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Abstract In this paper concepts from continuum mechan-
ics are used to define geodesic paths in the space of shapes,
where shapes are implicitly described as boundary contours
of objects. The proposed shape metric is derived from a
continuum mechanical notion of viscous dissipation. A geo-
desic path is defined as the family of shapes such that the to-
tal amount of viscous dissipation caused by an optimal mate-
rial transport along the path is minimized. The approach can
easily be generalized to shapes given as segment contours
of multi-labeled images and to geodesic paths between par-
tially occluded objects. The proposed computational frame-
work for finding such a minimizer is based on the time
discretization of a geodesic path as a sequence of pairwise
matching problems, which is strictly invariant with respect
to rigid body motions and ensures a 1–1 correspondence
along the induced flow in shape space. When decreasing the
time step size, the proposed model leads to the minimiza-
tion of the actual geodesic length, where the Hessian of the
pairwise matching energy reflects the chosen Riemannian
metric on the underlying shape space. If the constraint of
pairwise shape correspondence is replaced by the volume of
the shape mismatch as a penalty functional, one obtains for
decreasing time step size an optical flow term controlling
the transport of the shape by the underlying motion field.
The method is implemented via a level set representation of
shapes, and a finite element approximation is employed as
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spatial discretization both for the pairwise matching defor-
mations and for the level set representations. The numerical
relaxation of the energy is performed via an efficient multi-
scale procedure in space and time. Various examples for 2D
and 3D shapes underline the effectiveness and robustness of
the proposed approach.
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motion invariance

1 Introduction

In this paper we investigate the close link between ab-
stract geometry on the infinite-dimensional space of shapes
and the continuum mechanical view of shapes as bound-
ary contours of physical objects in order to define geo-
desic paths and distances between shapes in 2D and 3D.
The computation of shape distances and geodesics is funda-
mental for problems ranging from computational anatomy
to object recognition, warping, and matching. The aim is
to reliably and effectively evaluate distances between non-
parametrized geometric shapes of possibly different topol-
ogy. This entails the definition of a space of shapes with
a suitable structure that allows evaluation of distances be-
tween shapes. A typical (but not unique) approach would be
to define shapes as certain subsets of R

d modulo translation
and rotation (sometimes shapes are also considered scale-
invariant, e.g. Kendall 1984) and to impose a metric on them
(e.g. the quotient metric of R

nd under similarity transforms,
if shapes are defined as n-tuples of points (Kendall 1984), or
the Gromov–Hausdorff distance (Mémoli and Sapiro 2005),
compare Sect. 1.2). In this article, we define the shape space
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Fig. 1 (Color online) Time-discrete geodesic between the letters A
and B. The geodesic distance is measured on the basis of viscous dis-
sipation inside the objects (color-coded in the top row from blue, low
dissipation, to red, high dissipation), which is approximated as a de-

formation energy of pairwise 1–1 deformations between consecutive
shapes along the discrete geodesic path. Shapes are represented via
level set functions, whose level lines are texture-coded in the bottom
row

to consist of boundary contours of multiple components of
volumetric objects, and we impose a Riemannian metric
on this shape space which is identified with physical dis-
sipation (cf. Fig. 1)—the rate at which mechanical energy
is converted into heat in a viscous fluid due to friction—
accumulated along an optimal transport of the volumetric
objects (cf. Zhu et al. 2007).

We simultaneously address the following major chal-
lenges: A physically sound modeling of the geodesic flow
of shapes given as boundary contours of possibly multi-
component objects on a void background, the need for a
coarse time discretization of the continuous geodesic path,
and a numerically effective relaxation of the resulting time-
and space-discrete variational problem. Addressing these
challenges leads to a novel formulation for discrete geodesic
paths in shape space that is based on solid mathematical,
computational, and physical arguments and motivations.

Different from the pioneering diffeomorphism approach
by Miller et al. (2002) the motion field v governing the flow
in shape space vanishes on the object background, and the
accumulated physical dissipation is a quadratic functional
depending only on the first order local variation of a flow
field. In fact, as we will explain in a separate section on the
physical background, the dissipation depends only on the
symmetric part ε[v] = 1

2 (DvT + Dv) of the Jacobian Dv

of the motion field v, and under the additional assumption
of isotropy, a typical model for the dissipation is given by
Diss[v] = ∫ 1

0

∫
O(t)

diss[v]dx dt with the local rate of dissi-
pation

diss[v] = λ

2
(tr ε[v])2 + μ tr(ε[v]2) (1)

(cf. Fuchs et al. 2009), where O(t) describes the deformed
object. The outer integral accumulates the dissipation in
time during the deformation of O(0) into O(1). The physi-
cal variable t geometrically represents the coordinate along
the path in shape space.

A straightforward time discretization of a geodesic flow
would neither guarantee local rigid body motion invari-

ance for the time-discrete problem nor a 1–1 mapping be-
tween objects at consecutive time steps. For this reason we
present a time discretization which is based on a pairwise
matching of intermediate shapes that correspond to subse-
quent time steps. In fact, such a discretization of a path as
concatenation of short connecting line segments in shape
space between consecutive shapes is natural with regard
to the variational definition of a geodesic. It also under-
lies for instance the algorithm by Schmidt et al. (2006) and
can be regarded as the infinite-dimensional counterpart of
the following time discretization for a geodesic between
two points sA and sB on a finite-dimensional Riemannian
manifold: Consider a sequence of points sA = s0, s1, . . . ,

sK = sB connecting two fixed points sA and sB and mini-
mize

∑K
k=1 dist2(sk−1, sk), where dist(·, ·) is a suitable ap-

proximation of the Riemannian distance. In our case of the
infinite-dimensional shape space, dist2(·, ·) will be approx-
imated by a suitable energy of the matching deformation
between subsequent shapes. In particular, we will employ
a deformation energy from the class of so-called polycon-
vex energies (Ciarlet 1988) to ensure both exact frame in-
difference (observer independence and thus rigid body mo-
tion invariance) and a global 1–1 property. Both the built-in
exact frame indifference and the 1–1 mapping property en-
sure that fairly coarse time discretizations already lead to an
accurate approximation of geodesic paths (cf. Fig. 2). The
approach is inspired both by work in mechanics (Zhao et al.
1996) and in geometry (Luckhaus and Sturzenhecker 1995).
We will also discuss the corresponding continuous problem
when the time discretization step vanishes.

Careful consideration is required with respect to the ef-
fective multi-scale minimization of the time discrete path
length. Already in the case of low-dimensional Riemannian
manifolds the need for an efficient cascadic coarse to fine
minimization strategy is apparent. To give a conceptual
sketch of the proposed algorithm on the actual shape space,
Fig. 3 demonstrates the proposed procedure in the case of
R

2 considered as the stereographic projection of the two-
dimensional sphere, which already illustrates the advantage
of our proposed optimization framework.
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Fig. 2 (Color online) Discrete geodesics between a straight and a
rolled up bar, from first row to fourth row based on 1, 2, 4, and 8
time steps. The light gray shapes in the first, second, and third row
show a linear interpolation of the deformations connecting the dark

gray shapes. The shapes from the finest time discretization are over-
layed over the others as thin black lines. In the last row the rate of
viscous dissipation is rendered on the shape domains O1, . . . , O7 from
the previous row, color-coded as

Fig. 3 (Color online) Different refinement levels of a discrete geo-
desic (K = 1,2,4, . . . ,256) from Johannesburg to New York in the
stereographic projection (right) and backprojected on the globe (left).
The discrete geodesic for a given K minimizes

∑K
k=1 dist2(sk−1, sk),

where the sk are points on the globe (represented by the black dots
in the stereographic projection) and s0 and sK correspond to Johan-
nesburg and New York, respectively. dist(sk−1, sk) is approximated by
measuring the length of the segment (sk−1, sk) in the stereographic

projection, using the stereographic metric at the segment midpoint.
The red line shows the discrete geodesic on the finest level. A single-
level nonlinear Gauss-Seidel relaxation of the corresponding energy on
the finest resolution with successive relaxation of the different vertices
requires over 106 elementary relaxation steps, whereas in a cascadic
energy relaxation scheme, which proceeds from coarse to fine resolu-
tion, only 2579 of these elementary minimization steps are needed

The organization of the paper is as follows. Sections 1.1
and 1.2 respectively give a brief introduction to the con-
tinuum mechanical background of dissipation in viscous
fluid transport and discuss related work on shape distances
and geodesics in shape space, examining the relation to
physics. Section 1.3 lists the key contributions of our ap-
proach. Section 2 is devoted to the proposed variational ap-

proach. We first introduce the notion of time-discrete geo-
desics in Sect. 2.1, prove existence under suitable assump-
tions in Sect. 2.2, and we present a relaxed formulation in
Sect. 2.3. Then, in Sect. 2.4 we present the actual viscous
fluid model for geodesics in shape space and establish it as
the limit model of our time discretization for vanishing time
step size in Sect. 2.5. Section 3 introduces the corresponding
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Fig. 4 A linear velocity profile
produces a pure horizontal shear
stress

numerical algorithm, which is based on a regularized level
set approximation as described in Sect. 3.1 and the space
discretization via finite elements as detailed in Sect. 3.2.
A sketch of the proposed overall multi-scale algorithm is
provided in Sect. 3.3. Section 4 is devoted to the computa-
tional results and various applications, including geodesics
in 2D and 3D, shapes as boundary contours of multi-labeled
objects, applications to shape statistics, and an illustrative
analysis of parts of the global shape space structure. Finally,
in Sect. 5 we draw conclusions and describe prospective re-
search directions.

1.1 The Physical Background Revisited

Our approach relies on a close link between geodesics in
shape space and the continuum mechanics of viscous fluid
transport. Therefore, we will here review the fundamental
concept of viscous dissipation in a Newtonian fluid. The sec-
tion is intended for readers less familiar with this topic and
can be skipped otherwise.

Even though fluids are composed of molecules, based on
the common continuum assumption one studies the macro-
scopic behavior of a fluid via governing partial differen-
tial equations which describe the transport of fluid mater-
ial. Here, viscosity describes the internal resistance in a fluid
and may be thought of as a macroscopic measure of the fric-
tion between fluid particles. As an example, the viscosity of
honey is significantly larger than that of water. Mathemati-
cally, the friction is described in terms of the stress tensor
σ = (σij )ij=1,...d , whose entries describe a force per area
element. By definition, σij is the force component along
the ith coordinate direction acting on the area element with
a normal pointing in the j th coordinate direction. Hence,
the diagonal entries of the stress tensor σ refer to normal
stresses, e.g. due to compression, and the off-diagonal en-
tries represent tangential (shear) stresses. The Cauchy stress
law states that due to the preservation of angular momentum
the stress tensor σ is symmetric (Chorin and Marsden 1990).

In a Newtonian fluid the stress tensor is assumed to de-
pend linearly on the gradient Dv of the velocity v. In case
of a rigid body motion the stress vanishes. A rotational
component of the local motion is generated by the anti-
symmetric part 1

2 (Dv − (Dv)T) of the velocity gradient

Dv := (
∂vi

∂xj
)ij=1,...d , and it has the local rotation axis ∇ × v

and local angular velocity |∇×v| (Truesdell and Noll 2004).
Hence, as rotations are rigid body motions, the stress only
depends on the symmetric part ε[v] := 1

2 (Dv + (Dv)T) of
the velocity gradient. If we separate compressive stresses,
reflected by the trace of the velocity gradient, from shear
stresses depending solely on the trace-free part of theve-
locity gradient, we obtain the constitutive relation of an
isotropic Newtonian fluid,

σij = μ(σshear)ij + Kc (σbulk)ij

:= μ

(
∂vi

∂xj

+ ∂vj

∂xi

− 2

d

∑

k

∂vk

∂xk

δij

)

+ Kc

∑

k

∂vk

∂xk

δij , (2)

where μ is the viscosity, Kc is the modulus of compression,
and δij is the Kronecker symbol.

The following simple configuration serves for illustra-
tion. We consider a fluid volume in R

d , enclosed between
two parallel plates at height 0 and H , where the verti-
cal direction normal to the two plates points along the xd -
coordinate (cf. Fig. 4). Let us assume the lower plate to
be fixed and the upper plate to move horizontally at speed
v∂ = (v∂

1 , . . . , v∂
d−1,0). Then, the velocity field v(x) = xd

H
v∂

is a motion field consistent with the boundary conditions,

and the resulting stress is the pure shear stress μv∂

H
, acting

on all area elements parallel to the two planes.
Introducing λ := Kc − 2μ

d
and denoting the j th entry of

the ith row of ε by εij , one can rewrite (2) as

σij = λδij

∑

k

εkk + 2μεij ,

or in matrix notation σ = λ tr(ε)1 + 2με, where 1 is
the identity matrix and ε = ε[v]. The parameter λ is de-
noted Lamé’s first coefficient. The local rate of viscous
dissipation—the rate at which mechanical energy is locally
converted into heat due to friction—can now be computed
as

diss[v] = λ

2
(tr ε[v])2 + μtr(ε[v]2)
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= λ

2

(
d∑

i=1

vi,i

)2

+ μ

d∑

i,j=1

(vi,j + vj,i)
2

4
, (3)

where we abbreviated vi,j = ∂vi

∂xj
. To see this, note that by

its mechanical definition, the stress tensor σ is the first vari-
ation of the local dissipation rate with respect to the veloc-
ity gradient, i.e. σ = δDvdiss. Indeed, by a straightforward
computation we obtain

δ(Dv)ij diss = λ tr εδij + 2μεij = σij .

If each point of the object O(t) at time t ∈ [0,1] moves at
the velocity v(x, t) so that the total deformation of O(0) into
O(t) can be obtained by integrating the velocity field v in
time, then the accumulated global dissipation of the motion
field v in the time interval [0,1] takes the form

Diss
[
(v(t), O(t))t∈[0,1]

] =
∫ 1

0

∫

O(t)

diss[v]dx dt . (4)

Here tr(ε[v]2) measures the averaged local change of length
and (tr ε[v])2 the local change of volume induced by the
transport. Obviously divv = tr(ε[v]) = 0 characterizes an
incompressible fluid.

Unlike in elasticity models (where the forces on the mate-
rial depend on the original configuration) or plasticity mod-
els (where the forces depend on the history of the flow), in
the Newtonian model of viscous fluids the rate of dissipa-
tion and the induced stresses solely depend on the gradient
of the motion field v in the above fashion. Even though the
dissipation functional (4) looks like the deformation energy
from linearized elasticity, if the velocity is replaced by the
displacement, the underlying physics is only related in the
sense that an infinitesimal displacement in the fluid leads
to stresses caused by viscous friction, and these stresses are
immediately absorbed via dissipation, which reflects a local
heating.

In this paper we address the problem of computing geo-
desic paths and distances between non-rigid shapes. Shapes
will be modeled as the boundary contour of a physical object
that is made of a viscous fluid. The fluid flows according to
a motion field v, where there is no flow outside the object
boundary. The external forces which induce the flow can
be thought of as originating from the dissimilarity between
consecutive shapes. The resulting Riemannian metric on the
shape space, which defines the distance between shapes, will
then be identified with the rate of dissipation, representing
the rate at which mechanical energy is converted into heat
due to the fluid friction whenever a shape is deformed into
another one.

1.2 Related Work on Shape Distances and Geodesics

Conceptually, in the last decade, the distance between
shapes has been extensively studied on the basis of a general

framework of the space of shapes and its intrinsic structure.
The notion of a shape space has been introduced already
in 1984 by Kendall (1984). We will now discuss related
work on measuring distances between shapes and geodesics
in shape space, particularly emphasizing the relation to the
above concepts from continuum mechanics.

An isometrically invariant distance measure between
two objects SA and SB in (different) metric spaces is-
the Gromov–Hausdorff distance (Gromov 1999), which
is (in a simplified form) defined as the minimizer of
1
2 supyi=φ(xi ),ψ(yi )=xi

|d(x1, x2) − d(y1, y2)| over all maps
φ : SA → SB and ψ : SB → SA, matching point pairs
(x1, x2) in SA with pairs (y1, y2) in SB . It evaluates—
globally and based on an L∞-type functional—the lack
of isometry between two different shapes. Mémoli and
Sapiro (2005) introduced this concept into the shape analy-
sis community and discussed efficient numerical algorithms
based on a robust notion of intrinsic distances d(·, ·) on
shapes given by point clouds. Bronstein et al. incorporate
the Gromov–Hausdorff distance concept in various classi-
fication and modeling approaches in geometry processing
(Bronstein et al. 2008).

In Manay et al. (2006) define shape distances via integral
invariants of shapes and demonstrate the robustness of this
approach with respect to noise.

Charpiat et al. (2005) discuss shape averaging and shape
statistics based on the notion of the Hausdorff distance and
on the H 1-norm of the difference of the signed distance
functions of shapes. They study gradient flows for energies
defined as functions over these distances for the warping
between two shapes. As the underlying metric they use a
weighted L2-metric, which weights translational, rotational,
and scale components differently from the component in
the orthogonal complement of all these transforms. The ap-
proach by Eckstein et al. (2007) is conceptually related.
They consider a regularized geometric gradient flow for the
warping of surfaces.

When warping objects bounded by shapes in R
d , a shape

tube in R
d+1 is formed. Delfour and Zolésio (2001) rigor-

ously develop the notion of a Courant metric in this context.
A further generalization to classes of non-smooth shapes
and the derivation of the Euler–Lagrange equations for a
geodesic in terms of a shortest shape tube is investigated by
Zolésio (2004).

There is a variety of approaches which consider shape
space as an infinite-dimensional Riemannian manifold. Mi-
chor and Mumford (2006) gave a corresponding definition
exemplified in the case of planar curves. Yezzi and Men-
nucci (2005) investigated the problem that a standard L2-
metric on the space of curves leads to a trivial geometric
structure. They showed how this problem can be resolved
taking into account the conformal factor in the metric. In
Michor et al. (2008) discuss a specific metric on planar
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curves, for which geodesics can be described explicitly. In
particular, they demonstrate that the sectional curvature on
the underlying shape space is bounded from below by zero
which points out a close relation to conjugate points in shape
space and thus to only locally shortest geodesics. Younes
(1998) considered a left-invariant Riemannian distance be-
tween planar curves. Miller and Younes (2001) generalized
this concept to the space of images and also examined the
more general case of computing geodesics when a group
acts on a Riemannian manifold so that this Riemannian man-
ifold can be endowed with a new metric which incorporates
also the group action (so-called metamorphosis, Trouvé and
Younes 2005). Klassen et al. (2004) proposed a framework
for geodesics in the space of arclength parametrized curves
and suggested a shooting-type algorithm for the computa-
tion whereas Schmidt et al. (2006) presented an alternative
variational approach.

Dupuis et al. (1998) and Miller et al. (2002) defined a
geodesic distance between shapes based on a flow formu-
lation in the embedding space. They exploited the fact that
in case of sufficient Sobelev regularity for the motion field
v on the whole surrounding domain 	, the induced flow
consists of a family of diffeomorphisms. This regularity is
ensured by a functional

∫ 1
0

∫
	

Lv · v dx dt , where L is a
higher order elliptic operator (Sundaramoorthi et al. 2007;
Younes 1998). Thus, if one considers the computational do-
main 	 to contain a homogeneous isotropic fluid, then Lv ·v
plays the role of the local rate of dissipation in a multipolar
fluid model (Nečas and Šilhavý 1991), which is character-
ized by the fact that the stresses depend on higher spatial
derivatives of the velocity. Geometrically,

∫
	

Lv · v dx is the
underlying Riemannian metric. If L acts only on ε[v] and is
symmetric, then following the arguments in Sect. 1.1, rigid
body motion invariance is incorporated in this multipolar
fluid model. Different from this approach we conceptually
measure the rate of dissipation only on the evolving object
domain, and our model relies on classical (monopolar) ma-
terial laws from fluid mechanics not involving higher order
elliptic operators. Under sufficient smoothness assumptions
Beg et al. derived the Euler–Lagrange equations for the dif-
feomorphic flow field in Beg et al. (2005). To compute geo-
desics between hypersurfaces in the flow of diffeomorphism
framework, a penalty functional measures the distance be-
tween the transported initial shape and the given end shape.
Vaillant and Glaunès (2005) identified hypersurfaces with
naturally associated two forms and used the Hilbert space
structures on the space of these forms to define a mismatch
functional. The case of planar curves is investigated under
the same perspective by Glaunès et al. (2008). To enable
the statistical analysis of shape structures, parallel transport
along geodesics is proposed by Younes et al. (2008) as the
suitable tool to transfer structural information from subject-
dependent shape representations to a single template shape.

In most applications, shapes are boundary contours of
physical objects. Fletcher and Whitaker (2006) adopt this
view point to develop a model for geodesics in shape space
which avoids overfolding. Fuchs et al. (2009) propose a Rie-
mannian metric on a space of shape contours motivated by
linearized elasticity, leading to the same quadratic form (1)
as in our approach, which is in their case directly evaluated
on a displacement field between two consecutive objects
from a discrete object path. They use a B-spline parame-
trization of the shape contour together with a finite element
approximation for the displacements on a triangulation of
one of the two objects, which is transported along the path.
Due to the built-in linearization already in the time-discrete
problem this approach is not strictly rigid body motion in-
variant, and interior self-penetration might occur. Further-
more, the explicitly parametrized shapes on a geodesic path
share the same topology, and contrary to our approach a cas-
cadic relaxation method is not considered.

A Riemannian metric in the space of 3D surface trian-
gulations of fixed mesh topology has been investigated by
Kilian et al. (2007). They use an inner product on time-
discrete displacement fields to measure the local distance
from a rigid body motion. These local defect measures can
be considered as a geometrically discrete rate of dissipa-
tion. Mainly tangential displacements are taken into ac-
count in this model. Spatially discrete and in the limit time-
continuous geodesic paths are computed in the space of dis-
crete surfaces with a fixed underlying simplicial complex.
Recently, Liu et al. (2010) used a discrete exterior calcu-
lus approach on simplicial complexes to compute geodesics
and geodesic distances in the space of triangulated shapes,
in particular taking care of higher genus surfaces.

1.3 Key Contributions

The main contributions of our approach are the following:

• A direct connection between physics-motivated and ge-
ometry-motivated shape spaces is provided, and an intu-
itive physical interpretation is given based on the notion
of viscous dissipation.

• The approach mathematically links a pairwise match-
ing of consecutive shapes and a viscous flow perspective
for shapes being boundary contours of objects which are
represented by possibly multi-labeled images. The time
discretization of a geodesic path based on this pairwise
matching ensures rigid body motion invariance and a 1–1
mapping property.

• The implicit treatment of shapes via level sets allows for
topological transitions and enables the computation of
geodesics in the context of partial occlusion. Robustness
and effectiveness of the developed algorithm are ensured
via a cascadic multi-scale relaxation strategy.
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2 The Variational Formulation

Within this section, in Sect. 2.1 we put forward a model
of discrete geodesics as a finite number of shapes Sk ,
k = 0, . . . ,K , connected by deformations φk : Ok−1 → R

d

which are optimal in a variational sense and fulfill the hard
constraint φk(Sk−1) = Sk . Subsequently, in Sect. 2.3 we re-
lax this constraint using a penalty formulation. Afterwards,
based on a viscous fluid formulation, in Sect. 2.4 we intro-
duce a model for geodesics that are continuous in time, and
in Sect. 2.5 we finally show that the latter model is obtained
from the time-discrete model in the limit for vanishing time
step size.

2.1 The Time-Discrete Geodesic Model

As already outlined above we do not consider a purely
geometric notion of shapes as curves in 2D or surfaces in
3D. In fact, motivated by physics, we consider shapes S as
boundaries ∂O of sufficiently regular, open object domains
O ⊂ R

d for d = 2,3. Let us denote by S a suitable admis-
sible set of such shapes—the actual shape space. Later, in
Sect. 4.2, this set will be generalized for shapes in the con-
text of multi-labeled images.

Given two shapes SA, SB in S, we define a discrete path
of shapes as a sequence of shapes S0, S1, . . . , SK ⊂ S with
S0 = SA and SK = SB . For the time step τ = 1

K
the shape

Sk is supposed to be an approximation of S(tk) for tk = kτ ,
where (S(t))t∈[0,1] is a continuous path connecting SA =
S(0) and SB = S(1).

Now, we consider a matching deformation φk : Ok−1 →
R

d for each pair of consecutive shapes Sk−1 and Sk in a
suitable admissible space of orientation preserving defor-
mations D[Ok−1] and impose the constraint φk(Sk−1) = Sk .
With each deformation φk we associate a deformation en-
ergy

Edeform[φk, Sk−1] =
∫

Ok−1

W(Dφk)dx, (5)

where W is an energy density which, if appropriately cho-
sen, will ensure sufficient regularity and a 1–1 match-
ing property for a deformation φk minimizing Edeform over
D[Ok−1] under the above constraint. Analogously to the
axiom of elasticity, the energy is assumed to depend only
on the local deformation, reflected by the Jacobian Dφ :=
(

∂φi

∂xj
)ij=1,...d . Yet, different from elasticity, we suppose the

material to relax instantaneously so that object Ok is again
in a stress-free configuration when applying φk+1 at the next
time step. Let us also emphasize that the stored energy does
not depend on the deformation history as in most plasticity
models in engineering.

Given a discrete path, we can ask for a suitable measure
of the time-discrete dissipation accumulated along the path.
Here, we identify this dissipation with a scaled sum of the
accumulated deformation energies Edeform[φk, Sk−1] along
the path. Furthermore, the interpretation of the dissipation
rate as a Riemannian metric motivates a corresponding no-
tion of an approximate length for any discrete path. This
leads to the following definition:

Definition 1 (Discrete dissipation and discrete path length)
Given a discrete path S0, S1, . . . , SK ∈ S, the total dissipa-
tion along a path can be computed as

Dissτ (S0, S1, . . . , SK) :=
K∑

k=1

1

τ
E inf,k

deform,

where E inf,k
deform := inf{Edeform[φ, Sk−1] : φ ∈ D[Ok−1],

φ(Sk−1) = Sk} is the minimum deformation energy for a
matching deformation between Sk−1 and Sk from D[Ok−1].
Furthermore, the discrete path length is defined as

Lτ (S0, S1, . . . , SK) :=
K∑

k=1

√
E inf,k

deform.

As we will show in Sect. 2.2 for suitable spaces S and D,
the minimum matching energies E inf,k

deform are indeed attained,
i.e., there are matching deformations φk ∈ D[φ, Sk−1] with
φk(Sk−1) = Sk such that E inf,k

deform = Edeform[φk, Sk−1].
Let us make a brief remark on the proper scaling fac-

tor for the time-discrete dissipation. Indeed, the energy
Edeform[φk, Sk−1] is expected to scale like τ 2. Hence, the
factor 1

τ
ensures a dissipation measure which is concep-

tually independent of the time step size. The same holds
for the discrete length measure

√
Edeform[φk, Sk−1], which

already scales like τ . Thus Lτ (S0, S1, . . . , SK) indeed re-
flects a path length. To ensure that the above-defined dissi-
pation and length of discrete paths in shape space are well-
defined, a minimizing deformation φk of the elastic energy
Edeform[·, Sk−1] has to exist. In fact, this holds for objects
Ok−1 and Ok with Lipschitz boundaries Sk−1 and Sk for
which there exists at least one bi-Lipschitz deformation φ̂k

from Ok−1 to Ok for k = 1, . . . ,K (i.e. φ̂k is Lipschitz and
injective and has a Lipschitz inverse). The associated class
of admissible deformations will essentially consist of those
deformations with finite energy. Here, we postpone this dis-
cussion until the energy density of the deformation energy
is fully introduced.

With the notion of dissipation at hand we can define a
discrete geodesic path following the standard paradigms in
differential geometry:

Definition 2 (Discrete geodesic path) A discrete path S0,

S1, . . . , SK in a set of admissible shapes S connecting two
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Fig. 5 (Color online) Discrete geodesic for two different examples
from Fuchs et al. (2009) and Charpiat et al. (2007) where the local rate
of dissipation is color-coded as . In the bottom example the

local preservation of isometries is clearly visible, whereas in the top
example stretching is the major effect

shapes SA and SB in S is a discrete geodesic if there ex-
ists an associated family of deformations (φk)k=1,...,K with
φk ∈ D[Ok−1] and φk(Sk−1) = Sk such that (φk, Sk)k=1,...,K

minimize the total energy
∑K

k=1 Edeform[φ̃k, S̃k−1] over
all intermediate shapes S̃1, . . . , S̃K−1 ∈ S and all possi-
ble matching deformations φ̃1, . . . , φ̃K with φ̃k ∈ D[Õk−1],
S̃k−1 = ∂Õk−1, and φ̃k(S̃k−1) = S̃k for k = 1, . . . ,K .

In the following, we will inspect an appropriate model
for the deformation energy density W . As a fundamental re-
quirement for the time discretization we postulate the invari-
ance of the deformation energy with respect to rigid body
motions, i.e.

Edeform[Q ◦ φk + b, Sk−1] = Edeform[φk, Sk−1] (6)

for any orthogonal matrix Q ∈ SO(d) and b ∈ R
d (the ax-

iom of frame indifference in continuum mechanics). From
this one deduces that the energy density only depends on the
right Cauchy–Green deformation tensor DφT Dφ, i.e. there
is a function W̄ : R

d,d → R such that the energy density
W satisfies W(F) = W̄ (F TF) for all F ∈ R

d,d . Indeed,
if (6) holds for arbitrary Sk−1, φk , and Q ∈ SO(d), then
we have to have W(QF) = W(F) for any Q ∈ SO(d) and
any orientation preserving matrix F ∈ R

d,d (in particular,
F = Dφk(x) for any x ∈ Ok−1). By the polar decomposition
theorem, we can decompose such an F into the product of an
orthogonal matrix Q ∈ SO(d) and a symmetric positive defi-

nite matrix C with C = √
F TF and Q = F

√
F TF

−1
. Thus,

W(F) = W(Q
√

F TF) = W(
√

F TF) so that W(F) can in-
deed be rewritten as W̄ (F TF), where W̄ (C) := W(

√
C) for

positive definite matrices C ∈ R
d,d .

The Cauchy–Green deformation tensor geometrically
represents the metric measuring the deformed length in the
undeformed reference configuration.

For an isotropic material and for d = 3 the energy density
can be further rewritten as a function Ŵ (I1, I2, I3) solely
depending on the principal invariants of the Cauchy–Green
tensor, namely I1 = tr(DφT Dφ), controlling the local av-
erage change of length, I2 = tr(cof(DφT Dφ)) (cofA :=
detAA−T ), reflecting the local average change of area, and
I3 = det(DφT Dφ), which controls the local change of vol-
ume. For a detailed discussion we refer to Truesdell and Noll
(2004), Ciarlet (1988). Let us remark that tr(ATA) coin-
cides with the Frobenius norm |A| of the matrix A ∈ R

d,d

and the corresponding inner product on matrices is given by
A : B = tr(ATB). Furthermore, let us assume that the energy
density is a convex function of Dφ, cof Dφ, and detDφ, and
that isometries, i.e. deformations with DφT(x)Dφ(x) = 1,
are global minimizers (Ciarlet 1988). For the impact of this
assumption on the time discrete geodesic application we re-
fer in particular to the second row in Fig. 5, which pro-
vides an example of striking global isometry preservation
and an only local lack of isometry. We may further assume
W(1) = Ŵ (d, d,1) = 0 without any restriction. An example
of this class of energy densities is

Ŵ (I1, I2, I3) = α1I
p
2

1 + α2I
q
2

2 + �(I3) (7)

with p > 1, q ≥ 1, α1 > 0, α2 ≥ 0, and � convex with
�(I3) → ∞ for I3 → 0 or I3 → ∞, where the parame-
ters are chosen such that (I1, I2, I3) = (d, d,1) is the global
minimizer (cf. the concrete energy density defined in Ap-
pendix A.1) . The built-in penalization of volume shrink-

age, i.e. W̄
I3→0−→ ∞, comes along with a local injectivity

result (Ball 1981). Thus, the sequence of deformations φk

linking objects Ok−1 and Ok actually represents homeomor-
phisms (which for deformations with finite energy is rigor-
ously proved under mild assumptions such as sufficiently
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large p,q , certain growth conditions on �, and the objects
embedded in a very soft instead of void material for which
Dirichlet boundary conditions are prescribed). We refer to
Droske and Rumpf (2007), where a similar energy has been
used in the context of morphological image matching. Let
us remark that in case of a void background, self-contact
at the boundary is still possible so that the mapping from
Sk−1 = ∂Ok−1 to Sk = ∂Ok does not have to be homeomor-
phic. With the interpretation of such self-contact as a closing
of the gap between two object boundaries in the sense that
the viscous material flows together, our model allows for
topological transitions along a discrete path in shape space
(Ciarlet 1988) (cf. the geodesic from the letter A to the let-
ter B in Fig. 1 for an example).

2.2 An Existence Result for the Time-Discrete Model

Based on these mechanical preliminaries we can now state
an existence result for discrete geodesic paths for a suit-
able choice of the admissible set of shapes S and corre-
sponding function spaces D[Ok] for the deformations φk ,
k = 1, . . . ,K . Note that the known regularity theory in non-
linear elasticity (Ball 1981; Chipot and Evans 1986) does
not allow to control the Lipschitz regularity of the deformed
boundary φk(Sk−1) even if Sk−1 is a Lipschitz boundary of
the elastic domain Ok−1. One way to obtain a well-posed
formulation of the whole sequence of consecutive varia-
tional problems for the deformations φk and shapes Sk is to
incorporate the required regularity of the shapes in the defin-
ition of the shape space. Hence, let us assume that S consists
of shapes S which are boundary contours of open, bounded
sets O and can be decomposed into a bounded number of
spline surfaces with control points on a fixed compact do-
main. Furthermore, the shapes are supposed to fulfill a uni-
form cone condition, i.e. each point x ∈ S is the tip of two
open cones with fixed opening angle α > 0 and height r > 0,
one contained in the domain O and the other in the comple-
ment of O. On such object domains, the variational problem
for a single deformation φk connecting shapes Sk−1 and Sk

can be solved based on the direct method of the calculus of
variations. With regard to the deformation energy integrand
in (7), the natural function space for the deformations φk is a
subset of the Sobolev space W 1,p(Ok−1) (Adams 1975). Let
us take into account an explicit function �, namely the ra-

tional function �(I3) = α3(I
− s

2
3 +βI

r
2

3 )− γ . Then, in d = 3
dimensions, for α1, α2, α3, β, γ > 0, p,q > 3, r > 1 and
s >

2q
q−3 , we choose

D[Ok−1] := {
φ : Ok−1 → R

d
∣
∣φ ∈ W 1,p(Ok−1),

cof Dφ ∈ Lq(Ok−1),det Dφ ∈ Lr(Ok−1),

det Dφ > 0 a.e. in Ok−1, φ(Ok−1) = Ok

}
.

Taking into account this space of admissible deformations
for each k ∈ {1, . . . ,K} leads to a well-defined notion of dis-
sipation and length for discrete paths:

Theorem 1 (Existence of a discrete geodesic) Given two
diffeomorphic shapes SA and SB in the above shape
space S, there exists a discrete geodesic S0, S1, . . . , SK ∈
S connecting SA and SB . The associated deformations
φ1, . . . , φK with φk ∈ D[Ok−1] for k = 1, . . . ,K are Hölder
continuous (that is, |φ(x) − φ(y)| ≤ |x − y|γ for some
γ ∈ (0,1) and all points x, y) and locally injective in the
sense that the determinant of the deformation gradient is
positive almost everywhere.

Proof To prove the existence of a discrete geodesic we make
use of a nowadays classical result from the vector-valued
calculus of variations. Indeed, applying the existence results
for elastic deformations by Ball (1977, 1981), any pair of
consecutive shapes Sk−1 and Sk is associated with a Hölder
continuous deformation φk ∈ D[Ok−1] with det Dφk > 0
almost everywhere, which minimizes the deformation en-
ergy Edeform[·, Sk−1] among all deformations φ ∈ D[Ok−1].
Hence, given the set (φk)k=1,...,K of such minimizing defor-
mations for fixed shapes S1, . . . , SK , we can compute the
discrete dissipation 1

τ

∑K
k=1 Edeform[φk, Sk−1] along the dis-

crete path S1, . . . , SK .
Now, we make use of the structural assumption on the

shape space S. The space of all shapes can be parametrized
with finitely many parameters, namely the control points of
the spline segments. These control points lie in a compact
set. Also, S is closed with respect to the convergence of this
set of parameters since the cone condition is preserved in the
limit for a convergent sequence of spline parameters.

To prove that a minimizer S1, . . . , SK of the discrete dis-
sipation Dissτ exists, we first observe that Dissτ effectively
is a function of the finite set of spline parameters. Further-
more, the set of admissible spline parameters is compact.
Hence, it is sufficient to verify that Dissτ is continuous.
For this purpose, consider shapes Sk−1, Sk and S̃k−1, S̃k ,
respectively. Furthermore, for a given small δ0 > 0 we can
assume the spline parameters of (Sk−1, Sk) and (S̃k−1, S̃k)

to be close enough to each other so that for i = k − 1, k

there exists a bijective deformation ψi : Õi → Oi which is
Lipschitz-continuous and has a Lipschitz-continuous inverse
ψ−1

i with |ψi − 1|1,∞ + |ψ−1
i − 1|1,∞ ≤ δ for a δ ≤ δ0.

This is possible since the splines are smooth and contin-
uously depend on the spline parameters. Let us denote by
φ, φ̃ the optimal deformations associated with the dissipa-
tion Dissτ (Sk−1, Sk) and Dissτ (S̃k−1, S̃k), respectively. Us-
ing the optimality of φ̃ and defining φ̂ := ψ−1

k ◦φ ◦ψk−1 we
can estimate

Dissτ (S̃k−1, S̃k) − Dissτ (Sk−1, Sk)
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= 1

τ

∫

Õk−1

W(Dφ̃)dx − 1

τ

∫

Ok−1

W(Dφ)dx

≤ 1

τ

∫

Õk−1

W(Dφ̂)dx − 1

τ

∫

Ok−1

W(Dφ)dx

= 1

τ

∫

Ok−1

W((Dψ−1
k ◦ φ)Dφ(Dψk−1 ◦ ψ−1

k−1))

× |det Dψ−1
k−1| − W(Dφ)dx.

Here, we have applied the chain rule and a change of vari-
ables. Taking into account the explicit form of the integrand
and the above assumption on ψk−1 and ψk , we can estimate
the integrand from above independently of δ by

C(δ0)(|Dφ|p + | cof Dφ|q + |det Dφ|r + |(detDφ)−1|s),
where C(δ0) is a constant solely depending on δ0. Ob-
viously, this pointwise bound itself is integrable for φ ∈
D(Ok−1). Thus, as we let δ → 0, from Lebesgue’s theorem
we deduce that

Dissτ (S̃k−1, S̃k) − Dissτ (Sk−1, Sk) ≤ c(δ)

for a function c : R
+ → R with limδ→0 c(δ) = 0. Exchang-

ing the role of S̃k−1, S̃k and Sk−1, Sk we obtain

Dissτ (Sk−1, Sk) − Dissτ (S̃k−1, S̃k) ≤ c(δ)

which proves the required continuity of the dissipation
Dissτ . Hence, there is indeed a discrete geodesic S0,

. . . , SK . �

Note that it is possible to relax the assumptions on the
shape space by taking S as the boundary contours of all
open, bounded O ⊂ R

d that fulfill a uniform cone condi-
tion. The proof is a little more intricate (for which reason we
here only presented the simpler, application-oriented case of
spline shapes). It involves showing that along a minimizing
sequence all shapes are uniformly bounded by inductively
deriving the boundedness of all matching deformations. As
a next step, the matching deformations are extended to some
region 	 which contains all shapes, and these extended de-
formations are shown to converge uniformly along a sub-
sequence. Lower semi-continuity of the energy is then fi-
nally based on the properties of the deformation energy and
the Hausdorff-convergence of the shapes. The relation be-
tween this time-discrete model and a time-continuous model
of geodesics will be investigated in Sects. 2.4 and 2.5.

2.3 A Relaxed Formulation

Computationally, the constraint φk(Sk−1) = Sk for a 1–1
matching of consecutive shapes is difficult to treat. Further-
more, the constraint is not robust with respect to noise. In-
deed, high frequency perturbations of the input shapes SA

and SB might require high deformation energies in order to
map SA onto a regular intermediate shape or to obtain SB as
the image of a regular intermediate shape in a 1–1 manner.
Hence, we ask for a relaxed formulation which allows for
an effective numerical implementation and is robust with re-
spect to noisy geometries. At first, we assume that the com-
plement of the object Ok−1 also is deformable, but several
orders of magnitude softer than the object itself. Hence, we
define

E δ
deform[φk, Sk−1] =

∫

	

((1 − δ)χOk−1 + δ)W(Dφk)dx (8)

for deformations φk now defined on a sufficiently large com-
putational domain 	. For simplicity we assume φk(x) = x

on the boundary ∂	. This renders the subproblem of com-
puting an optimal elastic deformation well-posed indepen-
dent of the current shape. For δ = 0, we obtain the original
model and suppose that at least a sufficiently smooth exten-
sion of the deformation on a neighborhood of the shape is
given.

Now, we are in the position to introduce a relaxed formu-
lation of the pairwise matching problem by adding a mis-
match penalty

Ematch[φk, Sk−1, Sk] = vol(Ok−1 �φ−1
k (Ok)), (9)

where A�B = A \ B ∪ B \ A defines the symmetric
difference between two sets and vol(A) = ∫

A
dx is the

d-dimensional volume of the set A. This mismatch penal-
tyreplaces the hard matching constraint φk(Sk−1) = Sk .
Alternatively, one might consider the mismatch penalty
vol(φk(Ok−1)� Ok), but as we will see in Sect. 3.1, the
form (9) is computationally more feasible in case of an im-
plicit shape description.

Next, in practical applications shapes are frequently de-
fined as contours in images and usually not given in explicit
parametrized form. Hence, the restriction of the set of ad-
missible shapes to piecewise parametric shapes, which we
have taken into account in the previous section to establish
an existence result for geodesic paths, is—from a compu-
tational viewpoint—not very appropriate either. If we allow
for more general shapes being boundary contours of objects
in images, one should at least require them to have a finite
perimeter. Otherwise it would be appropriate to decompose
the initial object OA into tiny disconnected pieces, shuffle
these around via rigid body motions (at no cost), and re-
merge them to obtain the final object OB . The property of
finite perimeter can be enforced for the intermediate shapes
by adding the object perimeter (generalized surface area in
d dimensions) as an additional energy term

Earea[S] =
∫

S
da.
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Fig. 6 Geodesic paths between an X and an M, without a contour
length term (ν = 0, top row), allowing for crack formation (marked by
the arrows), and with this term damping down cracks and rounding

corners (bottom rows). In the bottom rows we additionally enforced
area preservation along the geodesic

Finally, we obtain the following relaxed definition of a path
functional for a family of deformations and shapes:

Definition 3 (Relaxed discrete path functional) Given a se-
quence of shapes (Sk)k=0,...,K and a family of deformations
(φk)k=1,...,K with φk : Ok−1 → R

d we define the relaxed
dissipation as

E δ
τ [(φk, Sk)k=1,...,K ]

:=
K∑

k=1

( E δ
deform[φk, Sk−1]

τ
+ ηEmatch[φk, Sk−1, Sk]

+ ντ Earea[Sk]
)

, (10)

where η, ν are parameters. A minimizer of this energy de-
fines a relaxed discrete geodesic path between the shapes
SA = S0 and SB = SK .

As we will see in Sect. 2.5 below, the different scaling of
the three energy components with respect to the time step
size τ will ensure a meaningful limit for τ → 0.

Figure 6 shows an example of two different geodesics
between the letters X and M, demonstrating the impact of
the term Earea controlling the (d − 1)-dimensional area of
the shapes.

2.4 The Time-Continuous Viscous Fluid Model

In this section we discuss geodesics in shape space from
a Riemannian perspective and elaborate on the relation to
viscous fluids. This prepares the identification of the result-
ing model as the limit of our time discrete formulations in
the following section. A Riemannian metric G on a differ-
ential manifold M is a bilinear mapping that assigns each
element S ∈ M an inner product on variations δS of S .
The associated length of a tangent vector δS is given by
‖δS‖ = √

G(δS, δS). The length of a differentiable curve
S : [0,1] → M is then defined by

L[S] =
∫ 1

0
‖Ṡ(t)‖dt

=
∫ 1

0

√
G(Ṡ(t), Ṡ(t))dt,

where Ṡ(t) is the temporal variation of S at time t . The
Riemannian distance between two points SA and SB on
M is given as the minimal length taken over all curves
with S(0) = SA and S(1) = SB . Hence, the shortest such
curve S : [0,1] → M is the minimizer of the length func-
tional L[S]. It is well-known from differential geometry (do
Carmo 1992, p. 194) that it is at the same time a minimizer
of the cost functional

∫ 1

0
G(Ṡ(t), Ṡ(t))dt

and describes a geodesic between SA and SB of minimum
length. Let us emphasize that a general geodesic is only lo-
cally the shortest curve. In particular there might be multi-
ple geodesics of different length connecting the same end
points.

In our case the Riemannian manifold M is the space of
all shapes S in an admissible class of shapes S (e.g. the one
introduced in Sect. 2.1) equipped with a metric G on in-
finitesimal shape variations. As already pointed out above,
we consider shapes S as boundary contours of deform-
ing objects O. Hence, an infinitesimal normal variation δS
of a shape S = ∂O is associated with a transport field
v : Ō → R

d . This transport field is obviously not unique. In-
deed, given any vector field w on Ō with w(x) ∈ Tx S for all
x ∈ S = ∂O (where Tx S denotes the (d − 1)-dimensional
tangent space to S at x), the transport field v + w is an-
other possible representation of the shape variation δS . Let
us denote by V (δS) the affine space of all these represen-
tations. As a geometric condition for v ∈ V (δS) we obtain
v · n[S] = δS , where n[S] denotes the outer normal of S .
Given all possible representations we are interested in the
optimal transport, i.e. the transport leading to the least dissi-
pation. Thus, using the definition (1) of the local dissipation
rate diss[v] = λ

2 (tr ε[v])2 + μ tr(ε[v]2) we define the met-
ric G(δS, δS) as the minimal dissipation on motion fields v,
which are consistent with the variation of the shape δS :

G(δS, δS) := min
v∈V (δS)

∫

O
diss[v]dx

= min
v∈V (δS)

∫

O

λ

2
(tr ε[v])2 + μ tr(ε[v]2)dx. (11)
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Let us remark that we distinguish explicitly between the
metric g(v, v) := ∫

O diss[v]dx on motion fields and the
metric G(δS, δS) on (the different space of) shape varia-
tions, which is the minimum of g(v, v) over all motion fields
consistent with δS . Finally, integration in time leads to the
total dissipation

min
v(t)∈V (Ṡ(t))

Diss
[
(v(t), O(t))t∈[0,1]

]

=
∫ 1

0
G(Ṡ(t), Ṡ(t))dt

to be invested in the transport along a path (S(t))t∈[0,1] in
the shape space S. This implies the following definition of a
time continuous geodesic path in shape:

Definition 4 (Time-continuous geodesic path) Given two
shapes SA and SB in a shape space S, a geodesic path be-
tween SA and SB is a curve (S(t))t∈[0,1] ⊂ S with S(0) =
SA and S(1) = SB which is a local solution of

min
v(t)∈V (Ṡ(t))

Diss
[
(v(t), O(t))t∈[0,1]

]

among all differentiable paths in S.

Evidently, one has to minimize over all motion fields v in
space and time which are consistent with the temporal evo-
lution of the shape. As in the time-discrete case, we can relax
this property and consider general vector fields v which are
defined at time t on the domain Ō(t) but are not necessarily
consistent with the evolving shape. The lack of consistency
is instead penalized via the functional

EOF[(v(t), S(t))t∈[0,1]]

=
∫

T
|(1, v(t)) · n[t, S(t)]| da, (12)

where (1, v(t)) is the underlying space-time motion field
and n[t, S(t)] the space-time normal on the shape tube T :=⋃

t∈[0,1](t, S(t)) ⊂ [0,1] × R
d . If we denote by χT O the

characteristic function of the associated (d +1)-dimensional
domain tube TO := ⋃

t∈[0,1](t, O(t)) on [0,1] × R
d then—

with a slight misuse of notation—we can rewrite this func-
tional as

EOF[(v(t), S(t))t∈[0,1]]

=
∫

(0,1)×Rd

∣
∣∂tχT O + ∇xχT O · v∣

∣ dx dt . (13)

Obviously, there is a similarity to TV-type variational ap-
proaches in optical flow (Black and Anandan 1993), where
v is the optical flow field and (t, x) → χO(t)(x) is the inten-
sity map of the corresponding image sequence.

Additionally, we may consider a further regularization
term on the tube of shapes, which integrates the surface area
Earea[S(t)] = ∫

S(t)
da over time so that we finally obtain the

time-continuous path functional

E [(v(t), S(t))t∈[0,1]]

=
∫ 1

0

∫

O(t)

diss[v]dx dt + ηEOF[(v(t), S(t))t∈[0,1]]

+ ν

∫ 1

0

∫

S(t)

da dt . (14)

Let us remark that the second and the third energy term can
be considered as anisotropic measures of area on the space-
time tube T . Indeed, the last term integrates the (d − 1)-
dimensional area on cross sections of T whereas the second
term weights the area element |∇(t,x)χT O | with the space
time motion field (1, v). Let us remark that the existence of
minimizers in the context of χT O ∈ BV (Rd; {0,1}) is still
an open problem, as well as the convergence of these min-
imizers to a minimizer of the time-continuous variational
limit problem for η → ∞ (cf. Sect. 2.5).

2.5 The Viscous Fluid Model as a Limit for τ → 0

We now investigate the relation of the above-introduced re-
laxed discrete geodesic paths and the time continuous model
for geodesics in shape space. For this purpose, we choose
the deformation energy in such a way that the Hessian of the
energy Edeform with respect to the deformation of an object
O, evaluated at the identity deformation 1, coincides up to a
factor 1

2 with the dissipation rate or metric tensor based on
(1), i.e.

HessEdeform[1, S](v, v) = 2
∫

O
diss[v]dx (15)

for any velocity field v. In terms of the energy density W

this is expressed by the condition

d2

dt2
W(1 + tA)|t=0 = λ(trA)2 + μ

2
tr
(
(A + AT)2) (16)

for the second derivative of W . By straightforward computa-
tion one verifies that for any local dissipation rate (1) one can
find a nonlinear energy density of type (7) which satisfies
(16). This is detailed in Appendix A.1, expressing the free
parameters of the deformation energy density (7) in terms of
the dissipation parameters λ and μ.

Next, let us introduce the following notation. Given a se-
quence S0, . . . , SK of shapes and deformations φ1, . . . , φK

with φk being defined on Ok−1, we introduce a temporally
piecewise constant motion field vk

τ and a time-continuous
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Fig. 7 (Color online) Two geodesic paths between dumb bell shapes
varying in the size of the ends. In the top example the ratio λ/μ

between the parameters of the dissipation is 0.01 (leading to rather in-
dependent compression and expansion of the ends since the associated
change of volume implies relatively low dissipation), and 100 in the

bottom example (now mass is actually transported from one end to the
other). The underlying texture on the shape domains O0, . . . , OK−1 is
aligned to the transport direction, and the absolute value of the velocity
v is color-coded as

deformation field φk
τ (which interpolates between points

x ∈ Ok−1 and φk(x) ∈ Ok) by

vk
τ (t) := 1

τ
(φk − 1),

φk
τ (t) := (1 + (t − tk−1)v

k
τ )

for t ∈ [tk−1, tk) with tk = kτ . The corresponding Eulerian
motion field, which actually generates the flow, is then given
by

vτ (t) := vk
τ ◦ (φk

τ )−1.

Here, we assume that φk
τ is injective.The concatenation with

its inverse is only needed to obtain the proper Eulerian de-
scription of the motion field.

For decreasing time step size τ , we are interested in the
behavior of the total energy E 0

τ on families of deformations
and shapes, given by the time-discrete, relaxed model from
Definition 3, and its relation to the energy E on motion fields
and shapes in space-time introduced in Definition 4. In fact,
if we evaluate the energy E 0

τ on a family of deformations and
shapes, where the deformations are induced by some smooth
motion field v and the shapes are obtained from a smooth
shape tube T = ⋃

t∈[0,1](t, S(t)) via regular sampling, we
observe convergence to the time-continuous energy E eval-
uated on v and T as postulated in the following theorem:

Theorem 2 (Limit functional for vanishing time step size)
Let us assume that (S(t))t∈[0,1] is a smooth family of shapes
and consider a time step size τ = 1

K
with K → ∞. For each

fixed value of K choose Sk = S(kτ ) for k = 0, . . . ,K . Fur-
thermore, let φ1, . . . , φK be a smooth sequence of injective
deformations with φk being defined on Ōk−1. Finally, as-
sume that the associated motion field vτ converges uniformly

for K → ∞ to a smooth motion field v on the space-time
tube

⋃
t∈[0,1](t, Ō(t)). Then the relaxed discrete path func-

tional E 0
τ [(φk, Sk)k=1,...,K ] converges to the time-continuous

path functional E [(v(t), S(t))t∈[0,1]] for K → ∞.

We conclude that our variational time discretization is in-
deed consistent with the time-continuous viscous dissipation
model of geodesic paths. In particular, the length control
based on the first invariant I1 of Dφk turns into the control of
infinitesimal length changes via tr(ε[v]2), and the control of
volume changes based on the third invariant I3 of Dφk turns
into the control of compression via tr(ε[v])2 (cf. Fig. 7 for
the impact of these two terms on the shapes along a geodesic
path). Note that our primal interest lies in the case η � 1
since the L1-type optical flow term is supposed to just act as
a penalty.

Proof of Theorem 2 At first, let us investigate the con-
vergence behavior of the sum of deformation energies∑K

k=1
1
τ

W [Ok−1, φk]. We consider a second order Taylor
expansion around the identity and obtain

W(Dφk) = W(1) + τW,A(1)(Dvk
τ )

+ τ 2

2
W,AA(1)(Dvk

τ , Dvk
τ ) + O(τ 3)

= 0 + 0 + τ 2

2

d2

dt2
W(1 + t Dvk

τ )|t=0 + O(τ 3)

= τ 2
(

λ

2
(tr Dvk

τ )
2 + μ

4
tr
(
(Dvk

τ + (Dvk
τ )

T)2)
)

+ O(τ 3)

= τ 2diss[vk
τ ] + O(τ 3).
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Fig. 8 Sketch of the mismatch
between shapes and motion
fields. The left sketch illustrates
the quantities from the proof for
a geodesic path of 2D shapes,
and the middle shape shows a
close-up. The right graph shows
the corresponding variables in
space-time

Here, we have used that the identity deformation is the mini-
mizer of W(·) with W(1) = 0 as well as the relation between
W and diss from (16). Now, summing over all deformation
energy contributions yields

lim
K→∞

K∑

k=1

1

τ
Edeform[φk, Sk−1]

= lim
K→∞

K∑

k=1

1

τ

∫

Ok−1

W(Dφk)dx

= lim
K→∞

K∑

k=1

τ

∫

Ok−1

diss[vk
τ ]dx

=
∫ 1

0

∫

O(t)

diss[v]dx dt

so that we recover the viscous dissipation in the limit.
Next, we investigate the limit behavior of the sum of mis-

match penalty functionals for vanishing time step size. First,
we connect the shapes Sk−1 = S(tk−1) and Sk = S(tk) via
a ruled surface T ruled

k . For x ∈ Sk−1 we consider the vec-
tor rk(x) ∈ R

d with rk = O(τ), defined by the properties
rk(x) ⊥ Tx Sk−1 and x + rk(x) ∈ Sk . Note that rk exists for
smooth shapes S(t) by an implicit function theorem type
argument, if τ is small enough. Now define

T ruled
k :=

{(

t, x + t − tk−1

τ
rk(x)

)

: t ∈ [tk−1, tk], x ∈ Sk−1

}

.

Obviously, T ruled
k approximates the continuous tube Tk :=⋃

tk−1≤t≤tk
(t, S(t)) up to terms of the order O(τ 2).

Next, in a neighborhood of the shape Sk−1, for x ∈
Sk−1 let us define the local and signed thickness function
(cf. Fig. 8)

δk(x) := sup {s : φk(x + sn[Sk−1](x)) ∈ Ok}
of the mismatch set Ok−1 �φ−1

k (Ok) (recall that φk is ex-
tended outside Ok−1). The thickness function δk is well-
defined by the same argument as for rk above, additionally
using the smoothness of the φk and the fact that all φk con-
verge uniformly to the identity for τ → 0 (since φk = φ(τ),

where φ solves the ODE φ̇ = vk(φ, t), φ(0) = 1). In addi-
tion, we obtain δk = O(τ) so that for a sufficiently small
time step τ we have

vol(Ok−1 �φ−1
k (Ok)) =

∫

Sk−1

|δk(x)|da + o(τ). (17)

Let us denote by nk[tk−1, Sk−1](x) the normal vector on
the ruled surface T ruled

k at a point x ∈ Sk−1. In particular,
nk[tk−1, Sk−1](x) ⊥ (0,w) ∀w ∈ Tx Sk−1 and
nk[tk−1, Sk−1](x) ⊥ (τ, rk(x)). From these properties we
get that

|(τ, rk(x) − δk(x)n[Sk−1](x)) · nk[tk−1, Sk−1](x)|

= τ |(1, vk
τ (x)) · nk[tk−1, Sk−1](x)| + o(τ). (18)

Next, by the similarity of the triangles ABC and CDE in
Fig. 8 for

lk(x) :=
√

τ 2 + |rk(x)|2,

εk(x) := (τ, rk(x) − δk(x)n[Sk−1](x)) · nk[tk−1, Sk−1](x)

we obtain that |δk(x)|
|εk(x)| = lk(x)

τ
and hence

|εk(x)|lk(x)

τ
= |δk(x)|.

Using this relation together with (18) and taking into ac-
count further standard approximation arguments we obtain
∫

Tk

|(1, v(x)) · n[t, S(t)](x)|da

=
∫

T ruled
k

|(1, vk
τ (x)) · nk[tk−1, Sk−1](x)|da + o(τ)

=
∫

Sk−1

|(1, vk
τ (x)) · nk[tk−1, Sk−1](x)|lk(x)da + o(τ)

=
∫

Sk−1

1

τ
|(τ, rk(x) − δk(x)n[Sk−1](x))

· nk[tk−1, Sk−1](x)|lk(x)da + o(τ)

=
∫

Sk−1

|δk(x)|da + o(τ)
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so that by (17) we finally arrive at the desired result

vol(Ok−1 �φ−1
k (Ok))

=
∫

Tk

|(1, v(x)) · n[t, S(t)](x)|da + o(τ).

Finally, the sum of shape perimeters,
∑K

k=1 τ Earea[Sk], ob-
viously converges to the time integral of the perimeters,

∫ 1

0

∫

S(t)

da dt

so that we have verified the postulated convergence. �

Let us remark that we do not prove �-convergence of
the relaxed discrete path functional as the time step size ap-
proaches zero. Here, the issue of compactness of the family
of shapes and deformations with finite energy as well as the
lower semi-continuity are open problems. Particularly the
influence of the anisotropic area measures on the shape tubes
in space-time on the compactness of a sequence of discrete
geodesics for vanishing time step size τ is one of the major
challenges. We conjecture the validity of a �-convergence
result of the form � − lim E δ

τ = E δ as τ → 0 and η → ∞,

where E δ = ∫ 1
0

∫
	
((1−δ)χT O +δ)diss[v]+ν|∇χ T O |dx dt

with the strict PDE constraint ∂tχ T O + ∇xχT O · v = 0. As
in many classical shape optimization problems one suffers
from a substantial lack of compactness in the case of a
hard/void setting with δ = 0, which appears to be very diffi-
cult to overcome.

3 The Numerical Algorithm

In this section we deal with the derivation of a numerical
scheme to effectively compute the discrete geodesic paths.
In Sect. 3.1 we will introduce a regularized level set descrip-
tion of shape contours and rewrite the different energy con-
tributions of (10) in terms of level sets. Then, a spatial finite
element discretization for the level set-based shape descrip-
tion and the deformations φk is investigated in Sect. 3.2. Fi-
nally, a sketch of the resulting numerical algorithm is given
in Sect. 3.3.

3.1 Regularized Level Set Approximation

To numerically solve the minimization problem for the en-
ergy (10), we assume the object domains Ok to be rep-
resented by zero super level sets {x ∈ 	 : uk(x) > 0} of a
scalar function uk : 	 → R on a computational domain
	 ⊂ R

d . Similar representations of shapes have been used
for shape matching and warping in Kapur et al. (2001),

Charpiat et al. (2005). We follow the approximation pro-
posed by Chan and Vese (2001) and encode the partition
of the domain 	 into object and background in the dif-
ferent energy terms via a regularized Heaviside function
Hε(uk). As in Chan and Vese (2001) we consider the func-
tion Hε(x) := 1

2 + 1
π

arctan( x
ε
), where ε is a scale parame-

ter representing the width of the smeared-out shape contour.
Hence, the mismatch energy is replaced by the approxima-
tion

E ε
match[φk,uk−1, uk]

=
∫

	

(Hε(uk ◦ φk) − Hε(uk−1))
2 dx, (19)

and the area of the kth shape Sk is replaced by the total vari-
ation of Hε ◦ uk ,

E ε
area[uk] =

∫

	

|∇Hε(uk)|dx. (20)

In the expression for the relaxed elastic energy (8) we again
replace the characteristic function χ Ok−1

by Hε(uk) and ob-
tain

E ε,δ
deform[φk,uk−1]

=
∫

	

((1 − δ)Hε(uk−1) + δ)W(Dφk)dx, (21)

where δ = 10−4 in our implementation. Let us emphasize
that in the energy minimization algorithm, the guidance of
the initial zero level lines towards the final shapes relies
on the nonlocal support of the derivative of the regularized
Heaviside function (cf. Caselles et al. 1997). Finally, we end
up with the approximation of the total energy,

E ε,δ
τ [(φk,uk)k=1,...,K ]

=
K∑

k=1

(
1

τ
E ε,δ

deform[φk,uk−1] + ηE ε
match[φk,uk−1, uk]

+ ντ E ε
area[uk]

)

. (22)

In our applications we have chosen values for η between
20 and 200 and ν either zero or 0.001 (except for Fig. 6,
where ν = 0.05). Within these ranges, the shapes along the
discrete geodesics are relatively independent of the actual
parameter values. The Lamé coefficients are λ = μ = 1 apart
from Fig. 7. The essential formulas for the variation of the
different energies can be found in Appendix A.2.

Note that in order to be a proper approximation of the
model with sharp contours, ε should be smaller than the
shape variations between consecutive shapes along the dis-
crete geodesic. Only in that case, the integrand of (19) is one
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on most of Ok−1 �φ−1
k (Ok). Consequently, as τ → 0, ε has

to approach zero at least at the same rate.

3.2 Finite Element Discretization in Space

For the spatial discretization of the energy E ε,δ
τ in (22) the

finite element method has been applied. The level set func-
tions uk and the different components of the deformations
φk are represented by continuous, piecewise multilinear (tri-
linear in 3D and bilinear in 2D) finite element functions
Uk and �k on a regular grid superimposed on the domain
	 = [0,1]d . For the ease of implementation we consider
dyadic grid resolutions with 2L + 1 vertices in each di-
rection and a grid size h = 2−L. In 2D we have chosen
L = 7, . . . ,10 and in 3D L = 7.

Single Level Minimization Algorithm For fixed time step τ

and fixed spatial grid size h, let us denote by
E ε,δ

τ,h[(�k,Uk)k=1,...,K ] the discrete total energy depending
on the set of K discrete deformations �1, . . . ,�K and K +1
discrete level set functions U0, . . . ,UK , where U0 and UK

describe the shapes SA and SB and are fixed. This is a non-
linear functional both in the discrete deformations �k (due
to the concatenation Uk ◦�k with the discrete level set func-
tion Uk and the nonlinear integrand W(·) of the deformation
energy E ε,δ

deform) as well as in the discrete level set functions
Uk (due to the concatenation with the regularized Heaviside
function Hε(·)). In our energy relaxation algorithm for fixed
time step and grid size, we employ a gradient descent ap-
proach. We constantly alternate between performing a sin-
gle gradient descent step for all deformations and one for all
level set functions. The step sizes are chosen according to
Armijo’s rule. If the actually observed energy decay in one
step is smaller than 1

4 of the decay estimated from the deriv-
ative (the Armijo condition is then declared to be violated),
then the step size is halved for the next trial, else it is dou-
bled as often as possible without violating the Armijo condi-
tion. This simultaneous relaxation with respect to the whole
set of discrete deformations and discrete level set functions
(representing the shapes), respectively, already outperforms
a simple nonlinear Gauss-Seidel type relaxation (cf. Fig. 3).
Nevertheless, the capability to identify a shortest path be-
tween complicated shapes depends on an effective multi–
scale relaxation strategy (see below).

Numerical quadrature Integral evaluations in the energy
descent algorithm are performed by Gaussian quadrature of
third order on each grid cell. For various terms we have to
evaluate pullbacks U ◦ � of a discretized level set function
U or a test function under a discretized deformation �. Let
us emphasize that quadrature based on nodal interpolation of
U ◦ � would lead to artificial displacements near the shape
edges accompanied by strong artificial tension. Hence, in

our algorithm, if �(x) lies inside 	 for a quadrature point x,
then the pullback is evaluated exactly at x. Otherwise, we
project �(x) back onto the boundary of 	 and evaluate U

at that projection point. This procedure is important for two
reasons: First, if we only integrated in regions for which
�(x) ∈ 	, we would induce a tendency for � to shift the
domain outwards until �(	)∩	 = ∅, since this would yield
zero mismatch penalty. Second, for a gradient descent to
work properly, we need a smooth transition of the energy
if a quadrature point is displaced outside 	 or comes back
in. By the form of the mismatch penalty, this implies that the
discrete level set functions Uk have to be extended contin-
uously outside 	. Backprojecting �(x) onto the boundary
just emulates a constant extension of Uk perpendicular to the
boundary.

Cascadic Multi-Scale Algorithm The variational problem
considered here is highly nonlinear, and for fixed time step
size the proposed scheme is expected to have very slow con-
vergence; also it might end up in some nearby local mini-
mum. Here, a multi-level approach (initial optimization on
a coarse scale and successive refinement) turns out to be in-
dispensable in order to accelerate convergence and not to be
trapped in undesirable local minima. Due to our assumption
of a dyadic resolution 2L + 1 in each grid direction, we are
able to build a hierarchy of grids with 2l + 1 nodes in each
direction for l = L, . . . ,0. Via a simple restriction opera-
tion we project every finite element function to any of these
coarse grid spaces. Starting the optimization on a coarse
grid, the results from coarse scales are successively prolon-
gated onto the next grid level for a refinement of the solution
(Bornemann and Deuflhard 1996). Hence, the construction
of a grid hierarchy allows to solve coarse scale problems in
our multi-scale approach on coarse grids. Since the width
ε of the diffusive shape representation Hε ◦ uk should nat-
urally scale with the grid width h, we choose ε = h. Like-
wise, we first start with a coarse time discretization and suc-
cessively add intermediate shapes. At the beginning of the
algorithm, the intermediate shapes are initialized as one of
the end shapes.

On a 3 GHz Pentium 4, still without runtime optimiza-
tion, 2D computations for L = 8 and K = 8 require ∼1 h.
Based on a parallelized implementation we observed almost
linear scaling.

3.3 A Sketch of the Algorithm

The entire algorithm in pseudo code notation reads as fol-
lows (where bold capitals represent vectors of nodal values
and the 2j + 1 shapes on time level j are labeled with the
superscript j ):
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EnergyRelaxation (Ustart,Uend) {
for time level j = j0 to J {

K = 2j ; U
j

0 = Ustart; U
j
K = Uend

if (j = j0) {
initialize �

j
i = 1, U

j
i = U

j
K , i = 1, . . . ,K

} else {
initialize �

j

2i−1 = 1 + 1
2 (�

j−1
i − 1), �

j

2i = �
j−1
i ◦ (�

j

2i−1)
−1,

U
j

2i = U
j−1
i , U

j

2i−1 = U
j−1
i ◦ �

j

2i , i = 1, . . . , K
2 ;

}
restrict Uj

i , �
j
i for all i = 1, . . . ,K onto the coarsest grid level l0;

for grid level l = l0 to L {
for step k = 0 to kmax {

perform a gradient descent step

(�i )i=1,...,K = (�old
i )i=1,...,K − τgrad(�old

i )i=1,...,K
E ε,δ

τ [(Ui ,�i )i=1,...,K ]
with Armijo step size control for τ ;

perform a gradient descent step

(Ui )i=1,...,K = (Uold
i )i=1,...,K − τgrad(Uold

i )i=1,...,K
E ε,δ

τ [(Ui ,�i )i=1,...,K ]
with Armijo step size control for τ ;

}
if (l < L) prolongate Uj

i , �
j
i for all i = 1, . . . ,K onto the next grid level;

}
}

}

4 Experimental Results and Generalizations

We have computed discrete geodesic paths for 2D and 3D
shape contours. The method is both robust and flexible due
to the underlying implicit shape description via level sets,
cf. Fig. 1, 5, 7, 9, 10, and 11. Indeed, neither topologically
equivalent meshes on the end shapes are required, nor need
the shapes themselves be topologically equivalent.

In what follows let us focus on a number of different ap-
plications of the developed computational tool and suitable
extensions. A slight modification of the matching condition,
presented in Sect. 4.1, will allow the computation of discrete
geodesic paths in case of partial occlusion of one of the end
shapes. Section 4.2 deals with the fact that frequently, phys-
ical objects consists of different regions. Along a geodesic
path, each of these regions has to be transported consistently
from one object onto the corresponding region in the other
object. Based on the concept of multi-labeled images which
implicitly represent such physical objects, Sect. 4.2 general-
izes our concept of geodesics correspondingly. Furthermore,
the computation of distances between groups of shapes can
be used for shape statistics and clustering, which will be
considered in Sect. 4.3. Finally, we will show in Sect. 4.4
that already for simple shapes such as letters there might

be multiple (locally shortest) geodesics between pairs of
shapes. The shown examples will not only give some deeper
insight into the structure of the shape space, but also illus-
trate the stability of our computational results with respect
to geometric shape variations.

4.1 Computing Geodesics in Case of Partial Occlusion

In many shape classification applications, one would like
to evaluate the distance of a partially occluded shape from
a given template shape. For example in Duci et al. (2006)
such a problem has been studied in the context of joint regis-
tration of multiple, partially occluded shapes. Our geodesic
model can be adapted to allow for partial occlusion of one of
the input shapes. Let us suppose that the domain O0 associ-
ated with the shape SA = ∂O0 is partically occluded. Thus,
we replace the first term in the sum of mismatch penalty
functionals by

Ematch[φ1, S0, S1] = vol(O0 \ φ−1
1 (O1))

and do not penalize areas of φ−1
1 (O1), which are not covered

by the (partially occluded) domain O0. Hence, the energy
E 0

τ will favor discrete paths in shape space which are pair-
wise in a 1–1 correspondence except for the very first pair,
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Fig. 9 (Color online) Geodesic path between a cat and a lion, with the local rate of dissipation inside the shapes S0, . . . , SK−1 color-coded as
(middle) and a transparent slicing plane with texture-coded level lines of the level set representation (bottom)

Fig. 10 (Color online) Geodesic path between the hand shapes m336 and m324 from the Princeton Shape Benchmark (Shilane et al. 2004). Two
different views are presented in the first two rows. The bottom row shows the local dissipation color-coded on slices through the hand shapes

where only an approximate inclusion of O0 in φ−1
1 (O1) is

intended. For this purpose, in the numerical implementation
we insert a masking function Hε(Erosionε̃[u0]) and obtain

E ε
match[φ1, u0, u1] =

∫

	

(Hε(u1 ◦ φ1) − Hε(u0))
2

×Hε(Erosionε̃[u0])dx.

Here Erosionε̃ is an erosion operator acting on the image u0

and eroding the domain O0 by a width ε̃. Furthermore, ε̃ is
chosen roughly of the same size as ε (we actually choose

ε̃ = ε). This modification improves the robustness of the
descent scheme since it does not penalize deviations of the
pulled back level set function u1 ◦φ1 from u0 in the interface
region between the occluded and non-occluded parts of O0.
An application of this modified scheme is shown in Fig. 12.

4.2 Geodesics Between Multi-Labeled Images

Only taking into account shapes which are outer boundary
contours S = ∂O of open objects O ⊂ R

d is rather limit-
ing in some applications. While the contours of an object
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Fig. 11 Top: Real video
sequence of a white blood cell
(courtesy Robert A. Freitas,
Institute for Molecular
Manufacturing, California,
USA). Middle: Discrete
geodesic between the
corresponding end shapes.
Bottom: Pushforward of the first
image under a concatenation of
the deformations connecting
consecutive shapes along the
discrete geodesic. Note that the
geodesic interpolation is similar
to the actual shape deformation
observed in the video

Fig. 12 A discrete geodesic
connecting different poses of a
matchstick man can be
computed (from left to right
starting with the second), even
though part of one arm and one
leg of S0 (left) are occluded

OA are correctly mapped onto the contours of an object
OB via the geodesic between SA = ∂OA and SB = ∂OB ,
the viscous fluid model imposes no restriction on the path-
generating flow in the object interior (apart from the prop-
erty that it should minimize the viscous dissipation). How-
ever, one might often want certain regions of one object OA

to be mapped onto particular regions in another object OB .
Generally speaking, real world shapes or objects are of-
ten characterized as a composition of different structures
or components with a particular relative position to each
other. A geodesic or a general path between two such shapes
should of course match corresponding structures with each
other, and a change in relative position of these subcompo-
nents naturally has to contribute to the path length.

As an example, let us reconsider the discrete geodesic
between the straight and the folded bar in Fig. 2. The initial
and the final shape contain no additional information about
any internal structures so that the deformation strength and
the induced dissipation along the geodesic path are distrib-
uted evenly over the whole object, in particular generating
symmetric intermediate shapes. However, if we prescribe
the original and the final location for some internal region
of the bar, the dissipation-minimizing flow may look very
different if the additional constraints are not consistent with
the geodesic flow without constraints (cf. Fig. 13).

For these reasons we would like to extend our approach
to allow for more general shapes that may be composed of a
number of subcomponents. Since we can interpret also im-
ages as collections of different shapes or objects, the com-

putation of geodesics between (multi-labeled) images nicely
fits into this setting as well.

The extension is very simple: Instead of a geodesic be-
tween just two shapes SA = ∂OA and SB = ∂OB , we now
seek a geodesic path (S i (t))i=1,...,m = (∂Oi (t))i=1,...,m, t ∈
[0,1], between two collections of shapes, each of them con-
sisting of m separate shapes, (S i

A)i=1,...,m = (∂Oi
A)i=1,...,m

and (S i
B)i=1,...,m = (∂Oi

B)i=1,...,m. The geodesic path is
supposed to be generated by a joint motion field v(t) :
⋃

i=1,...,m Oi (t) → R
d . The single objects Oi (t) can then

be regarded as the subcomponents of an overall object
⋃

i=1,...,m Oi (t). The total dissipation along the path is mea-
sured exactly as before by

Diss[v] =
∫ 1

0

∫

⋃
i=1,...,m Oi (t)

λ

2
(tr ε[v])2 + μtr(ε[v]2)dx dt .

This naturally translates to the objective functional of the
discrete geodesic with K + 1 intermediate shape collections
(S i

k)i=1,...,m, k = 0, . . . ,K ,

K∑

k=1

Edeform[φk, (S i
k−1)i=1,...,m]

:=
K∑

k=1

∫

⋃
i=1,...,m Oi

k−1

W(Dφk)dx,
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Fig. 13 Discrete geodesic between the straight and the folded bar from
Fig. 2, where the black region of the initial shape in the top row is
constrained to be matched to the black region of the final shape. The
bottom row shows a color-coding of the corresponding viscous dissi-

pation. Due to the strong difference in relative position of the black
region between initial and end shape, the intermediate shapes exhibit
a strong asymmetry and high dissipation in the light grey region near
both ends of the bar

Fig. 14 Top: Real frames from
a video sequence. Middle:
Discrete geodesic between the
first and the last segmented
frames. Bottom rows: Pullback
of the last frame (top) and
pushforward (bottom) of the first
one (the background has been
pasted into the pullbacks and
pushforwards so that it is not
deformed)

where the deformations φk satisfy the constraints
φk(S i

k−1) = S i
k for k = 1, . . . ,K , i = 1, . . . ,m, and

S i
0 = S i

A, S i
K = S i

B , i = 1, . . . ,m.
The corresponding relaxed formulation then has to in-

clude multiple mismatch penalties (one for every con-
straint), and as before, we incorporate a regularization of
the shape perimeter (or generalized surface area in d dimen-
sions) so that the total energy of a relaxed discrete geodesic
between two multicomponent shapes reads

E δ
τ [(φk, (S i

k−1)i=1,...,m, (S i
k)i=1,...,m)k=1,...,K ]

=
K∑

i=1

(
1

τ
E δ

deform[φk, (S i
k−1)i=1,...,m]

+
n∑

i=1

(ηEmatch[φk, S i
k−1, S i

k] + ντ Earea[S i
k])

)

. (23)

For sure, the different object components Oi
A or Oi

B

may overlap, but they have to do so consistently, that is,
there must exist a flow that deforms (Oi

A)i=1,...,m into
(Oi

B)i=1,...,m. In fact, it is often desired that the different

objects overlap: Assume O1 and O2 to be disjoint but have
a common boundary. Obviously, it costs zero energy to pull
both objects apart rigidly. Hence, if O1 and O2 shall keep
the common boundary along paths in shape space, one of
the objects should be replaced by the interior of O1 ∪ O2 so
that a separation of both components first requires the costly
generation of a new boundary. For this reason we have com-
posed the object in Fig. 13 of two objects, one representing
the whole bar and the other the black region. Another exam-
ple is given in Fig. 14, where the head and the torso served
as one component and the torso and the legs as a second one.
Let us remark that in case of the relaxed model this implies
a different weighting of the mismatch penalties with respect
to different shape components.

Rephrasing the above energy in terms of level set func-
tions is straightforward (Vese and Chan 2002), and the ap-
proximations of the different energy terms have already been
stated earlier. Note that with m level set functions and thus
m object components Oi we can in fact distinguish n = 2m

different phases represented by objects Oi , i = 1, . . . ,m, as
well as all possible combinations of overlapping. For exam-
ple, four phases (head, torso, legs, background) have been
described using two level set functions in Fig. 14. Of course,
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Fig. 15 Top: Frames from a real video sequence of a white blood cell
among a number of red ones (courtesy Robert A. Freitas, Institute for
Molecular Manufacturing, California, USA). Middle: Computed dis-
crete multiphase geodesic between pre-segmented shapes in the first

and the last frame. Bottom: Pushforward of the initial (first four shapes)
and pullback (last five shapes) of the final frame according to the geo-
desic flow

Fig. 16 Left: Pairwise geodesic
distances between (also
topologically) different letter
shapes. Right: Pairwise geodesic
distances between different
scanned 3D feet (data courtesy
of Adidas). The feet have
volumes 499.5 cm3, 500.6 cm3,
497.6 cm3, 434.7 cm3,
432.0 cm3, and 381.0 cm3,
respectively

it is furthermore possible to assign each phase different ma-
terial properties. This has been pursued in Fig. 15, where a
geodesic between two frames from a video of moving blood
cells has been computed. The top row shows frames from
the real video sequence, where a white blood cell squeezes
through a number of red blood cells. For the computation of
the geodesic (middle row), we employed two level set func-
tions and assigned the white blood cell with material para-
meters twenty times weaker than for the red blood cells (ma-
terial parameters of the background are 104 times weaker).
This seems reasonable, given that red blood cells are com-
paratively stiff. The result is a nonlinear interpolation be-
tween distant frames which is in good agreement with the
actually observed motion.

Note that compared to Fig. 11 we need a higher resolu-
tion in time for Fig. 15 due to the far stronger deformations.

4.3 Application to Statistics in Shape Space

Once geodesic distances between shapes are defined, one
can statistically analyze ensembles of shapes and cluster

them in groups based on the geodesic distance as a reliable
measure for the similarity of shapes. A thorough investi-
gation of such a statistical analysis is beyond the scope of
this paper. We restrict ourselves here to two primarily con-
ceptional examples in two and three dimensions. At first,
we evaluate distances between different 2D letters based on
the discrete geodesic path length. The resulting clustering is
shown in Fig. 16 on the left. Obviously, the Bs and Xs form
clusters, and these two clusters are closer to each other than
the significantly distant M. Furthermore, in Fig. 16 on the
right we study distances between six different foot level sets
obtained from 3D scans.

4.4 Complexity of Shape Space and Computational
Robustness

In this section, we intend to give an impression of the huge
complexity of the Riemannian shape space, which is already
revealed by a small example. Figure 17 shows a close-up of
that part of shape space which is spanned by the three letters
C, M, and U.



314 Int J Comput Vis (2011) 93: 293–318

Fig. 17 Sketch of Riemannian shape space. The box around each geo-
desic and the corresponding path in the sketch are coloured accord-
ingly. L denotes the geodesic length and D the total dissipation. The

circles represent the action of S1 on the shapes C, M, and U (that is,
a rotation of the shapes), which induces no dissipation and has zero
length

First note that there may be a large, possibly even infinite
number of geodesics connecting these three shapes of which
we just depict some interesting ones. In principle, however,
there are endless possibilities, for example, to split and re-
merge the letters in different ways and thereby achieve a lo-
cally shortest path. Which path is found by the algorithm
depends on the initialization of the intermediate shapes and
deformations and therefore also on the position of the end
shapes. This position is indicated in the sketch by the circle
associated to each letter, which shall represent all possible
rotation angles.

It is actually quite intuitive that the shortest geodesic be-
tween the C and the U involves a rotation by π

2 (top geodesic

in Fig. 17). Note that this rotation generates no dissipation
so that the rotated and the upright C are identified with each
other as being exactly the same shape. Similarly, the short-
est geodesics between M and C as well as between M and
U are such that the inner two line segments of the M are
bent outwards to yield a rotated C and U (third and last geo-
desic). If crack formation or closure is involved, the paths
typically exhibit stronger dissipation near the cracks and are
thus longer.

On the one hand our computations are able to reveal
at least interesting parts of the complex structure of shape
space. On the other hand, the algorithm proves to be very
robust as discussed in the following. The robustness of this
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Fig. 18 Discrete geodesics between an M and a C of a different font (cf. third row in Fig. 17), illustrating robustness with respect to small
perturbations. The geodesic length (and total dissipation) are 0.1220 (0.01518) for the top row and 0.1276 (0.01634) for the bottom row

Fig. 19 Finer time resolution of the geodesics between M and C from Figs. 17 and 18. From top to bottom, the geodesic lengths (and the total
dissipation) are 0.1025 (0.01056), 0.1201 (0.01465), and 0.1259 (0.01596)

Fig. 20 (Color online) Comparison of the discrete geodesic from M
to C (copied from Fig. 17) with the one form C to M. The geodesic
lengths (total dissipation) are 0.1040 (0.01084) and 0.1030 (0.01064),
respectively. Note that each shape from the first row should be com-

pared to the shape exactly below it, while the color-coding of each
shape in the top row shows the dissipation invested in the time step to
the right whereas the color-coding in the bottom row on each shape
shows the dissipation in the tim step to the left

Table 1 Geodesic distances (and dissipation in brackets) for discrete
geodesics of different resolutions

K = 4 K = 8 K = 16

0.1068 (0.01145) 0.1040 (0.01084) 0.1025 (0.01056)

0.1265 (0.01620) 0.1220 (0.01518) 0.1201 (0.01465)

0.1324 (0.01765) 0.1276 (0.01634) 0.1259 (0.01596)

type of geodesics becomes apparent if we slightly perturb
the end shapes. Of course, we then expect a similar geodesic
path with similar intermediate shapes, a similar distribution
of the dissipation, and a similar geodesic length. Figure 18
illustrates this continuous dependence of geodesics on the
end shapes, where two more versions of the geodesic be-
tween M and C are computed.

As elaborated earlier, our rigid body motion invariant
time discretization is particularly intended to allow good ap-
proximations to a continuous geodesic already for relatively
coarse time discretizations. Hence, as we refine a discrete

geodesic by increasing the number of time steps, we expect
that the intermediate shapes do not change too strongly and
that the geodesic length has already almost converged. In-
deed, the geodesic length decreases by less than two percent
when doubling K from 8 to 16 for the different geodesics
between Ms and Cs (Fig. 19 and Table 1).

We also expect from a discrete geodesic to approximately
satisfy the axioms of a metric, that is, that the geodesic dis-
tance between two shapes is roughly symmetric and sat-
isfies the triangle inequality. Let us remark that in gen-
eral Edeform[φk, Sk−1] �= Edeform[φ−1

k , Sk]. Hence, the dis-
crete geodesic distance is by construction not ensured to be
strictly symmetric, whereas the limit metric G is symmetric.
These two properties are exemplarily illustrated in Figs. 20
and 21.

5 Conclusions and Future Work

We have proposed a physical framework to compute geo-
desics in shape space based on measuring flow-induced
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Fig. 21 The geodesic lengths
between the three M- and
C-shapes satisfy the triangle
inequality (values in brackets
are total dissipation)

Fig. 22 Limitations of the method: It is advantageous to decompose the shape into small independent pieces and to shuffle them around

dissipation in the interior of shape contours. Furthermore,
we have introduced a novel variational time discretization
of these geodesics. The key ingredients are the 1–1 map-
ping property between consecutive time steps and the rigid
body motion invariance. The proposed formulation allows to
weight the effect of the local change of length and volume
separately, leading to significantly different geodesic paths.
Both physically and with respect to the shape description,
geodesic paths can undergo certain topological transitions.
A cascadic multi-scale relaxation strategy renders the com-
putation robust and effective.

However, there are some limitations and complications
of our approach that might be tackled in future work. Since
shapes are regarded as boundaries of volumetric objects, we
need to resolve the complete volume during computations,
resulting in increased computation times and thus restrict-
ing the method to applications of relatively limited com-
plexity. Also, on a classical, regular grid in space and time,
strongly nonlinear deformations such as local rotations of
parts of an object can be described only at very high res-
olution, at which the problem relaxation takes comparably
long. Another issue concerns the perimeter regularization
without which general minimizing geodesics cannot exist:
It would be optimal to decompose the initial shape into a
large number of independent pieces, to shuffle these pieces
around rigidly, and to recompose the end shape by merging
the pieces again. Even with regularization we sometimes ob-
serve a related behavior (see Fig. 22). This problem is linked
to the fact that there is frequently a large, possibly infinite
number of geodesics between two shapes. Of all possible
geodesics one might select the most intuitive ones by as-
signing the formation or disappearing of boundaries a fur-
ther energy term. Finally, initialization is very important: As
we have seen in Fig. 17, we obtain different geodesics de-
pending on the initial rotation angle of the first shape. Fu-

ture generalizations of the model might also deal with the
incorporation of prior statistical knowledge. Furthermore,
we would like to rigorously investigate the time-discrete to
time-continuous limit via the concept of �-convergence.
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Appendix

A.1 The Hessian of the Deformation Energy

For the deformation energy density W(Dφ), which we use
as an approximation to the squared geodesic distance be-
tween two consecutive shapes of a discrete geodesic path,
there are many different possibilities. As explained earlier,
we only have to ensure that W(Dφ) is minimal and vanishes
for Dφ ∈ SO(d), i.e. for DφT Dφ = 1. Due to W(QDφ) =
W(Dφ) ∀Q ∈ SO(d), it suffices to verify W,A(1) = 0,
where W,A denotes the derivative of W with respect to its
matrix argument. Furthermore, the second order Taylor ex-
pansion of W(Dφ) around φ = 1 yields the desired local
viscous dissipation rate (1) as leading order term for the mo-
tion field v = 1

τ
(φ − 1). As an example—in fact used in our

computations—we consider the integrand

W(Dφ) = μ

2
|Dφ|2 + λ

4
(det Dφ)2

−
(

μ + λ

2

)

log det Dφ − d2μ

2
− λ

4
,
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where d ∈ 2,3 is the spatial dimension. Indeed, we obtain
W(1) = 0 and

W,A(Dφ) = μDφ +
(

λ

2
det Dφ

−
(

μ + λ

2

)
1

det Dφ

)

cof Dφ,

which is zero for Dφ = 1, as well as

W,AA(1)(Dv, Dv)

= μDv : Dv +
(

λ

2
+

(

μ + λ

2

)
1

det12

)

(cof1 : Dv)2

+
(

λ

2
det1 −

(

μ + λ

2

)
1

det1

)

× ([(1 : Dv)1 − 1DvT] cof1) : Dv

= μDv : Dv + (μ + λ)(trDv)2

− μ[(tr Dv)2 − DvT : Dv]

= 2με[v] : ε[v] + λ(tr ε[v])2.

A.2 Variation of the Energy

Here, we give explicit formulas for the variation of the dif-
ferent energy contributions in directions of the unknown
functions uk (k = 1, . . . ,K − 1) and φk (k = 1, . . . ,K), re-
quired in the numerical implementation. Let us denote by
δw E (ϑ) a variation of an energy E with respect to a parame-
ter function w in a direction ϑ . Using straightforward differ-
entiation, for sufficiently smooth uk and φk we obtain

δφk
E ε

match[φk,uk−1, uk](ψ)

= 2
∫

	

(Hε(uk ◦ φk) − Hε(uk−1))H ′
ε(uk ◦ φk)

× (∇uk ◦ φk) · ψ dx,

δuk−1 E ε
match[φk,uk−1, uk](ϑ)

= −2
∫

	

(Hε(uk ◦ φk) − Hε(uk−1))H ′
ε(uk−1)ϑ dx,

δuk
E ε

match[φk,uk−1, uk](ϑ)

= 2
∫

	

(Hε(uk ◦ φk) − Hε(uk−1))H ′
ε(uk ◦ φk)

× (ϑ ◦ φk)dx,

δφk
E ε,δ

deform[φk,uk−1](ψ)

=
∫

	

((1 − δ)Hε(uk−1) + δ)W,A(Dφk) : Dψ dx,

δuk−1 E ε,δ
deform[φk,uk−1](ϑ)

=
∫

	

(1 − δ)H ′
ε(uk−1)ϑW(Dφk)dx,

δuk
E ε

area[uk](ϑ)

=
∫

	

H ′
ε(uk)

∇uk · ∇ϑ

|∇uk| + H ′′
ε (uk)|∇uk|ϑ dx

for test functions ϑ and test displacements ψ , where W,A

denotes the derivative of W with respect to its matrix argu-
ment. Employing the form (7) for W we obtain

W,A(A) = α1pI
p
2 −1

1 A + α2
q√
I3

I
q
2 −1

2 cof(A)

× [I21 − cof(ATA)] + 2�′(I3)
√

I3 cof(A)

for (I1, I2, I3) = (tr(ATA), tr(cof(ATA)),det(ATA)).
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Nečas, J., & Šilhavý, M. (1991). Multipolar viscous fluids. Quarterly
of Applied Mathematics, 49(2), 247–265.

Schmidt, F., Clausen, M., & Cremers, D. (2006). Shape matching by
variational computation of geodesics on a manifold. Lecture notes
in computer science: Vol. 4174. Pattern recognition (pp. 142–
151).

Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The
Princeton shape benchmark. In Proceedings of the shape mod-
eling international 2004, Genova (pp. 167–178).

Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active
contours. International Journal of Computer Vision, 73(3), 345–
366.

Trouvé, A., & Younes, L. (2005). Metamorphoses through Lie group
action. Foundations of Computational Mathematics, 5(2), 173–
198.

Truesdell, C., & Noll, W. (2004). The non-linear field theories of me-
chanics. Berlin: Springer.

Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In
Lecture notes in computer science: Vol. 3565. IPMI 2005: Infor-
mation processing in medical imaging (pp. 381–392).

Vese, L., & Chan, T. F. (2002). A multiphase level set framework for
image segmentation using the Mumford and Shah model. Inter-
national Journal of Computer Vision, 50(3), 271–293.

Yezzi, A. J., & Mennucci, A. (2005). Conformal metrics and true “gra-
dient flows” for curves. In ICCV 2005: Proceedings of the 10th
IEEE international conference on computer vision (pp. 913–919).

Younes, L. (1998). Computable elastic distances between shapes.
SIAM Journal on Applied Mathematics, 58, 565–586.

Younes, L., Qiu, A., Winslow, R. L., & Miller, M. I. (2008). Transport
of relational structures in groups of diffeomorphisms. Journal of
Mathematical Imaging and Vision, 32(1), 41–56.

Zhao, H.-K., Chan, T., Merriman, B., & Osher, S. (1996). A varia-
tional level set approach to multiphase motion. Journal of Com-
putational Physics, 127, 179–195.

Zhu, L., Yang, Y., Haker, S., & Tannenbaum, A. (2007). An image
morphing technique based on optimal mass preserving mapping.
IEEE Transactions on Image Processing, 16(6), 1481–1495.

Zolésio, J.-P. (2004). Shape topology by tube geodesic. In IFIP confer-
ence on system modeling and optimization No 21 (pp. 185–204).

http://dx.doi.org/10.1007/s11263-010-0323-0

	A Continuum Mechanical Approach to Geodesics in Shape Space
	Abstract
	Introduction
	The Physical Background Revisited
	Related Work on Shape Distances and Geodesics
	Key Contributions

	The Variational Formulation
	The Time-Discrete Geodesic Model
	An Existence Result for the Time-Discrete Model
	A Relaxed Formulation
	The Time-Continuous Viscous Fluid Model
	The Viscous Fluid Model as a Limit for tau->0

	The Numerical Algorithm
	Regularized Level Set Approximation
	Finite Element Discretization in Space
	Single Level Minimization Algorithm
	Numerical quadrature
	Cascadic Multi-Scale Algorithm

	A Sketch of the Algorithm

	Experimental Results and Generalizations
	Computing Geodesics in Case of Partial Occlusion
	Geodesics Between Multi-Labeled Images
	Application to Statistics in Shape Space
	Complexity of Shape Space and Computational Robustness

	Conclusions and Future Work
	Acknowledgements
	Appendix
	The Hessian of the Deformation Energy
	Variation of the Energy

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


