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Abstract This paper presents a method for detecting a tex-
tured deformed surface in an image. It uses (wide-baseline)
point matches between a template and the input image. The
main contribution of the paper is twofold. First, we propose
a robust method based on local surface smoothness capa-
ble of discarding outliers from the set of point matches.
Our method handles large proportions of outliers (beyond
70% with less than 15% of false positives) even when the
surface self-occludes. Second, we propose a method to es-
timate a self-occlusion resistant warp from point matches.
Our method allows us to realistically retexture the input im-
age. A pixel-based (direct) registration approach is also pro-
posed. Bootstrapped by our robust point-based method, it
finely tunes the warp parameters using the value (intensity or
color) of all the visible surface pixels. The proposed frame-
work was tested with simulated and real data. Convincing
results are shown for the detection and retexturing of de-
formed surfaces in challenging images.

Keywords Deformable surfaces · Image registration ·
Feature-based registration · Pixel-based refinement · Robust
feature correspondence

1 Introduction

Detecting a textured deformed surface in a single image is an
important fundamental and applied problem for video aug-
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mentation, Non-Rigid Structure-from-Motion, material de-
formation analysis, to name just a few. Detection is here
to be understood as the ability to register an input image
of the deformed surface to a template image. The template
image is known and represents the surface of interest in a
canonical shape, usually flat. Figure 1 shows an example of
a template and an input image that we will use through-
out the paper to illustrate various concepts. Compared to
the registration and detection of rigid objects, for which ro-
bust, fast and mature methods such as Baker and Matthews
(2004) were developed, the detection of deformable objects
still lags behind, even though it received a growing atten-
tion over the past few years (Bartoli and Zisserman 2004;
Chui and Rangarajan 2003; DeCarlo and Metaxas 1998;
Gay-Bellile et al. 2010; Hilsmann and Eisert 2009; Pilet
et al. 2008).

There are two kinds of approaches in the literature for
the registration of deformable surfaces: the pixel-based (di-
rect) approach, where the intensity discrepancy between the
images is used as a cue to compute the deformation, and
the feature-based approach, whereby features are detected,
matched, and used to compute the deformation.

The pixel-based approach has lead to many effective reg-
istration methods for different kinds of deformable objects,
such as human faces (DeCarlo and Metaxas 1998) or de-
formable surfaces (Bartoli and Zisserman 2004; Gay-Bellile
et al. 2010; Hilsmann and Eisert 2009; Pilet et al. 2008). In
Gay-Bellile et al. (2010) a robust and self-occlusion resis-
tant registration method was presented for surfaces, while in
Pizarro et al. (2008) a light-invariant color discrepancy mea-
sure was used to attenuate the effect of illumination change.
However, pixel-based methods have limitations: being iter-
ative and ‘local’ they generally heavily rely on the initial-
ization. They thus are mostly used in off-line video process-
ing since they cannot self-recover after failure. On the other
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Fig. 1 Example of a template (left) and an input image (right) with
deformations and a self-occlusion (from Bartoli 2008). This example
is used to illustrate the different steps and concepts of our methods

hand, they can be bootstrapped, typically by a feature-based
method.

In the feature-based approach, the registration is com-
puted by minimizing the distance between matched features
in the template and the input image. These methods do not
generally need an initialization. However, their use has two
main challenges. The first one is to detect erroneous matches
(that any automatic feature matching method may make.)
The second challenge is to handle surface self-occlusions
since very few features are usually detected near the self-
occlusion boundary. The first challenge has received atten-
tion in the literature. An iterative robust real-time feature-
based surface detection method based on an M-estimator
was proposed in Pilet et al. (2008). This method shows ex-
cellent capabilities for removing outliers from wide-baseline
matches but, as it uses the global smoothness of the motion
field, it is defeated by surface self-occlusions which are nat-
urally ‘unsmooth’ along one direction. Some other methods
such as Chui and Rangarajan (2003) were specifically de-
signed to match points across soft deformations. They are
generally slow and do not cope with self-occlusions either.

The state of the art is missing a deformed surface detec-
tion method that like Pilet et al. (2008) would be able to
both handle wide-baseline and like Gay-Bellile et al. (2010)
would be able to cope with self-occlusions. The keypoint-
based method we propose in this paper satisfies these re-
quirements. Our key idea to cope with self-occlusions is to
model the motion field as being piecewise smooth instead of
globally smooth as in previous work. We use local smooth-
ness to filter out erroneous matches. A novel self-occlusion
resistant warp estimator is then proposed, that estimates a
piecewise smooth warp, as required. In more details, our
contributions are:

– A method that detects and discard outliers (erroneous
point matches) based on smoothness on the local scale
only. Our method copes with large amounts of outliers,
beyond 80% in our experiments.

– A self-occlusion detection method, that finds which parts
of the template are self-occluded in the input image. Our
method forms a partial self-occlusion map, containing the
‘important’ sub-part of the self-occlusion for subsequent
warp estimation.

– A point-based warp estimation method that prevents the
warp to fold in the presence of self-occlusions. This
method combines a data term, a smoother and uses the
partial self-occlusion map in a single round of convex,
linear least squares optimization. Contrarily to previous
work which discards warp smoothing in the orthogonal
direction of the self-occlusion boundary, we force the
warp to behave in a rigid affine manner over the self-
occluded area. This leads to a simple modification of the
usual bending energy term.

– A pixel-based warp estimation method that, bootstrapped
by the point-based registration result, finely tunes the
warp parameters. Our modified bending energy term is
here employed directly in place of the usual one.

Note that parts of our method were published in a shorter
conference version of this paper (Pizarro and Bartoli 2010).

This paper is organized as follows. In Sect. 2 the problem
statement and background are presented. Our outlier rejec-
tion framework is then given in Sect. 3 followed by the self-
occlusion resistant warp estimation in Sect. 4. A pixel-based
registration step is proposed in Sect. 5 to refine the warp
parameters. In Sect. 6, some results of automatic surface de-
tection and retexturing are given. Conclusions are drawn in
Sect. 7.

2 Problem Statement and Background

We first describe the inputs and hypotheses our algorithm
uses, and then a generic image deformation model or warp,
followed by a simple linear least squares point-based esti-
mation method.

2.1 Inputs and Hypotheses

We assume that point matches were established between
the template image T and an input image I (T (p) with
p = (x y)� and I(q) with q = (u v)� are pixel col-
ors). The template shows the surface unraveled (flat in most
cases). The surface deformation and viewpoint change may
be large in the input image. The surface may also undergo
external occlusions and self-occlusions. There exist sev-
eral keypoint detectors and descriptors such as SIFT (Lowe
2004) and SURF (Bay et al. 2008) for which a matching
procedure will, despite the significant changes in appearance
between the template and the input images, find matches. In
Lepetit and Fua (2006) the authors proposed a wide-baseline
feature matching method based on artificially synthesized
texture exemplars for keypoints (this method was success-
fully used in Pilet et al. (2008) for deformable surface de-
tection.) These methods usually produce a fair amount of
correct matches or inliers, but the matches almost always
also include erroneous matches or outliers.

The keypoints we use in this paper are detected and
matched with the SURF method as Fig. 2 illustrates. Note
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Fig. 2 Point matches between the template and the input images and
motion vectors superimposed on the template image. These N = 71
point matches were obtained with the SURF method (Bay et al. 2008)

Fig. 3 Warp transfer of a template point p to a point q in the input
image. Both images are overlaid with a warp visualization grid. This
grid is fixed in the template and transformed to the input image to let
one visualize the warp’s behaviour

that our surface detection method is however independent of
the type of keypoint detector being used. This provides two
matched sets of N points each, denoted Cp and Cq, which
may contain outliers:

Cp = {p1, . . . ,pN }, pi = (xi yi)
�, (1)

Cq = {q1, . . . ,qN }, qi = (ui vi)
�. (2)

Point pi in T is matched with point qi in I .
Our aim is to find the inlier subsets Gp ⊂ Cp and Gq ⊂

Cq of unknown size n. In addition, we search for the global
warp function W (p,L) parameterized by the matrix L, that
minimizes a distance criterion between every point in pi ∈
Gp and its match qi ∈ Gq. Our basic assumption is that,
given the correct parameter vector, W maps any point in T
to its match in I , as Fig. 3 illustrates.

2.2 Image Deformation Model

The image deformation model we use is a parametric warp.
There is a large variety of such functions in the literature.
Popular warps are those based on Radial Basis Functions
(e.g. the Thin-Plate Spline (TPS) (Bookstein 1989)) and
those based on the tensor-product, called Free-Form Defor-
mations (FFD) (e.g. using the cubic B-spline (Rueckert et al.
1999)). Our algorithm is not specific to a particular type of
warps, but in practice, the different steps of our algorithm
use the two types of warps mentioned directly above.

In order to give a general framework (that includes the
FFD and RBF warps amongst others) we use the generic
model of Bartoli (2008). Let p ∈ R

2 be a point coordinate
vector in the template image. The warp W : R

2 × R
l×2 →

R
2 maps 2D points from the template to the input image and

depends on a set of l 2D control points c1, . . . , cl stacked in
the parameter matrix L ∈ R

l×2. The position of these con-
trol points specifies the behavior of the warp. The general
parametric warp is defined as:

W (p,L) = L�ν(p), (3)

with ν : R
2 → R

l some nonlinear lifting function which,
dotted with L, gives the warp’s value. For a detailed explana-
tion of the ν function for the TPS, see Bartoli (2008), where
a feature-driven parameterization of the TPS is developed.
In the FFD case we consider a regular grid of l = m × m

control points, covering a specific area of the template im-
age, and a modified grid of control points si,j = ci+m(j−1)

stacked inside L. The warp function is:

WFFD(p,L) =
3∑

k=0

3∑

l=0

Bk(v)Bl(w)si+k,j+l , (4)

where Bk , Bl are cubic B-spline interpolation coefficients
evaluated at the normalized coordinates (v w)� of point p
(expressed with respect to the 16 closest control points). The
lifting function ν(p) is thus composed of the B-Spline coef-
ficients for each point p. The FFD has compact support by
definition as the warped coordinates of every point is always
driven by the position of only 16 control points.

2.3 Linear Least Squares Warp Estimation

The parameter vector L is chosen so as to minimize a cost
function ε, composed of a data term εd , based on the av-
erage distance between the warped points in Gp and the
matched points in Gq, and a smoothing term εs that con-
trols the smoothness of the motion field. The data term is
thus a sum of squared residuals (MSR):

εd(L) = 1

n

n∑

i=1

‖W (pi ,L) − qi‖2. (5)

This can be rewritten in matrix form as:

εd(L) = 1

n
‖AL − �‖2

F , (6)

where ‖ · ‖F is the matrix Frobenius norm and:

A� = (
ν(p1) · · · ν(pn)

)
,

and:

�� = (
q1 · · · qn

)
.
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We use the squared integral bending energy (approximated
by the second derivatives of the warp), simply dubbed the
bending energy as smoothing term1 εs :

εs(L) =
∫

R2

∥∥∥∥
∂2 W
∂p2

(p,L)

∥∥∥∥
2

F

dp. (7)

For the TPS the bending energy has a closed-form (Duchon
1976). For the other kinds of warps, the integral in (7) can
be approximated by a Riemann sum and finite differences:

εs(L) ≈
∑

p

∥∥∥∥
∂2 W
∂p2

(p)

∥∥∥∥
2

F

�x�y. (8)

In all cases εs can be written as a quadratic function of L

using a constant matrix Z:

εs(L) = ‖ZL‖2
F . (9)

Assembling the two terms with a smoothing weight μ to
form the cost function gives:

ε(L) = 1

n
‖AL − �‖2

F + μ2‖ZL‖2
F . (10)

Fixing the smoothing weight μ the optimal warp parameters
L are given in closed-form as:

L =
(
A�A + nμ2Z�Z

)−1
A�� = T �. (11)

The influence matrix T transforms the input image point co-
ordinates in � in the warp parameter matrix L.

3 Outlier Rejection

We first describe our method to use piecewise smoothness
to detect and reject outliers from the point matches. We then
give an analysis of the method’s computational complex-
ity and a set of experiments that allows us to choose the
method’s parameters.

3.1 Proposed Algorithm

We propose to remove outliers from the set of matches
Cp ↔ Cq by assuming that the surface is locally smooth and
that its local topology must thus be preserved.

Based on that assumption, we first form, for the set of
template image points Cp, a Delaunay triangulation T =
D(Cp). For each pi ∈ Cp there is a unique set, namely
QT (pi ) = (pi1, . . . ,piN(i)

), of N(i) neighboring points in-
duced by the triangulation T . The basic idea of our algo-
rithm is to exploit that, if the surface is locally smooth, the

1Each term in the integral is the norm of a valence-3 tensor.

Fig. 4 The Delaunay triangulation T = D(Cp) in the template is dis-
played as the left mesh in solid red. The induced triangulation T ′ in the
input image is shown in solid red in the right part of the figure. Using
dashed blue lines we show the differences between T ′ and D(Cq)

set QT contains information about the position of pi in the
template, given also qi and its neighbors (induced by T in
the input image) denoted QT (qi ) = (qi1, . . . ,qiN(i)

).
We denote T ′ the triangulation defined in the set Cq us-

ing the edges in T and the matching Cp ↔ Cq to define the
input image vertices.2 It is interesting to note that, even in
the absence of outliers, the triangulations T ′ and D(Cq) do
not necessarily coincide. This is due to surface deformation
and viewpoint change (see Fig. 4 for an illustration.) We al-
ways take T as the reference triangulation to define the set of
neighbors. For simplicity, we drop the reference to T from
the neighbor sets of pi and qi , simply writing them Q(pi )

and Q(qi ).
We propose to build a measure di in the template image

of how near point pi is to an estimate p̂i obtained from the
sets Q(pi ) and Q(qi ) and point qi :

p̂i = f (qi ,Q(pi ),Q(qi )). (12)

To formulate this relationship we use a general warp func-
tion W depending on a set of parameters L:

p̂i = W (qi ,L), (13)

where L is obtained using the N(i) matches in Q(pi ) ↔
Q(qi ) and the influence matrix (11).

As will be seen in the experimental results that we report
in Sect. 3.3 the choice of a deformable model for function
f outperforms other choices such as a rigid projective trans-
formation. We use the Euclidean distance di = ‖pi − p̂i‖ as
a decision variable to know how likely the match pi ↔ qi is
to be an inlier. An illustration is given in Fig. 5.

Our statement is the following: we consider pi ↔ qi as a
probable inlier if di < dT H for some chosen threshold dT H .
However it must be noted that the reverse implication does

2In other words, T ′ is obtained by replacing every point pi by qi in T

and keeping the edges.
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Fig. 5 Computation of the distance di . A low value for di implies that
pi ↔ qi is an inlier. The opposite is not always true, as we explain in
the main text

not hold: if there were outliers in the set Q(pi ) ↔ Q(qi ), the
distance di would be affected, without giving a cue about
the correctness of match pi ↔ qi . The statement implic-
itly considers that the probability that erroneous neighboring
matches produce a small di is very small, given that pi ↔ qi

is an outlier, which in practice is very reasonable.
Choosing the template image coordinates to evaluate the

distance di is reasonable as we usually select the template
to show the surface flat and fronto-parallel to the camera.
In addition, the scale of the surface in the template image
is known, which allows us to learn the threshold dT H from
simulated data (see Sect. 3.3). If the input image were used
to compute di the threshold dT H would have to changed ac-
cordingly to the arbitrary and unknown surface scale and
deformation.

In order to tell apart inliers and outliers using di , we
first compute an initial set of highly confident, strong in-
liers, which have a small di value that will give the subsets
Gp ⊂ Cp and Gq ⊂ Cq. The other matches are grouped in
the complementary sets Bp = Cp − Gp and Bq = Cq − Gq.
We then use a second triangulation T̃ = D(Gp) using only
the inliers in Gp, which will be used to identify if the com-
plementary sets Bp ↔ Bq contain inliers surrounded by out-
liers. The test criterion is based on the distance di com-
puted using the new triangulation. Each newly identified in-
lier pk ↔ qk is then introduced in the sets Gp = {Gp,pk}
and Gq = {Gq,qk}. Once the test has been applied to the set
of candidate inliers, the sets Gp and Gq contain the matches
we eventually label as inliers.

Our algorithm can be summarized with the following
steps:

1. Compute a Delaunay triangulation T = D(Cp).
2. Compute di for all matches i = 1, . . . ,N in Cp ↔ Cq.
3. Mark a match pi ↔ qi as an inlier if di < dT H . The set

of strong inliers is denoted Gp ↔ Gq.
4. Compute a new Delaunay triangulation T̃ = D(Gp).
5. For each match pk ↔ qk in Bp and Bq:

(a) Update the triangulation T̃ to T̃ ∗ = D({Gp,pk}) and
select the set of neighbors Q(pk) and Q(qk).

Table 1 Computational complexity of our outlier rejection algorithm

Step Content Complexity

1 Compute T = D(Cp) O(N logN)

2–3 Compute di , Gp, Gq O(N)

4 Compute T̃ = D(Gp) O(Ni logNi)

5–6 Update Gp and Gq O(No logNi)

(b) Compute dk using the neighbor sets.
(c) If dk < dT H , update the inlier sets Gp = {Gp,pk}

and Gq = {Gq,qk}.
6. Loop to step 4 until Gp and Gq stop growing.

3.2 Computational Complexity

The proposed method relies on the computation and re-
finement of Delaunay triangulations. The computational
complexity for obtaining the Delaunay triangulation of
a randomly distributed set of N points is bounded by
O(N logN). However the complexity of updating the tri-
angulation by adding or removing a new point is O(logN)

(Lischinski 1994). Let Ni and No be the number of (strong)
inliers and outliers inside the initial set of matches respec-
tively. It can be shown that uniformly distributed sets of
points have on average 6 neighbors in a Delaunay triangu-
lation. We thus suppose that computing the set of distances
di , i = 1, . . . ,N can be done in O(N). An efficient way of
computing di for the TPS warp is given in the Appendix.
The computational complexity of each step of our algorithm
is given in Table 1.

We assume that steps 4 and 5 involves to check only No

points, as in most cases the majority of inliers is obtained
from the previous steps. The number of times step 5 must
be repeated is at most 3 in our simulations so it is constant
and does not affect the asymptotic complexity. The overall
algorithm complexity is thus O(N logN).

3.3 Learning the Value of the Parameters

The proposed method has several parameters such as the
threshold dT H and the warp function chosen to compute
the distance di . We report experimental results on simulated
data that allow us to learn these parameters. We are inter-
ested in checking the performance of both rigid (projective)
and deformable (i.e. TPS) warp functions as candidates to
be used in function f from (12). It is expected that when the
distance between keypoints is small enough, the rigid model
works fine, as the surface can be locally approximated by a
plane.

Our evaluation method is as follows. Given a template
image showing the surface flat and fronto-parallel, we
choose a set of four input images, showing different surface
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deformations. By manually selecting a set of point matches
between the template and each of the test input images, four
different surfaces were generated using an FFD warp with
l = 12 × 12 control points and μ = 0.55 (see Fig. 6). The
test surfaces include two self-occlusions and two globally
smooth deformations. By generating points randomly in the
template image and obtaining the warped coordinates on
each deformed surface it is possible to generate an arbitrary
number of point matches for testing the proposed algorithm.
To artificially generate outliers, we corrupt an arbitrary per-
centage of the generated matches with a uniform random
distribution.

Figures 7a, 7b and 7c show the ROC (Receiver Operat-
ing Characteristic) curves of the experiments for dT H and
against N = {49,100,225} matches. In the three cases the
same experiment is shown for 30% and 50% outliers. By
controlling the number of matches we implicitly change the
distance between points, which affects the expected perfor-
mance in the different possibilities for the warp. On each
ROC curve one may see the performance of the following
versions of the warp function f :

– ‘Projective’: a 2D homography.
– ‘TPS 3 × 3’: a TPS warp with l = 3 × 3 centers.
– ‘TPS 5 × 5’: a TPS warp with l = 5 × 5 centers.

Fig. 6 Different shapes used in the evaluation tests

The ROC curves are used in this paper to establish a
fair comparison between the different alternatives proposed.
Each point in a ROC curve is obtained as the average TPR
(True Positive Rate) and FPR (False Positive Rate) com-
puted in the experiments using a particular value of dT H

to detect outliers. Ideally a perfect method should discard
all outliers (TPR = 100%) without discarding useful inliers
(FPR = 0%.) Therefore, the best dT H that could be chosen
in a single ROC curve can be found for the maximum possi-
ble TPR leaving the FPR below a reasonable value. The best
TPR-FPR ratio can be used to compare different methods.

In the light of the results it is obvious that the larger the
number of matches the better the results. The TPS warp
clearly outperforms the homography in all tests. Surpris-
ingly even with many points, the homography is far in terms
of ROC from the TPS, which means that the deformable
warp better captures the local properties of the motion field.
With respect to the two different versions of the TPS, the one
with 5 × 5 centers performs slightly better than the one with
3 × 3 centers. Despite the differences in all experiments the
value of threshold dT H = 15 pixels3 always leads to a TPR
of outlier detection above 90% producing always less than
15% of FPR.

Figures 8a and 8b show the TPR against the percentage of
outliers for dT H = 15 pixels. It can be observed how the pro-
posed method is able to keep the TPR above 90% for 90%
of outliers. However this high rate is at the cost of introduc-
ing too many false positives (more than 30%) for more than
70% outliers.

In Sect. 6, our outlier rejection method will be tested on
real datasets. In these experiments we will use the TPS warp
with 3 × 3 centers and dT H = 15 pixels.

3The average point distance is 43, 35 and 21 pixels for the N = 49,
N = 100 and N = 225 experiments, respectively.

Fig. 7 ROC curves for the threshold dT H against the different parameters of our outlier rejection method
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Fig. 8 Experiments comparing
TPR and FPR versus the
probability of outliers for
dT H = 15 pixels

Fig. 9 Two examples of warp
folds and their impact on the
orientation of the local
coordinates of the input image.
The example labelled as
2 corresponds to the surface
generated from the input image
shown in Fig. 1

4 A Global Self-Occlusion Resistant Warp Estimator

This section presents the method we propose for handling
warps with self-occlusions. Once the outlier-free set of
matches Gp ↔ Gq has been obtained, we compute the
global warp W (·,L) between the template image T and the
input image I . A warp is usually obtained by minimizing the
average distance criterion between matches and a smooth-
ness penalty as in Sect. 2.3. However, the resulting warp is
constrained to be smooth, which implies that it can fold to
comply with self-occlusions. Folds in regular warps make
them many-to-many and we are interested in many-to-one
warps in order to render convincing visual retexturing. In
other words, the warp must ‘collapse’ the part of the tem-
plate which has been self-occluded in the input image onto
the self-occlusion boundary.

We propose a method with two stages. First, we compute
what we call a partial self-occlusion map, that is, a sub- but
sufficient part of the area in the template image T that suf-
fers from self-occlusion in the input image. It is detected
using an FFD warp computed from the matches Gp ↔ Gq.
Second, a new FFD warp is obtained that does not fold in
self-occluded areas. These two steps are described next. We
then give a short experimental section showing how to learn
the single method’s parameter.

4.1 Finding the Self-Occlusion Map

The detection of self-occluded parts from a 2D warp
presents several difficulties. Indeed, the warp can be quite

complex, including multiple folds. The main question to an-
swer is if an arbitrary point p in the template, warped to
point q = W (p,L), is in a self-occluded zone or not.

Considering the warp as a 2D orientable manifold, the
presence of a self-occlusion can be detected by looking at
the orientation at each point of the warp. The notion of ori-
entation for the warp coordinates can be obtained by consid-
ering the sign variations of the warp’s Jacobian with respect
to p, denoted by ∂W

∂p (see Fig. 9 for an illustration). The
warp’s Jacobian matrix evaluated at point p represents a lin-
ear approximation of the warp for small variations around p
and its warped coordinates q. Taking the first order approx-
imation of the warp in the vicinity of point p:

W (p + �p,L) ≈ W (p,L) + ∂W
∂p

(p,L)�p, (14)

where �p is a small increment in the spatial coordinates. By
renaming the term W (p + �p,L) − W (p,L) = �q we get
the following linear relationship:

�q ≈ ∂W
∂p

(p,L)�p. (15)

Note that for the FFD warp the Jacobian matrix has a closed-
form. According to (15), the warp’s Jacobian matrix can be
viewed as a general linear transformation between differ-
ential coordinates in the template (�p) and the input im-
age (�q). The Jacobian η(p) = | ∂W

∂p (p,L)| gives us a clue
about the orientation. If its sign is negative, it means that the
warped coordinates q are locally reflected with respect to
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those of p. The reflection means that we are looking at the
other side of the orientable surface defined by the warp at q,
and thus that the surface is self-occluded. If the sign of η(p)

is positive, it means that at point p the warp is not reflect-
ing the coordinates and thus that point q could be visible.
However, as the warp is a many-to-many transformation in
case of self-occlusions, we cannot be sure that point q is vis-
ible unless we check for all points in the template region of
interest R whose warped coordinates match up with q and
η(p) > 0. Figure 9 illustrates these concepts.

To sum up, independently of the nature of the warp con-
figuration and the multiplicity of possible folds, the follow-
ing statements are true for an orientable warp:

– A ‘small’ region around p with η(p) < 0 is always self-
occluded.

– A ‘small’ region around p with η(p) ≥ 0 can be either
visible or self-occluded. If there are no other points p
that have the same warped coordinates q then the point is
not self-occluded. The reverse statement is not true as we
need to establish a visibility order between points r ∈ R
that have η(r) ≥ 0 and result in the same warped coordi-
nates q.

We propose to build a partial self-occlusion map by de-
tecting only those areas where η(p) ≤ 0, that we will refer to
as self-occlusions, although we may be missing those points
with η(p) > 0 that may also be self-occluded. We show
how to use this map to prevent the warp from folding with-
out the need for finding all self-occluded pixels. We obtain
the partial self-occlusion map by using a discretization ap-
proach. Given the template image T , where the surface ap-
pears without deformation, we first build a two-dimensional
regular partition H of the surface with M × M cells. Each
cell is indexed as

H(p̄) p̄ = (x̄ ȳ)� ∈ {1, . . . ,M} × {1, . . . ,M},
where p̄ are the cell coordinates corresponding to point p
in the template image.4 We define H(p̄) = 1 if point q such
that p ↔ q is self-occluded (i.e. η(p) ≤ 0) in the input im-
age I and H(p̄) = 0 if q is visible. The partition H is the
sought partial self-occlusion map. It can be viewed as a bi-
nary image where the self-occluded areas appear in black
(see Fig. 10).

The partial self-occlusion map H is in practice built by
computing the warp’s Jacobian at every cell of the map and
by defining the following factor in terms of the Jacobian ma-
trix’s eigenvalues λ1, λ2:

c = sign(λ1) sign(λ2)min(|λ1|, |λ2|). (16)

4We obtain p by simply scaling p̄ or by using a 2D homography if the
template image needs rectification.

Fig. 10 An example of partial self-occlusion map

Fig. 11 Comparison between the warps obtained without and with the
partial self-occlusion map H

The factor c is a sensible choice as the smallest eigenvalue
gives us, in pixel units, the amount of shrinking in the di-
rection where the warp is collapsing due to self-occlusion, if
any. A point p is marked as self-occluded if c < δH where
δH is a small positive factor, which is chosen empirically
to detect self-occlusions ‘before’ they occur in sequential
processing (we have selected δH = 0.1 pixels for all exper-
iments.) Figures 11a and 11b show the map H obtained be-
tween two images for two different cases.
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4.2 Self-Occlusion Resistant Warp Estimation

Once the self-occlusion map H has been obtained there are
several ways to prevent the warp W (·,L) between the sets
Gp ↔ Gq from folding.

In Gay-Bellile et al. (2010) the authors propose to use a
‘shrinker’, an extra term in the cost function which penalizes
changes in the warp’s local folds. Such a term is nonlinear
in the warp parameters and requires an iterative algorithm to
search for the minimum of the resulting cost function.

We propose a simple approach that forces an FFD warp
to be quasi-affine in the regions marked in H. We show
that by over-smoothing the warp in the self-occluded areas,
the warp behaves locally like a rigid transformation, shrink-
ing rather than folding. We thus introduce a new cost func-
tion where the smoothing parameter is considerably larger
in those areas where H = 1 compared to the rest of the
‘smooth’ deformation areas. This approach, although sim-
ple, is very effective to avoid foldings and naturally shrinks
the warp, allowing one to use linear least squares optimiza-
tion. In Hilsmann and Eisert (2009) the authors propose a
very similar approach, where the smoothness penalty for
vertices in occluded regions of a triangular mesh is assigned
a higher weight. The authors apply the idea to iteratively ad-
just the surface to optical flow measurements in a variational
approach.

Although our method follows the same philosophy as
Hilsmann and Eisert (2009), in contrast it provides a closed-
form solution to the warp parameters given feature corre-
spondences. This is an important step to bootstrap direct reg-
istration methods, where more sophisticated self-occlusion
resistant cost functions can be used, such as the ‘shrinker’
term of Gay-Bellile et al. (2010). As we will show in Sect. 6,
over-smoothing self-occluded areas performs slightly worst
compared to using a ‘shrinker’ in direct approaches.

We modify the bending energy εs of (8) as follows:

ε̃s (L) =
∑

p

κ(p)

∥∥∥∥
∂2 W
∂p2

(p,L)

∥∥∥∥
2

F

�x�y, (17)

where κ(p) is:

κ(p) =
{

K if H(p̄) = 1

1 otherwise.
(18)

The constant parameter K > 1 is chosen using test experi-
ments with various kinds of self-occlusions as explained be-
low. The resulting smoothing term (17) can be formulated
as a sum-of-squared linear combination ZK of the warp pa-
rameters L:

ε̃s (L) = ‖ZKL‖2
F . (19)

The closed-form (11) can thus be readily used to obtain the
warp by simply replacing Z by ZK . It must be noted that in

Fig. 12 Number of non-zero cells in H̃K versus the value of K . Ex-
ample A corresponds to Fig. 11c and Example B to Fig. 11d

the absence of self-occlusion the smoothing term is the same
as the conventional bending energy (8).

Figures 11c and 11d show two different warps obtained
without detecting self-occlusions, while Figs. 11e and 11f
show the equivalent self-occlusion resistant warp obtained
with our method. The partial self-occlusion map H is shown
in Figs. 11a and 11b.

4.3 Selection of the Parameter K

In order to show the effect of the parameter K in the self-
occluded areas we select two test examples affected with
self-occlusion areas that are shown in Figs. 11c (Example A)
and 11d (Example B). For both experiments we have com-
puted the warp parameters L and a partial self-occlusion
map H.

We propose an experiment where several values are given
to K (i.e. K = 1, . . . ,10). For each value of K we com-
pute new warp parameters LK using the modified bending
energy (18), and given H. For each LK we obtain a new
partial self-occlusion map, namely H̃K , whose number of
non-zero cells give us a way to measure the amount of fold-
ing produced by the warp parameters LK . Each partial self-
occlusion map H̃K is obtained with a value δH = 0, so that
it does not ‘anticipate’ self-occlusions.

It is expected that by increasing K , the number of self-
occluded (non-zero) cells tends to zero. In Fig. 12c we show
the number of such cells in H̃K versus the value of K for the
two test cases. It can be observed that for K > 10 all cells
get to zero, which means that the resulting warp did not fold
in self-occluded areas. In all our experiments we choose the
value K = 20.

5 Pixel-Based Registration Refinement

The feature-based approach presented in this paper allows
us to detect a deformed instance of the template provided
enough matches are given, while discarding outliers. The
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Fig. 13 Illustration of the
pixel-based data term ε̃d ,
including the partial
self-occlusion map H

registration accuracy obviously depends on the keypoint de-
tection and matching methods. Nevertheless, most of the
methods often lose many points near self-occlusion bound-
aries or highly deformed areas. In these cases the accuracy
of our proposed method decreases. We thus propose to use
a pixel-based (direct) registration approach to refine the sur-
face parameters given by our feature-based method. Pixel-
based registration uses pixel value differences to obtain the
warp parameters and therefore theoretically use all the infor-
mation available in the image to compute an accurate reg-
istration. In Gay-Bellile et al. (2010), a pixel-based regis-
tration approach is proposed for deformable surface detec-
tion that includes self-occlusion reasoning. In contrast, the
method we propose has a simpler mechanism to deal with
self-occlusions, using our modified bending energy (17). In
Sect. 6 we show the differences between both approaches.

5.1 Defining the Cost Function

The pixel-based cost function we propose is composed of
a data-term ε̃d , that compares intensity differences between
the template and the warped image, and the smoothing term
ε̃s we proposed in (17):

ε̃2(L) = ε̃2
d(L) + μ̃2ε̃s (L), (20)

with:

ε̃2
d =

∑

p∈(R−H)

‖T (p) − I(W (p,L))‖2, (21)

where R is the template region of interest (usually the whole
template image.) The Euclidean norm used to compare pixel
intensities or colors can be replaced by a robust loss func-
tion such as the one used in Gay-Bellile et al. (2010) so as
to robustify the cost against external occlusions and other
unmodeled phenomena. The region R − H represents all
pixel positions in the template region of interest that are

not self-occluded (i.e. where H(p̄) = 0). In those positions
where the self-occlusion map is non-zero the warped image
I(W (p,L)) is not well defined (see Fig. 13).

5.2 Minimizing the Cost Function

A straightforward way to obtain the minimum of the cost
(20) is to use the Gauss-Newton iterative optimization ap-
proach. The warp parameters are additively updated at each
iteration (i.e. L = L+�) for some increment �. The Gauss-
Newton approximation of ε̃d is given by:

ε̃2
d(L + �)

≈
∑

p∈(R−H)

‖T (p) − I(W (p,L)) − g(p,L)�δ‖2, (22)

where δ = vect(�) is the update vector.5 The gradient vec-
tor g(p,L) factors in the image gradient vector ∇I and the
warp’s Jacobian matrix ∂W

∂L
, which is linear with respect

to L and constant. The Gauss-Newton method repeatedly
solves a linear least squares minimization problem in �. The
normal equations are formed by stacking all gradient vectors
into matrix J and all image residuals in vector D, giving the
following approximation of the data term:

ε̃2
d(L + �) ≈ (J δ − D)�(J δ − D). (23)

According to (19) the smoothing term can be directly ex-
pressed as the following quadratic form in the warp param-
eters (in vectorized form � = vect(L)):

ε̃2
s (L + �) =

(
(� + δ)�K(� + δ)

)
, (24)

5vect refers to the column-wise vectorization of a matrix.
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where K = diag(ZK,ZK). Finally the complete cost func-
tion (20) is approximated by a quadratic function in δ:

(J δ − D)�(J δ − D) + μ̃2
(
(� + δ)�K(� + δ)

)
. (25)

The minimum of (25) with respect to δ can be computed by
nullifying its partial derivatives, as the solution to the sys-
tem:

Hδ = B, (26)

with:

H = J �J + μ̃2 K, B = J �D − μ̃2�. (27)

Matrix J must be recomputed at each iteration as it depends
on the warp parameters, which implies that the Hessian H

must be recomputed and inverted too. The inversion process
can be done in a very efficient manner as matrix H is sparse
due to the limited support of the bicubic B-Spline basis func-
tion. Since the Gauss-Newton approach does not necessar-
ily guarantee that the registration error decreases at each it-
eration we provide the algorithm with a stopping condition
when the error increases. This condition can also be imposed
with a region-trust algorithm like Levenberg-Marquardt.

A brief algorithmic view of our registration method is
now given:

1. Initialize the warp parameters L using the feature-based
method presented in Sect. 3 (which also give the partial
self-occlusion map H).

2. Precompute the bending energy matrix K and the warp’s
Jacobian matrix ∂W

∂L
, set n = 1.

3. Repeat
(a) Compute the warped image I(W (p,L)) and its gra-

dient vectors ∇I ; form J and D.
(b) Compute H and B from (27).
(c) Use a sparse solver6 to solve the linear system Hδ =

B .
(d) Reshape δ to � and temporally update parameters

L = L + �, set n = n + 1.
(e) If the error ε̃2 increases with updated parameters

then reject the update and exit.
(f) If ‖δ‖ < ε or n ≥ nmax then exit.

This iterative algorithm may stop when the incremental
step δ is smaller than a predefined value ε, typically 10−8.

6 Experimental Results

This section shows the performance of both the outlier re-
jection method and the self-occlusion resistant warp estima-
tion for three datasets. Each dataset has a template image

6We use the ‘mldivide’ Matlab function.

and a sparse set of views of the deformed surface, taken un-
der different viewpoints and with different deformations, in-
cluding self-occlusions. We then give implementation and
timing details.

6.1 Detection and Retexturing Results

The Comics dataset has 6 images of size 968 × 648, includ-
ing the template. The images present different kinds of de-
formations including self-occluded surfaces and strong de-
formations due to paper creasing. Figure 14a shows the tem-
plate image with a warp visualization grid. Figures 14c to
14e show the result of automatic surface detection based
only on keypoints, for different viewpoints, with strong self-
occlusions in Figs. 14d and 14e. Figures 14f to 14h show
the surface retextured. Below each image we give the num-
ber of matched keypoints N , the number of outliers detected
No, the registration error εd (5) in terms of transferred point
distances (in pixels) and the registration (photometric) error
εr (in pixel intensity units [0 − 255]), corresponding to the
mean difference between pixel values:

εr = 1

|R − H|
∑

p∈(R−H)

‖T (p) − I(W (p,L))‖. (28)

The same experiment is shown in Figs. 14i to 14n af-
ter the pixel-based registration refinement step based on
the idea of over-smoothing the self-occluded pixels using
a modified bending energy term. Figures 14o to 14t show
the results of pixel-based registration using the shrinker term
proposed in Gay-Bellile et al. (2010). For this last batch of
figures, we only show the registration error εr .

In all images displayed in Fig. 14 the registration error
is small and the retextured images are visually convincing
even with self-occlusions. However, only a few keypoints
were detected near the self-occluded parts, which produced
artifacts, especially in Fig. 14e. The pixel-based refinement
step is able to reduce the registration error εr in all cases,
creating a more visually convincing registration (see Fig. 15
for a close-up view of the retexturing for one image of the
Comics dataset). It can be observed that the pixel-based reg-
istration using a shrinker term has a lower registration error
and gives visually more convincing results.

Figures 16a and 16b show surface detection with strong
deformations created by creasing the surface. As it can be
observed, some parts of the mesh fail to fit the surface, pro-
ducing greater registration errors than in Fig. 14. The er-
rors are produced by the lack of keypoints near some com-
plex foldings created in the paper. Still, in those parts where
enough points are found the retextured images shown in
Figs. 16c and 16d are visually convincing. As in Fig. 14 the
pixel-based refined versions of Figs. 16e to 16l are able to
reduce the registration error and are more visually convinc-
ing. The pixel-based registration approach based on using a
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Fig. 14 Results of the proposed framework on the Comics dataset (see main text for details)
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Fig. 15 Close-up view of Fig. 14g (left) where only keypoints were
used for registration, Fig. 14m (middle) where pixel-based registra-
tion was used including over-smoothing penalty to self-occlusions and
Fig. 14s where a shrinker term is used in self-occlusions

shrinker term is slightly better than the approach using the
over-smoothing penalty in all cases.

It can be seen that the top-left hand corner of the paper
surface shown in Fig. 16b is not registered properly even
after pixel-based refinement. This example is especially dif-
ficult. The feature-based approach suffers from the lack of
features and smoothes the surface. Consequently, the self-
occlusion map estimated from the feature-based solution
does not detect the corner of the surface as a self-occluded
part. Then, the pixel-based approach is not able to tell the
difference between a self-occlusion and an external occlu-
sion for that part of the warp. In Gay-Bellile et al. (2010)
the authors show that a direct registration approach with a
shrinker term is able to adapt to a video sequence where a
similar bending occurs in the corner of a paper. In that case
the continuous sequence allows the self-occlusion map to be
estimated iteratively at each frame, making the surface to
shrink properly at the corner.

The T-Shirt dataset has 3 images of size 968 × 648 of
a textured t-shirt: the template and 2 input images with de-
formations. Figures 17a and 17b show the template image
augmented with the surface mesh and the retextured tem-
plate respectively. Figures 17c to 17f show the surface de-
tected with the vector [N,No, εd, εr ], as for the previous
dataset. Figures 17g to 17n show the result of pixel-based
registration refinement and the new registration error εr with
both the over-smoothing penalty and a shrinker term. In both
cases pixel-based registration decreases the registration er-
ror. In this dataset there is no visible difference between the
shrinker and the over-smoothing terms.

The Graffiti dataset has 4 images of size 320 × 640, ex-
tracted from a video sequence and processed separately. Fig-
ures 18a to 18d show the template and 3 input images, and
the warp visualization grid. As in the other datasets we cap-
tion each Fig. of the retextured image with [N,No, εd, εr ].
This dataset has no self-occlusion and shows accurate regis-
tration results without the need for pixel-based refinement.

Fig. 16 Results of the proposed framework on the Comics dataset with
creased paper (see main text for details)
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Fig. 17 Results of the proposed framework on the T-Shirt dataset (see main text for details)

In Fig. 19 we highlight two of the experiments where the
number of outliers found between the template and input im-
ages is high. We render the matches for both template and
input images and show motion vectors superimposed on the
template. The percentage of outliers is indicated in the cap-
tion of Fig. 19. The values oscillate between 15%–20% of
outliers.

6.2 Software Implementation and Timing

All experiments were carried out using a Matlab implemen-
tation of our algorithms. We give timing details for some of
the experimental conditions given in the paper in Table 2.
The computer used for the test was a medium performance

Intel Core 2 Duo CPU at 2.2 GHz. We believe that an imple-
mentation in nearly interactive rate could be achieved with
an optimized code in a compiled programming language
such as C++ with the same platform and algorithms. The
bottleneck is clearly the pixel-based refinement. It could be
made much faster using a number of improvements such as
coarse-to-fine processing.

7 Conclusions

This paper has presented the first method for detecting a de-
formed surface in a single image based on point matches



68 Int J Comput Vis (2012) 97:54–70

Fig. 18 Results of the proposed framework on the Graffiti dataset (see main text for details)

Fig. 19 Matches and motion vectors superimposed for the experiments shown in Figs. 14e and 18b

Table 2 Timing performance
of our Matlab software
implementation for the different
experiments

Experiment Phase Time

Comics dataset, Fig. 14d Outlier detection 1.94 secs

Keypoint-based registration 3.01 secs

Pixel-based registration (15 iterations) 16.98 secs

T-Shirt dataset, Fig. 17c Outlier detection 0.94 secs

Keypoint-based registration 2.95 secs

Pixel-based registration (15 iterations) 12.98 secs

Graffiti dataset, Fig. 18d Outlier detection 1.78 secs

Keypoint-based registration 2.86 secs

to a template that handles both wide-baseline and self-
occlusions. The paper contributes with a simple and effec-
tive method for automatically discarding outliers, based on
the assumption that the surface to detect is locally smooth.

Outlier removal is based on using relationships between
neighboring points. The experimental evaluation confirmed
that our method is reliable enough even with a high amount
of outliers in the matches (beyond 70% with a TPR of more
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than 90% and a FPR of less than 15%) which is more than
necessary for real applications. Our outlier rejection method
has the advantage over other similar works that it can be
applied to self-occluded surfaces. The other contributions
of the paper is a simple method to detect self-occlusions
and to compute a self-occlusion resistant warp function—
based on either the point matches or a pixel-based cost. This
method allows us to perform convincing automatic retextur-
ing. We showed how bootstrapping our pixel-based regis-
tration engine with a point-based solution leads to a robust
wide-baseline algorithm giving accurate results. We believe
that, even more than in rigid registration where fewer param-
eters are sought, combining feature-based and pixel-based
methods is a sensible way of solving deformable registra-
tion problems.
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Appendix: Efficient Computation of the Distances di

with a TPS

The computation of the predicted point p̂i and consequently
of the value of di can be greatly simplified if the function f

in (12) is chosen to be a TPS. Following the feature-driven
parameterization of the TPS (Bartoli 2008), the parametric
warp shown in (3) is simplified into the following expres-
sion:

W (p,L) = L�ν(q) = L�E �
λ lp, (29)

where Eλ is an (l + 3) × l matrix that depends on the tem-
plate control points coordinates cp

1 , . . . , cp
l (usually chosen

on a regular grid) and on the parameter λ ∈ R, modeling the
strength of internal smoothing.

The vector lp with l+3 components is defined as follows:

lp =
(
ρ(‖p − cp

1 ‖2) · · · ρ(‖p − cp
l ‖2) p� 1

)
, (30)

where ρ(d) = d log(d) is the TPS kernel function. Using
(29), the matrix A used for computing the influence matrix
is transformed into the following expression:

A� = E �
λ

(
lp1, . . . , lpn

)
. (31)

By defining Ēλ as the first l rows of Eλ, the bending energy
εs can be written as:

εs = 8π

∥∥∥∥
√

ĒλL

∥∥∥∥
2

F

, (32)

which means that Z�Z = 8π Ēλ in the influence matrix. The
warp function and also the influence matrix shown in (12)
are simplified since Eλ can be precomputed.

In the problem of computing each distance di we have
two neighboring sets Q(pi ) and Q(qi ) of points pi and qi

respectively. In this case we define a TPS warp function
p = W (q,L) that goes from the input image to the template.
Therefore matrix L includes control point coordinates in the
coordinates of pi and the predefined control points used in
Eλ are defined as cq

1 , . . . , cq
n in the coordinates of qi .

We propose the following algorithm to efficiently com-
pute the distance di :

1. Distribute the control points cq

1 , . . . , cq
l uniformly in the

interval [0,1] × [0,1] and compute Eλ and Ēλ.
2. For all i = 1, . . . ,N

(a) Normalize the set Q(qi ) so that it lies inside the in-
terval [0,1] × [0,1], name it Q̄(qi ).

(b) Compute the warp parameters L using the influ-
ence matrix (3), the matches Q(pi ) ↔ Q̄(qi ) and the
value of Eλ and Ēλ previously computed.

(c) Warp point qi to get the predicted point p̂i using (29).
(d) Compute the distance di = ‖p̂i − pi‖.
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