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Abstract One of the tasks facing historians and preserva-
tionists is the authentication or dating of medieval manu-
scripts. To this end it is important to verify whether writings
on the same or different manuscripts are concurrent. We pro-
pose a novel approach for the automated image-based dif-
ferentiation of inks used in medieval manuscripts. We con-
sider the problem of capturing images of manuscript pages
in near-infrared (NIR) spectrum and compare the ink ap-
pearance and textural features of segmented text. We present
feature descriptors that capture the variability of the visual
properties of the inks in NIR based on intensity distributions
of histograms and co-occurrence matrices. Our approach is
novel as it is entirely image based and does not include the
spectrum analysis of the inks. The method is validated by us-
ing model ink images manufactured based on known recipes
and ink segmented from medieval manuscripts dated from
the 11th to the 16th century. Model inks are classified by us-
ing both supervised and unsupervised clustering. Compar-
ison of inks of unknown composition is achieved through
unsupervised multi-dimensional clustering of the feature de-
scriptors and similarity measures of derived probability den-
sity functions.
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1 Introduction

Researchers in the area of art preservation and historians
are in need of authenticating and dating ancient or medieval
manuscripts. Such authentication or dating is usually possi-
ble through the study of manuscripts and the recovery of his-
torical information such as the year a manuscript was writ-
ten or facts described in the manuscripts. However, often
researchers are not certain of the concurrency of the writ-
ings on manuscripts, as some writings are added at a later
date. In addition, often information about the date or place a
manuscript was written is not available.

In order to extract more information researchers often re-
sort to the study of the type of scripting found on manu-
scripts in order to determine whether certain writings are
by the same scriber. In other cases researchers compare text
from different manuscripts in order to establish whether they
are of the same era. In addition it is often useful to re-
searchers to know whether the script and the miniatures of
manuscripts are from the same ink as this could give an in-
dication of the workshop the manuscripts was written. To
successfully address this problem scholars are in need of
scientific information, such as the type of ink used on man-
uscripts, that can be reliably used in the historical exami-
nation of works of art. The availability of such information
would allow researchers to determine whether the writings
on the same or different manuscripts are concurrent.

The main objective of this research is to develop compu-
tational models and algorithms for automated image based
differentiation of the types of inks used in medieval manu-
scripts. Manuscript inks are made through the combination
of inorganic and organic pigments such as metals, salts and
vegetable materials. Existing methods used for the exami-
nation of pigments can be applied in the analysis of manu-
script inks, however, most are based on destructive testing
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techniques that require the physical sampling of data. Such
methods cannot be used widely due to their destructive na-
ture and the historical value of the artifacts.

Non-destructive techniques such as spectroscopy and re-
flectography are more suited to the study and preservation
of old manuscripts, where the optical properties of the pig-
ments are studied under illumination beyond the visible
spectrum (Janssens et al. 2000). In particular Raman spec-
troscopy has been applied successfully to the in situ analysis
of pigments and some colored inks contained in illuminated
manuscripts (Clarke 2001). However, analysis of historic
iron gall ink samples using sources of 514 and 633 nm laser
excitation has been regarded as difficult due to increased
fluorescence of the inks (Brown and Clark 2004). Recently
work using near-infrared excitation Raman spectroscopy has
been applied but it is yet not clear whether it can be used for
the analysis of iron gall inks (Lee et al. 2006). In addition
techniques such as Raman spectroscopy even though they
can provide quantitative information on ink constitutes, the
expense of the equipment and the ability to only provide
localized information poses some limits in their application.
Examples of such limitations are when the localized samples
are contaminated or when the appearance of inks in the vis-
ible spectrum does not suggest the usage of different types
of inks on a page, and therefore does not probe localized
investigation.

Computer vision techniques can be used as alternative or
complementary diagnostic methods by computing models
and interpreting the visual properties of the material used
such as brown inks. In an early approach Kokla studied
techniques for image-based ink classification of historical
documents using statistical modelling of ink intensity us-
ing Gaussian mixtures (Kokla et al. 2000). In a later work,
the same authors consider co-occurrence matrices of ink in-
tensities as models of the joint probability of adjacent ink
pixels in order to represent the spreading behavior of writ-
ing inks and classify eight specific ink compositions (Kokla
et al. 2007). Dasari and Bhagvati used an 11-dimensional
color and texture vector to derive within-class and between-
class distance distributions for text written with ball and
gell/roller pens (Dasari and Bhagvati 2007). Another ap-
proach is to capture the physical characteristics of liquid
inks. In forensics analysis Franke employed Haralick tex-
ture features of co-occurrence matrices and support vector
machines classifier to discriminate among three classes of
ink traces, solid, viscous, and fluid (Franke et al. 2002).

Although we share some of the insights of these authors,
we view the previous ink texture recognition classifiers as
proof-of-concept. Instead in this paper we focus on two dif-
ferent tasks: (a) to find suitable features to describe ink of
different chemical composition and (b) to use these features
for comparing previously unseen inks. In the latter case our
approach does not rely on any labelled training set as the

ink composition of the manuscripts cannot be known. The
remaining of this paper is organized as follows. Section 2
provides a background on the type of inks considered during
our experiments. Section 3 describes the ink feature descrip-
tors used. Section 4 describes the clustering of the inks based
on these features and ink similarity measures applied to dif-
ferentiate between inks of different composition. Section 5
describes our experiments based on model and manuscript
images. We conclude in Section 6.

2 Background

Inks used in Medieval manuscripts are mainly of black-
brown color and only occasionally color inks such as red
or green have been used. The two common black-brown
writing fluids were composed of either carbon or iron galls
(Barrow 1972). The carbon inks were composed generally
of either soot, lampblack, or some type of charcoal to which
gum arabic and solvent such as water, wine, or vinegar were
added. The basic ingredients of metal gall inks are copper,
iron, galls, gum arabic, and a solvent such as water, wine, or
vinegar (Flieder et al. 1975; Monique 1975). If compounded
with the proper amount of gum arabic, this ink will flow eas-
ily from a quill pen and penetrate the fibres of the paper to
form a black, insoluble compound.

The inks used in this study date from the 11th to the
16th century and are employed in manuscripts located in
south-east Europe and the eastern Mediterranean areas, es-
pecially in areas where the Byzantine Empire and its influ-
ence spread, which means that all the writing employed in
this study is Greek.

Our first aim is to derive models from standards of inks
manufactured according to the recipes given in Zerdoun Bat-
Yehouda (1983) for validating our method. We prepared
eight inks with various known chemical compositions, in or-
der to represent as many types of inks as possible. The inks
we prepared are as follows:

– Carbon ink.
– Metal gall ink. This category contains the copper gall inks

and iron gall inks.
– Incomplete inks. This group includes inks, that have a

similar composition to that of metal gall inks, although
their composition does not include one of the basic ingre-
dients of metal gall inks. We treat them as subclasses of
metal gall inks (type A, B and C).

– Mixed ink. This category contains inks that have ingredi-
ents of the last two categories.

A summary of the composition of inks is shown in Ta-
ble 1.

The identifying term “brown ink” is commonly used in
the cataloging of all these types of inks. This broad descrip-
tive term does little to indicate the richness or variety of
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Table 1 The composition of the model inks used during our exper-
iments and prepared based on recipes from Zerdoun Bat-Yehouda
(1983)

Ink types Chemical components

Carbon CuSO4 FeSO4 Gallic Alcohol Arabic

oxide glue

Carbon X X

Coppergall X X X X

Fourna X X X

Irrongall X X X

Mixed X X X X

Type A X X X

Type B X X

Type C X X

tones of the inks which fall within this category. Direct ob-
servation and examination of inks under normal light can
provide preliminary clues toward identification but mainly
differentiate between inks with carbon and non-carbon com-
position.

Viewing of artifacts under near infrared radiation is
widely adopted in the visual examination of works of art, as
it provides further information on invisible inks or pigments
due to fading or cover of more recent layers of paint. Re-
flectographical studies on the optical behaviors of inks un-
der visible and near infrared radiation have shown that inks
that have very similar photometric properties under visible
light can be separated when viewed under infrared radiation
(Alexopoulou and Kokla 1999). The differentiation in near
infrared is mainly due to the different chemical composi-
tion of the inks and can be represented using histograms or
mixture of Gaussian functions. A representation is shown in
Fig. 1 with the intensity distribution of the eight model inks
in the near-infrared spectrum. Figure 2 shows that while in
the visible region of the electromagnetic spectrum, the dif-
ferentiation of various types of inks is low, in the infrared
region, this differentiation is increased. This papers shows
that such differentiation allows for the statistical classifica-
tion of the inks.

3 Ink Feature Descriptors

The results in Fig. 1 show clearly that even though there is
a difference in the intensity distribution of the inks in near
infrared spectrum, this alone is not sufficient to discriminate
between the different inks. Therefore additional character-
istics have to be taken into account such as the behavior of
the inks during the scripting process. In addition materials
imaged in NIR spectrum have the advantage of penetrating
the ink outer surface without being excessively absorbed.

This optical property provides valuable information to the
image-based characterization of the spreading behavior of
the inks.

One difficulty in defining the set of feature descriptors
is that as inks are semi-transparent liquids the density and
opacity of their texture are part of their characterizing prop-
erties. Frequency, and repeatability of patterns are irrelevant
to characterizing ink type texture. As such, texture feature
methods used in machine vision, and image recognition with
the assumption that texture is defined by pattern frequency,
texton, and other perceptual assumptions impinge upon ink
texture characterization. For this reason, texture features
based on Gabor filter banks, wavelets, Fourier phase, au-
tocorrelation, edge masks, and textons are not well suited
for our purpose (Coggins and Jain 1985; Farrokhnia 1990;
Malik et al. 2001; Varma and Zisserman 2005). MRF and
GRF were shown by Picard to be equivalent, and also to be
related to the co-occurrence matrices (Picard et al. 1991).
MRF has been used in old documents to separate out and
remove ink-bleed from foreground ink intended for reading
(Huang et al. 2008). However, our strategy differs in that
it seeks to extract important ink information even from the
areas of thin ink spread.

Given that grey-level intensity distributions of eight
known classes of ink types are insufficiently discriminative
we seek features that yield higher between-class separation.
Following investigation of a large pool of features we pro-
pose to combine features from two families: 1-D intensity
descriptors and joint co-occurrence descriptors.

3.1 Grey Level Intensity Statistics

The intensity descriptor is a set of features from grey-level
intensity histograms statistics and joint intensity probability
distributions encoded in co-occurrence matrices. Ink class
attributes are assumed to be independent because although
chemically mixed with similar substances they nevertheless
exhibit different physical characteristics.

Figure 3 shows the pseudocolor intensity distributions of
NIR images of the eight known ink compositions at ten dif-
ferent densities. The distributions provide global statistics of
the NIR ink images and show that they vary with different
ink types and to some extent with physical density.

Distinctive features of ink properties are derived through
five statistical measurements of the histogram distributions
as given in Table 2. Under the assumption that the amount of
sampling is sufficient the smoothness is a statistical measure
that relates to light scattering properties of an ink surface,
whereas 1-D entropy is indicative of ink transparency and
thickness. In addition mean, variance and skewness provide
distinctive features of varying ink properties. Even though
the latter statistics are notoriously variant to lighting condi-
tions, as they shift with illuminant direction, after imposing
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Fig. 1 Intensity histograms in
the near infrared area of the
spectrum that correspond to the
eight model inks used during
our experiments. From left to
right: First row: Carbon,
Coppergall. Second row: Fourna
inks, Irongall. Third row:
Mixed, Type A inks. Bottom
row: Type B, Type C inks

some constraints on the capture conditions (such as camera,
illuminant position, scale, and orientation) these features are
rather rich in information.

In addition second-order statistics allow to capture the
spreading structure of textures such as ink. Our hypothesis
is that second-order statistics capture patterns invisible to the
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Fig. 2 Average intensity values
for the eight inks in each of the
ten different densities. Top
figure shows the averages values
in visible and the bottom figure
in near-infrared

naked eye, and yet visible to an NIR imaging system. Fig-
ure 4 shows the co-occurrence matrices of the eight model
ink types in visible spectrum where difference between the
ink types is clearly exhibited. However, as it is shown in
Fig. 5 the co-occurrence matrix of the same ink type in NIR
has higher variance compared to the co-occurrence matrix
in the visible spectrum.

We use co-occurrence matrices of gray-level intensities
(GLCM) to model these second-order statistics (Haralick et
al. 1973). The GLCM matrix with entries Pdelta(i, j) for a
displacement vector δ(δx, δy) is defined as the number of
occurrences of the gray-level i, and j at a distance δ. In
our feature descriptor we impose the conditions that when
observed direction is Φc = 0 then δx = 1, δy = 0, and when
Φc = π

4 then δx = 1, δy = 1.
A number of useful texture features is possible from the

GLCM, and in practise contrast and entropy are the most
informative for ink textures, as the others are to some de-
gree not independent from each other. Contrast is a mea-
sure of the clearness of ink regions. It is also a measure of

the amount of local variation in the ink image. A low value
of contrast results from images of uniform ink, whereas ink
images with large variation produce a high value. Entropy
quantifies the amount of different image intensity value pairs
in the GLCM. For example, minimum entropy relates to the
highly peaked distribution of a smooth and liquid ink tex-
ture, and maximum entropy to flat distribution due to the
generous amount of differently shaded details in a viscous
ink texture.

3.2 Weighted Sums of Off-diagonal Bands

The co-occurrence matrix has the property that off-diagonal
entries represent pair of intensities of a specific difference.
For example, the off-diagonal of rows i and columns i + 2
are all intensities pairs with a relative difference of two gray-
levels, regardless of the absolute intensity values.
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Fig. 3 Intensity histograms of the eight model ink types at ten dif-
ferent densities or thickness layers. Columns represent different ink
composition, and rows represent different level of density for each ink.
The top row represents the histograms after one layer of ink is applied,
whereas the bottom row represents the histograms after ten layers of

ink are applied. As can be noted in the figure, intensity distributions
vary with ink type and to some degree with physical density, since
as the number of ink layers increase the distributions tend to move
towards the darker areas of the intensity range
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Table 2 Statistical measures derived from NIR intensity distributions

Feature Description

μ = ∑L−1
l=0 (bl)p(bl) Histogram mean

σ 2 = ∑L−1
l=0 (bl − b̂)2p(bl) Histogram variance

γ = ∑L−1
l=0 (bl − b̂)3p(bl) Skewness

β = ∑L−1
l=0 1 − 1

1+σ 2 Smoothness

H1 = −∑L
k=1 p(bl) log2 p(bl) Histogram entropy

Fig. 4 An example of co-occurrence matrices for each of the eight
model inks in the visible spectrum where the difference in the distrib-
ution is shown

The proposed set of four features from these statistics of
different bands are,

4⋃

b=1

⎧
⎨

⎩

2(b−1)
∑

w

L−w∑

i=1

Pi,i+w

⎫
⎬

⎭
(1)

where, b represents the number of bands, and dummy vari-
able w is the width of the band in off-diagonal units. Adding
up entries of the same off-diagonal band is equivalent to cre-
ate a texture statistic that is partially invariant to illumination
intensity changes.

3.3 Co-occurrence Spectrum

For the second category of proposed features, we view the
co-occurrence matrix as a collection of L-dimensional row
vectors pk , that is Pdelta = P T

delta = [p1, . . . , pL]T . Then,

Fig. 5 Differences between the gray level co-occurrence matrices in
the visible and near infra-red spectrum. (a) Grey-level co-occurrence
matrix of an ink area of a carbon model image captured in the
visible part of electromagnetic spectrum. (b) The corresponding
co-occurrence matrix captured in the NIR spectrum

Table 3 Second-order statistical features derived from the co-
occurrence matrices

Feature Description

γΦc = ∑
i,j {p(i, j)(i − j)2} Contrast (Φc rads)

HΦc = −∑
i,j {p(i, j) log2 p(i, j)} Entropy (Φc rads)

λ
(i)
Φc

∈ ΛΦc ⇐ Cov(GLCMΦc ) Eigenvalues

SΦc = ⋃4
B=0{

∑2(B+1)−1

δ=2B

∑
i,j p(i, j)} Band Sums

the covariance matrix of the symmetric matrix Pdelta in
Fig. 5 provides information on the covariance of gray-level
intensities with respect to all other neighboring intensities.
The eigen decomposition of the covariance matrix provides
a compact description of the intensity spread spectrum in
terms of eigenvalues, one for each gray-level.

Cov(Pdelta)Σ = ΣΛ (2)

where Σ is an orthonormal matrix of eigenvectors, and Λ is
an L×L diagonal matrix of eigenvalues. The first six largest
eigenvalues are then retained as features. Second order sta-
tistical features are listed in Table 3.

3.4 Ink Descriptor Space

The intensity histogram statistics and co-occurrence statis-
tics are concatenated into 29-dimensional ink descriptors
inkn,

inkn = {μ,σ 2, γ,β,H1, γ0,H0, λ
(i)
0 , S0, γ π

4
,Hπ

4
, . . .} (3)

where the first five descriptors represent the statistical mea-
sures derived from the NIR histogram distributions and the
remaining represent the statistical features derived from the
co-occurrence matrices.

Creating an augmented descriptor by combining intensity
and co-occurrence type of descriptors poses some problems.
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Fig. 6 Ink descriptor
distribution in feature space.
Left column: Histogram mean
against histogram variance (a),
entropy (c), covariance
eigenvalues (e) and band
sums (g) in the visible spectrum.
Right column: corresponding
plots in NIR spectrum

Combined descriptors have more difficult physical interpre-
tation. In addition the features are derived from disparate in-
tensity and co-occurrence family of descriptors whose val-
ues lie at scales not directly comparable to each other, re-
quiring scale normalization. As the independence assump-
tion of each dimension might be invalid, and dimensions are
scaled differently when embedded in a subspace, we employ
a multi-dimensional optimization of eigen-entropy function
over scale.

In order to gain an understanding on the nature of the
feature space captured by the ink descriptors we used text
images written with eight inks of known composition. Fig-
ure 6 shows the histogram mean plotted against the his-
togram variance, entropy, covariance eigenvalues and band
sums in both the visible and the NIR spectrum. Each of the
eight ink models is represented in a distinct color. One char-
acteristic of the ink descriptors inkn is that they form clusters
that are non-linearly distributed in feature space and form a
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Fig. 7 Manuscript image, four segment selections of ink areas, and
local patches from sliding window (dash squares)

manifold embedded in higher-dimensional feature space. Of
interest is the spread noted in the NIR, and in particular the
band sums of the co-occurrence matrix.

The first and second order statistical features previously
described are extracted from samples of different image lo-
cal patches containing ink (see Fig. 7). A sliding window
breaks up the patches in smaller and slightly overlapping
sub-patches, which makes the features invariant to mild im-
age rotations and translations caused by the miss-alignments
during document capture. The sub-patches have the property
of being sufficiently small as to capture local structure but
large enough to include amounts of ink pixels such that the
requirements of the central limit theorem are met. Imposing
these restrictions results in more robust ink statistics, as well
as conveniently enforcing Gaussian distribution on the data.

4 Ink Clustering

Our modelling assumption is that we can model the ink
space using a mixture of K Gaussian clusters of ink descrip-
tors, where K is determined using Minimum Description
Length. Each cluster is best explained by their distance to
a centre of gravity μk , mass density wk and ink appearance
attributes with a sphere of influence directly related to the
eigenvalues λl of the descriptor covariance matrix Σk . An-
other assumption is that all manuscript pages are explained
by a single and shared computational model.

4.1 Ink Appearance and Descriptor Clustering

The ink found on a section of a manuscript is characterized
by ink descriptors generated by clusters whose parameters
Θ = ⋃K

k=1{μk,Σk,wk} maximize the likelihood L(Θ|Ink)
of observing the set of all ink descriptors

⋃K
k=1 Inkk . We

formulate the problem in the form of an objective function
E(Ink,Θ) for the ink IR appearance cluster parameters that
best explain the observed ink descriptors.

E(Ink,Θ) = − log{L(Θ|Ink)} (4)

We solve for the optimal cluster parameters with a sim-
ple Expectation-Maximization iterative estimation proce-
dure (Bishop 1995), and store their description length value
Kj . The procedure iteratively search for the overall K∗ min-
imum (Minimum Description Length) over different values
of plausible number of clusters Kj . For each selection seg-
ment Sq marginally overlapping local image patches Wr are
sampled from a sliding window moving from top left to
bottom-right of segment bounding box (see Fig. 7). The size
of the patch Wr has to be large enough to estimate some tex-
tural statistics. We estimated the minimum size Ws to be at
least L2 pixels, where typically L = 256, that is the maxi-
mum number of gray-levels.

4.2 Probabilistic Voting of Ink Selection Segments

The posterior probabilities of cluster membership of de-
scriptors inkr = Ψ (Wr) local patches Wr of a segment se-
lection Sq = ⋃R

r=1{Wr} are accumulated into K∗ fractional
bins, one for each candidate cluster.

The label li of the dominant cluster k∗ in a segment Sq

is found by probabilistic voting from the posterior probabil-
ities:

lq = arg max
k

⎧
⎨

⎩

∑

Wr∈Sq

p(θk|inkr )

⎫
⎬

⎭
(5)

This probabilistic voting procedure is equivalent to as-
sign a label to an entire ink selection segment Sq , so that
it can be treated like a discrete quantity, similarly to the
idea of bag of words (see Fig. 8). Note that label lq �=
arg maxk p(θk|Ψ (Sq)). The resulting labelling of the seg-
ments is further exploit to build statistics over the propor-
tions of ink appearance clusters on the entire set of manu-
script pages, as explained in the next section.

4.3 Comparing Ink in Manuscripts Images

There are times when we wish to select a number of ink ar-
eas from carefully chosen manuscript pages, so to analyze
and unveil ink appearance similarities. A selected ink area
(segment) of a page has the property that the most influential
cluster determines its ink appearance attributes. These at-
tributes are summarized by the predominant cluster label li ,
and the distribution of the segments’ labels characterizes the
manuscript ink appearance. The label distribution obeys a
PDF p(lk) approximated by the normalized label histogram
whose bins are computed as,



Int J Comput Vis (2011) 94: 136–151 145

Fig. 8 Voting algorithm executed on local patches from a candidate
ink selection segment. Test (left) and model (right) manuscripts are
partitioned in several patches of ink pixels. For each such patch seg-
mentation identifies the ink pixels and descriptor features are extracted
to generate cluster probabilities. Voting consists in picking and accu-
mulating the dominant cluster index in each patch into the final docu-
ment histogram of ink labels

p(lk) =
∑Ns

i=1{li (1 − min(li − k,1))}
Ns

, where 1 ≤ li ≤ K

(6)

where Ns denotes the total number of segments in all man-
uscript pages.

The ink similarity between two images of manuscript
pages is defined as follows,

SL(Ink1, Ink2) = 1 −
{

K∑

k=1

|p(lk|Ink1) − p(lk|Ink2)|
}

(7)

To largely similar ink descriptor sets Ink1 and Ink2 corre-
spond a very small histogram difference of the label PDFs.
Note that the order of label bins is irrelevant. Figure 9 gives
a summary of the algorithm followed from the segmentation
of text to the similarity measures of feature descriptors in
the manuscripts.

5 Experiments

Ink found on the manuscript must be correctly separated
from the support such as the background paper, parchment,

or papyrus before feature extraction. Image acquisition of
ink documents consistently took place in controlled labora-
tory conditions at similar color temperature, scale, position
and orientation of the illuminants.

The images in the near infrared radiation were recorded
using two tungsten photolamps, the 093 B+W optical fil-
ter and a CCD camera sensitive between from 380 nm to
900 nm. Each image included the manuscript page, a stan-
dard black and white scale and a colour scale. All images
were captured with the same grey and colour scales with a
resolution of 4256 × 2848 pixels. In addition to the above
requirements all images were acquired with the following
protocol regarding the positioning of the lights and the cam-
era:

– The camera lens should be parallel to the page surface that
should be completely flat.

– The lights should be in 45 degrees, to avoid the creation
of shades.

– The distance between the lens and the page surface is the
same for all images.

– During all acquisitions the same lighting should be used
and the lights should be positioned in the same distance
from the object.

Therefore our intensity normalization method is simpler
than the one taken with more complicated document sur-
face conditions as in Shi and Govindaraju (2004). At first,
light intensity was normalized using a 3-D plane-fitting al-
gorithm to correct gradients introduced by the illuminants.
Later a simple piece-wise linear interpolation using a Ko-
dak gray card was found to be more effective in correct-
ing the gradients. The greylevels on the card help to create
a lookup table for mapping ranges of gray tones. The last
step, was to employ a local adaptive thresholding similar to
the document binarization algorithm proposed by Sauvola
and Pietikainen (2000) was employed in order to segment
the low-contrast NIR images. A low-contrast image of inks
is difficult to segment from the support, and the chosen ap-
proach resolves this issue by computing a different threshold
T (x, y) for each pixel by taking into account the local mean,
m(x,y), and local standard deviation s(x, y) of the intensity
in the neighborhood of that pixel at (x, y). This is computed
with the equation T (x, y) = m(x,y)[1 + k(s(x, y)/R − 1)],
where R is the dynamic range of the standard deviation, and
is set to R = 128. Parameter k is user generated and appli-
cation dependent and set at k = 0.5.

Some of the results of our segmentation process is shown
in Fig. 10. The images used during our experiments can be
separated to those of known chemical composition and in-
clude both model and test images and those of unknown
chemical composition that were taken directly from Me-
dieval manuscripts.
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Fig. 9 The unsupervised
clustering algorithm. The
flowchart shows all the steps
from text segmentation to the
similarity measure of the feature
descriptors

Fig. 10 The ink from the images was segmented and was used to build
the intensity histograms and co-occurrence matrices from where the
inks descriptors are derived

5.1 Images of Known Chemical Composition

We test the ink descriptor performance with the ink dataset
used in Kokla et al. (2007). They were created using the
eight model inks described in Section 2 and reflect the script-
ing conditions found in manuscripts and encapsulate:

– The varying thickness of the inks during scripting.
– The varying scripting formed due to the different means

of writing used, such as quill, calamus and penna.
– The writing characteristics of different authors.

A total of 480 writings on paper were captured with
a near-infrared camera. Hereafter we refer to these as the
model images. All images were captured with same optics,
and under consistent capturing conditions.

Model images of each ink type included all the capital
and lower case letters of the Greek alphabet. In order to
take into account the different writing styles, separate im-
ages were produced using quill, calamus and penna. In or-
der to take into account the thickness of the inks, each of the
inks were used in ten different thickness to create 80 model
scripts (8 inks by 10 thickness of each). The ten different
thickness of ink were created by first writing ten different
samples of scripts. All but one of these samples were over-
written. Then all of but one of the overwritten samples were
again overwritten. The procedure was repeated until the fi-
nal sample alone was constructed of ten layers. The process
was repeated with each of the eight model inks and a total
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of 480 images (8 inks × 10 layers × 3 pens × 2 case letters)
of the Greek alphabet were created.

Figure 10 shows examples of the images produced us-
ing 1 to 10 layers of model inks. Figure 11(a) shows the 10
layers of one of the model inks in low case letters. One can
observe how each of the ten layers increases in ink density
from top to bottom. Figure 11(b) shows the different vari-
ations that can occur depending on the different means of
writing used.

5.2 Feature Descriptor Performance

The performance of the augmented feature descriptor is
tested using the model ink images. A multi-layer percep-
tron (MLP) classifier (Bishop 1995) is trained on features

Fig. 11 Test images. (a) The same ink was used to write ten layers
of the Greek alphabet at ten different densities. (b) Test images capture
the writing behavior of an author as it is influenced by pen type and let-
ter size. Penna type (p) often results in accidental ink spills and larger
spread areas, as opposed to the terser kalamus (k) and feather (f)

from 240 model images and tested on the remaining 240 im-
ages. The proposed augmented feature descriptor discussed
in Section 3 is tested by comparing its performance against
four other descriptors: intensity values, co-occurrence sum
of diagonals, Haralick co-occurrence descriptors (entropy,
contrast, 2d energy) and first order histogram statistics.

Figure 12 shows the recall performance of all five feature
descriptors. The proposed ink feature descriptor of first and
second order statistics expanded to eigen-co-occurrence and
off-diagonal band features outperforms all other descriptors
in all but one type of ink. Notice how all descriptors perform
worse against ink type 4 (i.e. carbon ink) given this compo-
sition absorbs larger levels of light intensity even in the NIR
part of the electromagnetic spectrum.

Table 4 shows the recall, and precision rates for vari-
ous ink images recognized by the classifier trained on the
ink augmented ink descriptor proposed. Trained images are
classified correctly most of the times, and test images 74%
of the times on average across ink type recipes. The results

Table 4 Performance of classifier trained with ink descriptors for NIR
images. The columns correspond to ink composition types, and the ver-
tical axis is the corresponding true positive rate using the test classifier.
1,2,3 = incomplete irongall, 4 = carbon, 5 = fourna, 6 = irongall,
7 = metalgall, and 8 = mixed inks. Notice that recall percentage for
ink 4 (Carbon) is only 40% due to its high level of NIR absorbance

1 2 3 4 5 6 7 8

Recall(TPR) .77 .87 .80 .40 .77 .70 .80 .83

TNR .97 .97 .95 .95 .96 .98 .99 .94

Precision .79 .81 .69 .55 .72 .81 .92 .66

Fig. 12 Comparison of ink texture descriptors. The horizontal axis
represent ink composition types: 1,2,3 = incomplete irongall, 4 =
carbon, 5 = fourna, 6 = irongall, 7 = metalgall, and 8 = mixed inks.
The vertical axis represents the recall performance of the descriptors
for each ink. The recall performance for the descriptor based only on
pixel intensities is very poor and the descriptor finds it difficult to dis-

criminate between inks. Co-occurrence SAD, First-order, and Haralick
descriptors are somewhat more discriminative than per-pixel intensi-
ties. The proposed descriptor combines eigen features, off-diagonal
bands, first and second order statistics to create a richer representa-
tion of the ink type distributions and has the best recall performance
between all descriptors for all inks
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Fig. 13 Each of the eight inks
are represented by a pie chart.
Slices in the pie charts represent
the proportion of each of the
high level features contributing
to each of the ink types.
Different inks have different
image-based properties and
therefore different proportions
of high level feature labels

Fig. 14 Confusion Matrix. Difference in label distribution between
pairs of ink types

show that descriptors for carbon ink are the most difficult to
discriminate, even in NIR spectrum.

5.3 Unsupervised Clustering of Ink Models

The algorithm for unsupervised clustering described in Sec-
tion 4 is first tested on the images of known chemical com-
position. The clustering of images of known inks is used
to raise confidence in the ink appearance clustering of the
model images, which in turn prove that the visual compari-
son of manuscript ink is possible, and meaningful. Unsuper-
vised clustering assigns labels to each model image. We test
the hypothesis that test images from the same model ink are
likely to be labelled similarly.

As described in Section 4 the minimum number of clus-
ters of each dataset is determined by using minimum de-
scription length. In the case of the model inks, the optimum
number of clusters found to describe the dataset is eight, and
each of these clusters is seen to correspond to a high level
feature in the descriptor space. The key result of these tests
is that different inks have different image-based properties
and therefore different proportions of high level features la-
bels. These proportions is what makes each ink type unique,
and the variability of each ink with respect to the percentage
of high level features is shown in Fig. 13.

A similarity distance function based on the difference in
the label distribution of two compared pages provides in-
sight of how two inks differ with respect to the clusters. We
can see from Fig. 14 that the distance between images of

same ink type is always smaller than the distance between
different model ink images.

5.4 Comparison of Manuscript Images

In order to test the algorithms on manuscript inks, NIR im-
ages were selected from the on-line EU NOESIS database.
The manuscripts and pages were selected by the NOESIS
partners. The tasks performed were set by a preservationist
that specializes in manuscript inks and included the compar-
ison of sections of pages from the same or different manu-
scripts. The aim of all the tasks performed were to confirm
the hypothesis of the preservationist regarding the similarity
or not of the selected sections. As a qualitative interpretation
sections that were given similarity measure between 0%–
33% are considered as been written using different types of
ink, whereas any similarity measure over 60% indicates that
the same type of ink has been used. Test performed on man-
uscripts are summarized in Tables 5 and 6. Results in Ta-
ble 5 focus on the comparison of sections in the same manu-
scripts, whereas results in Table 6 aim to indicate that pages
from the same manuscript (which preservationists indicated
that are written with the same scriber or ink) give higher
similarity measures, compared to pages from different man-
uscripts. Images of the manuscripts used are shown in visi-
ble and NIR in Figs. 15 to 22. The selection in the infrared
images indicate the sections of the images that were selected
for comparison. The caption in each of the figures provides
an explanation on the selection of the manuscripts and the
hypothesis. As seen from the images and tables the results
obtained by the similarity measures for images in Figs. 15
to 20 confirm the hypothesis of the preservationist, whereas
the results for the images in Figs. 21 and 22 show examples
where additional information and analysis is required to de-
duce the results.

Table 6 summarizes similarity measures for pages from
manuscripts GLNR126 and GLNR666. In accordance to
the hypothesis segmented text from the two manuscripts
show small similarity and share in most cases 0% to 43%
of ink characteristics with the exception of pages 52 from
GNRL666 and 100 from GNRL126 where 73% of the seg-
mented text have similar ink characteristics.
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Table 5 Similarity measure results for pages (folios) from the same
manuscripts. The pages are selected by preservationist in the field and
the hypothesis was based on studies on the scripting and historical
information in the manuscript. Similarity measures are given by the
NOESIS system based on the unsupervised clustering algorithm

Manuscripts Page Preservationist’s Similarity

comparisons hypothesis measure

GRNL666 52 vs 108 Page 52 is from 6%

52 vs 180 different era 11%

180 vs 108 78%

GRNL126 100 vs 50 Same ink 67%

GRNL2117 50 vs 2v Script and 20%

color different

GRNL2117 223 Undecided 0%

GRNL2536 1 vs 31 Similar inks 60%

difficult visual

recognition

GRNL2582 1 vs 73 Different inks 25%

GRNL72 190 vs 190v Same inks 50%

GRNL194 3 vs 136 Different inks 25%

GRNL306 114 vs 149 Different inks 25%

Table 6 Similarity measure between pages from different manuscripts
GRNL666, and GRNL126

f.001 f.050 f.100 f.276

Folio 052 28% 73% 31% 43%

Folio 108 8% 0% 11% 17%

Folio 180 0% 11% 0% 0%

Fig. 15 Pages from manuscript GRNL666 are expected to be written
with similar inks. Page 52 is dated by historians as being from a differ-
ent era to the rest of the manuscript. This is confirmed by the similarity
measure given by the NOESIS project (left). Pages 180 and 108 are
dated from the same period (right)

Fig. 16 The visible (top) and infrared images (bottom) of pages 50
(left) and 100 (right) of manuscript GRNL126. The scripting on the
pages is the same but in visible spectrum the shade of the ink is differ-
ent. Similarity measures indicate that the ink is the same, as hypothe-
sized based on the historical information available

Fig. 17 The visible (top) and infrared images (bottom) of pages 3 (left)
and 136 (right) of manuscript GRNL194. The selected sections show
different scripting style, and the similarity measure of 25% confirms
the difference in ink type

6 Conclusions

We have introduced a statistically-based feature descriptor
for different ink compositions. The descriptor is enriched
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Fig. 18 The visible (top) and infrared images (bottom) of pages 50
(left) and 2 verso (right) of manuscript GRNL2117. The scripting and
the shade of the ink in visible spectrum is different. The similarity mea-
sure of 20% confirms the difference in ink type

Fig. 19 The visible (top) and infrared images (bottom) of pages 1 (left)
and 313 (right) of manuscript GRNL2536. The inks are the same but
some of the writings were overwritten and some have been added at
the end. The similarity measure of 60% confirms that the inks used is
the same

by first-order and second-order statistics, and in particular
we have introduced two new texture features categories. The
first one based on weighed off-diagonal bands and the sec-

Fig. 20 The visible (top) and infrared images (bottom) of pages 73
(left) and 1 (right) of manuscript GRNL2582. The scripting is differ-
ent and possibly the ink is different. The similarity measure returned
is 26%

Fig. 21 The visible (top) and infrared images (bottom) of pages 190
(left) and 190v (right) of manuscript GRNL72. The hypothesis is that
the inks are the same, however the faded inks made it difficult to con-
firm similarity. The selected sections in the infrared images give a sim-
ilarity measure of 50%. This indicates that the ink used in the two sec-
tions is similar but this is not a strong result

ond on eigen decomposition of the covariant matrix of local
joint intensity co-occurrences. The resulting feature descrip-
tor has the disadvantage of being high-dimensional, and in
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Fig. 22 The visible (left) and infrared images (right) of page 223 of
manuscript GRNL2117. This is an example where the preservationist
cannot tell with certainty whether the selected inks on the same page
are the same or not. The similarity measure is 0% giving a strong in-
dication that the inks are not the same and therefore probing further
investigation

future work it would be interesting to discover and remove
redundant descriptor dimensions with a suitable feature se-
lection algorithm. On the other hand, the advantage of the
proposed ink feature descriptor is that it is suited to dis-
criminate among ink compositions in the NIR part of elec-
tromagnetic spectrum as the comparison tests show. It was
tested by training suitable non-linear classifier and study-
ing the discriminative power of the texture features. We also
demonstrated that the second-order statistical nature of the
features allows the descriptor to discriminate among ink tex-
ture of different chemical composition, a task the human vi-
sual system finds extremely challenging to accomplish given
the small inter-class variance, which results in different ink
composition surfaces to be perceived as identical. The de-
scriptor was also tested with manuscripts from the NOESIS
database, where the hypothesis of preservationist was con-
firmed by the similarity measure results given by our algo-
rithm. Extensive comparisons are currently carried out in the
NOESIS database in order to capture statistical results on
the similarity measures across manuscripts of the same and
different eras. In addition we are working in reducing the
manual selection required for the comparison of sections of
manuscripts.
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