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Abstract In many scenarios a dynamic scene is filmed by
multiple video cameras located at different viewing posi-
tions. Visualizing such multi-view data on a single display
raises an immediate question—which cameras capture bet-
ter views of the scene? Typically, (e.g. in TV broadcasts) a
human producer manually selects the best view. In this paper
we wish to automate this process by evaluating the quality
of a view, captured by every single camera. We regard hu-
man actions as three-dimensional shapes induced by their
silhouettes in the space-time volume. The quality of a view
is then evaluated based on features of the space-time shape,
which correspond with limb visibility. Resting on these fea-
tures, two view quality approaches are proposed. One is
generic while the other can be trained to fit any preferred ac-
tion recognition method. Our experiments show that the pro-
posed view selection provide intuitive results which match
common conventions. We further show that it improves ac-
tion recognition results.

Keywords Video analysis · Viewpoint selection · Human
actions · Multiple viewpoints

1 Introduction

With the advances of recent years video cameras can now be
found in abundance. Scenes and events are frequently being
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recorded not only by a single camera, but rather by multi-
ple ones, e.g., school children sports events are recorded by
many eager parents and street shows are filmed by enthu-
siastic tourists. There are several possible ways to visualize
such data. Ballan et al. (2010) proposed a 3D reconstruction
based visualization system that allows smooth switching be-
tween views. To visualize such data on a single screen one
needs to select the single “best” camera for each moment in
the event. In movie and TV production the “best” camera
view is selected manually by a human producer. Such a pro-
ducer is typically not available in non-professional scenar-
ios. Therefore, we are interested in automating the process
of camera selection.

In this paper we propose a technique for video-based
evaluation of the quality of a view for actions. We first dis-
cuss what makes one view better than the other. Our guid-
ing principle is that the better views are those where the ac-
tion is easier to recognize. We then present the properties of
such views, propose three measures (spatial, temporal, and
spatio-temporal), which capture them and incorporate them
into a single global score. Since our goal is to detect views
where the action is recognizable, we further propose an ap-
proach for learning to detect the good views for a particular
recognition method.

The usefulness of our view selection is evaluated quali-
tatively on real video data of sports events, dance and ba-
sic human actions. Additionally we test our approach on 3D
gaming scenarios. To provide some quantitative evaluation
we further test the usefulness of the proposed approach for
action recognition. Here, rather than using all views, we use
only the better ones for recognition. Our experiments show
that selecting a single good view to process does not dete-
riorate recognition rates, but rather the opposite occurs and
recognition rates are improved. This could speed-up recog-
nition in multi-camera setups.

http://dx.doi.org/10.1007/s11263-011-0484-5
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The contribution of the paper is hence threefold. First,
it presents several properties of preferable views of human
actions (Sect. 3). Second, two methods are proposed for
capturing these properties and hence estimating the relative
quality of the views. In Sect. 4 we present a generic view
selection approach, while in Sect. 5 we train the view se-
lection to match a given recognizer. Last, we demonstrate
the benefits of the suggested approach in scene visualization
and establish the selection of the better views by testing on
action recognition (Sect. 6).

2 Related Work

Viewpoint selection was previously addressed in many dif-
ferent fields. An extensive review of view selection in com-
puter graphics is available in Christie et al. (2008). Several
methods, e.g., by Mudge et al. (2005), Vazquez et al. (2003),
Bordoloi and Shen (2005) have been proposed for optimal
view selection for static 3D objects. Vieira et al. (2009) uti-
lize a learning scheme for interactive view selection. Assa et
al. (2008, 2010) proposed methods for camera control when
viewing human actions. These solutions, however, rely on
knowing the 3D structure of the scene and, hence, are not
applicable to real-world setups filmed by video cameras.

Camera selection has also been previously explored for
surveillance applications, however, there the camera setup
and the goal are typically different from ours. Goshorn et
al. (2007) propose a camera selection method for detecting
and tracking people using camera clusters. Most of the cam-
eras in the cluster do not overlap and hence the main goal
is tracking the person as he moves from one camera view to
the other. In Krahnstoever et al. (2008), El-Alfy et al. (2009)
methods were proposed for selecting the camera that pro-
vides the best view for recognizing the identity of a viewed
person. This requires mostly face visibility.

An example of multiple view scene visualization system
was proposed by Ballan et al. (2010). They reconstruct a
model of the background, estimate camera positions for ev-
ery frame and then place each video stream at it’s exact 3D
location. This allows the user to view all the videos simulta-
neously on the 3D model of the environment, or switch be-
tween videos according to the cameras’ locations. The view-
point quality measures suggested below could be used to au-
tomate viewpoint transitions and hence improve the user’s
experience.

3 Why Some Views are Better than Others?

Many human actions are easier to recognize from some
viewpoints, compared to others, as illustrated in Fig. 1. This
is why “WALK” road-signs always show the stride from the

Fig. 1 Many actions are better captured from a specific view point.
Walking and hugging are best captured from the side, while a golf
swing is best viewed from the front. Top row: examples of road signs.
Bottom rows: YouTube search results for “hugging people” and “golf
swing”

side, YouTube “golf swings” are almost all frontal views
while “hugging people” videos are mostly side views show-
ing both people approaching each other. The mutual to all
these examples is that the better views are those showing the
limbs and their motion clearly. Hence, these visibility crite-
rions have been used for camera path planing in computer
animation (Assa et al. 2008).

Based on this observation, our goal is to evaluate limb
visibility. We wish to achieve that without detecting or track-
ing the limbs, since limb detection is time consuming and
error prone. Instead, we observe that good visibility of the
limbs and their motion has generic temporal, spatial and
spatio-temporal implications on the space-time shape in-
duced by the silhouettes (as illustrated in Fig. 2):

1. Temporal: High motion of the limbs implies that the sil-
houettes vary significantly over time.

2. Spatial: Good visibility of the limbs implies that the out-
lines of the silhouettes are highly concave. For example,
the spread out legs in a side view of walk generate a large
concavity between them.

3. Spatio-temporal: When the limbs and their motion are
clearly visible the resulting space-time shape is not
smooth, but rather has protruding salient parts (corre-
sponding to the moving limbs). Conversely, self occlu-
sions and lack of motion lead to smooth space-time
shapes.

Interestingly, each of these three properties matches
known properties of human perception. First, it is known
that human vision is attracted to high motion (Johansson
1973). This corresponds to the temporal property. Second,
Attneave (1954) proposed that the most informative regions
along a visual contour are those with high curvature. Ex-
tending this idea to three dimensions matches the spatio-
temporal property, that looks for protruding regions with
high curvature in space-time. Finally, Feldman and Singh
showed in (2005) that for closed planar contours concave
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Fig. 2 Properties of good views. Good views are those where the limbs
and their motion are clearly visible. Temporally this implies large vari-
ations. Spatially, the silhouettes in a good view are highly concave. In
space-time visibility of the limbs and their motion implies shapes with
significant saliency

segments carry greater information, than corresponding con-
vex ones. Correspondingly, the presented spatial property
captures the concavity of the silhouettes.

For the time being we limit our analysis to scenes show-
ing a single person performing free actions. Later on, in
Sect. 6.1 we discuss how multi-player scenes are handled.

4 Measures of Viewpoint Quality

In this section we propose measures for evaluating the qual-
ity of a viewpoint, which are based on the principles pre-
sented above. We intentionally seek for simple measures of
viewpoint quality to enable fast processing.

First, we assume that each video can be segmented into
foreground and background using background subtraction
and that the cameras are fixed. Then, following (Gorelick
et al. 2007) we compensate for the global translation of the
body in order to emphasize motion of parts relative to the
torso. This is done by aligning the centers of mass of the sil-
houettes to the same point. This may introduce non-existent
motions, but we found out that they are less important than
the global one. The process is illustrated in Fig. 3 and results
in a three-dimensional shape induced by the actor’s silhou-
ettes in the space-time volume. Note, that cameras at differ-
ent positions view different silhouettes, hence, the induced
space-time shapes are different. We assume that all the cam-
eras view the person fully without external occlusions. Self
occlusions (e.g., as in a top view) are allowed.

Our measures do not require perfect silhouettes, however,
we do assume the silhouettes are acceptable, i.e., when there
are no self occlusions the limbs should be visible in the sil-
houette. This assumption is reasonable in many scenarios,
e.g., computer games, day-time sports events and security
setups where the background can be modeled accurately and
does not change much. We will address this issue later, in
Sect. 7.

Fig. 3 Example of space-time shapes of the same action from dif-
ferent viewpoints. Given video frames (top row) the human figure is
extracted (middle row). By aligning the center of mass of the silhou-
ettes the space-time shape (bottom row) is created. Note the differences
between the shapes obtained for different viewing positions

4.1 Spatio-Temporal Measure: Shape Saliency

In accordance with property (3), when the limbs are visi-
ble the induced space-time shape is not smooth. To build
a spatio-temporal measure of action visibility we need to
quantify the unsmoothness of the space-time shapes. We
base our approach on the method proposed by Lee et al.
(2005) for evaluation of saliency and viewpoint selection for
3D meshes. Their work proposes a method for measuring
saliency at every vertex of a static 3D mesh. Saliency is de-
fined as the deviation of the mesh from a perfectly smooth
shape, i.e., sphere. Furthermore, they propose to evaluate a
viewpoint quality by summing up all the saliency values of
all the visible parts from a given viewpoint. In our work in-
stead of the same shape viewed from different directions we
have a different shape for each view. Thus measuring the
overall saliency of the space-time shape allows us to esti-
mate the quality of the view that produced that shape.

Following Lee et al. (2005) we first calculate the local
space-time saliency at each point on the shape’s surface.
This is captured by the difference between the point’s lo-
cal curvature at different scales. Then we evaluate global
saliency by summing all the local saliency values, since ev-
ery point on the surface of the space-time shape is visible.
The method in Lee et al. (2005) was limited to 3D meshes.
In our case, however, the shapes are represented in voxels
and not meshes. We next follow the ideas of Lee et al. (2005)
and extend them to voxel-base representations of space-time
shapes.

To compute the local saliency of points on the surface of
the space-time shape we first calculate the mean curvature
κm(p) of each surface point p using the method proposed
by Kindlmann et al. (2003). In a nutshell, their method uses
convolution with a continuous filter for curvature computa-
tion instead of parametrisation of the surface. Further details
of the method can be found in Kindlmann et al. (2003). Next,
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following Lee et al. (2005) we define the weighted mean cur-
vature, G(κm(p),σ ), at each space-time shape surface point,
as:

G(κm(p),σ ) =
∑

q κm(q)W(p,q,σ )
∑

q W(p,q,σ )
, (1)

where the sum is over all the points q within a 2σ radius
neighborhood around point p and W(p,q,σ ) is a weight
function. Note, that as opposed to the 3D models used in
computer graphics, our shapes can have different scales in
space and in time. Hence, we define W(p,q,σ ) as:

W(p,q,σ ) = exp
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where p = (px,py,pt ) and q = (qx, qy, qt ) are two points
on the space-time shape surface, and σ = (σx, σy, σt ). Local
space-time saliency is then defined as the absolute difference
between two weighted curvatures:

L(p) = |G(κm(p),σ ) − G(κm(p),2σ)|. (3)

For more details the reader is referred to Lee et al. (2005).
Lee et al. (2005) propose to incorporate multiple scales,

but in our space-time shapes this doesn’t bring the desired
effect. This is because 3D models usually have many small
details, that need to be taken into account. In contrast, our
space-time shapes are very low detailed, thus, it would suf-
fice to find a single optimal value of σ corresponding to a
single scale. We have experimentally selected σ = (5,5,3).
This value was kept fixed for all the results presented here.

Figure 4 shows the local space-time saliency values of (3)
for all the surface points of the space-time shape of a real
punch action obtained from different views. It can be seen
that the moving parts, e.g., the arm, generate high curvature
surfaces and hence receive high local saliency values, while
stationary parts, e.g., the legs, which imply flat areas in the
space-time shape, receive low local values.

Finally, we define the spatio-temporal visibility score of a
view as the sum of the local saliency values of all the points
on the surface of the space-time shape:

SST =
∑

p

L(p). (4)

The values of the spatio-temporal saliency score SST for a
punch action are also marked in Fig. 4. We note here that SST

is not bound from above, however it’s always non-negative.
In our C implementation computing SST takes 3 seconds on
average for a sequence of 36 frames.

As noted above the SST score is not normalized and
can receive any non-negative values. We have tried several
different normalizations, however, our experiments showed

Fig. 4 Spatio-temporal visibility measure. Local saliency values for
space-time shapes obtained from different views of the same punch
action nicely emphasize the more important regions, in this case, the
punching arm. The side and top views show the protruding punching
arm and hence their total visibility score SST is high. The front view
produces a smooth shape and correspondingly a low SST

Fig. 5 Spatial visibility measure. An illustration of a space-time shape
(cyan) and its convex hull (red) for a “punch” action captured from dif-
ferent angles. The side view receives the highest SS score since it shows
more concave regions under the arm. The top and front views, where
the limbs are less visible, obtain lower scores, since their outlines are
more convex

that the un-normalized measure performs better than the
normalized ones. Additionally, we have tested with several
other methods to capture saliency, e.g., the one proposed by
Gorelick et al. (2007), but all performed worse.

4.2 Spatial Measure: Visibility of Limbs

According to property (2), when the limbs are fully visible
the outlines of the induced silhouettes are highly concave.
To quantify how concave a shape is we seek for a simple
and fast measure. One such measure is computing the vol-
ume difference between the 3D convex hull of the space-
time shape and the shape itself. We define the spatial mea-
sure as:

SS = 1 − Vsh

Vch
, (5)

where Vsh is the volume of the space-time shape and Vch is
the volume of its convex hull. The SS score is non-negative
and bounded by 1 from above. Figure 5 illustrates some
space-time shapes together with the corresponding 3D con-
vex hulls. Note, that the computation of this score is fast and
takes 0.3 seconds for a 36 frame long clip.
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Fig. 6 Temporal visibility measure. The motion-energy image E

(gray) superimposed by the biggest silhouette gm (white) for a “kick”
action seen from different views. The side view captures the leg motion
in full and hence receives the highest score, while the front view shows
very little of the leg motion and hence receives a low score

4.3 Temporal Measure: Detecting Large Variations

Following property (1), we wish to discover views which
exhibit a significant pattern of change along time. We mea-
sure this by computing the portion of pixels where motion
was observed somewhere along the sequence. Note, that we
do not care what was the type of motion or when it oc-
curred. Our only interest is the amount of motion. Since we
would like our measures to be as simple and fast to compute
as possible, we evaluate the amount of motion as follows.
Let g(x, y, t) be the silhouette indicator function and τ be
the temporal length of the sequence. Following Bobick and
Davis (2001) we build the motion-energy image describing
the sequence as:

E(x,y) =
τ−1⋃

t=0

g(x, y, t). (6)

We denote by gm(x, y) the biggest single-frame silhouette
(in sense of number of pixels) in the sequence. The temporal
measure is then defined as:

ST = 1 −
∑

x,y gm(x, y)
∑

x,y E(x, y)
. (7)

Note, that this score is always non-negative and bounded
by 1 from above. Computing ST takes approximately 2 mil-
liseconds for a video of length 36 frames.

To illustrate the temporal motion-based score we present
in Fig. 6 E(x,y), gm(x, y) and ST for different views of a
kick action. As can be seen, the side view, where the action is
better viewed, presents a higher percentage of moving pixels
(gray), and thus receives a higher score.

4.4 Differences Between Measures

In the previous sections we presented three different visi-
bility measures. Before using them in our experiments we
wish to compare them. To do so we apply them to a vari-
ety of actions filmed from several angles. On one hand, the

Fig. 7 Comparison of the different visibility measures for a kick ac-
tion viewed by 16 cameras. In this case all the measures rate the views
consistently. It can be seen that all the measures get a clear maxima in
the two side views, i.e., when the limbs are visible

Fig. 8 Comparison of the visibility measures for a wave action cap-
tured by 5 different cameras. For this action the rating of the views are
different for the different visibility measures

measures capture similar properties of action visibility, thus
frequently support each other, as shown in Fig. 7. However,
even in those cases the measures emphasize differently the
quality of the views. On the other hand, there are actions for
which the measures are not consistent, see Fig. 8. This oc-
curs mainly when there are several views that provide good
visibility of the action. In those cases using all measures for
the view selection could yield more robust results.

4.5 Combining all Measures

The above presented measures capture somewhat different
notions. To take advantage of them all we further combine
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Fig. 9 Combined visibility measure calculated for every view of the
“Kung-Fu Girl” sequence. To calculate the visibility measure we used
a short (24 frames) sub-sequence around the presented frame. It can

be seen that side views, where the arms and legs are visible, receive
higher scores than front and back ones with self-occlusions. For clear
exposition only half of available views are shown to prevent a mess

them into a single score. To accomplish this without param-
eter tuning we take the product of the three, yielding:

Sc = SST · SS · ST . (8)

In our experiments we tried other combinations that do re-
quire parameter, however, no significant improvement was
achieved.

By now we have proposed three different visibility mea-
sures and their combination. To illustrate their performance
in a simple case we use the “Kung-Fu Girl” dataset.1 This
dataset includes 25 videos of an animated 3D model of a girl
performing a kung-fu drill. The viewpoints are distributed
evenly on a hemisphere above the actress. Figure 7 shows
how the viewpoint quality of the different measures changes
as the viewing angle varies. It can be seen that there are clear
maxima points in the side views for this specific kick. How-
ever, the combined measure Sc differentiates better between
the best and the worst views (the gap between minima and
maxima is larger), thus we expect it to provide a less noisy
estimation on real data.

Figure 9 illustrates the result of applying this measure to
the same “Kung-Fu Girl” dataset, but using all the cameras.
According to one’s intuition, side views, where the kick is
best visible, receive high scores, while front and back views,
where the arms and legs are occluded, receive lower scores.

1“Kung-Fu Girl” sequence is available at http://www.mpi-inf.mpg.de/
departments/irg3/kungfu/.

5 Learning Viewpoint Quality

In the previous section we presented intuitive measures for
capturing the properties of good views. While such model-
based approaches often perform well, we further wish to ex-
amine whether one can learn to detect good views. An ap-
proach for doing that is described next.

Recall that our definition of a “good view” is one where
the action is recognizable. Hence, to obtain labeled data of
“good” (+1) and “bad” (−1) views we simply apply a rec-
ognizer to all videos in our dataset, in a leave-one-out man-
ner. All videos for which recognition succeeded are labeled
as “good” and those where recognition failed are marked
as “bad”. We then train an SVM-based quality estimator
(Schölkopf and Smola 2002) by representing each video
with a vector vi :

vi =
(

ST

mT

,
SS

mS

,
SST

mST
,

Sc

mc

)

, (9)

where mj = maxSj for every j ∈ {S,T ,ST, c}. The maxi-
mum is taken over the different views. The SVM learns the
separation between the “good” and “bad” views in the kernel
space (we use a Gaussian kernel with σ = 2) by presenting
a function

v → ŝ. (10)

ŝ is positive for the “good” views and negative for the “bad”
ones. The higher ŝ is the better is the view. It is important

http://www.mpi-inf.mpg.de/departments/irg3/kungfu/
http://www.mpi-inf.mpg.de/departments/irg3/kungfu/
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Fig. 10 View selection for golf swing and dance. Views showing clearly all the limbs together with their motion are ranked higher while views
with severe self-occlusion are detected as low quality

to note that the quality measure of (8) is generic and inde-
pendent of the action recognition method to be applied af-
terwards. Conversely, the trained quality evaluation of (10)
depends on the initial labeling of the selected recognizer.

As noted above (Sect. 4.4) the measures are consistent in
many cases, but not in others. Hence, we use all the mea-
sures together with their combination in the SVM training.
Based on our experiments, this results in a view quality eval-
uator that is more robust to the failures of any single mea-
sure.

6 Applications and Experiments

In this section we demonstrate the usefulness of the pro-
posed view quality evaluation approach for simplified vi-
sualization of multi-camera scenes (Sect. 6.1). We cannot
compare our view selection method to previous works, like
Assa et al. (2008, 2010), since they use 3D scene data, which
is not available in our case, hence the evaluation is mostly
qualitative. To provide some quantitative evaluation, we fur-
ther show that selection of a single camera can improve ac-
tion recognition rates (Sect. 6.2).

6.1 Automatic Camera Selection

The most intuitive application of view quality is automatic
selection of the best camera. Given multiple video streams
of the same scene filmed from different points of view, our
goal is to produce a single video showing each action from
its preferred viewpoint.

The quality of the view provided by a certain camera
can change with time, depending on the performed actions
and the person’s orientation in space. To take those changes
into account we adopt a sliding-window approach where

view selection is applied to all sets of corresponding sub-
sequences of length 36 frames. This yields 36 independent
“best-view” decisions for each set of corresponding frames.
We choose to work with relatively long sub-sequences since
we wish to select the best viewpoint for the whole action and
not for its fragments. For each frame the selected view is the
one receiving the highest score Sc (of (8)). To avoid redun-
dant view switches we accept a view change only when it
lasts longer than 25 frames.

Data Captured in the Lab We begin by testing the pro-
posed framework on a golf scene. We have intentionally se-
lected golf since googling for “golf swing” videos retrieves
many tutorials, most of them show the swing from the same
frontal viewpoint, thus making it somewhat clear what is the
desired result. In our setup eight cameras viewed a golfer
hitting the ball four times, each time rotating to face a differ-
ent camera. As shown in Fig. 10(a) and in the supplemental
video our view selection approach successfully selects the
frontal view for the swing, in line with what is used for golf
tutorials.

Next we test the framework on a simple dance move. This
move is best viewed from front, but the actress repeats it sev-
eral times, each time facing a different direction. As in the
golf scene, our view selection approach clearly prefers the
front view. Other views are ranked according to the visibil-
ity of the limbs motion, as shown in Fig. 10(b). Note that the
differences between the score values on the golf swing and
the dance move originate from the differences in the nature
of the actions. The swing is a faster action thus it yields a
higher score.

We further applied the proposed view selection to the
IXMAS dataset (IXMAS 2006), which includes 12 actors
performing 13 everyday actions continuously. Each actor
performs the set of actions three times, and the whole scene
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Fig. 11 View selection on IXMAS. Examples of view selection ap-
plied to IXMAS sequences of a single person. Top row (a) shows a
“get-up” action, which is visible clearly from any angle, thus the view
qualities do not vary too much. Rows (b) and (c) show actions where

some views are preferred. In this case the different views are nicely
rated according to the visibility they provide. Views showing clearly
all the limbs are ranked best while views with severe self-occlusion are
ranked worst

Fig. 12 Failure cases of view selection. (a) The action “scratch head”
is barely visible from the selected view, however it was selected due
to large changes in the attached shadows. (b) Camera 4 was selected

for the “kick” action since there was a significant arm motion, which
confused our measures

is captured by 5 synchronized video cameras (4 side cam-

eras, that cover almost half a circle around the subject and

one top camera). The actors selected freely their orientation,

hence, although the cameras were fixed, each viewed the ac-

tors from varying angles. In other words, we cannot label a

certain camera as front view since it captured both front and

side views. In this experiment we don’t use the ground-truth

provided with the database.
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Fig. 13 (a) A schematic sketch of the filming setup of a basketball
drill. The blue, green and red curves illustrate the paths of the play-
ers motion. The labels A and B mark the location in the field of each
player at moments A and B. (b) Example frames from the three cam-
eras at moments A and B depicted in the sketch. Camera 1 received the

lowest rates since the arm motion in throwing the ball is occluded in
(A) and the players occlude each other in (B). Camera 2 received higher
rates since there are less self occlusions. Camera 3 got the highest view
quality rates since there are no occlusions and the arm motion is clearly
visible both in (A) and in (B). Please view the supplemental video

As illustrated in Fig. 11 and in the supplemental video,
our system consistently selects views where the action per-
formed by the person is clearly visible. For example, for
walking the algorithm selects the side view with the max-
imum visibility of the moving legs, and for waving the front
view is selected, such that the hand motion is clearly visible.
Note, that since people oriented themselves freely, different
cameras are selected for different people. As mentioned pre-
viously, the score differences originate in the activity differ-
ences. Additionally, here the human figure is considerably
smaller than in the golf and dance scenes thus the scores are
lower.

Obviously the proposed view selection method is not per-
fect. Some of the failure cases are shown in the Fig. 12. In
some cases the action is not suitable for view selection based
on silhouettes only thus our method prefers incorrect views
(Fig. 12(a)). In other cases there are many other motions,
like arms motion in Fig. 12(b) along with the main action.
Those additional motions can dominate over the main ac-
tion and lead to erroneous view selection. Additionally, large
flaws in silhouettes, for instance due to shadows, can harm
view selection as well.

Real World Data To show the applicability of the proposed
view selection method to more challenging videos we filmed
our local basketball team during training using three fixed
cameras. The cameras were set along the court, as shown on
Fig. 13(a). In this scene, three players performed a drill that
included running and free throws.

Fig. 14 A single player throwing a ball viewed from 3 viewpoints. As
expected, the side view gets the highest rate

We extracted the players’ silhouettes for each camera us-
ing simple background subtraction. This led to very noisy
silhouettes. Furthermore, in significant parts of the scene the
players were either very close to each other or occluded each
other. Thus it was not practical to treat each player indepen-
dently. Instead, we applied our view quality estimation to
the joint shape of all three players, as if they were a single
subject.

As illustrated in Fig. 13(b), camera 1 suffers from severe
occlusions, camera 2 suffers from partial occlusions, while
camera 3 captures most of the drill without occlusions. Our
view quality rating reflects this nicely. These results demon-
strate that the proposed view quality rating can be applied to
single and multi-player scenes as one.

Figure 14 shows results of a single-player throwing a ball.
Here our approach nicely detects the side view, where the
throwing of the ball is best captured.
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Fig. 15 View quality
estimation for hug action in
Sims 3 game. The different
views are nicely rated according
to the visibility they provide.
Views where the interaction is
clearly visible are ranked better
than views in which one of the
figures is occluded

3D Graphics Data Additionally to the videos taken by real
video cameras, our viewpoint quality estimation is also rele-
vant in 3D graphics, or specifically in 3D games. To show
the applicability of the proposed method in this field we
choose a scene of two hugging people from Sims 3 game,
filmed from eight different angles. Note, that in this case per-
fect silhouettes are available. Since the figures touch each
other most of the action, we treated them as a single sub-
ject and applied the viewpoint quality of (8). As shown in
Fig. 15, the side views get a higher ranking while the front
and back views, with severe self occlusions, are least pre-
ferred. This matches what one typically expects to see in
“hugging people” videos.

6.2 Action Recognition

As far as we know, there are no databases with ground-truth
view selection, hence quantitative evaluation is somewhat
difficult. To demonstrate that our technique selects good
views we test its performance as a pre-processing step for
action recognition. Given an action filmed from multiple an-
gles we select a single view using two methods: (i) by se-
lecting the view with maximum quality measure Sc of (8),
(ii) by selecting the view with the highest ŝ of (10). We then
classify this view only. Our experiments show that selecting
a single view can improve the recognition rates, implying
that the views we select are good for recognition.

We test this framework on the IXMAS multi-view
dataset (IXMAS 2006). We split the long videos accord-
ing to the provided ground-truth, into shorter action clips,
so that each shows a single action. Following previous work
we test on a leave-one-actor-out scenario, i.e., we take all
the performances of one actor as the testing set and all other
actors as the training set. We train a single classifier for all
the available views, since the actors are oriented freely in the
space. Having that classifier, we select the best and classify
only it. In our experiments we used only 10 actors (exclud-
ing Srikumar and Pao) and 11 actions (excluding “throw”

and “point”) for fair comparison with previous work, which
excluded these as well.

In the first case, for each clip in the test set we eval-
uate the viewpoint quality provided by each camera using
the proposed measure of (8). We then classify the action in
the view with the highest score using one of three monoc-
ular recognition methods: (i) the silhouette based approach
of Gorelick et al. (2007),2 (ii) the view invariant approach
of Junejo et al. (2010),3 and (iii) the silhouette and opti-
cal flow based approach of Tran and Sorokin (2008).4 We
further evaluate the quality of each clip using the measure
of (10), after training according to the same three recogni-
tion methods. For each method we select the best view and
classify it.

We compare the results of the recognition after view se-
lection with three other options: (i) average recognition rate,
which reflects random selection of views, (ii) the rate of the
“best” camera and (iii) the rate of the “worst” single camera.
In “best”/“worst” camera we refer to the single camera with
the highest/lowest recognition rate. In practice, selecting the
“best” camera is not feasible, since it requires an oracle that
a-priori tells us which of the fixed views will be better. How-
ever, this is the best rate that can be achieved from a single
fixed camera. On contrary, a wrong selection of the camera
could lead to “worst” camera rates.

Table 1 shows that the proposed view selection either
matches, or improves the results of the “best” camera. This
implies that the selected views are those where the action
is recognizable, which satisfies the goal of this work. It is
further interesting to note that the “best” fixed camera is dif-
ferent for each recognition method. This implies that on av-

2For Gorelick et al. (2007) we obtained code from the authors.
3For Junejo et al. (2010) we used our own implementation which ob-
tains results similar to those reported in the original paper.
4For Tran and Sorokin (2008) we used authors’ code available at their
website with 1NN classifier. However, we used a slightly different ex-
perimental setup, thus yielding slightly different results.
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Table 1 Comparison of recognition rates for different recognition
methods shows that the proposed view selection performed before
recognition often improves the best fixed camera rate. Note that an
a-priori selection of the “best” camera is not possible. We mark in

parentheses the label of the fixed camera that turned out to provide the
best/worst recognition rates. Note that for each recognition method the
best performance was obtained with a different camera

ŝ Sc Fixed camera

Equation (10) Equation (8) Average Best Worst

(selected a-posteriori) (selected a-posteriori)

Gorelick et al. 2007 81 81 73 77 (cam4) 63 (cam5)

Tran and Sorokin 2008 88 89 85 88 (cam3) 82 (cam5)

Junejo et al. 2010 65 65 64 67 (cam1) 57 (cam5)

Fig. 16 Comparison of the proposed automatic view selection to hu-
man preference. (a) In the “check watch” action the users’ preference is
highly correlated to the learning method of view selection. On the other
hand the model-based approach prefers other views. (b) In the “wave”

action both methods prefer the same views as the human. (c) The nor-
malized correlation between the human preferences and each of the
methods, for all the actions of IXMAS. The correlation is rather high,
suggesting our approach provides a good match to humans

erage different methods have preference for different view-
points. Nevertheless, our view selection succeeds in detect-
ing those views which are recognizable by all methods.

One of the limitations of the IXMAS dataset is that the
cameras cover only half a circle around the action. Further-
more, although not instructed to do so, the actors naturally
positioned to face one of the cameras, hence, there are no
back views. To extend the data to include the back views
as well we filmed a similar multiview action data-set5 us-
ing the setup described in our golf-swing and dance exper-
iments. For this data-set, the recognition rates using Gore-
lick’s method were similar with and without view selec-
tion and stood on ∼ 50%. View selection had no benefit
in terms of recognition rates, since the performance of the
recognizer is poor. It is still beneficiary in the sense that
recognition needs to be applied to a single view rather than
multiple ones. We make this data available to the public at
http://cgm.technion.ac.il.

5The dataset is available at http://cgm.technion.ac.il/Computer-
Graphics-Multimedia/Resources/Resources.php.

6.3 Comparison to Human Preference

Another experiment that could be useful for evaluation of
the proposed view selection methods is comparison to user
preferences. We performed a user study that involved 45 vol-
unteers. Each participant was shown two random views of
the same action and was asked to choose the preferred one.
The chosen view scores 1 and the other scores 0. Each vol-
unteer repeated the procedure for every action in the IXMAS
dataset. After collecting all the data we sum up the scores for
each action and for every view.

The comparison of the user preference to our automatic
view selection is shown in Fig. 16. For some actions, e.g,
“check watch” (Fig. 16(a)) the correlation between the hu-
man preference and our results is limited, while for other
actions it is high, e.g., “wave” (Fig. 16(b)). The correla-
tion of each of our methods to the human preference is
shown on Fig. 16(c). As can be seen, there is relatively
high correlation in most of the actions. Our success is
limited mostly for actions where silhouettes do not suf-
fice.

http://cgm.technion.ac.il
http://cgm.technion.ac.il/Computer-Graphics-Multimedia/Resources/Resources.php
http://cgm.technion.ac.il/Computer-Graphics-Multimedia/Resources/Resources.php
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Fig. 17 The space-time shape for golf swing (a) and basketball throw
(b) before and after the cleaning process. As one can see the shape
before cleaning exhibits noisy regions. This noise is removed during
the cleaning and the resulting shape is much smoother, and suffices for
view selection

7 Robustness to the Silhouette Quality

The proposed view selection method fully relies on silhou-
ettes of the human actor. Since the silhouette extraction pro-
cess is never perfect we preprocess the silhouettes before the
creation of the space time shape. First we dilate each silhou-
ette using a disk structure element with size depending on
the figure size. Then we leave only the biggest connected
object which corresponds to the actor’s body. An example
of this process is shown in Fig. 17. It can be seen that the
preprocessing successfully removes most of the unshmooth-
ness of the space-time shape while preserving the parts that
belong to large motions.

In our experiments we worked with different types of
data. Some videos were filmed in relatively clean labora-
tory conditions (Fig. 17(a)) while others were filmed “in
the wild” (Fig. 17(b)). After the preprocessing described
above we managed to obtain space-time shapes of accept-
able quality, even for the noisy data like the basketball
training. Hence, our view selection methods performed
well.

8 Conclusion

This paper presented a method for selection of the best view-
point for human actions. To determine better views we com-
pute a visibility score based on properties of the space-time
shape induced by the actor’s silhouettes. Additionally, we
learn the better views according to the performance of any
given action recognizer. Our experiments show that the pro-
posed approach can successfully estimate the action visibil-
ity provided by each camera. Such estimation can be used
for automatic selection of a single best view of one or more
actors. Furthermore, selecting the best view of the action
prior to the recognition improves the rates of the monocu-
lar action recognition method, together with speeding them
up (since we need to recognize only one view).
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