of some or all of the behaviors of interest. This increases the
potential sensitivity of the framework by allowing the model
to learn and hence flag the occurrence of both “known but
interesting behaviors” (by explicitly inferring their occur-
rence, (8)) as illustrated here, and also “unknown and un-
usual” behaviors (via their low predictive likelihood (10)) as
illustrated in Sect. 5.3.
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Fig. 8 Different behaviours learned for the street intersection dataset using (a)–(e) unsupervised and (f)–(j) semi-supervised learning. Only the
semi-supervised approach is able to differentiate turning at the filter light (i) and turning through opposing traffic (j)

Table 6 Behavior classification performance for four traffic flows in the street intersection dataset

True/Est Class MCTM LDA HMM

L R V VT L R V VT L R V VT

Left .99 .00 .00 .01 .49 .44 .00 .06 .98 .00 .01 .01

Right .00 .94 .01 .05 .00 1.0 .00 .00 .00 .92 .08 .00

Vertical .00 .00 .77 .22 .01 .17 .82 .00 .02 .01 .69 .28

Vertical-Turn .31 .05 .20 .43 .01 .21 .30 .46 .49 .04 .32 .15

Average Accuracy .78 .69 .69

Table 7 Behavior classification performance for the street intersec-
tion dataset. Classes are four traffic flows dataset plus dangerous
behavior—turning through oncoming traffic. MCTM-Semisupervised

exploits 18 labeled examples of the dangerous behaviour for learning;
the other models are unsupervised

True/Est Class MCTM-Semisupervised MCTM-Unsupervised

L R V T VT L R V T VT

Left .98 .00 .00 .00 .02 .99 .01 .00 .00 .00

Right .00 .90 .00 .06 .04 .00 .90 .04 .00 .06

Vertical .00 .00 .80 .20 .00 .00 .00 .95 .00 .05

Turn .04 .00 .29 .51 .16 .06 .02 .49 .00 .43

Vertical+Turn .05 .00 .00 .10 .84 .09 .03 .00 .00 .88

Avg. Acc. .81 .74

True/Est Class LDA HMM

L R V T VT L R V T VT

Left .99 .01 .00 .00 .00 .65 .00 .01 .00 .34

Right .00 .86 .00 .00 .14 .00 .89 .10 .00 .01

Vertical .00 .17 .78 .00 .04 .00 .02 .97 .00 .00

Turn .19 .06 .61 .00 .14 .04 .02 .76 .00 .18

Vertical+Turn .69 .00 .00 .00 .31 .02 .09 .20 .00 .69

Avg. Acc. .59 .64
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Table 8 Summary of model selection results and confidence in terms
of log Bayes factor

Actions Ny Behaviors Nz Bayes Factor

Synthetic 4 4 3

Intersection 10 16 11

5.6 Model Complexity Control

Thus far we have used domain knowledge to fix the model
complexity M = {Ny,Nz} for ease of illustration. Our final
experiment relaxes this assumption and tests the effective-
ness of our model selection approach (Sect. 3.5) for auto-
matically estimating the number of activities and behaviors
in the scene. Specifically, we evaluate the predictive likeli-
hood of the test data p(Dte|Dtr,Ny,Nz) for the synthetic
dataset and the street intersection dataset. For the synthetic
dataset (Sect. 3.6), we evaluated a grid of 49 models, with
Ny and Nz varying from 2 to 8. For the street intersection
dataset (Sect. 5.1), we evaluated a grid of 100 models, with
Ny and Nz varying from 2 to 20 in increments of 2. Ta-
ble 8 reports the most probable model determined for each
dataset. We also report the confidence in terms of the Bayes
factor (Bishop 2006; Gilks et al. 1995), specifically the dif-
ference in log probability between the selected model and
the next most probable model evaluated.

For the synthetic dataset, we recover the true number of
actions and behaviors (Ny = Nz = 4, Sect. 3.6) used to gen-
erate the data, verifying the procedure’s validity. The model
estimated by the framework for the street intersection data
is more complex than we assumed in Sect. 5.1. Notably, it
prefers to break down the data into more clusters—at a finer
scale—than previously assumed. That is, the model sepa-
rates behaviors which were represented singly in Sect. 5.1
into multiple more specific sub-behaviors. For example,
Fig. 9 illustrates the prototype flow of two of the 12 learned
behaviors for the intersection dataset. Here, the overall right-
ward traffic phase is now broken down into a flow in which
right-flowing cars go straight, and those in which they turn
at the intersection. In contrast, both straight and turning traf-
fic were previously encompassed by a single behavior in
Fig. 4(a). Because the rightward turning cars were relatively
sparse, it is indeed arguably a separate behavior to the only
straight rightward flow—just at a slightly finer scale. There
is no clearly right answer: a human asked to determine the
number of behaviors may or may not break this down into
two behaviors depending on their perspective and broader
task context. Thus our model selection approach can indeed
estimate a plausible number of actions and behaviors; but as
there is unlikely to be an obviously right answer for real life
data, this should therefore be taken as a suggestion in ab-
sence of other information, rather than as a specific correct
answer.

Fig. 9 Example of fine grained cluster decomposition discovered:
strictly horizontal vs. turning flows

5.7 Computational Cost

The computational cost of MCMC learning in any model
is hard to quantify, because assessing convergence is itself
an open question (Gilks et al. 1995), as also highlighted by
Wang et al. (2009). In training, our model is dominated by
the O(NT Ny) cost of resampling the total number NT of
input features in the dataset per Gibbs sweep, which is the
same as Wang et al. (2009). In testing, our model requires
O(N2

z ) + O(NT NyNz) time per parameter sample. In prac-
tice using Matlab code on a 3 GHz CPU, this meant that
training on 5 minutes of our data required about 15 minutes.
Using our model to process one hour of test data online took
only 4 seconds in Matlab. Processing the same data with
(Variational) LDA in C (Blei et al. 2003) took about 20 and
8 seconds respectively, while (EM) HMM in Matlab took
64 seconds and 26 seconds. Wang et al. (2009) reported that
Gibbs sampling in their HDP model required 8 hours to pro-
cess each hour of data; and they do not propose an online
testing solution. These numbers should not be compared lit-
erally given the differences in implementations; however the
important thing to note is that our model is competitive in
training speed to sophisticated contemporary models (Wang
et al. 2009), and it is much faster for online testing. More-
over, it is faster than the simpler models which it outper-
forms in saliency detection and classification.

6 Conclusions

We introduced a novel dynamic Bayesian topic model for si-
multaneous hierarchical clustering of visual events into ac-
tions and dynamic global behaviours. The model addresses
four critical tasks for video mining: unsupervised model-
ing scene behavioral characteristics under-pinned at differ-
ent spatial and temporal levels (Sect. 5.2); online behaviour
screening and saliency detection (Sect. 5.3); online behav-
ior classification (Sect. 5.4) and semi-supervised detection
of specified interesting behaviors (Sect. 5.5). Our approach
addresses the initially identified challenges (Sect. 1) of be-
havioural complexity, robustness & sensitivity and compu-
tational tractability in various ways: The local composi-
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tional structure of our model and global temporal correla-
tion between behaviours allows complex and dynamic be-
haviours to be profiled, which moreover enhances sensitivity
to salient clips with visually subtle deviations from usual ac-
tivities. The intermediate action layer and Bayesian param-
eter learning help to improve robustness. Finally, our new
inference algorithm (Sect. 3.4) addresses the issue of com-
putational complexity, enabling real-time operation online.

Mining and Screening Our Gibbs learning procedure has
proven effective at learning typical actions, behaviours and
temporal correlations in three diverse and challenging test
datasets. We showed how to use the Gibbs samples from
learning for rapid Bayesian inference of clip category and
saliency. Evaluating the salient clips returned from our di-
verse data sets, our MCTM outperforms LDA and HMMs
for unsupervised mining and screening salient behaviours,
especially for visually subtle, spatially and temporally ex-
tended activity. This is because we model simultaneously
temporal evolution of behaviour (unlike LDA), the hierar-
chical composition of action into behaviours (unlike LDA
and HMM) and use Bayesian parameter learning (unlike
HMM) to reduce over-fitting. Compared to object-centric
approaches such as Basharat et al. (2008), Saleemi et al.
(2009), Berclaz et al. (2008), Sillito and Fisher (2008), Hu et
al. (2006), Wang et al. (2006), Dee and Hogg (2004), Stauf-
fer and Grimson (2000), Johnson and Hogg (1996), our sim-
ple and reliable visual features improve robustness to clut-
ter and occlusion. An important benefit of our approach is
the breadth of different kinds of behaviours that may be
modeled—and the variety of different irregular salient be-
haviours that the model is sensitive to—due to our simulta-
neous hierarchical modeling and temporal correlation glob-
ally optimized in a unified model. We have demonstrated
that our model can detect temporally extended events typ-
ically flagged by object-tracking centric models (Saleemi
et al. 2009; Basharat et al. 2008) such as u-turns, as well
as multi-object events typically only detected by statistical
event models (Wang et al. 2009) such as jay-walking.

Unsupervised and Semi-supervised Classification Our
model has proven successful at rapidly classifying on-going
behaviors in a scene into one of various learned categories.
Building on this ability, we have shown how we can use
our framework as a semi-supervised learner to bootstrap the
model from a few labeled examples to ensure it represents
each behavior of interest (Sect. 5.5) while exploiting the un-
labeled data to build a better representation. In combination
these different modes of use allow our framework to be flex-
ibly applied in a variety of ways depending on how much
domain knowledge is available or affordable in a given situ-
ation. With domain knowledge including a complete or par-
tial set of behaviors of interest, we can use our framework

in a semi-supervised way to detect specific behaviors. In an
intermediate case, with an idea of the complexity or number
of usual behaviors in a scenario, but not particular exam-
ples of each, we can fix the model complexity and learn
a fully unsupervised model to classify new behaviors and
detect unusual salient behaviors. Finally, with no domain
knowledge at all, we can also learn a suitable number of
behaviors & actions offline (Sect. 5.6). Other approaches to
introducing supervision to topic models have recently been
independently exploited for regression (Blei and McAuliffe
2007) and for action recognition (Wang and Mori 2009), but
with the much stronger assumption of full supervision, and
without real-time inference for new data.

Input Feature Representation In this study we have used
simple quantized optical flow as the input vocabulary. Other
more complex features such as bags of 3D SIFT (Scovan-
ner et al. 2007) or space-time interest point (Dollar et al.
2005) descriptors are possible. These have been exploited
successfully in near-view action recognition (Niebles et al.
2008). We retain simple motion features however for two
reasons. To model multi-object behavior via spatio-temporal
co-occurance of events we exploit a grid of cells (Sect. 3.1)
which requires that the number of possible events per cell
should be minimized. In our case this was 4 motion direc-
tions; the 1000s typical for more complex features would be
intractible. Secondly, in our far view surveillance data tar-
gets are often too small to convey reliable appearance infor-
mation, which in any case may not be relevant to our high
level behavior-based profiling task.

Parametric Versus Non-parametric Models Our procedure
for complexity control is in contrast to other related work
which uses non-parametric methods (e.g., Wang et al. 2009),
and provides two advantages over non-parametrics: effi-
ciency and representation. Firstly, by learning and fixing the
model complexity offline once for each scenario, we have
less work to do during subsequent processing, thereby en-
abling our real-time processing. This is in contrast to Wang
et al. (2009) which does not propose an online solution, and
whose batch solution is in the order of ten times slower
than real time (Wang et al. 2009). Secondly, as we have dis-
cussed, there may be a specific set of known interesting be-
haviors that a user desires the model to represent. Our frame-
work allows modeling of these behaviors, which fully unsu-
pervised clustering approaches are likely to miss if they are
subtle or under-represented in the data.

Limitations & Future Work There are some outstanding
limitations to our approach that are worth mentioning. As
for other topic modeling approaches (Wang et al. 2009;
Li et al. 2008), our framework does not explicitly allow
for individual actions within a clip to be irregular and oth-
ers normal. This can sometimes have the unfortunate side
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effect of allowing an unusual action occurring alongside
numerous other common actions to go un-noticed. An-
other issue is that we only correlate global complex be-
haviors in time. It would be interesting to be able to cor-
relate visual events and local actions in time for a bet-
ter model of individual objects (Kim and Grauman 2009;
Benezeth et al. 2009). We are investigating extensions to
address these issues. Simple features provide robustness to
noise for many kinds of behavior modeling, but there is the
drawback that our framework is then not ideal for detect-
ing some particular behaviors of potential interest such as
abandoning of luggage, because that requires explicit ob-
ject detection, tracking and association, e.g., Smith et al.
(2006).

Our model has been trained and tested on partitions of a
batch of standard datasets of approximately an hours length.
Developing and testing models capable of dealing with long
term (weeks and years) data with changing input statistics
is an open question. Additionally, exploiting transfer learn-
ing (Pan and Yang 2010) is likely to be advantageous. That
is, how to transfer invariant aspects of activities and behav-
iors learned from one public space to another, avoiding re-
learning from scratch.

While online inference is fast, our Gibbs learning pro-
cedure is slow enough to provide a barrier to learning
on truly large and complex datasets. We are investigat-
ing faster variational solutions to learning (Bishop 2006;
Blei et al. 2003). Finally, an interesting extension to our
semi-supervised approach which we are investigating is that
of active learning (Kapoor et al. 2007). This approach po-
tentially allows the model to nominate iteratively specific
data-points for labeling which will be most helpful for refin-
ing its behaviour based clustering of clips, while minimizing
the labeling cost required.

Appendix: Deriving Gibbs Learning Updates

Action Variable Updates

It is possible to derive the Gibbs sampling updates for
our model either by recourse to cancellation, e.g.,
p(yi,t |x1:T ,y\i,t , z1:T , ) ∝ p(x1:T ,y1:T ,z1:T )

p(x1:T ,y\i,t ,z1:T )
; or by Bayes’ the-

orem. The update for p(yi,t |x1:T ,y\i,t , z1:T ) (2) using
Bayes’ theorem is derived as follows:

p(yi,t |x1:T ,y\i,t , z1:T )

∝ p(xi,t |x\i,t ,y1:T , z1:T )p(yi,t |x\i,ty\i,t , z1:T ), (12)

=
∫

p(xi,t |yi,t , φ)p(φ|y\i,t ,x\i,t )dφ

·
∫

p(yi,t |zt , θ)p(θ |y\i,t , z\t )dθ, (13)

=
∫

φxi,t ,yi,t
Dir

(
φyi,t

;n−
yi,t

+ β
)

dφyi,t

·
∫

θyi,t ,zt Dir
(
θzt ;n−

zt
+ α

)
dθzt . (14)

Equation (14) then leads directly to the desired action
variable update (2) by the standard formula for the expec-
tation of a Dirichlet distribution.

Behavior Variable Updates

The update for p(zt |y, z\t ,x) (3) is derived as:

p(zt |y1:T , z\t ,x1:T ) ∝ p(yt |y\t , z\t )p(zt |,y\t , z\t ). (15)

We can recognize the first “likelihood” term in above as a
Polya distribution, computed as:

p(yt |y\t , z1:T )

=
∫

Multi(yt ; zt , θzt )Dir(θzt ;y\t , z\t )dθzt ,

= 1


(n−t
zt

+ α)

∫ ∏

y

θ
nt

y,zt
y,zt

∏

y

θ
n−t

y,zt
+α

y,zt
dθzt ,

= 
(nt
zt

+ n−t
zt

+ α)


(n−t
zt

+ α)
,

=
∏

y �(ny,zt + α)
∏

y �(n−
y,zt

+ α)

�(
∑

y n−
y,zt

+ Nyα)

�(
∑

y ny,zt + Nyα)
, (16)

where we write 
(α) �
∏

j �(αj )

�(
∑

j αj )
to indicate the normaliz-

ing constant of the Dirichlet distribution Dir(θ;α). nt
yt ,zt

in-
dicates the action counts solely for the current behavior zt

and n−t
y,zt

indicates all the action-behavior counts observed
at times other than t . Because there are multiple actions per
behavior, there is not a unit difference between n−

y,zt
and

ny,zt and (16) does not simplify further unlike LDA and (14)
and (2).

Finally, we need the “prior” term in (15), which depends
on the values of zt−1, zt and zt+1.

p(zt |y\t , z\t )

∝
∫

p(zt |zt−1,ψ)p(zt+1|zt ,ψ)p(ψ |z\t )dψ (17)

Let zt−1 = j , zt = k and zt+1 = l. Then p(zt |zt−1,ψ) =
ψk,j and p(zt+1|zt ,ψ) = ψl,k and p(zt |y\t , z\t ) is deter-
mined as:

j = k = l : 1


(n−
j + γ )

∫
ψk,jψl,k

∏

i

ψ
n−

i,j +γ−1

i,j dψj ,

= (n−
k,j + 1 + γ )(n−

l,k + γ )

(n−
·,j + 1 + Nzγ )(n−

·,k + Nzγ )
, (18)

j �= k �= l : 1
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i,j dψj
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· 1


(n−
k + γ )

∫
ψl,k

∏

i

ψ
n−

i,k+γ−1
i,k dψk,

= (n−
k,j + γ )

(n−
·,j + Nzγ )

(n−
l,k + γ )

(n−
·,k + Nzγ )

, (19)

j = k �= l : 1


(n−
j + γ )

∫
ψk,jψl,k

∏

i

ψ
n−

i,j +γ−1

i,j dψj ,

= (n−
k,j + γ )

(n−
·,j + Nzγ )

(n−
l,k + γ )

(n−
·,k + 1 + Nzγ )

, (20)

where we exploit the identities �(z + 1)/ �(z) = z and
�(z + 2)/ �(z) = (z + 1)z to simplify the ratios of nor-
malizing constants. Finally, substituting (16) and (18)–(20)
into (15), we obtain the desired (3).
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