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Abstract The 1D radial camera maps all points on a plane,
containing the principal axis, onto the radial line which is
the intersection of that plane and the image plane. It is a
sufficiently general model to express both central and non-
central cameras, since the only assumption it makes is of
known center of distortion. In this paper, we study the multi-
focal tensors arising out of 1D radial cameras. There exist no
two-view constraints (like the fundamental matrix) for 1D
radial cameras. However, the 3-view and 4-view cases are
interesting. For the 4-view case we have the radial quadri-
focal tensor, which has 15 d.o.f and 2 internal constraints.
For the 3-view case, we have the radial trifocal tensor, which
has 7 d.o.f and no internal constraints. Under the assump-
tion of a purely rotating central camera, this can be used to
do a non-parametric estimation of the radial distortion of
a 1D camera. Even in the case of a non-rotating camera it
can be used to do parametric estimation, assuming a planar
scene. Finally we examine the mixed trifocal tensor, which
models the case of two 1D radial cameras and one standard
pin-hole camera. Of the above radial multifocal tensors, only
the radial trifocal tensor is useful practically, since it doesn’t
require any knowledge of the scene and is extremely robust.
We demonstrate results based on real-images for this.
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For the quadrifocal tensor, too, we present a way to do a
metric reconstruction of the scene and to undistort the image
(given a sufficiently dense set of point-correspondences).
We also show results on synthetic images. However, it must
be noted that currently the quadrifocal and mixed trifocal
tensors are useful only from a theoretical stand-point.
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1 Introduction

Omnidirectional cameras have found increasing use in med-
ical imaging (Sagawa et al. 2008), surveillance and robot
navigation (Benosman and Kang 2001). Wider field-of-view
is obtained using fish-eye lenses or by using the camera in
combination with a mirror. There has been previous work
(Baker and Nayar 1999) which tries to identify the condi-
tions under which the resulting camera would be a central
camera.

The work described in this paper is useful for both cen-
tral omnidirectional cameras and perspective cameras (with
severe radial distortion). Hence here we briefly note work
done in camera calibration in both the fields.

Calibration techniques, which assume a generalized
model for the camera, have been discussed in literature
(Grossberg and Nayar 2001; Sturm and Ramalingam 2004;
Ramalingam et al. 2005, 2010; Grossmann et al. 2006;
Nister et al. 2005; Espuny 2007; Espuny and Burgos Gil
2008). However these require knowledge about the scene
and/or camera motion. Further there have been approaches
(Grossmann et al. 2010) that think of the cameras as a
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bunch of photocells, and try to find the angular separa-
tion of these photocells, based on the (dis)similarity of
the signals (received by each of the cells). There has
been other prior work that tries to solve the problem
only for a particular type of camera. For example, there
have been approaches tailored to calibrating fish-eye lenses
(Shah and Aggarwal 1996; Swaminathan and Nayar 2000;
Devernay and Faugeras 2001; Bakstein and Pajdla 2002;
Kannala and Brandt 2004). Some of these additionally re-
quire knowledge of the scene (Xiong and Turkowski 1997).
Geyer and Danalidis (2001) came up with approaches for
parabolic catadioptric systems. An angular-error minimiza-
tion approach, based on a similar camera-model, was used in
Kannala et al. (2008). Pajdla et al. (2003) introduced a strat-
ified approach that reconstructs the scene and estimates the
camera parameters in the spirit of Structure-from-Motion.

There have been approaches that try to estimate radial
distortion based on knowledge of the scene (Tsai 1987;
Goshtasby 1989; Weng et al. 1992). Recently there has
been work (Hartley and Kang 2007; Li and Hartley 2006;
Hughes et al. 2010a, 2010b) that tries to estimate radial dis-
tortion and center of distortion using a planar calibration
grid. Some of these (Hartley and Kang 2007) have been ex-
tended to do auto-calibration, but the methods are too sensi-
tive to noise. Tardif et al. (2006), introduced two plane-based
approaches. A plumb-line type one and another based on
the assumption that one can generate dense correspondences
across two views. Both approaches assume a known distor-
tion center, though a minimization-based method is given to
estimate it.

Many methods have been proposed that try to exploit
the following property of the pin-hole model: Straight lines
in the scene must project onto straight lines in the image
(Brown 1971; Swaminathan and Nayar 2000). Kang (2000)
used snakes to represent distortion curves. Devernay and
Faugeras (2001) proposed an approach in which the system
does edge-detection, followed by polygonal approximation,
to group edgels which could possibly have come from an
edge segment. The system then tries to minimize the distor-
tion error by optimizing over the distortion parameters. This
is done iteratively till the relative change in error is below a
threshold.

Requiring knowledge of the scene is a serious limitation,
for the first category of methods, because it makes them
unsuitable for situations where the camera lens geometry
might change (variable zoom etc.). For the second category
of methods, one requires straight-lines in the scene. Further,
differentiating straight-lines which are curved, due to distor-
tion, and real-world curves is a non-trivial task.

The third category of methods does so by using point cor-
respondences across multiple views. Stein (1997) proposed
a method based on epipolar and trifocal constraints. The ob-
jective here is to minimize the reprojection error over dis-
tortion parameters. Fitzgibbon (2001) proposed a technique,

for estimating small distortions, that does a simultaneous es-
timation of the fundamental matrix and a single distortion
parameter by formulating a QEP (Tisseur and Meerbergen
2000). Micusik and Pajdla (2003) extended this method to
cameras that produce large distortions. All these approaches
assume a specific (parametric) model for radial distortion. In
fact, a lot of the analysis goes into investigating the interac-
tion of the assumed model with the multi-view constraints.
Recently, Tardif et al. (2007) have come up with an approach
that does non-parametric radial calibration using two images
of a planar scene. This is achieved by formulating the prob-
lem as a convex optimization, by introducing an approxima-
tion.

One of the central motivations of the radial 1D camera
is to achieve a method based on point correspondences that
does reconstruction of the scene without having to make any
assumption about the kind of radial distortion (other than
the sufficiently general one of radial symmetry). Thus both
the methods, based on the radial trifocal and quadrifocal ten-
sor, follow the 2-step process. One, to estimate the scene
structure independent of unknown distortion. Two, to use
the reconstructed scene as a calibration object to estimate a
non-parametric model of radial distortion.

We have tabulated the results, discussed in this paper, in
Table 1 on page number 209. The reader is encouraged to
use it, as a reference, as we study the radial 1D camera and
the different multi-focal constraints. We would also like to
note that the work presented in this paper was previously in-
troduced in Thirthala and Pollefeys (2005a, 2005b, 2005c).

2 Radial 1D Camera

Suppose that the center of radial distortion is known. In the
absence of any information, the image center is a good ap-
proximation for the center of distortion. However, if we have
more information (for example, if the rim of the mirror/fish-
eye is visible), we can use that information too. The image
can then be transformed such that the center of radial dis-
tortion is the origin. Consider a point in the world X that
projects onto xd = (xd, yd,1)T in the distorted (input) im-
age. Further let C be the camera center. Because of large
unknown and possibly varying distortion, the point X does
not lie on the ray passing through C and xd (see Fig. 1(a)).

However, consider the line passing through the center of
radial distortion and xd in the image (lrad = xd × crad). The
undistorted image point (one that would have been obtained
if the camera had followed a pin-hole projection model) xu,
would lie on this line. This is because though the distance
of an image point from the center of radial distortion is not
preserved by radial distortion, the direction (which is what
the radial line lrad encodes) is. If instead of back-projecting
a ray, we back-project the line lrad using the camera center,
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Fig. 1 Radial 1D camera

it would contain the ray passing through C and xu, and thus
would contain X. Thus, by representing the distorted image
as a 1D image of radial lines passing through the center of
radial distortion, we can factor out the unknown deviation
from the pinhole model (which is along the radial line), but
preserve the known direction of radial line. The insight of
separating the unknown deviation but preserving the known
direction, has been used earlier by Tsai (1987) in the context
of camera calibration using a grid. Tsai referred to this as the
radial alignment constraint.

The radial 1D camera can be thought of as projecting the
pencil of planes containing the optical axis onto the pencil
of lines passing through the crad (Fig. 1(b)). A radial line
can be represented as l = (y, x)T if crad has been mapped to
the origin. Note that a radial 1D camera can be obtained for
most single effective viewpoint cameras (standard pin-hole
cameras, low radial distortion cameras, fish-eye lenses, cata-
dioptric cameras (Baker and Nayar 1999)). In fact we can
deal with non-central cameras also. The only requirement
is that all points that lie in one plane, of the pencil around
the optical axis, project onto the same radial line (passing
through crad). For catadioptric systems, this corresponds to
the requirement that all the normals on the mirror have to be
contained within radial planes. This constraint is automati-
cally satisfied for mirror shapes that are symmetric around
the optical axis.

Definition The radial 1D camera represents the mapping of
a point in P

3 onto a radial line in the image. Since it is a
P

3 → P
1, it can be represented by a 2 × 4 matrix and has 7

degrees of freedom.

The projection of a 3D point X on a radial line l using
radial camera P is then given by:

λl = PX (1)

Fig. 2 The quadrifocal constraint

with λ a non-zero scale factor. Note that the image of a point
U on the optical axis does not have a proper image in P

1

as we obtain PU = (0,0)T . Since l (= [l1 l2]T ) and P (=
[p1 p2]T ) are equal up to scale, we get:

(l2p1 − l1p2)
T X = 0 (2)

Comparing this with the equation of a point X lying on a
plane �, i.e. �T X = 0, we get that the plane back-projected
by the radial line is

� = (l2p1 − l1p2) (3)

3 Radial Quadrifocal Tensors

Let us examine the possible multi-view constraints using
these 1D radial cameras in general configuration. Note that
we only have back-projected planes and no back-projected
rays (as the distance information from the crad is unknown,
only the radial line is preserved as a set). Three planes in
3D-space in general position intersect at a point and hence 3
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views give us no constraints. However, four planes intersect-
ing at a common point yields a non-trivial constraint (Fig. 2).
Thus we have multi-view constraints among four 1D radial
cameras.

Consider a point X in P3 that projects onto the radial
lines, l, l′, l′′, l′′′. Then the radial projection equations (1),
can be collected in the following matrix equation:

⎡
⎢⎢⎣

P l 0 0 0
P′ 0 l′ 0 0
P′′ 0 0 l′′ 0
P′′′ 0 0 0 l′′′

⎤
⎥⎥⎦

︸ ︷︷ ︸
M8×8

⎡
⎢⎢⎢⎢⎣

X
−λ

−λ′
−λ′′
−λ′′′

⎤
⎥⎥⎥⎥⎦

= 0 (4)

Since we know that a solution exists, the right null-space
of M should have non-zero dimension, which implies that
the determinant of the matrix has to be zero.

Following the approach of Triggs (1995), expansion of
the determinant yields the quadrilinear constraint for 1D ra-
dial cameras:

Qijkl li l′j l′′k l′′′l = 0 (5)

Qijkl is the 2×2×2×2 homogenous quadrifocal tensor (in-
troduced in Thirthala and Pollefeys 2005a) of four 1D cam-
eras. We use the Einstein summation convention in which
indices repeated in covariant and contravariant positions de-
note implicit summations.

A general 2 × 2 × 2 × 2 tensor (up to scale) has 15 de-
grees of freedom. However, to describe four uncalibrated 1D
radial cameras, up to a projectivity, we need only (4 × (2 ×
4 − 1) − (4 × 4 − 1) = 13) degrees of freedom. Thus the
radial quadrifocal tensor has exactly 2 internal constraints.
Compare this to (80−29) internal constraints for the quadri-
focal tensor of 4 perspective views.1 The radial quadrifocal
tensor can thus be linearly estimated given 15 corresponding
quadruplets. Given more than 15 corresponding quadruplets,
a linear least squares solution can be obtained.

Lemma There exist no higher-order tensors for 1D cam-
eras.

Proof Each camera projection matrix is 2 × 4. Thus if there
are n (> 4) cameras, M (similar to (4)) will be of dimensions
2n × (4 + n). Following a similar argument, since the right
null-space is of non-zero dimension, the column rank of M
is < (4 + n). Hence any (4 + n) × (4 + n) sub-matrix (say,
Ms) has determinant zero. Note that all the columns of M are
selected in Ms but only (4+n) rows are selected. If we omit
picking a row from the projection matrix of the ith camera,

1In fact, for perspective cameras, the radial quadrifocal tensor corre-
sponds to the upper 2 × 2 × 2 × 2 part of the full quadrifocal tensor.

then (i + 4)th column (whose only non-zero elements are li1
and li2), of Ms is all zero. Thus the determinant is trivially
zero and doesn’t give us a constraint. �

To get a non-trivial constraint we need to select at least
one row from each camera, and choose 4 specific cam-
eras, to select the 2nd row from. Let these cameras be
(p, q, r, s). Expansion of this (4+n)× (4+n) matrix, gives
us a constraint which is of the form, l1w1 . . . l1wnD2 where
D = (lp1lq1lr1ls1det([PT

p2 PT
q2 PT

r2 PT
s2]T )+ . . .) Note that D

is nothing but the quadrifocal constraint (5) of the 4 selected
views (p, q, r, s).

3.1 Nature of the Internal Constraints

We will now give a geometric interpretation of the two in-
ternal constraints of the radial quadrifocal tensor. It depends
on the following observation: Given four lines (the opti-
cal axes of the 4 cameras), in general configuration, in 3D
space, there exists two lines that intersect all of them (Hart-
ley 1993). We will call these special lines, that intersect all
four optical axes, quadrifocal lines.

Let us denote one quadrifocal line as L. Further, let it
project onto l, l′, l′′, l′′′ in the four images. The planes back-
projected from the radial lines l, l′, l′′ will contain L. So ir-
respective of which plane is chosen, among the pencil back-
projected by the 4th camera (Fig. 1(b)), we will have a point
of intersection for the four planes (since a line and a plane
always intersect in 3D space). This means that the quadrifo-
cal constraint (5) is satisfied for all l′′′. This means that,

(Qijk1li l′j l′′k)l′′′1 + (Qijk1li l′j l′′k)l′′′2 = 0 (6)

Since the above is satisfied for all values of l′′′1 and l′′′2 , it
implies that the respective coefficients should be zero.

Qijk1li l′j l′′k = 0

Qijk2li l′j l′′k = 0
(7)

Since the above argument will be true even if we choose
any of the other cameras instead of the 4th camera (for ex-
ample, we can back-project l′, l′′, l′′′, which would allow us
to choose any arbitrary line, in the 1st image, as l), we have
the following 8 equations:

Q1jkl l′j l′′k l′′′l = 0 (8a)

Q2jkl l′j l′′k l′′′l = 0 (8b)

Qi1kl li l′′k l′′′l = 0 (8c)

2w1 . . .wn are the rows selected from all the cameras other than
(p, q, r, s).
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Qi2kl li l′′k l′′′l = 0 (8d)

Qij1l li l′j l′′′l = 0 (8e)

Qij2l li l′j l′′′l = 0 (8f)

Qijk1li l′j l′′k = 0 (8g)

Qijk2li l′j l′′k = 0 (8h)

Notice that filling in (8a), (8c), (8e), (8g) in the quadrifo-
cal constraint (5), yields the other four equations (8b), (8d),
(8f), (8h). Hence the above 8 equations yield only 5 indepen-
dent constraints, (8a), (8c), (8e), (8g) as well as the quadri-
focal constraint (5) itself.

Let us denote the tuple of 4 lines as r = [l2×1, l′2×1, l′′2×1,

l′′′2×1]3 and (8a), (8c), (8e), (8g) as f1(Q, r) = 0, f2(Q, r) =
0, f3(Q, r) = 0, f4(Q, r) = 0. Finally, let us denote by
f5(Q, r) = 0, the quadrifocal constraint (5).

Thus we have the following condition: If Q is a valid
radial quadrifocal tensor, then the set of equations:

f1...5(Q, r) = 0 (9)

has at least two solutions (in general configuration).
Assume that Q is a valid radial quadrifocal tensor. If r′

is a solution of (9) we can solve for r′ from f1...4(Q, r) = 0
in terms of fi and Q. Since there are two solutions, we have
r1, r2 such that ri = gi(Q), i = 1,2. Note that we are not
solving fi to compute gi . We are just claiming the existence
of such gis. If we substitute each solution ri in f5(Q, r) = 0,
we will get two equations in Q. Thus, if Q is a valid radial
quadrifocal tensor, then,

f5(Q, g1(Q)) = 0

f5(Q, g2(Q)) = 0
(10)

This proves that we have the two internal constraints sit-
ting within the set of 5 equations. In other words, the two
internal constraints that a valid radial quadrifocal tensor has
to satisfy corresponds to the need for two quadrifocal lines
to exist. This is very comparable to the rank-2 constraint of
the fundamental matrix which implies the existence of both
epipoles.

3.2 3D Reconstruction

3.2.1 Projective Reconstruction

We now consider the problem of 3D reconstruction of points
whose correspondences have been specified across the in-
put images. Given a radial quadrifocal tensor, we can eas-
ily compute the four uncalibrated camera matrices (Hartley

3Even though these are vectors, they are projective entities and hence
l2×1 ∼ λ [u v] has only 1 variable. Thus r has 4 variables and not 8.

and Schaffalitzky 2004). For every valid radial quadrifocal
tensor, two non-equivalent projective reconstructions are ob-
tained. As we can not disambiguate between them at this
stage we will carry them through to the metric reconstruc-
tion stage and potentially the radial calibration where in gen-
eral only a single solution will yield consistent results. Once
the projection matrices have been recovered, points in 3D
can be reconstructed by back-projecting planes. This cor-
responds to computing the right nullspace of the following
matrix:

R8×8 =

⎡
⎢⎢⎣

P l 0 0 0
P′ 0 l′ 0 0
P′′ 0 0 l′′ 0
P′′′ 0 0 0 l′′′

⎤
⎥⎥⎦ (11)

Since only three planes are required to define a point
uniquely in 3D space, we can in fact reconstruct all points
seen in at least three views.

3.2.2 Metric Reconstruction

The dual absolute quadric, �∗∞ encodes both the absolute
conic and the plane at infinity. To upgrade our reconstruc-
tion to metric, we need to estimate this degenerate quadric
in the projective frame in which the cameras and the points
have been determined (Triggs 1997; Pollefeys et al. 1999).
�∗∞ projects into the radial 1D image as,

K̃K̃T = ω̃∗ = P�∗∞PT (12)

with K̃ = [ fx s

0 fy

]
the upper 2 × 2 part of the calibration ma-

trix. Using the assumptions of (i) known principal point (and
it being at the origin) (ii) zero skew (s = 0) (iii) known as-
pect ratio (fy = afx ), we obtain 8 linear constraints on �∗∞,
from the 4 views. Since �∗∞ is a 4 × 4 homogenous sym-
metric matrix it has 9 d.o.f (10 up to scale). Using the addi-
tional rank-3 constraint we obtain a fourth-degree equation
(det�∗∞ = 0) and thus obtain up to 4 solutions. Only posi-
tive semi-definite solutions for the absolute quadric have to
be considered. If more than one solution persists, we can
generate multiple alternative metric reconstructions and dis-
ambiguate them later by verifying the radial symmetry in the
next section. If �∗∞ is decomposed as �∗∞ = HIHT , then
H−1 is the point homography that takes the projective frame
to the metric frame (Hartley and Zisserman 2000).

3.3 Radial Calibration

Once a metric reconstruction has been obtained using the 1D
radial property of the camera, it can be used to calibrate the
remaining unknowns of the projection. In this section we
will present a non-parametric approach to calibrate central
and non-central radially symmetric cameras. This process
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Fig. 3 The trifocal constraint

can be done independently for each image and it is thus pos-
sible to calibrate four different cameras—or a camera with
different settings—using a single quadrifocal tensor.

For each cameras, all reconstructed feature points can be
represented in a cylindrical coordinate system relative to the
optical axis of the camera, i.e. (ρ,φ, z). The origin along
the z-axis can in a first phase be chosen arbitrarily. Because
we assume radial symmetry, the φ coordinate is irrelevant
for us. The goal of our calibration procedure is to obtain an
expression for rays, r, in the ρz-plane as a function of the
radius r , i.e. r(r) : a1(r)ρ + a2(r)z+ a3(r) = 0. This can be
done by fitting lines to all the points that have (almost) the
same r value.

4 Radial Trifocal Tensor

Suppose that three optical axes, A,A′ and A′′ intersect at
some point C. Also, suppose that a 3D point X projects onto
the lines l, l′and l′′ in the three views (Fig. 3). Consider the
plane, � containing C and the line l (corresponding to the
back-projection of the radial line l). Similarly, one has the
planes �

′
and �

′′
. Note that for every 3D point, X, the cor-

responding planes back-projected from the 3 views intersect
in the line passing through C and X. Three planes in 3D
space intersecting in a line is a non-trivial constraint. This
non-trivial constraint between the three 1D radial views is
encoded by the radial trifocal tensor (introduced in Thirthala
and Pollefeys 2005b). We can now formulate this constraint
mathematically.

Without loss of generality we can assume that the three
optical axes intersect in the origin (0,0,0,1)T . Since PC =
(0,0)T , the 1D radial cameras whose optical axes contain
the origin must have the following form P = [P̃|0]. Let X̃T

correspond to the first three coefficients of X. In this case,
the first 6 rows of (4) can be rewritten as:

⎡
⎣

P̃ l 0 0
P̃′ 0 l′ 0
P̃′′ 0 0 l′′

⎤
⎦

⎡
⎢⎢⎣

X̃
−λ

−λ′
−λ′′

⎤
⎥⎥⎦ = 0 (13)

The non-zero dimension of the right null-space implies that
the 6×6 measurement matrix must have a zero determinant.

Expansion of the determinant produces the unique trilin-
ear constraint for 1D views yields

Tijkli l′j l′′k = 0 (14)

Tijk is the 2 × 2 × 2 homogeneous radial trifocal tensor
of the three 1D radial cameras. The expression for the coef-
ficients of the trifocal tensor is

Tijk = det
[
P̃T

i P̃′T
j P̃′′T

k

]
(15)

The radial trifocal tensor is a minimal parameterization of
the three P

2 → P
1 mapping cameras as the d.o.f can be

shown to match, 2 × 2 × 2 − 1 = 7 = 3 × (2 × 3 − 1)− (3 ×
3−1) (with the LHS being the d.o.f of T and the RHS being
the d.o.f of the three uncalibrated views up to a projectivity)
and has no internal constraints.

The radial trifocal tensor can be linearly estimated given
seven corresponding triplets (where every triplet gives a lin-
ear constraint on the parameters of the radial trifocal tensor
using (14)) Given more than seven correspondences, we can
obtain the linear least squares solution.

It is interesting to verify the relation between the ra-
dial trifocal constraint and the radial quadrifocal constraint.
When three optical axes intersect, adding a fourth view
doesn’t yield any additional constraint and the quadrifocal
constraint becomes degenerate. Since in P3 a line and a
plane always intersect, we no longer need the precise plane
�

′′′
, back-projected from l′′′. Instead we could choose any

of the planes among the pencil back-projected by the fourth
camera. Let us examine the radial quadrifocal constraint,
(5), in this scenario:

(Qijk1li l′j l′′k)l′′′1 + (Qijk2li l′j l′′k)l′′′2 = 0 (16)

Choosing an arbitrary back-projected plane from the fourth
camera corresponds to arbitrary values for l

′′′
1 and l

′′′
2 . Since

(16) is valid for arbitrary values of l
′′′
1 and l

′′′
2 , it implies that

the coefficients are zero. Further, the above condition is valid
for any 3D point X. Comparing this to the trifocal constraint,
we see that in this case the quadrifocal tensor must be related
to the trifocal tensor as follows

Qijkl = (λ1Tijk, λ2Tijk) (17)
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and can only be determined up to one degree of freedom,
i.e. λ1

λ2
.

The trifocal tensor for 1D cameras and its properties were
first studied by Quan and Kanade (1997) in the context
of structure and motion using line correspondences under
affine cameras. They showed that by neglecting the position
of the lines and considering only their direction, this prob-
lem was equivalent to the structure and motion problem for
points in one lower dimension. Faugeras et al. (2000) stud-
ied the 1D trifocal tensor in the context of planar motion
recovery and self-calibration.

4.1 Reconstruction

4.1.1 Projective Reconstruction of �∞

Let us now consider the problem of reconstructing directions
from C. Directions correspond to points on �∞. Given the
radial trifocal tensor, T, we can estimate the three uncali-
brated camera matrices, P̃, P̃′ and P̃′′ (Thirthala and Polle-
feys 2005b). These projection matrices can be thought of
projecting points on �∞ to radial lines in the corresponding
views.

Suppose a point on �∞, X (or direction X in 3D space)
projects onto the radial lines l, l′ and l′′. The point then sat-
isfies (13). Thus it can be computed as the right null-space
of

R6×6 =
⎡
⎣

P̃ l 0 0
P̃′ 0 l′ 0
P̃′′ 0 0 l′′

⎤
⎦ (18)

Note that for reconstruction is possible even if the point
is visible in only two views. In this case, R reduces to the
following 4 × 5 matrix, which always has a solution:

[
P̃ l 0
P̃′ 0 l′

]
(19)

4.1.2 Metric Reconstruction

Let p̃1, p̃2 be the two rows of the projection matrix, P̃2×3.
Similarly let p̃′

1, p̃′
2 be the rows of P̃′ and p̃′′

1, p̃′′
2 be the rows

of P̃′′. Let ω∗∞ be dual of the absolute conic in the projec-
tive frame in which we have reconstructed the points on �∞
(directions). It is a 3 × 3 homogenous symmetric matrix and
hence has 5 degrees of freedom (6 up to scale). To upgrade
the projective reconstruction to metric it is sufficient to esti-
mate ω∗∞ (Hartley and Zisserman 2000).

We have the assumptions of (i) known principal point
(and it being at the origin) (ii) zero skew and (iii) constant
(but possibly unknown) aspect ratio. Note that this is equiv-
alent to assuming rectangular pixels. It can be shown the

assumption of zero skew in the three views gives us the fol-
lowing set of equations linear in the parameters of ω∗∞:

p̃1ω
∗∞p̃T

2 = 0

p̃′
1ω

∗∞p̃′T
2 = 0

p̃′′
1ω

∗∞p̃′′T
2 = 0

(20)

Further, the assumption of constant aspect ratio gives us
the following equations:

p̃1ω
∗∞p̃T

1

p̃2ω∗∞p̃T
2

= p̃′
1ω

∗∞p̃′T
1

p̃′
2ω

∗∞p̃′T
2

= p̃′′
1ω

∗∞p̃′′T
1

p̃′′
2ω

∗∞p̃′′T
2

= A (21)

If the aspect ratio is known (A is known in (21)), we have 3
more equations, linear in the parameters of ω∗∞. If the aspect
ratio is unknown, then we have two equations, quadratic in
the parameters of ω∗∞. Using the linear equations in (20), we
can reduce the equations in (21) to two quadratic equations
in two variables. And these can be solved analytically.

4.2 Non-Parametric Radial Calibration

Once a metric reconstruction of �∞ has been obtained us-
ing the 1D radial property of the camera, it can be used to
calibrate the remaining unknowns of the projection. In this
section we present a non-parametric approach to calibrate
purely rotating central radially symmetric cameras. The ob-
jective thus is to compute a function that maps the radius in
the distorted image (r) to an angle with the optical axis (θ ):
f : r → θ

Note that the procedure described here can be done inde-
pendently for each image and it is thus possible to calibrate
three different cameras using a single trifocal tensor.

Since we have upgraded the reconstruction to metric, we
can compute the angle between rays corresponding to X and
Xc (see Fig. 4) as (Hartley and Zisserman 2000):

cos(θ) = XT Xc√
XT X

√
XT

c Xc

(22)

For each camera, the rays corresponding to reconstructed
feature points can be represented in a coordinate system rel-
ative to the optical axis of the camera, i.e. (θ,φ). Because
we assume radial symmetry, the φ coordinate is irrelevant
for us. Thus for each camera and each reconstructed point
visible in it, we will get a point on the function f . We can
use the map we get, i.e. (r, θ) to then do undistortion (by
fitting a function, use as samples in a lookup table etc.).

5 Radial Trifocal Tensor for Cameras in General
Position

In some situations it might not be possible to ensure a rotat-
ing camera Hence in this section we give an approach that
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Fig. 4 Shows two radial cameras with optical axes O and O′ and cen-
ters of distortion c, c′ respectively. X is reconstructed as the point on
�∞ that projects onto radial lines m and m′ (dotted lines) in the im-
ages. Xc is reconstructed as the point that projects onto [1 0] and [0 1]
(indicated by bold lines) in the first radial image. If we have a metric
reconstruction of �∞, we can compute the angle e

allows reconstruction even when the camera-center doesn’t
remain stationary across the three views. However, we will
need to make two allowances here:

• All the scene-points should come from a planar scene.
This is not really difficult to achieve because we can im-
age a building facade, checkerboard images etc. Further,
the trifocal tensor equation will not be satisfied for scene-
points in non-planar position and hence can form the basis
of a robust sieve.

• We will have to use a parametric model of distortion in the
last stage of estimation. Note that this isn’t too stringent a
constraint because the reconstruction still is independent
of the model of distortion.

It should be noted, here, that for the rotating camera case
(discussed in the previous section), all scene points being on
a real-world plane is not a degenerate case for reconstruc-
tion.

Consider a point X, on the real-world plane � that
projects onto the radial lines l, l′, l′′ in the three cameras.
Then each projection matrix is a P2 → P1 mapping and we
get equations of the form (13). Since the right null space
exists, the determinant of 6 × 6 matrix is 0 which implies
(14). Evaluation of the projection matrices from the trifocal
tensor and reconstruction follow similar lines.

In this case, however instead of �∞ we have � which
is real-world plane from which the scene-points come. Let
us denote the undistorted first image as I 1

u and the dis-
torted (which is what we have) image as I 1

d . We consider
the formation of the distorted image to be a two-step pro-
cedure. A homography, denoted by H, that does � → I 1

u .
Followed by distortion for which we will assume a paramet-
ric model.

5.1 Estimating the Homography from � to the Undistorted
Images

Consider the projection matrix of the first radial camera,
PT

3×2 = [p�
1 p�

2 ], where p1 and p2 are the rows of 2 × 3 ma-
trix, P.

l =
[
l1
l2

]
=

[
p1

p2

]
X (23)

Suppose X projects onto xu in the first image
(I 1

u , conforming to the pin-hole model). Also, suppose that
X projects onto the line l = [l1 l2]T , in the first distorted im-
age (I 1

d ). Then, xu is of the form λ
[ −l2

l1

]
(since the center of

distortion is (0,0)T , and deviation is only along the radial
line).

The homography H from � to I 1
u , would map X to xu.

From the observation made above, we can estimate the first
two rows of H as

H =
⎡
⎣

−p2

p1

h3

⎤
⎦ (24)

where h3 = (h31, h32, h33)
T is unknown.

Let

Su =
{⎡

⎣
xi
u

yi
u

1

⎤
⎦ | i = 1 . . . n

}

be the set of coordinates of the feature points in the undis-
torted image, I 1

u .
Then by estimating the homography, H, up to three un-

known parameters, as we have done above, we are able to
express the set, Su, as

Su(h31, h32, h33) =
{[ −p2 · Xi

p1 · Xi

[h31 h32 h33] · Xi

]
| i = 1 . . . n

}

(25)

The undistorted coordinates (xu) of all the feature points,
together, are thus now known up to only three parameters
(of h3) in total.

5.2 Computing the Distortion Parameters

We will now estimate the distortion parameters of the divi-
sion model.4 We will assume that the transformation from

4Note that everything up to this stage was independent of any assump-
tion on the form of the radial distortion. Therefore, we could also use
a different distortion model. Depending on the type/parameters of dis-
tortion, we may or may not be able to estimate the last row of the
homography and the distortion parameters linearly. However, the rela-
tions that we will derive are valid irrespective of the model used.
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I 1
d to I 1

u , follows the division model (Fitzgibbon 2001) i.e.,
induced by the distortion parameters, is

xu = xd

(1 + K1rd2 + K2rd4 + K3rd6 + . . .)
(26)

The transformation from � to I 1
u , induced by H, is

ρ

[
xu

1

]
=

⎡
⎣

−p2X
p1X
h3X

⎤
⎦ (27)

with ρ an unknown scale factor. Since the two points are
the same, the vectors representing them should be parallel.
Thus their cross-product should be equal to zero (Hartley
and Zisserman 2000).

⎡
⎣

−p2X
p1X
h3X

⎤
⎦ ×

⎡
⎣

xd

yd

(1 + K1rd
2 + . . .)

⎤
⎦ = 0 (28)

Thus every point gives us two equations,

[
xd(h3X) + p2X(K1r

2
d + . . .)

yd(h3X) − p1X(K1r
2
d + . . .)

]
=

[
(−p2X)

(p1X)

]
(29)

which can be rewritten as,

[
xdX (p2X)[r2

d r4
d . . .]

ydX (−p1X)[r2
d r4

d . . .]

]
⎡
⎢⎢⎢⎣

h�
3

K1

K2
...

⎤
⎥⎥⎥⎦ =

[
(−p2X)

(p1X)

]
(30)

These two equations are dependent, but it is best to use them
both to avoid degenerate cases and deal with orientation am-
biguities.

Given more than 3+n feature points (where n is the num-
ber of distortion parameters), we can solve the system of
equations we would get, in a least-squares sense.

Using the above set of equations directly, we minimize an
algebraic error. A better solution would be to minimize the
geometric error in the distorted image, I 1

d (since that is the
input image). For that we need to divide each of the equa-
tions given in (30), by 1

h3X . This would then minimize the
sum (over all the feature points) of the following squared-
error.
∥∥∥∥∥

[
xd − −p2X

h3X (1 + K1r
2
d + . . .)

yd − p1X
h3X (1 + K1r

2
d + . . .)

]∥∥∥∥∥
2

(31)

which is distance, in I 1
d , from (xd, yd)T to [−p2X

h3X
p1X
h3X ]T (1+

K1r
2
d + · · ·) i.e., the pixel corresponding to the feature point

in I 1
u , warped by the distortion parameters ((1 + K1r

2
d +

. . .)). However, we don’t have 1
h3X , since h3 is unknown,

but by scaling with ‖(xd ,yd )T ‖
‖(−p2X,p1X)T ‖ we can at least normalize

for the arbitrary scale of X. We scale both of the equations,
generated by each feature point, before stacking them in the
matrix to obtain the least-squares solution.

This system of equations could be refined iteratively us-
ing the previous approximation of h3 to normalize the equa-
tions or alternatively a non-linear minimization of (31) could
be used to refine our linear solution. The results described
in the experimental section are obtained using the linear
method only.

6 Radial Tensor for Heterogeneous Cameras

The next natural question to ask is: how does the radial
1D camera model interact with the more standard pin-hole
camera model. This is particularly useful when we consider
today’s camera networks which contain cameras of differ-
ent types, some of which will need the pin-hole model and
others the radial 1D model. In particular we will examine
the multi-view relationship among two 1D cameras and one
pin-hole camera.

Consider the point X that projects onto the point x3×1

in the pin-hole camera and the radial lines l′2×1 and l′′ in
the radial cameras. Then it projects by the following set of
equations,

λx = P3×4X

λ′l′ = P′
2×4X

λ′′l′′ = P′′
2×4X

(32)

These equations can be rewritten in matrix format as,

⎡
⎢⎣

P3×4 x 0 0

P′
2×4 0 l′ 0

P′′
2×4 0 0 l′′

⎤
⎥⎦

⎡
⎢⎢⎣

X
−λ

−λ′
−λ′′

⎤
⎥⎥⎦ = 0 (33)

Since we know that a solution exists, the right null-space
of the 7 × 7 measurement matrix should have non-zero di-
mension, which implies that

det

⎡
⎢⎣

P3×4 x 0 0

P′
2×4 0 l′ 0

P′′
2×4 0 0 l′′

⎤
⎥⎦ = 0 (34)

Following the approach of Triggs (1995), expansion of the
determinant produces the unique trilinear constraint for the
pin-hole view and the two 1D views,

Tjk
i xi l′j l′′k = 0 (35)

Tjk
i is the 3 × 2 × 2 mixed trifocal tensor (introduced in

Thirthala and Pollefeys 2005c) for the pin-hole camera and



204 Int J Comput Vis (2012) 96:195–211

Fig. 5 O1 and O2 are the two optical axes. C is the center of the pin–
hole camera. �1 is the plane defined by C and O1. Planes �i project
onto mi in the pin-hole image. X (lying on �1) projects onto x in the
pin-hole image and l′ in the first radial image. The intersection of �1
(the plane back-projected from l′) and the ray back-projected from x is
the ray itself. Any plane back-projected from the second radial camera
will intersect this ray

two 1D radial cameras. Elements of T can be written as 4×4
minors of the joint projection matrix [PT P

′T
P

′′T ]T where
two rows (of the minor) come from the pin-hole projection
matrix, P, and a row each is contributed by P′ and P′′.

One useful way of understanding the mixed trifocal ten-
sor is by considering the intersection of the ray back-
projected from the pin-hole camera and the planes back-
projected from the two radial cameras, in 3D space. The
back-projected ray intersects the plane back-projected from
the first radial camera at a point, say X. This constrains the
radial line in the second radial camera to be such that the
plane back-projected from it contains X. The mixed trifocal
tensor captures this incidence relationship.

A general 3 × 2 × 2 tensor has 12 − 1 = 11 degrees of
freedom up to scale. Subtracting from these the degrees of
freedom required to describe one pin-hole camera and two
radial cameras up to a 3D projectivity, (3 × 4 − 1) + 2 ×
(2 × 4 − 1) − (4 × 4 − 1) = 10, we observe that the mixed
trifocal tensor has only one internal constraint.

6.1 Nature of the Internal Constraint

We will now characterise the internal constraint of the mixed
trifocal tensor. Consider Fig. 5. Let C be the camera center
of the pin-hole camera and O1 and O2 be the optical axes of
the two radial cameras. Let us denote the plane defined by
C and Oi by �i .

Consider a point X, lying in �1, that projects onto x in
the pin-hole image and l′ in the first radial image. Note that
the plane back-projected from the first radial image is �1.
Further, the ray back-projected from the pin-hole image lies
in �1. Thus the intersection of these two is the ray itself.
Since in 3D space a ray and a plane always intersect, we can

choose any arbitrary plane from the pencil back-projected
by the second radial camera. This is equivalent to selecting
an arbitrary l′′ = [l′′1 , l′′2 ]. This implies that their coefficients
in (35) are zero.

Tj1
i xi l′j = 0 Tj2

i xi l′j = 0 (36)

Equation (36) can be interpreted to imply that there exists
l′ = [l′1, l′2] such that

[
T11

i xi T21
i xi

T12
i xi T22

i xi

]

︸ ︷︷ ︸
M

[
l′1
l′2

]
=

[
0
0

]
(37)

Since the right null-space of the M is of non-zero dimen-
sion, it implies that det(M) = 0. Thus,

T11
p xpT22

q xq − T12
p xpT21

q xq = 0 (38)

Note that the above equation is a conic in x of the form
xT Wx = 0 where the (i, j)th entry of W is of the form

Wij = T11
i ∗ T22

j + T11
j ∗ T22

i − T12
i ∗ T21

j − T12
j ∗ T21

i

2
(39)

Thus for a point x lying on W there exists a radial line,
l′ in the first radial image such that for any arbitrary l′′, (35)
is satisfied (or there exists a radial line in the second image
such that for any arbitrary radial line in the first image, (35)
is satisfied). Note that the above condition holds only for
points x which come from either line m1, which is the image
of plane �1 or m2 which is the image of the plane �2. This
implies that W is a degenerate conic (pair of lines). Thus

det(W) = 0 (40)

Equation (40) is the degree-six internal constraint on the en-
tries of Tjk

i .

6.2 Computation of the Mixed Trifocal Tensor

The mixed trifocal tensor can be linearly estimated given at
least 11 corresponding triplets of features, with each triplet
giving a linear constraint on the parameters of the tensor us-
ing (35). However this method would not impose the internal
constraint we have discussed above. We will now describe a
technique by which the degree-six internal constraint dis-
cussed above can be imposed.

Given 10 corresponding triplets of features, we obtain a
10 × 12 measurement matrix and thus a two-dimensional
right null-space. The trifocal tensor, T can then expressed as

T = S + λR (41)

where λ needs to be determined.
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Fig. 6 (L to R) Spherical mirror, Hyperbolic mirror, Pin-Hole Cam-
era, Fish-eye Lens. Top: Images obtained by the four cameras. Bottom:
(ρ, z) plots for reconstructed features and estimated incoming rays.
The blue-dashed line represents the Optical Axis. Hence the X-axis

corresponds to distance along the optical axis. And the Y-axis cor-
responds to perpendicular distance from the optical axis. Notice the
caustic of the spherical-mirror camera (extreme left)

Given two 3 × 2 × 2 tensors U and V, define an operator
Y(U,V), which gives as output a 3×3 matrix, as following:

Yij = U11
i ∗ V22

j + V11
j ∗ U22

i − U12
i ∗ V21

j − V12
j ∗ U21

i

2
(42)

The degree-six internal constraint expressed by (40) can
be rewritten in the above terms (using (39)) as:

det(Y(T,T)) = 0 (43)

Using (41), we can reduce (43) as following:

det(Y(T,T)) = 0

det(Y(S + λR,S + λR)) = 0

det(Y(S,S)︸ ︷︷ ︸
D1

+λ(Y(S,R) + Y(R,S)︸ ︷︷ ︸
D2

) + λ2 Y(R,R)︸ ︷︷ ︸
D3︸ ︷︷ ︸

D

) = 0

(44)

Note that in (44), D1,D2 and D3 are known. Further,
since the value of λ would be such that the determinant of D
is zero, there will exist z such that:

(D1 + λD2 + λ2D3)z = 0 (45)

Computing the tuple (λ, z), such that (45) is satisfied, is the
standard Quadratic Eigenvalue Problem (QEP) (Tisseur and
Meerbergen 2000) and can be efficiently solved. For exam-
ple, in MATLAB, one can use the polyeig function.

Since the size of the minimal hypothesis is 10 and the ker-
nel can be efficiently implemented (S and R are estimated

linearly and (45) can be solved efficiently), we can use a
robust sieve, like RANSAC, to estimate the mixed trifocal
tensor.

7 Experiments

7.1 Radial Quadrifocal Tensor

7.1.1 Using Synthetic Data

We will now describe simulations that we carried out to
test the validity and robustness of reconstruction using the
quadrifocal tensor. The following 4 cameras were chosen:
a pin-hole camera looking at a spherical mirror, a pin-hole
camera looking at a hyperbolic mirror (satisfying the single
effective view-point condition (Baker and Nayar 1999)), a
perspective camera and a fish-eye camera. To every point in
every image, Gaussian noise equivalent to σ = 1 pixel (in an
image of 2000×2000 pixels) was added. The final 4 images
are shown in Fig. 6. Only the points which were imaged in
all the 4 views were considered (a total of 2300 points were
imaged, see Fig. 7). The 4 cameras were modeled to have
zero skew and unit aspect ratio.

In Fig. 8 the results of the metric reconstruction are
shown. Only the difference vectors, between the ground
truth and the reconstruction obtained, are plotted. The ratio
of the RMS reconstruction error and the standard deviation
of the ground truth point set is less than 1 percent. This ratio
grew to around 3–5 percent when noise of σ = 2 pixel was
introduced.

In the second phase, we perform radial calibration. For
each camera, the first phase would have given us a precise
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optical axis in metric space. We select an arbitrary point on
the optical axis and compute (ρ, z) pairs for each recon-
structed point. In this 2D coordinate system, all points which
project onto the same radial circle, in the input image, should
lie on the same line. Given a sufficiently dense set of points,
we can estimate these incoming rays (see Fig. 6). Note that
all the incoming rays for the three central cameras (views 2,
3 and 4) pass through a point on the optical axis, as expected.
This happens without enforcing any explicit constraint. For

Fig. 7 The scene that is imaged by the 4 cameras. Plus (+) signs mark
the points imaged in all cameras and dot (.) mark points which weren’t

a non-central camera (view 1), the envelope of rays corre-
sponds to the caustic of a spherical mirror as expected.

7.2 Radial Trifocal Tensor

7.2.1 Non-parametric Radial Calibration

In our first experiment, a triplet of images obtained using
a rotating fish-eye camera was fed as input to the system.

Fig. 8 These line segments connect the ground-truth points to the met-
ric reconstruction obtained. Compare the length of the segments to the
extent of the scene to get an idea of the error in reconstruction

Fig. 9 The triplet of images input to the system with features that were automatically matched overlaid. Top: Fish-eye images. Bottom: Catadioptric
images
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Fig. 10 Plot for fish-eye camera. Radius in Distorted Image (r) vs.
Angle with Optical-Axis of ray passing through a pixel at that radius
(θ , in degrees)

The images were acquired using a Nikon 8 mm FC-E8
fish-eye converter mounted on a Nikon Coolpix 8400 cam-
era. An online implementation of Lowe’s feature matcher
(Lowe 2004) was used to obtain triplets of corresponding
points in the three images. Note that despite the severe
non-perspective distortion, most automatic feature matching
techniques work well because the views were obtained using
a purely rotating camera.

The image resolution was 1024 × 768 pixels. Approx-
imately 560 triplets were returned by the feature matcher.
Next, RANSAC based on the radial trifocal tensor identified
about 220 inliers (the threshold was set to 3 pixels). The in-
put images, with the triplets of corresponding points (those
that were identified as inliers after RANSAC) marked are
shown in Fig. 9. A projective reconstruction was obtained
and upgraded to metric based on the assumptions of zero
skew and known aspect ratio of unity. For every 3D point
that has correspondences across at least two images, we ob-
tain the angle of the ray, passing through that point and
the camera center, and the optical axis of the correspond-
ing view. This gives us a point on the angle vs. distorted
radius curve. Figure 10 shows the plots for the three views.
We see that the angle of a ray with the optical axis is related
to the distorted radius almost linearly. This is expected as a
fish-eye camera roughly follows the equidistant model.

Note that at no point during the whole procedure did we
make any assumptions about the type/amount of radial dis-
tortion. Further, an automatic feature matcher has been able
to give us features that span the whole range of distorted
radii. Finally, note that no additional constraint (smoothness
etc.) was enforced across the three views. Finally in Fig. 11
we show a cubemap of the undistorted left view. Note that
straight lines in the world are indeed mapped to straight lines
in the image. The unwarping was carried out by computing

Fig. 11 Cubemap of undistorted left image (unwarping done using a
simple line interpolation between θ and r , the distorted radius)

Fig. 12 Plot for catadioptric camera. Radius in Distorted Image (r) vs.
Angle with Optical-Axis of ray passing through a pixel at that radius
(θ , in degrees). Instead of a single curve, we have a band, probably
because of the non-central nature of the camera

the distorted radius for a given undistorted radius using a
simple line interpolation on the plot in Fig. 10. More com-
plex models could also be used.

In our second experiment, three images obtained from a
purely rotating single viewpoint catadioptric camera were
used. The image resolution was 1280 × 960 pixels. Lowe’s
feature matcher (Lowe 2004) produced approximately 220
matching triplets across the three views. An in the previ-
ous experiment, RANSAC based on the radial trifocal ten-
sor produced around 130 inlier triplets. Figure 9 (lower row)
shows the input images with the inlier triplets marked. We
compute a projective reconstruction and upgrade it to met-
ric based on assumptions of zero skew and unit aspect ratio.
Note that since our method handles all types of radial distor-
tion uniformly, the complete procedure in this experiment in
exactly the same as in the previous experiment. Figure 12
shows the plots of the Angle with Optical Axis vs. Distorted
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Radius for each of the views. Finally, Fig. 13 shows a cube-
map of the undistorted left view. One can refine the esti-
mates produced by our method using techniques like bundle
adjustment. In the first experiment, it reduced the RMS re-
projection error from 1.13 pixels to 0.43 pixels.

7.2.2 Radial Calibration from Camera in General Position

In this experiment, 3 images of a courtyard, acquired by
a Sigma 8 mm-f4-EX fish-eye lens with view angle 180°
mounted on a Canon EOS-1Ds digital camera were used.
The image resolution was 2560 × 2560 pixels. Since the 3
views weren’t obtained with a purely rotating camera, we in-
put 44 corresponding triplets, that lie on a real-world plane
(see Fig. 14). We observed that the average clicking error
was 1–3 pixels. As in the previous experiment, RANSAC,
based on the radial trifocal tensor, was used, resulting in 30
inlier triplets. A second RANSAC based on reprojection er-
ror, was used to estimate the distortion parameters. Figure 15
plots the distortion curves when different number of param-
eters (4–8) were used in the distortion model. A distortion
model with 5 parameters was used to compute a undistorted
image, for one of the views, using a cubemap projection
(see Fig. 16). Note that we are able to accurately undistort,

Fig. 13 Cubemap of
undistorted left image
(unwarping done using a simple
line interpolation between angle
and r , the distorted radius)

not only regions in the center of the image, but also the pe-
riphery of the image. Since the images were acquired using
a full 180° fish-eye lens, it shows that the model is robust
for wide-angle lenses with very high degree of distortion. In
this case, the RMS reprojection error was around 2–3 pixels.

7.3 Comparison with Previous Work

Among our approaches we selected the approach developed
in Sect. 5 (i.e., using the radial trifocal tensor to calibrate
a camera in general position). And we selected the OCam-
Calib toolbox (Omnidirectional Camera Calibration Tool-
box (Rufli et al. 2008; Scaramuzza and Martinelli 2006))
as the reference implementation. We used average reprojec-
tion error (in the distorted input images), as a measure of
the accuracy of the approach. Both the methods use the fact

Fig. 15 Distortion Curves 1 + K1r
2
d + · · · + Knr

2n
d when different

number parameters (n = 4−8, marked next to corresponding curve) are
used. Note that most of the curves are well-behaved even at r = Rmax

Fig. 14 Three images, taken with different camera centers, input to the system (matching points input to the system are marked). Images courtesy
Tomas Pajdla



Int J Comput Vis (2012) 96:195–211 209

that all the grid-points lie on a plane. However, the toolbox
has more input information (the metric coordinates of the
grid-points) than us (we just use the fact that the grid-points
in the three images are corresponding, but do not know the

Fig. 16 Cubemap of undistorted left image (warping done using 5 dis-
tortion parameters)

coordinates of the points on the plane). The results reported
here are by using the direct linear technique for estimation
(results will improve further on doing bundle adjustment).
Also, the toolbox recommends the use of a routine that iter-
atively tries to find the best center-of-distortion. The results
discussed here, for the toolbox, are after having done that
step.

Three images of a checkerboard taken from a fish-eye
camera were used in the first experiment (these involved rel-
ative motion of the camera with respect to the world-plane,
in this case the checkerboard). 25 points across 3 views were
manually extracted. These were fed to the toolbox and 4 co-
efficients (as directed by the toolbox tutorial) were used for
parameterizing the distortion polynomial. The toolbox gave
an average error of 0.25 pixels. In our approach we used the
division-model of radial distortion with 3 parameters. This
gave us an average reprojection error of 0.45 pixels.

In our second experiment, we selected three images of the
checkboard taken with a Ladybug2 camera. Once again 25
correspondences across 3 views were used. With the same
parameters as the first experiment, the toolbox gave an aver-
age reprojection error of 0.24 pixels. With our approach we
got a reprojection error of 0.7 pixels.

Table 1 Summary of results
Radial Tensor Results

Quadrifocal • Camera Type: Both central and non-central
• Practical: No. Too sensitive to noise. More for theoretical interest.
• Reconstruction: Metric (assuming zero skew, know p.p and aspect ratio).
• Radial Distortion Calibration: Non-parametric but requires very dense

correspondences.
• Comments: Has 13 d.o.f. The nature of two constraints explained geo-

metrically.

Trifocal • Comments: Has 7 d.o.f. And no internal constraints. Hence easy to
estimate.

• Rotating Camera Triplet
◦ Camera Type: Required to be central for radial calibration to work.
◦ Practical: Yes. Very robust to noise and easy to estimate.
◦ Reconstruction: Metric. Reconstruct �∞ (plane of all directions).

And use that a calibration device.
◦ Radial Distortion Calibration: Non-parametric. Using �∞ compute

the angle between a reconstructed ray and the optical axis.
• Cameras in general position but scene is a plane

◦ Camera Type: Central only.
◦ Practical: Yes. Very robust to noise and easy to estimate.
◦ Reconstruction: Projective reconstruction of scene-plane.
◦ Radial Distortion Calibration: Only parametric. Simultaneous esti-

mation of distortion parameters and last row of homography, H: scene-
plane → undistorted-image.

Trifocal Tensor for Hetero-
geneous Cameras

• Camera Type: Non-central handled too.
• Practical: Haven’t completely explored sensitivity to noise.
• Reconstruction: Projective.
• Radial Distortion Calibration: Not discussed.
• Comments: Has 10 d.o.f and 1 internal constraint. This constraint is

derived geometrically.
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Using the average reprojection-error as a cost function,
we developed a gradient-descent approach to estimate the
center-of-distortion. It used widely spaced positions as ini-
tial guesses to the optimization. Preliminary results have
been encouraging, which we will pursue in the future.

8 Conclusion

The 1D radial camera maps 3D points on radial lines. This
allows us to derive multilinear constraint between three and
four views recorded with central or non-central omnidirec-
tional cameras. One of the main contributions of this work
has been to come up with an approach for reconstruction,
while still making only very minimal assumptions about the
kind of distortion. This allows us to use this reconstruction
as an accurate calibration object to estimate the distortion in
a second step.

Given 15 or more correspondences across four views
taken with a moving camera (or multiple cameras), the radial
quadrifocal tensor allows us to compute the corresponding
1D radial cameras and a metric reconstruction of 3D points.
The reconstruction is then used to estimate a non-parametric
camera model for different cameras, including a non-central
cameras. Although the approach has been demonstrated to
work well on synthetic data, the required number of point
correspondences makes it hard to develop a robust automatic
approach for real images.

For a purely rotating camera a simpler constraint (ra-
dial trifocal tensor) is obtained requiring 7 point correspon-
dences across 3 views. As with perspective cameras (Hart-
ley 1994; Agapito et al. 1999), pure rotation turns out to be
particularly well suited for self-calibration of central omni-
directional cameras. In particular, we present an automatic
approach that recovers the accurate non-parametric distor-
tion curve relating image radius to angle of incoming rays.
Finally we introduce an approach that does not need the as-
sumption of pure rotation, but does parametric distortion es-
timation.

In the future, we plan to study various mixed camera ten-
sors (for example, with two pin-hole and a single 1D cam-
era). This will be very useful as heterogeneous camera net-
works become more and more commonplace.
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