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Abstract We address and solve the self-calibration of a
generic camera that performs planar motion while viewing
(part of) a ground plane. Concretely, assuming initial sets
of correspondences between several images of the ground
plane as known, we are interested in determining both the
camera motion and the geometry of the ground plane. The
latter is obtained through the rectification of the image of
the ground plane, which gives a bijective correspondence
between pixels and points on the ground plane.

We initially propose a method to determine the camera
motion by using the motion flow between pairs of images.
We perform this step with no need of camera calibration.
Our solution requires the fixed ground point of the camera
motion to be visible on both images.

Once the camera motion is known, either by using our
method or by other alternative means (e.g. GPS-based), we
show that the rectification of the ground plane can be deter-
mined linearly from at least three images up to a scale factor.
Experimental results on real images are presented at the end
of the paper to validate the proposed methods.
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1 Introduction

Robot localization is a fundamental process in mobile
robotics applications. One way to determine the displace-
ments and measure the movement of a mobile robot is us-
ing dead reckoning systems (such as monitoring the wheels
revolutions or integrating accelerometers output). However
these systems are not reliable since they provide noisy mea-
surements and tend to diverge after few steps (Borenstein
and Feng 1996).

Visual odometry, i.e. methods based on visual estimation
of the motion through images captured by one or more cam-
eras, is exploited to obtain more reliable estimates. Many
approaches to visual odometry are based on perspective
cameras. Due to the narrow viewing cone of this camera
model, the persistence of features during an image sequence
is short, increasing the error cumulation. On the other hand,
visual odometry systems based on panoramic cameras re-
quire accurate calibration. These solutions are summarized
in Sect. 2.

Our purpose is to work with uncalibrated general cam-
eras, not necessarily central, so as to benefit from the pos-
sibility of panoramic viewing, leading to long feature per-
sistence, and the simplicity of set-up, avoiding the need for
calibration. The generic camera model, which associates one
projection ray to each individual pixel, represents the most
general mathematical model to describe a projection system
(Grossberg and Nayar 2001; Sturm and Ramalingam 2004).
Under this model, the relation among points on the ground
plane and the image plane is not parametric and thus stan-
dard visual odometry techniques cannot be applied.
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In this paper we present a method for the self-calibration
of a generic camera that performs planar motions on a tex-
tured planar ground floor, while viewing this plane. We as-
sume that the generic camera is continuous, meaning that
neighbor pixels have neighbor corresponding points on the
ground floor. We focus on the sensor calibration bounded
to the ground plane, which can later be used to recover the
camera planar motion on the same ground plane.

Calibration from pattern methods exist for the generic
camera (Sturm and Ramalingam 2004). Ramalingam et al.
(2005) use (motion) flow lines to self-calibrate a general
central camera from pure rotations and translations of the
camera. The self-calibration of a generic central camera was
also solved using at least two infinitesimal rotations in Es-
puny (2007). They deal with central cameras and simple
motions, whereas we deal with general cameras (including
non-central ones) and planar motions. To our knowledge, the
problems of planar motion estimation and ground plane rec-
tification with uncalibrated generic cameras were only ad-
dressed in Caglioti and Taddei (2008), from which this paper
is an extended and improved version.

The initial and final positions of the camera induced by
any planar motion are always related by a particular roto-
translation, i.e. the motion can be described by a center of
rotation and a rotation angle, except in the case of pure trans-
lations. We estimate the motion flow induced by the roto-
translation, i.e. the set of image points that matches an initial
point at some stage of the motion (Ramalingam et al. 2005).
For such motions, in fact, the flow curves are represented
by closed paths around the imaged center of rotation. Since
the camera is general, though, the curves are not given by
ellipses, as in the perspective case, but have a more general
form. A sampling of the motion flow is recovered from the
initial set of correspondences either by fusion, when more
than two images of the same motion are available, or by
interpolation. We follow this latter approach since we as-
sume that only two images are available for the same roto-
translation on the ground plane.

Given the sampled motion flow, we show how to esti-
mate with good precision both the imaged center and the
angle of rotation. The center represents the only invariant
point of the function describing the motion flow, i.e. its path
coincides with a point. The rotation angle, instead, is recov-
ered by counting the number of samples required to cover a
closed path around the center.

Notice that our approach cannot be applied in case of im-
ages related by pure translations or displacements with small
rotations. In this case, in fact, the motion flow is singular and
it is not represented by closed curves.

Given multiple subsequent planar motions parallel to a
ground plane, we show that it is possible to perform a rec-
tification of the ground plane up to a scale factor. The ex-
tracted correspondences are the image of points related by

a rotation whose parameters can be estimated with our first
algorithm. A single set of correspondences, however, is not
enough to perform a valid rectification, since it does not con-
strain the distance of points w.r.t. the center of rotation. We
show that a second planar motion around a different center
suffices to recover a valid set of constraints and to perform
the rectification up to a scale factor.

If the two center positions on the ground plane are
known, in fact, we can consider any valid triangle formed by
these two points and a third point on the plane. The angles
of this triangle can be fixed either by exploiting the motion
flow (Caglioti and Taddei 2008) or directly using the feature
correspondences as we show in our algorithm. With this lat-
ter approach, moreover, it is possible to exploit more than
two planar motions to recover the rectification.

We then show that, given the previous estimations, it is
possible to recover a continuous function representing the
motion flow. This function describes the path of all image
points for any rotation angle. It allows us to obtain a final
estimation of the visual odometry.

Our approach differs from the one described in Cagli-
oti and Taddei (2008) since we directly perform the recti-
fication and then estimate the flows. This is done by con-
ducting a single linear optimization with fewer parameters
w.r.t. a set of subsequent optimization steps yielding to bet-
ter results. In Caglioti and Taddei (2008), instead, the feature
correspondences are used to estimate a continuous function
representing the motion flow of each planar motion. These
functions are exploited to recover enough constraints related
to the rectification to conduct a second optimization.

We outline the components of our algorithm in Fig. 1.
Notice that initially we need to select a set of image pairs
related to valid distinct planar motions, but once the motion
parameters are estimated and the ground plane rectified we
can rectify all the image sequence.

The paper is organized as follows. In Sect. 3 we formu-
late the problems of the center and rotation angle estimation
from two images. Section 4 describes how to register two
input images and how to recover a sampling of the motion
flow once the registration map is known. The problem of
motion estimation (imaged center and angle) from a motion
flow is solved in Sect. 5. In Sect. 6 we formulate the prob-
lem of ground plane rectification from two planar motions.
Section 7 describes how to linearly restore the ground plane
exploiting at least two different planar motions, i.e. given at
least two sets of motion flows around different image points.
Furthermore, we show how to exploit the rectification in or-
der to recover a continuous estimation of the motion flow. In
Sect. 8 we show good results on real data related to the vi-
sual odometry and to the ground plane rectification. Finally,
Sect. 9 concludes the paper.
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Fig. 1 Outline of the algorithm. Given a set of pixel correspondences
between two images, we initially estimate the motion flow and use it to
estimate the planar motion parameters. Then, given at least two motion
sequences, we estimate a rectification map that can be used to rectify
the overall image sequence. The output of our algorithm can be later
used to perform visual odometry

2 Previous Work

In the last years methods to estimate the robot motion (ego-
motion) based on visual information provided by cameras
have gained attention. Early methods were based on esti-
mation of the optical flow from image sequences in order to
retrieve ego-motion. McCarthy and Barnes (2004) presented
a review of the most promising methods.

Other approaches exploited stereo vision. Nister et al.
(2004) proposed a method based on triangulation between
stereo pairs and feature tracking in time-sequence of stereo
pairs, without any prior knowledge or assumption about the
motion and the environment. Comport et al. (2007) devel-
oped a visual odometry system based on a stereo pair which
directly uses all gray-scale information available leading to
very robust and precise results.

Agrawal and Konolige (2006) proposed an integrated,
real-time system involving both stereo estimate in the dis-
parity space and a GPS sensor in a Kalman filter framework.
GPS-based systems can be sufficiently accurate for large ar-
eas but they can not be used in indoor environments and
require a support framework, which prevents their use, e.g.,

for planetary exploration. For such application, Mars Explo-
ration Cheng et al. (2006) employed a feature detection and
tracking system in a stereo image pair; using maximum like-
lihood estimation the change in position and altitude for two
or more pairs of stereo images is determined.

Davison (2003) proposed a real-time framework for ego-
motion estimation for a single camera moving through gen-
eral unknown environments. The method is based on a
Bayesian framework that detects and tracks a set of fea-
tures (usually corner points or lines). Assuming the rigid-
ity in the scene, the motion of the image features allows to
estimate the motion of the camera; therefore, the complete
camera trajectory and a 3D map of all the observed fea-
tures can be recovered. Wang et al. (2005) and Benhimane
and Malis (2006) estimated the homographies between im-
age sequences of (piece-wise) planar scenes to retrieve robot
motion but both methods require camera calibration.

Usually, 3D reconstruction from images taken by a mov-
ing uncalibrated perspective camera is performed through
auto-calibration. Auto-calibration from planar scenes re-
quires either non-planar motion (Triggs 1998), or sev-
eral planar motions with different altitudes of the camera
w.r.t. the ground plane (Knight et al. 2003). Caglioti and
Gasparini (2007), instead, performed visual odometry with-
out going through calibration from a single planar motion.
All these previous works assume a perspective camera, pos-
sibly affected by radial distortion, as the underlying camera
model.

Visual odometry systems based on non perspective cam-
eras were proposed by Gluckman and Nayar (1998), who
extended standard techniques to omnidirectional cameras.
Bunschoten and Krose (2003) used a central catadioptric
camera to estimate the relative pose relationship from cor-
responding points in two panoramic images via the epipolar
geometry; the scale of the movement is subsequently esti-
mated via the homography relating planar perspective im-
ages of the ground plane. Corke et al. (2004) developed a
visual odometry system for planetary rover based on a cata-
dioptric camera; they proposed a method based on robust
optical flow estimation from salient visual features tracked
between pairs of images. These methods assume a calibrated
central omnidirectional camera, whereas our approach in-
stead considers generic camera models that can also deal
with non central cameras. Moreover by constraining the ap-
plication to planar motion we do not require calibration.

Notation. Elements on the ground plane will be repre-
sented by capital letters, whereas elements on the image
plane will be represented by lower case letters.

3 Planar Motion Estimation Problem

We consider a planar motion of a generic camera, not neces-
sarily central, viewing a ground plane Π . By planar motion
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Fig. 2 The motion estimation problem setup. The camera performs a
planar motion parallel to the ground plane Π . The motion parameters
are the center of rotation C and the angle of rotation α. The images

show a particular motion flow for a given point p0 in the image plane.
Refer to Sect. 4.2 for a description of the relation among p0, p1, p2,
and p3

we mean that the camera translates on a plane parallel to the
ground plane Π , while rotating non-trivially about an axis
orthogonal to Π (see Fig. 2, left). This is common, for in-
stance, in the case of a robot moving in indoor environments.

The camera planar motion is equivalent to a rotation
about an axis orthogonal to Π . We denote by C the inter-
section of the rotation axis with Π and by α the angle of
rotation. The center C and the angle α determine the camera
motion. We aim at recovering the angle α and the image c

of the center of rotation C. We denote by R ⊂ R
2 the image

region corresponding to the ground plane.
We assume given a set of correspondences {pi ↔ p′

i}
between two images I and I ′; the correspondences are as-
sumed to be image of points lying on the ground plane Π .
We assume that the calibration map of the generic camera
is continuous, i.e. that neighbor pixels of the camera have
neighbor corresponding viewing rays. We assume that the
image c of the center of rotation C is visible on both I and
I ′; in particular, we do not consider motions close to pure
translations. Finally, we assume that the imaged center c is
distant from the border of the image domain R, in such a
way that some of the given correspondences lie around this
point.

A motion flow is represented by a function relating any
image point p to an image curve containing all points that
match p at some stage during the motion. Due to the conti-
nuity of the calibration map, in the case of a planar motion
w.r.t. the ground plane, the motion flow of any imaged point
is represented by a closed curve around the center of rota-
tion (Ramalingam et al. 2005). These curves are ellipses in
the case of perspective cameras, but have a more complex
form in the case of a generic projection (see Fig. 2).

In order to estimate α and c we will exploit a sampling of
the continuous motion flow curve through any point in the
image domain R. As we explain later, this sampling can be
obtained by just iterating a matching function between the
two images. Therefore, previous to the motion estimation
we need to estimate a registration function

Γ : R → R. (1)

This registration Γ maps any pixel p from the imaged
ground plane on the first image to its corresponding pixel
p′ on the second image.

4 Generic Registration and Motion Flow Estimation

Assume that we are given a set of correspondences {pi ↔
p′

i} between two images I and I ′, 1 ≤ i ≤ n. We first need to
estimate the registration Γ between the two images, which,
by exploiting the continuity assumption, we model as the
composition of a planar homography with a bivariate b-
spline function. The registration exactly corresponds to a
planar homography for images acquired by a pinhole cam-
era, but not for images corresponding to a generic camera;
we use a closed-form estimation of the homography to ob-
tain a guess for the registration map that serves as initial
value for the spline fitting.

Once we determine the registration function Γ between
the two images, we can iterate it repeatedly so as to obtain
an estimation of the motion flow as we explain in Sect. 4.2.
In practice, the obtained motion flow does not correspond to
the sampling of the real planar motion flow (closed) curve.
Caglioti and Taddei (2008) describe possible improvements
exploiting only the corresponding points. Instead, we will
directly use this initial estimation for the computation of the
center and angle of rotation avoiding, at this stage, the esti-
mation of the motion flow.

4.1 Generic Registration between Two Images

We model the registration map Γ between the two images I

and I ′ as the composition

Γ = Γ̃ ◦ H, (2)

being H a planar homography and being Γ̃ a bivariate cubic
b-spline function.
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A cubic bivariate b-spline is defined as Prautzsch et al.
(2002):

Γ̃ (u, v) =
j=Nj∑

j=1

i=Ni∑

i=1

Bi(u, v) · Bj (u, v) · kij (3)

where Bi(u, v) and Bj (v, v) are R
2 → R polynomial func-

tions that depends solely on the position of the Ni · Nj b-
spline knots. Moreover each knot is associated to a two di-
mensional vector kij = [kuij , kvij ]�. Notice that Γ (u, v)

depends linearly from each kij element.
We use the planar homography H in order to obtain

points Hpi that are closer to the points p′
i than the initial

points pi . H represents the linear component of the trans-
formation whereas Γ̃ approximates the additional non linear
component.

We estimate the homography as the 3 × 3 homogeneous
matrix that minimizes the re-projection error between the
points qi := Hpi and the points p′

i . In particular, the points
qi have three homogeneous coordinates

qi = Hpi = (qi,x : qi,y : qi,z),

and we consider their affine coordinates on the image

p̃i = (qi,x/qi,z, qi,y/qi,z);
the re-projection error to minimize is given by the formula
∑

i

‖p̃i − p′
i‖2. (4)

This is a standard problem in Computer Vision; further de-
tails can be found, for example, in Hartley and Zisserman
(2004).

Once we have estimated the planar homography H , we
can apply it to obtain the points p̃i := Hpi , which should be
mapped by the b-spline Γ̃ to the points p′

i . We aim at min-
imizing the reprojection error of these feature points plus
an additional smoothing term, which depends on the second
derivatives of the b-spline:

Γ̃ = arg min
(
Er [Γ̄ ] + λsEs[Γ̄ ]), (5)

where

Er [Γ̄ ] =
∑

i

∥∥Γ̄ (p̃i) − p′
i

∥∥2
,

Es[Γ̄ ] =
∑

j

∥∥Γ̄uu(qj )
∥∥2 + ∥∥Γ̄vv(qj )

∥∥2 + 2
∥∥Γ̄uv(qj )

∥∥2
.

Here Γ̄uu, Γ̄vv and Γ̄uv represent the second partial deriva-
tives of Γ̄ , which are sampled at grid points {qj }, and λs is
a weighting constant (which was manually selected in our
experiments).

In order to deal with catadioptric cameras, and in general
with cameras with a large field of view, we use a b-spline Γ̃p

whose domain is represented by polar coordinates w.r.t. the
image center. Thus given a point p(u, v) on the first image,
we transform it in its polar representation w.r.t. the image
center and then apply Γp to recover the corresponding point
p′(u, v) on the second image. This allows us to better fit
the b-spline domain to the image region R representing the
ground plane.

4.2 Motion Flow Estimation from Two Images

Let p0 and p1 refer to two matching image points, i.e. cor-
responding to the same 3D point observed in I and I ′. Let
p2 be the point that in I ′ matches to point p1 in I . Similarly,
let p3 be the point that in I ′ matches to point p2 in I , and
so forth (see Fig. 2). This sequence may be expressed using
the registration function Γ :

p1 = Γ (p0),

p2 = Γ (p1) = Γ
(
Γ (p0)

) = Γ 2(p0),

. . .

pn = Γ (pn−1) = . . . = Γ n(p0),

which reads that the nth point on the motion flow (i.e. after
n rotations of angle α) corresponding to a point p = p0 can
be obtained by applying n times Γ to the point p.

Moreover, by exchanging the rules of I and I ′, we can
obtain the point p−n on the motion flow by p corresponding
to n rotations of angle −α:

p−n = Γ −n(p). (6)

In summary, using the registration map Γ we are able to
give a sequence of points {pm = Γ m(p)}m∈Z on the motion
flow by a given initial point p. We show that this approach
is enough in order to recover the rotation angle α and the
imaged center c.

Besides, the estimated sequence of points on the motion
flow suffers from drifting, i.e. the points are likely to be
wrong for large values of m. In fact, the recovered points
pm = Γ m(p) do not represent the sampling of a closed
curve. In Caglioti and Taddei (2008) a solution was given
in order to recover motion flows while imposing that they
are closed curves. We follow an alternative approach in
Sect. 7.3, consisting in the use of the rectification of the im-
ages to obtain the motion flow.

5 Planar Motion Estimation from Two Images

In this section we assume that the registration map Γ be-
tween two images I and I ′ is known. Therefore, given a
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point p we are able to obtain a sequence of points {pm =
Γ m(p)}m∈Z on the motion flow curve passing through p.
Using the map Γ , we show how to compute the imaged cen-
ter c and the rotation angle α.

5.1 Imaged Center Estimation

The only invariant point of the function Γ is the point c. In
fact

∀k ∈ Z, Γ k(c) = c. (7)

All the other points are displaced according to the motion:
their flows are represented by closed curves around c. In par-
ticular, these sequences of points all rotate around c either
clockwise or counter-clockwise. Let’s initially assume that
the flows are represented by convex curves. Consider a line
crossing c. In this case, all points on one half line are dis-
placed in one half-space and all points on the other half line
are displaced in the opposite half space due to the previous
property (see Fig. 3).

The previous observation leads to a simple, although ef-
fective, way to compute the imaged center. We start by con-
sidering an initial segment crossing a point c0. The segment
is sampled at n sites and the displacement given by Γ is
evaluated. We then detect a point c1 which is the point on
the segment that divides the sites in two groups w.r.t. the dis-
placement orientation. We call this point the singular point
of the segment. We then perform the same step on an orthog-
onal segment passing through c1 to detect a point c2 and so
forth. By iterating the process the sequence of {ci} converges
to c̄.

Consider now the case of non-convex flow curves. Apart
degenerate cases, we may assume that locally in the re-
gion around the imaged center the convex assumption is still
valid. Globally there could be more than one singular point
for any line on the view plane. To overcome the problem
we repeat the algorithm starting from different initial posi-
tions and reducing the segment length at each step. If the
current segment contains more than one singular point we
randomly choose one and proceed to the next iteration. Fig-
ure 4 shows the case of non-convex motion flows and a pos-
sible sequence of iterations of the algorithm leading to the
correct imaged center.

5.2 Angle Estimation

We estimate α using the following procedure. Let us con-
sider a generic image point p, the sequence of points given
by Γ m(p), m ∈ Z, and a reference line b crossing both c̄ and
the chosen initial point p (see Fig. 5, left).

Suppose that the recovered function Γ is correct and that
the rotation angle is an integral fraction f of 2π . In this
case, the point Γ f (p) coincides with p, i.e. the sequence

Fig. 3 (Color online) Center estimation. c divides any line crossing it
in two sets of points which are displaced by the motion flow in oppo-
site halfspaces. Red lines show the displacement vectors for points on
the dashed segments. Left image shows a correct set of flows, whereas
right image shows flows which suffer from drifting

Fig. 4 Left image: if the motion flow is represented by non convex
curves there could be an odd number of singular points for some
lines on the image plane. The singular points split the segment points
w.r.t. their displacement direction. Right image represents a possible
execution of the center estimation algorithm starting from an initial
position and leading to the correct imaged center. In our implementa-
tion we alternated horizontal and vertical lines, although the directions
can be arbitrarily chosen

Fig. 5 Angle estimation. Given an initial point p, by counting the
number of steps required to cover the closed path, we are able to cal-
culate the roto-translation angles. Left image shows a correct motion
flow, whereas right image shows a flow which suffers from drifting

has a period of f . In other words, each application of Γ

represents a rotation of angle 2π
f

.
In the case that the rotation angle is not an integral frac-

tion of 2π , it is estimated by considering the least common
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multiple of 2π and α. This is practically evaluated by con-
sidering a large sequence of points which performs several
loops around c̄. By counting the number of times the se-
quence traverses the line b and dividing it by the number of
points used we obtain a good estimate of α.

Notice, however, that our initial estimate of Γ can be in-
accurate and suffer from drifting (see Fig. 5, right). Even so,
we observed experimentally that this simple method accu-
rately estimates the rotation angle α.

6 Ground Plane Rectification Problem

We assume given a set of correspondences {pi
1 ↔ pi

2} be-
tween two images Ip1 and Ip2, and also a set of correspon-
dences {qi

1 ↔ qi
2} between two images Iq1 and Iq2. The two

images of each pair are, generally, related by different planar
motions with a common ground plane Π ; these motions are
equivalent to two rotations of angles α1 and α2 with axes in-
tersecting the ground plane at different points C1 and C2. We
require the images of the two rotation centers, respectively
denoted by c1 and c2, to be visible on the images. Only in
this case it is possible to detect a motion flow represented by
closed curves and completely contained in the image. This
is crucial for the iterative approach that we use to estimate
them.

Our goal is to rectify any of the images of the ground
plane. To this effect, we can consider the rectification map
S from the image domain R on the ground plane Π ,

S : R → Π, (8)

that sends a pixel p ∈ R to its back-projection on the ground
plane (see Fig. 6). This map S can be thought as the restric-
tion of the generic calibration map (Ramalingam et al. 2005)
to the image region corresponding to the ground plane.

The rectification map S allows us to relate the rotational
motion between any two camera positions with the asso-
ciated motion flow between their respective images. If we
denote by Γj and by Rj the registration function and rela-
tive motion, respectively, between the j th camera pair (see
Fig. 6), then the relation is SΓj = Cj + Rj (S − Cj ). This
relation allows us to determine the rectification map from
the initial sets of correspondences.

7 Estimating the Rectification Map

Assume that we are given a set of n1 point correspondences
{pi

1 ↔ pi
2}, i = 1, . . . , n1, between two images Ip1 and

Ip2 , and also a set of n2 point correspondences {qi
1 ↔ qi

2},
i = 1, . . . , n2, between two images Iq1 and Iq2 . We con-
sider the two corresponding planar motions, described by

Fig. 6 Rectification of the imaged plane (left). The registration func-
tion Γj corresponds via the rectification map S with the rotation Rj

with center Cj , equivalent to the planar motion between the j th pair of
cameras

(α1,C1) and (α2,C2), where the images c1, c2 of the cen-
ters C1, C2 must be contained in R. Notice that Ip2 and Iq1

might represent the same image, in which case the estima-
tion is conducted using only three images.

We want to rectify the images of the ground plane, i.e. de-
termine the rectification map S defined in (8), for which
purpose we assume the motion parameters to be known. In
practice, given the initial matching points we can estimate
the motion flows Γ1, Γ2 corresponding to the two camera
planar motions according to Sect. 4. Then, by Sect. 5, we
can obtain estimations of the imaged rotation centers c1, c2

and the rotation angles α1, α2.

7.1 Constraints on the Rectification Map

Without loss of generality, we consider an orthonormal sys-
tem of reference on the ground plane such that C1 lies at the
origin and C2 is the point (1,0). Accordingly, the (known)
images c1, c2 of the two first rotation centers satisfy:

S(c1) = C1 = (0,0), S(c2) = C2 = (1,0). (9)

We denote by Rj the matrix of the rotation on Π with
angle αj , i.e.

Rj =
(

cosαj − sinαj

sinαj cosαj

)
. (10)

We consider P i
1 , P i

2 (resp. Qi
1, Qi

2) the position on the
ground plane of the reconstructed image correspondences
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Fig. 7 Representation of the constraints for the ground plane rectifica-
tion. First and second image show the feature correspondences and the
imaged centers related to the first two planar motions. The third im-
age shows the relation of these elements on the rectified plane: notice
that the imaged center back projections are used to fix the reference

frame and points are displaced according to their respective rotation
angle. Last image show the back projections of points of an additional
planar motion. In this case the position of the imaged center back pro-
jection cannot be fixed and must be considered as part of the unknowns

pi
1 ↔ pi

2, 1 ≤ i ≤ n1 (resp. qi
1 ↔ qi

2, 1 ≤ i ≤ n2). Due to the
planar motion of the camera, and using that C1 = (0,0), the
reconstructed image pairs satisfy

P i
2 = R1P

i
1 , Qi

2 = C2 + R2(Q
i
1 − C2). (11)

Since the points P i
j (resp. Qi

j ) are the reconstruction of

the points pi
j (resp. qi

j ) we have that S(pi
j ) = P i

j (resp.

S(qi
j ) = Qi

j ). Therefore, by (11), it holds

S(pi
2) = R1S(pi

1), S(qi
2) = (C2 − R2C2) + R2S(qi

1).

(12)

We show in Fig. 7 a visual representation of the constraints
expressed by (9) and (12).

7.2 Determining the Rectification Map

Equations (9) and (12) give us constraints on the unknown
rectification map S. The constraints (9) depend on c1, c2,
i.e. on the imaged centers of rotation, and the constraints
(12) depend on the image correspondences and the rotation
angles. Since we consider that c1, c2, α1 and α2 are known,
the only unknown in (9) and (12) is the map S.

Assuming that the rectification map S is smooth, we can
use a bivariate cubic b-spline as the underlining parametric
model for S. For each pixel p on the image domain R, the
value S(p) is obtained as a linear product

S(p) =
(

B�
p Kx

B�
p Ky

)
=

(
B�

p 0

0 B�
p

)(
Kx

Ky

)
=: ApK, (13)

where Bp is a constant array depending on the coordinates
of pixel p and K = (Kx,Ky) is the unknown coefficients of

the components of the rectification spline. If we choose N

knots for the spline on each direction, then the vector K has
length 2N2 and for every p ∈ R the matrix Ap is 2 × 2N2.

Equations (9) and (12) can be written as the following
linear system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ac1K = 0,

Ac2K = C2,

(Api
2
− R1Api

1
)K = 0,

(Aqi
2
− R2Aqi

1
)K = C2 − R2C2

(14)

which has 2(2 + n1 + n2) equations in the 2N2 unknowns.
The system might result rank deficient due to a bad distri-

bution of correspondences over the image region R w.r.t. the
knots employed for the b-spline. In this case, one can reduce
the number of dots and/or use a regularization strategy sim-
ilar to that explained in Sect. 4 to supply the lack of data in
some “square” of the used b-spline grid.

A more robust solution can be employed in case that more
than two planar motions are available, which is the typical
situation for a moving robot that acquires multiple images.
It is possible to extend the linear system in order to include
the constraints induced by these additional motions.

Let us consider an additional pair of images Ir1 , Ir2 , with
point correspondences {ri

1 ↔ ri
2}, i = 1, . . . , nr , and associ-

ated motion flow (αr , cr ). We call Cr the back projection on
the ground plane of cr . As we did for the initial two planar
motions we may assume αr and cr as known. Moreover we
can evaluate the matrices Rr , Ari

1
and Ari

2
.

We cannot fix the coordinates of Cr , since the ground
plane reference frame has been already fixed using C1 and
C2. As result, we can obtain 2nr additional equations to
those in (14) by considering Cr = ArK . The corresponding
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linear system is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ac1K = 0,

Ac2K = C2,

(Api
2
− R1Api

1
)K = 0,

(Aqi
2
− R2Aqi

1
)K = C2 − R2C2,

(Ari
2
− RrAri

1
+ (Rr − I )Acr )K = 0.

(15)

In general by considering k ≥ 2 planar motions, with ni

point correspondences each, we can build a linear system
with 2N2 unknowns and 2(2 + ∑k

i=1 ni) equations. Note
that once solved, the ground plane can be rectified and,
moreover, the camera motion can be recovered by taking
(αi,Ci = Aci

K).
By employing more than two planar motions it is in gen-

eral possible to collect a set of well distributed correspon-
dences so that the built linear system (15) has full rank. Oth-
erwise, one can proceed as explained for two motions. We
did not encounter rank deficiency problems in our experi-
ments when using three or more motions.

7.3 Motion Flow Given the Rectification

We showed that the rectification can be performed directly
from sets of feature correspondences related to more than
two images, once the motion parameters are known. Exploit-
ing the rectification map S, we can recover each motion flow
related to the j th pair of images whose parameters have been
recovered. This is done by back-projecting points on any cir-
cle centered on the rotation center Cj (remember Fig. 2). In

particular, given a point p ∈ R the j th motion flow f
j
p is

represented by

f
j
p (β) = S−1 (

Cj + (
Rβ · S (p) − Cj

))
, (16)

where Rβ is the matrix of rotation of angle 0 ≤ β ≤ 2π and
Cj is represented by Cj = S(cj ).

In order to estimate the function f
j
p we need to invert the

mapping S. Since there is no closed-form available for S−1,
we estimate it using a local weighted mean approximation
(Goshtasby 1988). With respect to the algorithm described
in Caglioti and Taddei (2008), this approach gives consistent
curves, i.e. closed not intersecting flows. With respect to the
initial motion flow computed in Sect. 4.2, the motion flow
obtained using (16) is fully consistent with the planar motion
of the camera and, in particular, it has a fixed point.

8 Experimental Validation

We tested our algorithm on two sets of real images. For each
pair of images, we manually extracted a set of correspon-
dences and then recovered the registration function Γ .

In the first set of experiments the ground truth for the
angle and center of rotation was manually measured during
the camera setup. We employed a cubic b-spline in polar
coordinates using 6 equidistant knots per dimension. In par-
ticular we conducted the optimizations described in (3) with
λS = 0.01. Notice however that this value was selected af-
ter a manual tuning of the parameter and it is strictly related
to the camera’s geometry and to the distribution of features
w.r.t. the b-spline knots.

We run the algorithm to recover the imaged center c̄ start-
ing from each different pixel of the image region. Apart
small areas close to the region boundary the recovered value
was the same, showing its robustness to the choice of ini-
tial starting point. We studied the performance with respect
to the number of b-spline parameters; the observed behavior
is an initial improvement of the performance as the number
of parameters increases, followed by a divergence (probably
due to overfitting), in correspondence to a further increase
of the parameter number. In our experiments with 70 cor-
respondences the estimation was good up to a b-spline us-
ing a grid of 35 × 35 knots. In all experiments the standard
deviation of the recovered points was less than 6 pixel on
1024 × 768 images (Fig. 8 shows the recovered centers on
two of such experiments).

The iterative algorithm for the angle recovery converged
rapidly to the average value in all our experiments. An ex-
ample of the evaluation is shown in Fig. 9. The initial point
used for the angle estimation slightly influences the recov-
ered value. We ran the algorithm several times from initial
random coordinates. In all experiments, the standard devia-
tion was less than 0.2 degree (see Fig. 10).

As for the center of rotation, we ran the algorithm several
times varying the number of parameters of the b-spline. The
estimation was robust since the standard deviation was al-
ways below 0.4 degree. Also, for this experiment, the accu-
racy increased with the number of parameters up to a given
value (in our experiments with 70 correspondences we reg-
istered a value around 30–35); above this threshold the esti-
mation diverged (see Fig. 10).

Fig. 8 (Color online) Estimated centers varying the b-spline parame-
ters for two different planar motions. Red points represent inlier points,
which are correctly distributed around the ground truth, while white
points represent outliers. Notice that, in these experiments, the outliers
are easily identified. Right image shows a close up of the two areas
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Notice that, since we are modeling Γ using a regular b-
spline with equally spaced knots, the distribution of the ex-
tracted features influences the estimation. In particular re-
gions containing few correspondences are not recovered cor-
rectly since the estimation is dominated by the regularization
term of (5). Since we iterate this function on the regions sur-
rounding the imaged center of rotations it is important that,
in these regions, features are well distributed w.r.t. the con-
trolling spline knots.

We then performed the rectification by estimating the pa-
rameters of two motions given three images. These values
were used to perform the ground floor rectification obtaining
the result shown in Fig. 11. We first rectify each single im-

Fig. 9 (Color online) Angle estimation. The red curve represents the
iterative application of the registration function Γ , starting from an
initial point p. The segment connecting p to the estimated center is
shown in white. It is used to count how many times the curve traverses
it. Right image shows the estimation of the angle (in degrees) w.r.t. the
number of points used (i.e. the number of applications of Γ )

Fig. 10 Distribution of the angle estimation. The left histogram shows
the distribution by varying the initial starting point whereas the right
histogram shows the distribution by changing the b-spline number of
parameters while maintaining the same starting position. In both cases
the standard deviation is small and the values recovered are close to the
measured ground truth

age and then align the rectified planes exploiting the planar
motion parameters. The images intensity difference is also
shown in Fig. 11. In this case the errors are due to changes
in the environment, such as the camera position, occlusions
due to objects lying outside the plane and lightening varia-
tion. The regions containing the extracted features were cor-
rectly reconstructed. The rectification is consistent w.r.t. all
the considered images, although it presents errors around the
image boundary, where there is no information due to the
occlusion of the camera, and at the outer regions, due to the
resolution of the sensor.

Finally, we evaluated S−1 and estimated a set of motion
flows for the two roto-translations (see Fig. 12). The result-
ing curves are consistent with the notion of motion flows
and are more accurate than the ones presented in Caglioti
and Taddei (2008). Notice that the rectification boundary er-
rors present around the camera sensor are reflected in errors
on the motion flow close to the center of the image.

In the second set of experiments we employed the out-
door sequence of the panoramic camera of the RAWSEEDS
project (Bonarini et al. 2006). These images have been cap-
tured by a panoramic camera mounted on a moving robot
that recorded odometry information using a GPS receiver
and a set of linear laser scanners. We compared the an-
gle estimation results using our algorithm with the provided
ground truth, represented by the robot position along its tra-
jectory (last row of Fig. 13 shows the ground truth of the
planar motions used). In all experiments the angle error was

Fig. 12 Motion flow related to the planar motion used to perform the
rectification in the first experiment. The curve errors close to the cam-
era sensor are due to the lack of correspondences

Fig. 11 Rectification
comparison. Left: rectification
of the first image using the
mapping S. Center: rectification
of the second image using the
mapping S followed by a
rotation of angle −α1 about C1.
Right: intensity difference
between the two images
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Fig. 13 The first three columns show the frames of the RAWSEEDS
sequence used to recover the planar motions and then to perform the
rectification. The first two images of each column shows the exploited
features overlayed on the start and ending frames. The third image rep-
resents the ground truth position of the robot along its trajectory and

the associated rotation to each pair of images. We use this ground truth
to evaluate the quality of the planar motion estimation. The last column
shows the motion flows related to the three planar motions. The top im-
age represents all the motion flows on one image of the sequence. The
bottom image shows the same curves on the rectified plane

within 1◦, which is consistent with the angle estimation from
the sampled ground truth trajectory. The motion flow and
planar motion estimation took 4.5 seconds on average.

We then estimated the rectification map using three
different planar motions related to different time instants
(which are shown in the first three columns of Fig. 13). In
this case the linear system presented 442 equations in 72
unknowns and was solved in 0.05 seconds. The recovered
rectification map was, then, applied to each frame in order
to generate a rectified version of the sequence (see Fig. 14).
Each frame was represented by a 600×600 image generated
in an average time of 27 seconds.

Notice that after applying the rectification it is possible to
employ standard algorithms to recover the roto-translations
relating each subsequent pair of images. This approach
could be used, in principle, to recover motion information
also in the case of pure translations. Finally we recovered

the motion flows related to the roto-translations employed
to perform the rectification. A sampling of these curves is
shown in the last column of Fig. 13.

In order to quantitatively evaluate the reconstruction we
considered additional frames from the sequence that were
not employed to estimate the rectification and the planar mo-
tions. In particular we extracted the corners of the visible
regular tiles pattern of the ground plane from the selected
verification frames. We manually associated each point to
its correspondent corner of a regular grid (see Fig. 15). We
then apply function S and register the rectified point set to
the regular grid by estimating a rigid transformation and a
scale factor (assuming that the grid tiles have unitary side
length). This is performed by conducting a non-linear least
square minimization of the corresponding feature distances.
Figure 16 shows the histogram of the optimization residual
error of all employed features. The mean error is within 3%
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Fig. 14 Left column: frames from the RAWSEEDS sequence. Right
column: rectified frames using the recovered rectification map

Fig. 15 (Color online) Left: one of RAWSEEDS frame used to evaluate
the rectification showing the verification grid used to measure the re-
construction estimation. Right: the rectified position of the verification
features (red) and the corresponding ground truth grid corners (blue).
Notice that neither the verification frame nor the verification features
were exploited to perform the rectification estimation itself

of the tile side length and we observed that the corners with
the higher residual error are related to regions close to the
boundary of the b-spline domain.

9 Conclusion

We presented a proof of concept to perform self-calibration
bounded to the ground plane of a generic camera that per-
forms planar motions. In particular, we showed how to re-
cover both the imaged center and the angle of rotation given
a set of correspondences between two images of the ground
plane when the equivalent roto-translation center is visible.
Then, given the motion parameters of at least two planar

Fig. 16 Histogram of the residual errors of each grid corner. The error
shown is normalized w.r.t. the grid tile side length

motions with a common ground plane we showed that it is
possible to recover the plane rectification by solving a linear
system that exploits the feature correspondences. Moreover,
once the rectification map is known we can recover both the
camera motion and the motion flow of any point on the im-
age plane.

The angle and center estimation have been shown to be
robust w.r.t. the number of degrees of freedom used in the
modelization, i.e. the parameters of the b-spline function,
and w.r.t. the initial point of the iteration. The rectification
step yields good results both to recover a rectified image of
the ground plane and to estimate the motion flow curves.

Future works will be aimed at exploiting the whole se-
quence of rectified images to segment the region represent-
ing points lying on the ground plane w.r.t. points not on the
plane. This would allow us to build a method for the detec-
tion of outliers in the initial set of correspondences, and thus
to gain robustness in the overall approach.

References

Agrawal, M., & Konolige, K. (2006). Real-time localization in outdoor
environments using stereo vision and inexpensive gps. In ICPR.

Benhimane, S., & Malis, E. (2006). Homography-based 2D visual ser-
voing. In ICRA.

Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D. G.,
& Tardos, J. D. (2006). Rawseeds: Robotics advancement through
web-publishing of sensorial and elaborated extensive data sets. In
IROS.

Borenstein, J., & Feng, L. (1996). Measurement and correction of sys-
tematic odometry errors in mobile robots. IEEE Transactions on
Robotics and Automation, 12, 869–880.

Bunschoten, R., & Krose, B. (2003). Visual odometry from an omnidi-
rectional vision system. In ICRA.

Caglioti, V., & Gasparini, S. (2007). Uncalibrated visual odometry for
ground plane motion without auto-calibration. In International
Workshop on Robotic Vision.



174 Int J Comput Vis (2012) 96:162–174

Caglioti, V., & Taddei, P. (2008). Planar motion estimation using an
uncalibrated general camera. In OMNIVIS.

Cheng, Y., Maimone, M., & Matthies, L. (2006). Visual odometry on
the mars exploration rovers—a tool to ensure accurate driving and
science imaging. IEEE Robotics & Automation Magazine, 13, 54–
62.

Comport, A., Malis, E., & Rives, P. (2007). Accurate quadrifocal track-
ing for robust 3d visual odometry. In ICRA.

Corke, P., Strelow, D., & Singh, S. (2004). Omnidirectional visual
odometry for a planetary rover. In IROS.

Davison, A. (2003). Real-time simultaneous localization and mapping
with a single camera. In ICCV.

Espuny, F. (2007). A closed-form solution for the generic self-
calibration of central cameras from two rotational flows. In VIS-
APP.

Gluckman, J., & Nayar, S. K. (1998). Ego-motion and omnidirectional
cameras. In ICCV.

Goshtasby, Ardeshir (1988). Image registration by local approximation
methods. Image and Vision Computing, 6, 255–261.

Grossberg, M., & Nayar, S. (2001). A general imaging model and a
method for finding its parameters. In ICCV.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in com-
puter vision (2nd ed.). Cambridge: Cambridge University Press.

Knight, J., Zisserman, A., & Reid, I. (2003). Linear auto-calibration
for ground plane motion. In CVPR.

McCarthy, C., & Barnes, N. (2004). Performance of optical flow tech-
niques for indoor navigation with a mobile robot. In ICRA.

Nister, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In
CVPR.

Prautzsch, H., Boehm, W., & Peluszny, M. (2002). Bezier and b-spline
techniques. Berlin: Springer.

Ramalingam, S., Sturm, P., & Lodha, S. K. (2005). Towards generic
self-calibration of central cameras. In OMNIVIS.

Sturm, P., & Ramalingam, S. (2004). A generic concept for camera
calibration. In ECCV (Vol. 2, pp. 1–13).

Triggs, B. (1998). Autocalibration from planar scenes. In ECCV.
Wang, H., Yuan, K., Zou, W., & Zhou, Q. (2005). Visual odometry

based on locally planar ground assumption. In ICIA.


	Planar Motion Estimation and Linear Ground Plane Rectification using an Uncalibrated Generic Camera
	Abstract
	Introduction
	Previous Work
	Planar Motion Estimation Problem
	Generic Registration and Motion Flow Estimation
	Generic Registration between Two Images
	Motion Flow Estimation from Two Images

	Planar Motion Estimation from Two Images
	Imaged Center Estimation
	Angle Estimation

	Ground Plane Rectification Problem
	Estimating the Rectification Map
	Constraints on the Rectification Map
	Determining the Rectification Map
	Motion Flow Given the Rectification

	Experimental Validation
	Conclusion
	References


