
Int J Comput Vis (2012) 97:123–147
DOI 10.1007/s11263-011-0474-7

Energy-Based Geometric Multi-model Fitting

Hossam Isack · Yuri Boykov

Received: 10 June 2010 / Accepted: 7 June 2011 / Published online: 12 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Geometric model fitting is a typical chicken-&-
egg problem: data points should be clustered based on ge-
ometric proximity to models whose unknown parameters
must be estimated at the same time. Most existing methods,
including generalizations of RANSAC, greedily search for
models with most inliers (within a threshold) ignoring over-
all classification of points. We formulate geometric multi-
model fitting as an optimal labeling problem with a global
energy function balancing geometric errors and regularity
of inlier clusters. Regularization based on spatial coherence
(on some near-neighbor graph) and/or label costs is NP hard.
Standard combinatorial algorithms with guaranteed approx-
imation bounds (e.g. α-expansion) can minimize such regu-
larization energies over a finite set of labels, but they are not
directly applicable to a continuum of labels, e.g. R2 in line
fitting. Our proposed approach (PEARL) combines model
sampling from data points as in RANSAC with iterative
re-estimation of inliers and models’ parameters based on a
global regularization functional. This technique efficiently
explores the continuum of labels in the context of energy
minimization. In practice, PEARL converges to a good qual-
ity local minimum of the energy automatically selecting a
small number of models that best explain the whole data set.
Our tests demonstrate that our energy-based approach sig-
nificantly improves the current state of the art in geometric
model fitting currently dominated by various greedy gener-
alizations of RANSAC.
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1 Introduction

We study a general case of geometric multi-model fitting
problem where data is a mixture of outliers with points sup-
porting unspecified number of models of some known type.1

The majority of existing algorithms treat inlier classifica-
tion and parameter estimation as isolated subproblems. Typ-
ically, each model is selected greedily by maximizing in-
liers within some fixed threshold. Popularized by RANSAC
(Fischler and Bolles 1981), this approach works well when
data supports a single model, but we argue that it is funda-
mentally flawed in multi-model cases, see Fig. 1.

RANSAC (Fischler and Bolles 1981) is a well-known
robust method for dealing with large number of outliers
when data supports only one model. The main idea is to gen-
erate a number of model proposals by randomly sampling
data points and then select the model with the largest set
of inliers (a.k.a. consensus set) with respect to some fixed
threshold. Many publications (Torr 1998; Vincent and La-
ganiere 2001; Zuliani et al. 2005) proposed various general-
izations of RANSAC for multi-model fitting. For example,
Torr (1998), Vincent and Laganiere (2001) run RANSAC
sequentially. Each iteration of these methods selects one
randomly sampled model maximizing either the number of
inliers or some similar threshold-based measure. Thereby
identified model’s inliers are removed from the set of data
points before the next iteration looks for the next model.
Other methods rely on different forms of greedy cluster-
ing, e.g. J-linkage (Toldo and Fusiello 2008), explicitly or

1For simplicity, we assume (parametric) models of the same type. This
is not essential.
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Fig. 1 (Color online) Blue dots are data points supporting 8 lines. In
multi-model cases, detecting models by maximizing the number of in-
liers may work for low levels of noise (a). Higher noise levels require
larger thresholds to detect inliers (b), but then, some random model
(red) may have far more inliers than the true model (green). The inte-
gers show the number of model inliers for selected thresholds. Simplis-

tic greedy selection of models with the largest number of inliers would
fail in (b). This example illustrates a general problem (see Figs. 7, 8, 9)
for many multi-model fitting approaches greedily selecting one model
at a time while ignoring the overall solution. It also motivates our
global energy approach optimizing the quality of the whole solution

implicitly maximizing the number of inliers within given
threshold. One can also apply Hough transform to formulate
multi-model fitting as a clustering problem in the space of
model parameters and use mean-shift (Comaniciu and Meer
2002) to identify the modes in this Hough space. It is easy to
see that this approach also greedily maximizes the number
of inliers.

We argue that, in general, greedy selection of one model
while ignoring the overall solution is a flawed approach to
multi-model cases. Figure 1 shows a simple example il-
lustrating the typical problem in the context of greedy in-
lier maximization: if the level of noise is increased, some
random model can have a larger number of inliers than
the true models. This also explains our results in Sect. 3
(Figs. 7, 8, 9) demonstrating that many existing greedy
methods work only on examples with low levels of noise
and clutter.

1.1 Towards Energy Optimization

This paper argues that geometric multi-model fitting is bet-
ter formulated as an optimization problem with a global en-
ergy functional describing the quality of the overall solution.
An energy function sets some specific “goodness” criterion
for different solutions and the sought optima can be seen
as “objectively” the best solution with respect to this cri-
terion. There are many problems in computer vision (e.g.
segmentation, optical flows, stereo) routinely solved as op-
timization problems. Yet, we know only relatively few ex-
amples in vision (Torr and Murray 1994; Torr 1998; Birch-
field and Tomasi 1999; Li 2007) where some specific geo-
metric multi-model fitting problems were approached using
an energy-based formulation. Perhaps, limitations of these
methods (see Sect. 1.2) explain why many researchers in

the community still prefer greedy heuristics. Our goal is a
general energy-based framework for geometric multi-model
fitting problems with efficient algorithms and wide applica-
bility in computer vision.

There are several limitations for using standard energy-
based methods for mixture models, such as EM or K-means,
in geometric multi-model fitting problems in vision. In gen-
eral, these methods may not be robust to outliers and noise.
They are only guaranteed to find a local minimum and are
known for sensitivity to initialization, e.g. see Torr (1998)
and a detailed discussion in Figueiredo and Jain (2002)
(Sect. 3.2). Models should be represented as probability dis-
tributions in EM, which is not always straightforward in ge-
ometric problems in vision. The standard versions of EM
and K-means do not address spatial regularity explicitly.
There are extensions of EM regularizing the number of mod-
els, e.g. using Dirichlet prior (Bishop 2006). In the context
of Gaussian mixture models (GMM), Figueiredo and Jain
(2002) combine Dirichlet sparsity prior with a large num-
ber of initial proposals, which is shown to better avoid local
minima. In practice, the algorithm in Figueiredo and Jain
(2002) changes the energy functional when removing each
redundant weak model. To achieve sufficiently strong model
pruning effect, one should also use improper negative values
of Dirichlet distribution parameter, see Figueiredo and Jain
(2002) and Delong et al. (2011) (Fig. 12). Both K-means and
EM are more common in problems with a fixed number of
models. For example, EM framework in MLESAC (Torr and
Zisserman 2000) is fixed to 2 models (inliers/outliers), and
the method in Gruber and Weiss (2006) estimates a known
number of motions in cases with relatively low noise.2 Soft

2From personal communications with A. Gruber.
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Fig. 2 (Color online) Motivating spatial regularization in geometric
model fitting. In many vision problems combining geometric errors and
spatial coherence terms in energy (3) can be justified generatively be-
cause clusters of inliers are generated by regular objects (a). More over,
spatial regularization can also be justified discriminatively. Plot (b)

shows an average deviation from the ground truth for optimal models
obtained in 100 randomly generated line-fitting tests as in Fig. 4d. Each
point in this plot corresponds to some fixed smoothness parameter λ

in (3). Clearly, spatial coherence term significantly reduces estimation
errors for some λ > 0

assignment of inliers is an advantage of EM algorithm in
solving general mixture problems (e.g. GMM) where mod-
els can spatially overlap, but this may not be useful in geo-
metric problems in vision where models typically have dis-
tinct spacial support, see Fig. 2a. Standard K-means is also
known to have a bias towards equally dividing the points
among the models, see Delong et al. (2011) (Fig. 9).

In order to motivate our general approach, we first
demonstrate some energy-based interpretation of the basic
RANSAC algorithm (Fischler and Bolles 1981). This inter-
pretation is limited to a simple case when data supports only
one model (e.g. one line). The main goal of RANSAC is to
find parameters L of the model with the largest number of
inliers within some threshold T . This can be represented as
minimization of energy

E(L) =
∑

p

‖p − L‖

where

‖p − L‖ =
{

0 if dist(p,L) < T

1 otherwise

and dist(p,L) is Euclidean distance between data point p

and the nearest point on model L. In this paper ‖p − L‖
will generally denote an arbitrary error measure for point p

and geometric model L. RANSAC’s energy E(L) counts
inliers for L using 0–1 measure ‖p − L‖ above. Note
that the standard RANSAC algorithm is a heuristic for
maximizing the number of inliers, but in some cases it is
possible to find the global optimum (Olsson et al. 2008;
Zrour et al. 2011). Standard RANSAC also includes an ad-
ditional step refining model parameters L by minimizing
the sum of squared errors for inliers. Thus, a more princi-
pled optimization-based formulation of RANSAC leads to

MSAC energy (Torr and Zisserman 2000) using truncated
Euclidean errors

‖p − L‖ =
{

dist2(p,L) if dist2(p,L) < T

T otherwise.

Note that RANSAC or MSAC optimize E(L) only over
model parameters L and inliers are identified implicitly from
threshold T in the corresponding error measures ‖p − L‖.

Now assume that data supports multiple models. If the
number of models is known (say K) it could be possible
to formulate geometric model-fitting as optimization of en-
ergy E(L1,L2, . . . ,LK) over K model parameters. As in
the earlier example with a single model, this approach needs
some implicit assignment of inliers to models. In multi-
model case, however, this could be non-trivial. As shown
in Fig. 3b, simple thresholding may assign a point to sev-
eral models. Interestingly, the EM framework for mixture
models (Bishop 2006; Torr and Zisserman 2000; Gruber and
Weiss 2006) corresponds to energy E(L1,L2, . . . ,LK). EM
uses implicit “soft” classification of inliers computed in an
intermediate optimization step. Even though the standard
version of EM algorithm needs the number of models to be
known, there are many generalizations of EM that could be
worth studying in the context of geometric applications in
vision. However, we prefer to focus on a fairly different en-
ergy formulation based on explicit “hard” classification of
inliers. As shown in Fig. 2a, in many problems in computer
vision geometric models have non-overlapping spatial sup-
port, which better corresponds to hard assignment of inliers.

We formulate geometric multi-model fitting as an optimal
labeling problem. Consider the general case when the data
supports some unknown number of models. In principle, in
this case each data point p can have a separate model Lp .
Model fitting could be formulated as minimization of energy
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Fig. 3 (Color online) Examples
of inlier classification from
thresholding. If data is known to
support one model (a) then
thresholding identifies inliers
(blue) for any model without
ambiguity. In case of 3 models
(b), simple thresholding may
not disambiguate inliers (red)
between the models

E(L) over labeling L = {Lp|p ∈ P } of points in data set P .
Since labeling L explicitly assigns models to data points,
inliers support {p|Lp = L} for any specific model L does
not have to be implicitly deduced from some threshold.

If the goal is only to minimize the fitting errors, as in our
one-model example, then

E(L) =
∑

p

‖p − Lp‖. (1)

where ‖p − L‖ could be an arbitrary error measure. Obvi-
ously, this functional would not work well as the globally
optimal solution will independently fit some model Lp to
each point p. This corresponds to overfitting: every point is
assigned some perfectly fit model and there are no outliers.
It is clear that model fitting errors (1) must be combined
with some energy term regularizing the labeling. One spe-
cial “outlier” label could be added as well.

One form of regularization for (1) could be to fix the
number of allowed distinct models/labels. Then, energy (1)
corresponds to the standard K-means algorithm. This ap-
proach, however, does not work if the exact number of mod-
els is not known a priori. Recently, Li (2007) proposed a soft
form of regularization for the number of models by combin-
ing geometric errors with the label count penalty

E(L) =
∑

p

‖p − Lp‖ + β · |LL| (2)

where LL is the set of distinct models (labels) assigned to
points by labeling L. Ten years earlier Torr (1998) suggested
even more general form of such regularization where each
distinct model (label) gets a penalty defined by the model’s
complexity instead of some fixed constant β . This approach
allows to fit models of different types. In general, geomet-
ric model-fitting using energies like (2) is a very interesting
idea, but specific algorithms for minimizing such energies
proposed in Torr (1998) and Li (2007) are fairly limited, see
Sect. 1.2. We also argue that spatial regularity of inliers is
required in many typical vision problems, see Fig. 2a.

This paper proposes two specific general forms of regu-
larization in the context of geometric model fitting. In par-
ticular, we consider spatial regularization (3)

E(L) =
∑

p

‖p − Lp‖ + λ ·
∑

(p,q)∈N
wpq · δ(Lp �= Lq),

where N is some neighborhood (e.g. edges on some near-
neighbor graph), and a more general combination of spatial
smoothness with label counts (5)

E(L) =
∑

p

‖p − Lp‖

+ λ ·
∑

(p,q)∈N
wpq · δ(Lp �= Lq) + β · |LL|.

While spatial regularization is very common in vision in
general, it is not common in geometric model fitting. In part,
this could be explained by the fact that spatial coherence is
hard to justify generatively in applications where data points
are i.i.d. samples. But in computer vision, see Fig. 2a, one
can defend generative models of spatial regularity. Figure 2b
also suggests that spatial regularization may work discrimi-
natively even for i.i.d. data.3

Summary of contributions This work demonstrates signif-
icance of efficient combinatorial optimization methods for
a wide range of geometric applications in computer vi-
sion. Surprisingly, such methods are overlooked in geomet-
ric model fitting, even though they are very common in seg-
mentation, dense stereo, optical flows, and other problems.
We believe that we contribute a new approach and signifi-
cant algorithmic ideas specific to general geometric multi-
model fitting. We see our two main contributions as follows:

• We propose a general practical energy-based framework
for geometric model fitting particularly suitable for a wide
range of applications in vision. To the best of our knowl-
edge, energies (3) and (5) were not used for general geo-
metric model fitting problems in the past. We demonstrate
conceptual advantages and significant practical improve-
ments over the state-of-the-art methods on a large number
of generic applications in vision (line/plane fitting, ho-
mography estimation, rigid motion detection). In partic-
ular, we argue against typical greedy heuristics currently

3One can not expect spatial regularization to work well for i.i.d. data,
in general. Line fitting examples in Sect. 2 are a special case where it
does work for i.i.d. points. We use these line fitting examples only to
illustrate the basic operations of our algorithm. The primary target of
our model fitting approach are applications in vision (Sect. 3) where
spatial coherence is well-founded.
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dominating in geometric model fitting and hope that our
work would encourage a wider use of energy optimization
methods well-known in other areas of computer vision.

• Energies (3) and (5) can be addressed by existing pow-
erful combinatorial optimization techniques with guar-
anteed optimality bounds (e.g. α-expansion Boykov et
al. 2001) only in cases of finite set of labels. This lim-
its their use for geometric model fitting where the space
of model parameters is a continuum, e.g. R2 in line fit-
ting. We propose a practical method (PEARL) for effi-
ciently exploring the continuum of labels (model param-
eters) in the context of energy-based geometric model fit-
ting. PEARL may also be juxtaposed with the contribu-
tion in Figueiredo and Jain (2002) where a multitude of
initial proposals combined with a sparsity prior are shown
to reduce sensitivity of EM to local minima. Likewise,
we show that combining a large number of initial random
proposals with combinatorial algorithms produces robust
solutions for our discrete model fitting functionals.

Our general approach alleviates dependence of many pre-
vious geometric model fitting methods on thresholding. The
proposed methods for optimizing energies (3) and (5) work
quite differently from greedy selection of models with the
largest number of inliers. Our approach is robust to high lev-
els of noise and clutter. It automatically computes on opti-
mal set of labels/models with a good fit to data points.

In order to apply standard discrete optimization algo-
rithms to energies (3) and (5), we generate a large number
of proposed labels (models) by sampling data points as in
RANSAC. The goal of this step is to prune the search space
(the continuum) of model parameters. As in RANSAC, the
number of sampled models should be sufficiently large to
guarantee with some level of confidence that at least one
sample was generated from inliers for each true model. Such
finite pool of labels is likely to contain good model candi-
dates. However, in contrast to RANSAC-style methods we
rely on optimization of a global energy functional to select
some small subset of models from this large (but finite) pool
of proposals. Exploration of the continuum of labels (model
parameters) is further significantly improved by iterating in-
lier segmentation for a finite set of labels and re-estimation
of these labels (model parameters) from their inliers. Both
steps minimize the same energy E(L) and correspond to a
coordinate descent converging to a local minimum of the
energy. Such iterative refinement of model parameters and
inlier classification allows to generate better solutions from
a smaller set of initial samples even in single model fitting,
see Fig. 6.

1.2 Related Work

Our work proposes, justifies, and validates a wide class of
regularization energies and a powerful iterative optimization

technique as a general framework for geometric multi-model
fitting particularly suitable in vision. Other geometric model
fitting works have used separate elements of our approach
such as RANSAC-style random sampling (Torr 1998; Li
2007) or EM-style iterations (Birchfield and Tomasi 1999),
but none have combined them in a single optimization
framework. We also use a more general form of regular-
ization (5) than any earlier geometric fitting methods. Our
experiments show that our general energy-based approach
works better than many state-of-the-art algorithms in this
area. In other settings (segmentation, stereo) some elements
of our framework have been used in various application-
specific ways (Zhu and Yuille 1996; Birchfield and Tomasi
1999; Rother et al. 2004; Zabih and Kolmogorov 2004).

Probably the earliest efforts to formulate an energy-based
framework for geometric model fitting in vision is due to
Torr and Murray (1994). They optimize a likelihood func-
tion over binary indicator variables associated with a mul-
titude of proposed models under the uniqueness constraint:
each data point could be an inlier for at most one model. The
corresponding integer programming problem is solved with
a generic branch-and-bound solver.

Another early paper by Torr (1998) carefully justifies a
version of model-fitting energy like (2) from an information
criterion. The specific optimization technique used in Torr
(1998) was EM initialized by a few models selected via se-
quential RANSAC.4 As pointed out in Torr (1998), the so-
lution generated by EM strongly depends on the quality of
the initial models. Figures 1 and 9 show that greedy proce-
dures like sequential RANSAC may be non-robust.

Variants of sequential RANSAC are also commonly
used as a preprocessing step for dense MRF-based seg-
mentation of image pixels with geometric labels. For ex-
ample, Wills et al. (2003) address the problem of finding
large constant motions in optical flow imagery as follows.
First, they use an extension of sequential RANSAC to de-
tect a few rigid motions from pairs of matched discrete fea-
tures. Then, they assign image pixels to these motion layers
based on color consistency and Potts regularization using α-
expansion algorithm (Boykov et al. 2001).

Some related MRF-based formulations used convergent
iterative re-estimation of geometric models. Birchfield and
Tomasi (1999) estimate affine geometric models in a way
specific to dense narrow base-line stereo. They combine
photoconsistency of pixels with spatial regularization on a
grid. Unlike Wills et al. (2003), their initial geometric mod-
els are estimated from a disparity map generated by another
stereo algorithm. The most noticeable overlap of our ap-
proach and Birchfield and Tomasi (1999) is iterative use of
α-expansion and model re-estimation steps. After Birchfield

4The actual term was introduced in Vincent and Laganiere (2001) a few
years later.
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and Tomasi (1999) and Rother et al. (2004) such EM-style
optimization became fairly common for different problems
in vision. In contrast to Birchfield and Tomasi (1999), how-
ever, our framework is suitable for a significantly more gen-
eral set of geometric problems. For example, instead of pho-
toconsistency we optimize geometric errors and combine
them with more general forms of regularization, e.g. (5).
Our method is more concerned with fitting to sparse data.
Finally, we do not need to run other algorithms to initialize.
Our experiments in Sect. 3.1 show noticeable improvement
of accuracy on examples from Birchfield and Tomasi (1999).

Zabih and Kolmogorov (2004) also use iterative opti-
mization as in Birchfield and Tomasi (1999), and Rother
et al. (2004) specifically in the context of image segmen-
tation. They use standard spatial regularization like in (3)
to cluster image pixels into spatially coherent segments
with automatically estimated color models. The color mod-
els are initialized in an application specific way. In con-
trast, we work with a very different problem of geomet-
ric model fitting studying more general label cost func-
tional (5). In fact, our recent work (Delong et al. 2011)
with additional coauthors shows that energy (5) may signif-
icantly improve image segmentation results. Minimum de-
scription length (MDL) interpretation of (5) is well-known
in segmentation literature for some time (Leclerc 1989;
Zhu and Yuille 1996).

Schindler and Suter (2006) proposed a related optimiza-
tion method for geometric model fitting based on an approx-
imation of label cost functional (2) without spatial regular-
ity term. Like in our work, the goal in Schindler and Suter
(2006) is to detect geometric models using some global en-
ergy optimization instead of greedy heuristics like sequen-
tial RANSAC. They formulate a quadratic pseudo-boolean
optimization (QPBO) problem over indicator variables de-
fined for models proposed from data. These binary variables
are similar to those in Torr and Murray (1994). However,
instead of enforcing the exact uniqueness constraint (Torr
and Murray 1994) (see above), the energy formulation in
Schindler and Suter (2006) makes an assumption that each
data point is an inlier for no more than 2 proposed models.
This strong assumption requires a pre-processing data anal-
ysis step that prunes the set of initially sampled models leav-
ing only a relatively small set of good candidates. The actual
optimization over binary indicator variables for such candi-
date models is performed using standard Taboo-search al-
gorithm. Iterative re-estimation of model parameters seems
impossible is this framework because assignment of models
to data points is done implicitly.

The paper by Li (2007) is probably the most closely re-
lated prior work. Similar to Torr (1998), Schindler and Suter
(2006), it formulates general geometric model fitting func-
tional (2) and studies it in the context of rigid motion esti-
mation, which we also consider as one of the applications

in Sect. 3.3. Instead of the greedy approach of Torr (1998),
Li (2007) uses LP relaxation of (2). This could be slow.
To speed up the method, Li (2007) uses several applica-
tion specific heuristics to significantly prune the set of pro-
posed models. More importantly, Li (2007) does not guar-
antee any optimality of the discrete solution obtained after
rounding and the quality of such optimization could be an is-
sue. These problems do not allow (Li 2007) to use EM-style
iterative optimization that, in our experience, can signifi-
cantly improve model fitting results. A better optimization
of energy (2) with some optimality guarantees is discussed
in Delong et al. (2011).

In this paper, we argue that (5) is generally a better energy
for geometric model fitting problems in vision. We found
that per-label regularization term proposed in Torr (1998),
Li (2007) is a practically useful addition to standard spatial
regularization (3). Figure 10 shows one illustrative exam-
ple where penalty for using each distinct label encourages
the merging of isolated clusters supporting nearly identi-
cal models. Similarly, the results on real motion detection
sequences in Fig. 21 fail to merge spatially isolated back-
ground clusters into one motion if label counts are not a
part of the energy. To optimize the third term in energy (5)
one can use a simple and fast merging step in combination
with standard α-expansion optimizing the first two terms in
the energy. This merging heuristic is discussed at the end
of Sect. 2. Alternatively, Delong et al. (2011) provides an
extension of α-expansion algorithm that automatically ac-
counts for the third term in (5) incorporating it into each ex-
pansion step as a high-order clique. The technical details of
such extension is a subject of Delong et al. (2011). The main
focus of this paper is to demonstrate that a general algorith-
mically solid optimization approach to geometric model fit-
ting with either (3) or (5) is a significantly better alternative
to greedy generalizations of RANSAC-style thresholding
currently dominant in geometric problems in vision.

The structure of our paper Section 2 presents our general
method for fitting multiple models to sparse data points. For
simplicity, most of the details are explained in the context of
energy (3). Energy (5) is introduced in the end of the sec-
tion. Section 3 provides evaluation on real data in narrow-
base stereo, wide-base stereo/reconstruction, and rigid mo-
tion estimation.

2 Our Approach (PEARL)

This section described our algorithm for geometric model
fitting in detail. For simplicity, the main ideas are illustrated
in the context of synthetic multi-line fitting examples. Sec-
tion 3 validates our approach for estimating affine transfor-
mations, homographies, and rigid motion models in the con-
text of computer vision.
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We use regularization labeling framework to assign mod-
els to data points. Regularization energy can combine geo-
metric fit errors with spatial smoothness term (3) and a label
count penalty (5). As long as the number of labels is finite
(≤10000 or so), such approach can be handled by graph-
based optimization methods, e.g. α-expansion (Boykov et
al. 2001; Delong et al. 2011). In our case the labels are mod-
els described by n real-valued parameters. Therefore, we
should find a practical way to restrict the huge search space
of labels Rn. The first step is to propose a finite set of plau-
sible models (labels). In the next step each label is expanded
to estimate its spatial support, or to classify inliers. Once the
inliers are fixed, the models (labels) can be re-estimated by
minimizing the geometric errors—the first term in our en-
ergy functionals. As both expand and re-estimate are guar-
anteed to decrease the energy, one can converge to a local
minimum by iterating over these two steps. One can also
iterate propose steps either by further sampling the data
points, or by generating some new proposed labels (models)
from the currently supported models, e.g. by merging them.
Below we provide more details about our model-fitting algo-
rithm in the context of energy (3). Most of them also apply
to energy (5) introduced in the end of the section.

2.1 Propose Initial Labels L0

First, our method uses random sampling of data points to
propose an initial finite set of models L0 ⊂ Rn, where n

is the number of parameters describing each model (n = 2
for lines and n = 6 for affine models). The idea of gener-
ating models by sampling the data points is borrowed from
RANSAC (Fischler and Bolles 1981). The required number
of initial models |L0| is one of the parameters of RANSAC-
based methods. It depends on the number of data points,
the number of outliers, the number of estimated models, the
minimum number of points requited to estimate each model,
and on desired level of confidence. The exact analysis for
the case of estimating a single model is given in Fischler
and Bolles (1981). Its adaptation to multi-model case is in
Vincent and Laganiere (2001), Zuliani et al. (2005). The
number of initial models |L0| for PEARL is analyzed in
Isack (2009) (see one example in Sect. 3.3.1). Our experi-
ments suggest that in practice PEARL often needs far fewer
samples than the theoretical estimate due to converging iter-
ations that significantly improve probability of an accurate
model reconstruction from rough initial guesses.

2.2 Energy Formulation

Once initial finite set of proposed models L0 ⊂ Rn is known
(see Fig. 4(a)), we can expand the models to estimate their
spatial support. We use MRF-based regularization frame-
work and α-expansion optimization (Boykov et al. 2001) to

assign models to data points. The set of current models in
L0 is interpreted as a set of current labels. Assume that P

is a set of data points and that Lp ∈ Rn is a label (model)
assigned to a given data point p ∈ P . Then, PEARL method
estimates models and their spatial support (inliers) by opti-
mizing the following energy of labeling L = {Lp|p ∈ P }

E(L) =
∑

p

‖p − Lp‖ + λ ·
∑

(p,q)∈N
wpq · δ(Lp �= Lq). (3)

The first term ‖p − L‖ in (3) measures geometric error
between point p and model L. For example, the line fit-
ting examples in this section use “perpendicular distance”
between 2D point p = (x, y) and line L = (a, b)5

‖p − L‖ =
( |y − ax − b|√

a2 + 1

)2

which is the distance from p to the nearest point on
line L. Robust (truncated) measures are also possible. Term
‖p − L‖ corresponds to the log-likelihood ln Pr(p|L) when
energy (3) is interpreted as an MRF-based posterior energy.
Thus, the use of quadratic distance for ‖p − L‖ is equiv-
alent to assuming Gaussian distribution for errors. Clearly,
optimal labeling L for (3) depends on specific choice of ge-
ometric measure ‖p − L‖.

The second term of energy (3) is a smoothness prior.
It assumes some specific neighborhood system N for the
data points. For example, the neighborhood system could be
based on a triangulation of points, see Fig. 5. In this paper
we use the Potts model, e.g. Boykov et al. (2001), where
δ(·) is 1 if the specified condition inside parenthesis holds,
and 0 otherwise. Weights wpq set discontinuity penalties for
each pair of “neighboring” data points. For example, the
synthetic line fitting examples in this section use weights
wpq inversely proportional to the distance between points p

and q because closer points are a priori more likely to fit the
same model

wpq = exp−‖p − q‖2

ς2
.

In all of our synthetic line experiments ς was constant and
it was chosen heuristically to be 5. Examples in Sect. 3 use
constant weights wpq = 1. Besides Potts (piece-wise con-
stant) prior, one can also consider piece-wise smooth priors.
Such priors would allow small variation of model parame-
ters between data points.

5E.g. points (x, y) on line L = (a, b) satisfy y = ax + b. Note that this
basic representation of lines does not cover vertical lines. Alternatively,
one can use 2 polar parameters, or 3 homogeneous parameters.
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Fig. 4 (Color online)
Illustration of PEARL’s
iterations. (a) Proposals
generated by random sampling,
(b)–(d) re-estimation of models
and their inliers after several
iterations of expand and
re-estimate steps for energy (3)
or (5). Note that the algorithm
may converge to good models
even from a small set of rough
guesses. In this example we did
not use an outlier label, see
Sect. 2.3, and an optimal set of
lines in (d) “explains” all data
points

Fig. 5 (Color online) We use
Delaunay triangulations of data
points. K-nearest points or other
techniques can be used as well,
particularly for higher
dimensional data. We did not
observe much difference in
practical performance

2.3 Outliers

In the context of multi-model fitting the term outlier may be-
come somewhat philosophical. For example, Fig. 4(d) shows
an optimal solution with respect to energy (3) where a small
set of lines explains all data points. In this case the word
“outlier” is subject to an interpretation. In particular, one
could use any specific “outlier criterion” to classify weak
models, e.g. those with sufficiently small number of inliers.

In this paper we mostly use a different approach com-
mon in MRF-based literature. We introduce a special “out-
lier model” and the corresponding label ∅ which is always
present in the pool of labels when minimizing energy (3)
or (5). Any point p assigned this label is considered an
outlier in this paper.6 In contrast to real geometric mod-

6Some alternative ways to define outliers in our general energy-based
framework are discussed in Isack (2009).
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els, label ∅ has constant fidelity measure ‖p − ∅‖ = γ for
all points p ∈ P . Intuitively, the outlier label corresponds to
a “uniform” model. Typical weak models incur regulariza-
tion penalties (smoothness and label costs) while explaining
only a few points. Thus, outlier label is often optimal for
points that otherwise would be assigned some weak model.
For example, compare the optimization results in Fig. 4(d)
obtained without the explicit outlier label and the results in
Figs. 7, 8 9(f) where ∅ was added into the pool of labels
when minimizing energy (3).

2.4 Expand and Re-estimate Labels

Energy (3) can be minimized using α-expansion algorithm
(Boykov et al. 2001) for labels α ∈ L0. In this case, it is
possible to interpret α-expansions as a competition among
model-labels for spatial support; models with the best-fit to
data points find the largest number of spatially coherent “in-
liers”, while most of the “erroneous” models get no inliers.

Once inliers are computed, model labels in L0 ⊂ Rn with
non-empty set of inliers can be re-estimated as follows. Note
that the first term of energy (3) can be represented as
∑

p

‖p − Lp‖ =
∑

L∈L0

∑

p∈P(L)

‖p − L‖

where P(L) = {p ∈ P |Lp = L} denotes a set of inliers for
label L. Clearly, we can minimize this expression by re-
estimating parameters of each model L ∈ L0

L̂ = arg min
l

∑

p∈P(L)

‖p − l‖. (4)

We replace each label L with non-empty support P(L) by
label L̂ ∈ Rn which has a better fit to points in P(L). Fi-
nally, after discarding all labels with no inliers, we obtain a
new set of labels L1. Note that this operation does not affect
the second (smoothness) term in (3) unless two labels L,L′
become equal after re-estimation L̂ = L̂′ (in this case, the
smoothness energy also decreases). Clearly, the described
operation of changing the set of labels

L0 → L1

can only decrease the energy (3).
There are many known methods for optimizing the sum

of geometric errors ‖p − L‖ in (4). Optimization method
may depend on specific choice of measure ‖p − L‖. For ex-
ample, the minimum sum of squares of orthogonal errors in
our lines-fitting examples could be obtained using a standard
closed formula. A large number of other examples of geo-
metric or algebraic error measures ‖p−L‖ and different nu-
merical methods for optimizing them are widely discussed
in the computer vision literature, e.g. see Hartley and Zis-
serman (2003). Our approach can incorporate many of these
error functions ‖p − L‖.

Figure 4(b) visualizes clusters of inliers and re-estimated
models L1 obtained in two separate steps described above:
expand (inlier classification) and reestimate (model param-
eters). In some cases it could be useful to iterate the propose
step as well. For example, new labels can be generated by
merging or splitting clusters of inliers. One interesting ex-
ample of “merging” is described in the context of example
in Fig. 10 in the end of this section.

2.5 Algorithm and Its Properties

Both expansion (inlier classification) and reestimation steps
decrease energy (3). Thus, we can iterate over these steps
until convergence, see Fig. 4(b–d). We can stop the itera-
tions when a new round of α-expansion does not change
inliers. As soon as the spatial support of the current mod-
els (labels) stops changing, re-estimation of the models (4)
can not improve geometric error term. It is clear that this
iterative algorithm converges to a local minimum. PEARL
algorithm (Propose Expand and Re-estimate Labels) is sum-
marized here:

(1) Propose:

• at initialization, set i = 0, randomly sample data to
get L0, may add label ∅ (Sect. 2.3)

• *(optional for i > 0) sample more or merge/split cur-
rent models in Li

(2) Expand:

• run α-expansion (Boykov et al. 2001) for energy (3)
or (5)7 and for α ∈ Li

• if the energy does not decrease, stop

(3) Re-estimate Labels:

• solve (4) and obtain a new set of labels Li+1

• set i = (i + 1), go to step 2 (or optional to *).

Figure 6 gives idea on how the accuracy of estimated
models depends on the number of initial randomly sam-
pled proposals |L0|. For simplicity, we generated synthetic
data supporting only one line. This also allows to juxta-
pose PEARL with standard RANSAC. Both methods used
the same initial set L0 of randomly sampled model pro-
posals. RANSAC basically selected the best model in L0

with the largest number of inliers w.r.t. some fixed thresh-
old. It was easy to tune energy (3) so that an optimal
data labeling is binary with the following two labels: one
line label and outlier label ∅. Depending on initialization,
PEARL’s iterative expand and re-estimate steps (illustrated
in Fig. 4) would converge to different local minima. Nor-
mally, larger set of initial random proposals L0 leads to

7In case of energy (5) one can use an extra merging operation or an
extension of α-expansion (Delong et al. 2011).
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Fig. 6 (Color online) PEARL vs RANSAC for synthetic data sets
with 80% uniformly distributed outliers and 20% noisy inliers sup-
porting one line model. In each test both methods used the same initial
set L0 of randomly sampled model proposals. X-axis is the number
of initial models |L0|. Y -axis shows estimation errors w.r.t. parame-
ters of the ground truth line model. The errors are averaged over 400
randomly generated tests. RANSAC basically selects the best model
from the initial set of proposals L0. By iteratively minimizing global
energy (3) PEARL can converge to a much better model than those in
the initial set L0. In contrast, standard RANSAC strongly relies on a
larger number of initial samples to find accurate estimates

better solutions. Particularly for small |L0| PEARL may
output 2 line models, in which case we reported the error
for the model with the largest support. In general, Fig. 6
shows that by minimizing energy (3) PEARL can output
a line significantly better than the best line in L0. In con-
trast, RANSAC strongly relies on a larger number of ini-
tial samples to find accurate estimates. Some generaliza-
tions of RANSAC explicitly improve the initial propos-
als, e.g. by re-sampling the inliers of the strongest initial
models (Chum et al. 2003). Similarly to RANSAC, their
generalization to multi-model problems could be problem-
atic.

Figures 7, 8, 9 compare PEARL to existing geometric
multi-model fitting methods (Zuliani et al. 2005; Toldo and
Fusiello 2008) and mean-shift (Comaniciu and Meer 2002)
which were discussed in the introduction. The synthetic
multi-line examples were generated using different levels
of Gaussian noise and different number of uniformly dis-
tributed outliers. The previous methods were tuned to get
the best results for each specific level of noise and clut-
ter. To demonstrate robustness of PEARL, in each test we
tuned only one parameter σ in the geometric error measure
‖p − L‖ = − lnGσ (p − L) where Gσ (·) is a Gaussian dis-
tribution function and p − L is the distance from point p to
line L. Note that PEARL obtains very similar results when
parameter σ is automatically estimated as described in the
context of example in Fig. 11.

For PEARL and multi-RANSAC the data points were
uniformly sampled while for J-linkage and mean-shift we
used distance-based sampling which helps J-linkage and
mean-shift algorithms. Sampling closer points increases the
probability that the sampled model is closer to one of the
peaks in the Hough transform.

Mean-shift and J-linkage have no constraints on the
number of models they generate. Figures 7, 8, 9 show
their strongest 7 models. Multi-RANSAC had to be given
the exact number of models. Compared to mean-shift and
J-linkage, PEARL finds a very small number of models giv-
ing with the optimal fit to the data. But, in addition to cor-
rectly identified true models, it can “hallucinate” a few mod-
els among outliers (as in Fig. 4d). Such weak models can be
automatically filtered out by setting a very conservative limit
on the minimum number of inliers.

The results for standard methods in Figs. 7, 8, 9 are
consistent with our earlier observations in Fig. 1: common
greedy heuristics selecting one model with a large score
(e.g. number of inliers) independently from the overall so-
lution could be problematic in multi-model problems. As il-
lustrated in Fig. 1, random models may have higher scores
(more inliers) than the true ones. This explains why many
standard methods work relatively well only for the low noise
example in Fig. 7.

As we discussed in the introduction, coherence between
inliers is often a good assumption particularly for problems
in vision. Figure 10 shows one typical example where this
assumption could be violated. Clearly, one of the intersect-
ing lines cannot be assigned spatially connected group of
inliers. More over, optimal solution for energy (3) can not
merge two models with very similar parameters if their in-
liers are spatially separated (Fig. 10b). However, a simple
postprocessing after each expansion step can merge sep-
arated groups of inliers with similar models (Fig. 10c) if
the “average” optimal model increases the sum of geomet-
ric errors by no more than some predefined threshold β .
In fact, this merging operation can be seen as an optimiza-
tion step if the energy function gets an additional term pe-
nalizing the number of models/labels with non empty sup-
port |LL|
E(L) =

∑

p

‖p − Lp‖

+ λ ·
∑

(p,q)∈N
wpq · δ(Lp �= Lq) + β · |LL|. (5)

Similar merging operations were also used in Zhu and
Yuille (1996) for a continuous version of this label cost
energy. Instead of the proposed merging heuristic, en-
ergy (5) can be also minimized using an extension of
α-expansion algorithm (Delong et al. 2011). Note that ideas
in Torr (1998) allow to generalize the label costs in en-
ergy (5) in order to work with models of different com-
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Fig. 7 (Color online)
Comparing the results for fitting
lines to noisy data points. The
data points were perturbed with
a low level of Gaussian noise
(σ = 0.01) and 200 random
outliers were added. Outliers
represent 25% of the data

plexities. This extension of our optimization framework

is straightforward and left as a simple exercise for the

reader.

Figure 11 demonstrates another interesting feature of our

optimization approach. Unlike many previous multi-model

fitting methods (Vincent and Laganiere 2001; Zuliani et al.

2005) using fixed thresholds, PEARL can identify multiple

models with different levels of noise. For example, this can

be achieved as follows. Assuming that geometric errors for

inliers correspond to Gaussian noise, one can set geometric

error penalty ‖p − Lp‖ according to the negative logarithm

of the normal distribution function

‖p − Lp‖ = − lnGσ (p − Lp)

where p − Lp is the distance from p to the assigned model
Lp . Here one assumes some known σ parameter corre-
sponding to the distribution’s variance. If models come with
unknown different levels of noise, one can estimate extended
labels L̃p = {Lp,σp} combining geometric model parame-
ters Lp with the corresponding unknown noise-level σp . In
this case one can use error measure

‖p − L̃p‖ = − lnGσp(p − Lp). (6)
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Fig. 8 (Color online)
Comparing the results for fitting
lines to noisy data points. The
data points were perturbed with
medium Gaussian noise
(σ = 0.02) and included 300
random outliers. Outliers
represent 35% of the data

Figure 11 shows that this approach can correctly estimate
both geometric and statistical noise-level parameters for
each model.

3 Experimental Results

This section validates our model fitting technique (PEARL)
on multi-view reconstruction data sets supporting multi-
ple models. Our experiments used affine models (Sect. 3.1)
and homographies (Sect. 3.2). Data points were obtained
by matching SIFT (Lowe 2004) features on rectified image

pairs in narrow-based stereo, and on uncalibrated wide-base
pairs.

3.1 Estimating Multiple Affine Models

In this section we apply PEARL to estimate affine transfor-
mation in the context of rectified narrow-base stereo. We use
SIFT (Lowe 2004) features as points of interest, since they
are scale and rotation invariant. They are also partially in-
variant to illumination and 3D camera view point changes.
Matches between pairs of points in two images are found
using exhaustive search along the corresponding scan line.
In principle, it is possible to replace exhaustive search with
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Fig. 9 (Color online)
Comparing the results for fitting
lines to noisy data points. The
data points were perturbed with
high Gaussian noise
(σ = 0.025) and 500 random
outliers were added. Outliers
represent 45% of the data

“smarter” methods as in Beis and Lowe (1997), Muja and
Lowe (2009).

We will use the notation (xl, yl), (xr , yr ) to describe the
coordinates of the image feature on the left image pl and
right image pr . The symbol p denotes a pair of matching
points (xl, yl, xr , yr ). Restricting the search for matching
pairs to the corresponding epipolar lines8 corresponds to im-
posing an additional constraint |yl − yr | < ε for some small
threshold ε.

8These are scan lines for rectified stereo images.

A planar homography has only three degrees of freedom
for rectified images. In this case the epipole e = [1 0 0]T is
at infinity and the fundamental matrix can be written as

F = [e]x =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠

where [e]x describes the skew-symmetric matrix of the
vector e. Following Faugeras and Luong (2004), a pla-
nar homography satisfies the following constraint HT F +
FT H = 0. Then, it can be shown that any planar homogra-
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Fig. 10 (Color online) Intersecting lines example. Optimization of en-
ergy (3) may leave spatially isolated groups of inliers assigned to 2
models even if their parameters are infinitesimally close (b). Per-label
costs in energy (5) solves this problem (c) but requires either an ad-
ditional merging operation or an extension of α-expansion (Delong et

al. 2011). This example may also suggest EM-style soft assignments
of labels to points near the intersection. However, in vision (Sect. 3)
we get occlusions (not intersections), which better motivate our “hard”
assignments of labels

Fig. 11 (Color online) Fitting
lines with different noise levels.
The inliers in (a) were generated
with different levels of Gaussian
noise. 40% of the data are
outliers. In (b) PEARL
estimated labels combining
geometric model parameters
with unknown noise variances
using error measure (6).
Previous multi-model fitting
methods use fixed thresholds to
identify inliers, which would not
work in this case

phy H for a rectified stereo pair is an affine transformation

A =
⎛

⎝
a b c

0 1 0
0 0 1

⎞

⎠

with 3 degrees of freedom corresponding to parameters a, b,
and c. This transformation can be uniquely identified from
three matching pairs. We first generate a finite set of initial
model proposals A0 by randomly sampling three pairs of
matching points and by computing parameters a, b, c for
the corresponding models.

One simplistic way to measure geometric error between
matching pair p = (xl, yl, xr , yr) and model A is a non-
symmetric (left) transfer error from pl = (xl, yl) to pr =
(xr , yr )

‖p − A‖ = |A · pl − pr |2 = 
2
x (7)

where


x = (axl + byl + c − xr)

is a horizontal shift between A ·pl and pr along the epipolar
line, see Fig. 12(a). This basic approach assumes that the

vertical shift between A · pl and pr


y = (yl − yr)

is zero. This could be justified because our matched pairs
p = {pl,pr} are points on the same scan lines (|yl −yr | < ε)
and affine transformation A respects such (epipolar) lines.

Alternatively, one can use the reprojection error (Hart-
ley and Zisserman 2003) illustrated in Fig. 12(b). This ap-
proach treats pl and pr as noisy observations of some un-
known “true” points p̄ = {p̄l, p̄r} estimated by minimizing
the observation noise, as follows

‖p − A‖ = min
p̄

|p̄l − pl |2 + |p̄r − pr |2

s.t. p̄r = A · p̄l .

For p̄ = {pl,Apl} the objective function above equals
|A · pl − pr |2 and, therefore, optimization over all p̄ should
give an error smaller than (7). That is, our transfer er-
ror (7) can over-estimate the observation noise, as defined
by the constrained optimization problem above. The dif-
ference could be particularly significant if plane A is near-
horizontal. Note that the optimal “true” pair p̄ correspond-
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Fig. 12 (Color online)
Geometric fitting errors
‖p − A‖ for rectified stereo.
Assuming matched points
p = {pl,pr } are on the
corresponding epipolar (scan)
lines 
y = yl − yr = 0, the left
transfer error is a horizontal
shift 
x between pr and Apl

shown in (a). The standard
reprojection error (b) is
obtained by treating points pl

and pr as noisy observations of
some hidden “true” pair of
matched points p̄ = {p̄l , p̄r }
such that p̄r = A · p̄l and which
minimize the observation noise
minp̄ |p̄l − pl |2 + |p̄r − pr |2

Fig. 13 (Color online) Results
for “Clorox” stereo pair
(Birchfield and Tomasi 1999).
(a) Dense pixel segmentation by
BT (Birchfield and Tomasi
1999) uses photoconsistency. (b,
c) Sparse inlier classification by
PEARL using geometric fit
measures (7), (8)

ing to the minimum observation error is typically9 located
on a scan line different from those containing data points pl

and pr .
If pl and pr are treated as noisy observations, these

points do not need to respect the epipolar geometry. Thus,
we can drop the constraint 
y = 0 when using the repro-
jection error. Following the definition in the previous para-
graph, one can derive the following closed formula for the
reprojection error specific to our affine transformations

‖p − A‖ = 2
2
x + (1 + a2 + b2)
2

y − 2b
x
y

2a2 + b2 + 2
. (8)

Figures 13(a–c) compare affine model fitting results re-
generated by BT (Birchfield and Tomasi 1999) and results
generated by PEARL for two different geometric error mea-

9Except when A is an exactly vertical plane.

sures ‖p − A‖ in (7) and (8). We applied PEARL to energy

E(A) =
∑

p

‖p − Ap‖ + λ
∑

(p,q)∈N
δ(Ap �= Aq) + β · |A|

where A = {Ap|p ∈ P } is an assignment of affine models
to data points p extracted using SIFT and |A| is the num-
ber of used affine models. Our neighborhood graph N is a
triangulation of points pr in the right image. BT (Birchfield
and Tomasi 1999) uses dense segmentation of pixels based
on photoconsistency. This measure does not work well in
textureless regions and they have to rely on intensity edges
(static cues) to detect the boundaries between regions sup-
porting different models. In contrast, PEARL labels a sparse
set of distinct features based on geometric errors and spatial
regularization. Adding the label cost term would allow our
methods to connect spatially disconnected parts of the same
model as in Fig. 10.
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Fig. 14 (Color online)
Comparison of results by BT
(Birchfield and Tomasi 1999)
and PEARL. Lines are
computed for all pairs of
intersecting planes (affine
models)

Table 1 Geometric errors for lines in Fig. 14 where affine models
intersect. Errors are computed as the sum of distances between the
ground truth line segment corners and the computed lines. The errors
for sequential RANSAC and J-linkage, see Fig. 15, were significantly
larger than those above

Line BT (Birchfield and Tomasi 1999) PEARL (7) PEARL (8)

L1 34.55 8.80 4.37

L2 16.83 4.82 7.5

L3 5.56 13.27 9.53

L4 5.99 4.46 8.47

Total 62.93 31.35 29.87

Our results in Figs. 13(b, c) demonstrate that specific
choice of geometric measure ‖p − A‖ can significantly
change the results. For example, minimizing the horizon-
tal transfer error in (7) worked well for all vertical planes
in the scene, but it split the ground plane into two, see
Fig. 13(b). The reprojection errors (8) worked significantly
better than the transfer errors. This is particularly obvious
for the ground plane. As mentioned earlier, the transfer er-
ror (7) significantly over-estimates the observation noise for
near-horizontal planes. This is fairly analogous to the conse-
quences of using “vertical” point-to-line distance ‖p−L‖ =
|y − ax − b|2 for fitting near-vertical lines L = (a, b) to 2D
points p = (x, y).

In order to provide some quantitative comparison be-
tween the affine models generated by BT (Birchfield and
Tomasi 1999) and PEARL, we used a “ground truth” im-
age (Fig. 14(a)) where we manually extracted the lines cor-
responding to intersecting planes. Assuming that two inter-
secting planes π1 and π2 are represented by the affine mod-
els Aπ1 and Aπ2 , the homogeneous vector representing the
line of intersection is defined as the first row of the matrix
(Aπ1 − Aπ2). Therefore, such lines can be computed from
the models estimated by either BT or PEARL. Table 1 com-
pares the accuracy of these lines with respect to our ground
truth.

3.2 Estimating Multiple Homographies

In this section we use PEARL to estimate multiple homo-
graphies in uncalibrated wide-base stereo image pairs. We
use SIFT features (Lowe 2004) as points of interest. The set
of all matched pairs of features P is found using exhaustive
search.

One way to measure geometric error between a pair of
points p = (pl,pr) and a given model H is the symmet-
ric transfer error (STE) (Hartley and Zisserman 2003). We
generate our finite set of initial model proposals H0 by ran-
domly sampling four matched pairs. Model parameters are
computed by minimizing the non-linear STE error using
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Fig. 15 (Color online) Typical
results for affine model fitting in
Sect. 3.1 via sequential
RANSAC (a) and J-linkage
(Toldo and Fusiello 2008). We
used 5000 uniform samples for
RANSAC. Different threshold
values did not give much
improvement. Similarly,
different tunings of J-linkage
generated various artifacts.
These problems might be
explained by the large level of
noise in the data, as in Fig. 9

Fig. 16 (Color online)
Multi-homography fitting for
stereo images from VGG
(Oxford) Merton College I

Levenberg-Marquardt, as described in Hartley and Zisser-
man (2003). The initial solution for the non-linear mini-
mization is found using the direct linear transform (DLT)
method. We apply PEARL to energy

E(H) =
∑

p

‖p−Hp‖+λ
∑

(p,q)∈N
δ(Hp �= Hq)+β · |H| (9)

where H = {H |p ∈ P } is an assignment of models to data
points p and the neighborhood system N is based on a tri-
angulation of data points in one of the images.

In the example of Fig. 16(a) PEARL identified 7 planes.
The third term in energy (9) allowed to merge spatially iso-

lated parts of yellow, green, and white planes. Unlike multi-
RANSAC (Zuliani et al. 2005), PEARL does not require
a priori knowledge of the number of planes and produces
spatially coherent inliers. In Zuliani et al. (2005) multi-
RANSAC required 11604 iterations to fit 4 models to the
same data, see Fig. 16(b). Since each iteration sampled 4
random models, the total number of sampled homographies
in Fig. 16(b) is 46416. In contrast, PEARL used only 900
randomly sampled models to identify 7 planes. PEARL
converged in three iterations. For qualitative comparison,
Fig. 16 also shows the result based on spectral clustering
from Chin et al. (2009) and the best result we could obtain
using J-linkage (Toldo and Fusiello 2008).
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Fig. 17 (Color online)
Multi-homography fitting for
stereo images from VGG
(Oxford) Merton College III.
Both results were obtained
using standard SIFT features

Fig. 18 (Color online)
Multi-homography fitting for
“stairs” stereo image from VGG
(Oxford). The results in (b)
and (c) represent our best efforts
with tuning thresholds in
RANSAC and J-linkage. For
example, two “walls” start to
leak for larger value of
thresholds, while smaller
thresholds over-segment the
“stairs” even more than above

In Fig. 17(a) PEARL identified 8 planes using only 3000
initial samples and converged after four iterations. PEARL
finds planes with varying number of inliers. The roof on
the left (light green) has only 13 inliers, while the two
large walls (blue and pink) have 786 and 581 inliers, re-
spectively. The qualitative comparison of our regularization-
based method with greedy techniques like J-Linkage and
sequential RANSAC in Figs. 17 and 18 shows that they
are less robust to high noise. Similar general limitation
of greedy inlier maximization approaches was previously
demonstrated on synthetic data in Figs. 1 and 9.

Figure 19 shows Raglan Castle Tower result for PEARL
using 6000 initial labels and only four iterations to conver-
gence. PEARL identified 13 planes. The use of relatively
large number of initial labels allowed PEARL to identify
very small planes. Another picture of Raglan Castle Tower
from flicker confirms that the walls on the second and the
third floors represent different parallel planes.

3.3 Motion Segmentation

In this section we aim to solve the multibody motion seg-
mentation problem using multiple-views. This problem is
also referred to in literature as the multibody structure
from motion problem (Boult and Brown 1991; Tomasi and
Kanade 1992; Costeira and Kanade 1995). The goal of this
problem is to cluster the scene trackable features among dis-
tinct motions, then to estimate the motions’ parameters and

to recover the 3D structure of the points. We are only inter-
ested in estimating the multiple motions and clustering of
image features.

3.3.1 Using Two-Views

Assume that the multiple bodies are rigid and each body
undergoes a different motion. Each distinct rigid-body mo-
tion (R, t) could be described by a fundamental matrix
F = [K ′t]xK ′RK−1 corresponding to two views. This fun-
damental matrix satisfies the epipolar constraint pT

r Fpl = 0
where pr and pl are two matching features correspond-
ing to a 3D point on some rigid body (Ma et al. 2003;
Li 2007).

We apply PEARL to estimate multiple fundamental ma-
trices for uncalibrated image pairs. Matching pairs are found
using the same procedure mentioned in Sect. 3.2. One way
to measure geometric error between a matching pair of
points p and a given model F is the squared Sampson’s dis-
tance (SSD) (Hartley and Zisserman 2003)

‖p − F‖ = (pT
r Fpl)

2

(Fpl)
2
1 + (Fpl)

2
2 + (F T pr)

2
1 + (F T pr)

2
2

(10)

where the (Fpl)
2
j represents the square of the j -th entry

of the vector (Fpl). We generate our finite set of initial
model proposals F0 by random sampling eight matching
pairs. Then compute the model parameters as descried in
Hartley and Zisserman (2003) by minimizing the non-linear
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Fig. 19 (Color online) In this
Raglan Castle example from
VGG (Oxford) we used the
same color more than once to
represent different planes (a).
Only spatially connected planes
are shown in different colors.
An image of the same scene
from a different view (b)
confirms that each floor of the
building corresponds to
different planes

SSD error using Levenberg-Marquardt. The initial solution
for the non-linear minimization is found using the normal-
ized 8-point algorithm (Hartley 1997). The next step is to
triangulate the features of one of the images (e.g the right
image). Then we apply PEARL to energy

E(F) =
∑

p

‖p−Fp‖+λ
∑

(p,q)∈N
δ(Fp �= Fq)+β · |F | (11)

where F = {F |p ∈ P } is an assignment of models to data
points. Figure 20 shows our representative results. In case
the label cost term in (11) is dropped, it is likely that spa-
tially isolated parts of the background could be assigned dif-
ferent motions, as shown in Fig. 21.

Table 2 compares our results with some standard mo-
tion estimation methods evaluated in Tron and Vidal (2007).
Note that these standard methods assume that the number of
motions in the data is given. In contrast, our method auto-
matically estimates the number of motions. The comparison
in Table 2 may be not entirely meaningful since other meth-
ods benefit from a priori knowledge of the exact number
of motions, while our method may get an incorrect num-
ber of motions contributing to gross misclassification errors,
see Fig. 22. One way to alleviate this problem is to report

PEARL’s statistics on examples where the number of mod-
els was estimated correctly, see column ER1. We also eval-
uated the “reference” solutions obtained when PEARL is
initialized with 3 ground truth models, see column ER2.

Statistically required number of samples needed to gen-
erate good samples of fundamental matrices in the motion
examples could be quite large. For example, if data points
contain only 3 motions with mi inliers (each) and mo out-
liers, one can compute the probability that n independent
samples have at least one good representative of each model

Pr(3 out of n)

= 1 − (1 − ρ1)
n − (1 − ρ2)

n − (1 − ρ3)
n

+ (1 − ρ1 − ρ2)
n + (1 − ρ2 − ρ3)

n + (1 − ρ3 − ρ1)
n

− (1 − ρ1 − ρ2 − ρ3)
n

where ρi ≈ (
mi

m1+m2+m3+mo
)k is the probability that k ran-

domly selected points (for estimating a model) come ex-
clusively from mi inliers of the ith model. In checkerboard
sequences (Tron and Vidal 2007) there are 3 models with
m1 = 20, m2 = 24, and m3 = 56 inliers and the number of
outliers is mo = 0. In this case n = 1000000 gives only 0.92
confidence, but even this number of samples n is too large to
be practical. At the same time, under-sampling could lead to
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Fig. 20 (Color online)
Representative PEARL’s results
for motion sequences from Rene
Vidal’s data set (Tron and Vidal
2007). Our motion estimation
using mixtures of fundamental
matrices (Sect. 3.3.1) uses only
two frames (the first and the
last)

suboptimal results, see Fig. 23. Our current MATLAB im-
plementation can not work with very large number of sam-
ples due to memory restrictions. To explore larger set of la-
bels, we used a simple extension of PEARL that samples
only 5000 models at a time, computes the corresponding
optimal solution, and mixes the optimal models with a new
batch of 5000 random samples in the next iteration. To re-
port statistics for PEARL and ER1 in Table 2 we ran 100 of
such iterations and selected the solution with the minimum
energy. On average, our current MATLAB implementation
finished these 100 runs in around one hour. Running only
30 iterations reduces the average running time to 20 min-
utes. In this case the average/median errors increase, e.g.
to 11.26/4.8 for ER1. The typical run-time for PEARL in
ER2 was less than a minute. While there are many oppor-

tunities for improving the running times of our MATLAB
implementation, we leave them for future work.

The results in this section were obtained by sampling the
data points uniformly. Instead, we can use any standard non-
uniform local sampling scheme (see Chin et al. 2010 for
a recent review). The main effect of using such sampling
schemes in the propose step of PEARL could be lowering
the number of samples required to find a good (low-energy)
solution. A detailed study of this effect is outside the scope
of this paper.

While PEARL’s results in Table 2 are obtained assum-
ing the same level of noise for all models, the practical ef-
fect of adding noise level as a parameter for each model, see
Fig. 11, could be further studied on real applications such as
motion estimation.
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Table 2 Misclassification errors for checkerboard motion estimation
sequences in Tron and Vidal (2007). The results for REF, GPCA (Vi-
dal et al. 2008), LSA (Yan and Pollefeys 2006), and RANSAC are
copied from Table 4 in Tron and Vidal (2007). These methods use all
N-frames in each video sequence. In contrast, our results for PEARL
with energy (11) use only 2 frames, the first and the last in the se-
quence. Other methods also “know” that the exact number of models

is 3. In contrast, PEARL may obtain a different number of models.
Figure 22 illustrates how this affects PEARL’s classification errors.
For a more balanced comparison we show 2 additional statistics. First,
column ER1 evaluates 15 out of 26 examples where PEARL obtained
exactly 3 models. Second, similarly to REF (Tron and Vidal 2007),
column ER2 evaluates the “reference” solutions obtained by PEARL
from the ground truth models in all 26 examples

PEARL ER1 ER2 REF GPCA LSA 4n RANSAC

# frames used 2 2 2 N N N N

# models fixed – 3 3 3 3 3 3

Average 21.2% 6.93% 4.2% 6.28% 31.95% 5.80% 25.78%

Median 11.9% 4.15% 1.2% 5.06% 32.93% 1.77% 26.01%

Fig. 21 (Color online) Optimal solution for energy (3). In contrast
to results for energy (5) in Fig. 20(e–h), it fails to generate one back-
ground motion from yellow, green, and red clusters. These clusters cor-
respond to infinitesimally close motions, but they are spatially isolated.
The third term in (5) addresses this issue.

3.3.2 Using Multiple Views/Frames

Our general energy-based model fitting approach can also be
applied to the N-frame point-trajectory data used by the mo-
tion estimation methods evaluated in Tron and Vidal (2007).
In fact, the standard N-frame methodology introduced by
Tomasi and Kanade (1992) may lead to a more accurate and
faster technique. For example, instead of fundamental ma-
trices with 7 degrees of freedom, each rigid motion is repre-
sented as a lower dimensional (4D or less) linear manifold
in the space of motion trajectories. This representation as-
sumes affine projection.

There are many ways in which our general optimization-
based model fitting framework can be applied in this con-
text. For example, it maybe used as a trajectory grouping
technique instead of spectral clustering in GPCA (Vidal et
al. 2008) or LSA (Yan and Pollefeys 2006). However, given
the general scope of this paper, we present only the most
straightforward set-up for fitting 4D hyperplanes following
the basic formulation used in Tron and Vidal (2007) for se-
quential RANSAC.

Fig. 22 (Color online) Histogram of misclassification errors for
PEARL with energy (11) on 26 Chekerboard examples (Tron and Vi-
dal 2007) with 3 distinct motions. This histogram reveals two “modes”.
The mode with smaller misclassification errors mainly contains exam-
ples where PEARL produced exactly 3 models. Such examples are
marked in blue. Examples where PEARL produced a different number
of models are marked in red. Such examples formed the “gross errors”
mode. The percentage of misclassified points may not be a proper mea-
sure for comparing a method automatically computing the number of
models against the methods that a priori know the correct number. We
separately report PEARL’s error statistics for 15 (blue) examples with
the correct number of obtained models, see ER1 in Table 2

In contrast to greedy maximization of inliers by
RANSAC, we seek optimal labeling of data points. Sim-
ilar to Torr (1998), Schindler and Suter (2006), our general
energy optimization framework can assign differentiate la-
bel costs for fitting motions of various complexities, e.g.
degenerate and non-degenerate. We can also replace piece-
wise constant spatial regularization by piece-wise smooth in
order to better address non-independent or articulated mo-
tions. For simplicity, however, we stick to the most basic
formulation. It is detailed below.

Assuming that the cameras are affine then it could be
proved that the motion of a rigid body i.e. the trajectory of its
features will live in a 4D subspace (Boult and Brown 1991;
Tomasi and Kanade 1992; Vidal et al. 2008). Let P be a set
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Fig. 23 (Color online) Scatter plot of different solutions obtained by
PEARL on one of the examples in Tron and Vidal (2007) using dif-
ferent sets of 5000 (uniformly) sampled fundamental matrices. This
number of samples is statistically insufficient for the motion estima-
tion examples in Sect. 3.3.1 (see text) and the quality of optimization
may suffer. The plot also illustrates positive correlation between the
values of our energy (11) and the misclassifications errors

of 3D points that belong to a rigid body which undergoes a
motion over F frames. The image feature of a point i in the
frame f is defined by pf i . Stacking all pf i measurements
∀f ∈ F and ∀i ∈ P will form the measurement matrix

W =
⎡

⎢⎣
p11 · · · p1P

...
...

pF1 · · · pFP

⎤

⎥⎦

2F×P

(12)

which has rank 4 (Boult and Brown 1991; Tomasi and
Kanade 1992). First, we project these feature trajectories
from R2F to R5. The extra dimension is needed to discrim-
inate between different motions (Vidal et al. 2008). Then
we use PEARL to fit multiple 4D hyperplanes (motions).
In contrast to Vidal et al. (2008), Yan and Pollefeys (2006),
PEARL does not require the prior knowledge of the number
of motions.

We generate our finite set of initial proposals M0 by ran-
domly sampling four points, i.e. four projected trajectories.
Then we find the best fitting 4D hyperplane by minimizing
the orthogonal distance ‖p − M‖. The next step is to tri-
angulate the 2D image features on one of the frames (e.g.
the last frame). Finally, we apply PEARL to the following
energy

E(M) =
∑

p

‖p − Mp‖

+ λ
∑

(p,q)∈N
δ(Mp �= Mq) + β · |M| (13)

where M = {M|p ∈ P } is an assignment of models to data
points. Figure 24 shows some representative optimal results
obtained by PEARL for energy (13) using the same set of
parameters. Figure 25 indicates how the classification errors
may depend on the main parameters in (13): weight of the
smoothness term λ and weight of the label cost term β .

The detailed empirical comparison of our approach ver-
sus standard motion estimation methods is beyond the scope
of this paper. Table 3 presents only results for checkerboard
motion estimation sequences in Tron and Vidal (2007). As
discussed in Sect. 3.3.1, it is not clear how to compare
our general technique with methods that assume a known
number of models, or with methods that assume no out-
liers. Thus, Table 3 reports several additional performance
measures for our approach (ER1 and ER2) described in
Sect. 3.3.1.

Comparing Tables 2 and 3 shows that our approach can
produce more accurate results by fitting fundamental matri-
ces to matches between the first and the last frames in each
sequence. We do not make any conclusions from this fact as
we tested only one and probably the most straightforward
formulation of energy (5) for multi-frame motion detection.
Energies (13) and (11) are defined in very different settings
and it is not obvious why one should work better than the
other. The general geometric framework for (13) is to de-
tect independent motions as hyperplanes, which is compa-
rable to those for GPCA and RANSAC in Tron and Vidal
(2007). Other multi-frame motion detection methods, e.g.
LSA (Yan and Pollefeys 2006), may obtain better results
in a different geometric framework: they detect motions by
fitting hyperspheres to normalized data points. A detailed
analysis of different formulations is beyond the scope of our
paper. The result for LSA is presented in Tables 2 and 3
mainly as a reference to alternative geometric frameworks.

4 Conclusions

We proposed a new general approach to geometric multi-
model fitting based on global optimization. The problem is
formulated as discrete labeling of data points using MRF
and MDL style regularization functionals widely used in
other computer vision problems. The goal is to find models
“explaining” all data points based on spatial regularity and
sparsity priors. The continuous space of model parameters
is explored via PEARL algorithm that combines data sam-
pling and energy minimization iterating assignment and re-
estimation steps. The method automatically obtains a small
number of models that “explain” data well. Many empiri-
cal tests on synthetic and real imagery demonstrate a strong
potential of our general approach applicable to a wide spec-
trum of model fitting problems. The main conclusion are:
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Fig. 24 (Color online)
Representative PEARL’s results
using energy (13) for motion
sequences from Vidal’s data set
(Tron and Vidal 2007). Unlike
the fundamental matrix fitting
method in Sect. 3.3.1, this
formulation uses all frames in
the sequence

Fig. 25 (Color online)
Multi-motion estimation
accuracy in one of the
checkerboard sequences from
Sect. 3.3.2. Misclassification
errors are shown for optimal
solutions corresponding to
different values of λ and β in
energy (13)

Table 3 Misclassification errors for checkerboard motion estimation
sequences in Tron and Vidal (2007). The results for REF, GPCA (Vi-
dal et al. 2008), LSA (Yan and Pollefeys 2006), and RANSAC are
copied from Table 4 in Tron and Vidal (2007). All methods in this ta-
ble use all frames in each video sequence. PEARL may obtain a differ-
ent number of models while the other methods “know” that the exact

number of models is 3. For a more balanced comparison we show 2
additional statistics. First, column ER1 evaluates 12 out of 26 exam-
ples where PEARL obtained exactly 3 models. Second, similarly to
REF in Tron and Vidal (2007), column ER2 evaluates the “reference”
solutions obtained by PEARL from the ground truth models in all 26
examples

PEARL ER1 ER2 REF GPCA LSA 4n RANSAC

# frames used N N N N N N N

# models fixed – 3 3 3 3 3 3

average 19.57% 8.97% 8.15% 6.28% 31.95% 5.80% 25.78%

median 19.28% 3.53% 3.74% 5.06% 32.93% 1.77% 26.01%
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• The proposed general energy functionals (3) and (5) are
potent criteria for solving a wide class of geometric multi-
model fitting problems with a priori unknown number of
models corrupted by noise and outliers.

• The proposed algorithmic approach for minimizing our
model fitting energies (PEARL) works well in many prac-
tical applications.

The main two parameters in the proposed energies (3)
and (5) are the weights λ and β for the spacial regularity and
label cost terms. We did not analyze any specific technique
for selecting these parameters, but we demonstrate that the
method is fairly stable with respect to them. Many useful
ideas for parameter selection can be borrowed from informa-
tion theoretic interpretation of these energies, e.g. see Torr
(1998), Delong et al. (2011).

One can use any geometric error function ‖p − L‖ in the
data term to evaluate the distance between models and data
points. We also showed that fitting one additional uniform
error model ∅ may work well for classifying the outliers.
Our general energy formulation does not require any hard
thresholds, event though one can use truncated or step error
measures ‖p − L‖, if necessary.
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