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Abstract Canny (IEEE Trans. Pattern Anal. Image Proc.
8(6):679-698, 1986) suggested that an optimal edge detector
should maximize both signal-to-noise ratio and localization,
and he derived mathematical expressions for these criteria.
Based on these criteria, he claimed that the optimal step edge
detector was similar to a derivative of a gaussian. However,
Canny’s work suffers from two problems. First, his deriva-
tion of localization criterion is incorrect. Here we provide
a more accurate localization criterion and derive the opti-
mal detector from it. Second, and more seriously, the Canny
criteria yield an infinitely wide optimal edge detector. The
width of the optimal detector can however be limited by con-
sidering the effect of the neighbouring edges in the image.
If we do so, we find that the optimal step edge detector, ac-
cording to the Canny criteria, is the derivative of an ISEF
filter, proposed by Shen and Castan (Graph. Models Image
Proc. 54:112–133, 1992).

In addition, if we also consider detecting blurred (or non-
sharp) gaussian edges of different widths, we find that the
optimal blurred-edge detector is the above optimal step edge
detector convolved with a gaussian. This implies that edge
detection must be performed at multiple scales to cover all
the blur widths in the image. We derive a simple scale selec-
tion procedure for edge detection, and demonstrate it in one
and two dimensions.
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1 Introduction

Edges are projections of physical processes, such as changes
of reflectance at object boundaries, or a changes of illumi-
nation. They are informative cues to the three dimensional
structure of the world and, because of this, edge detection
is a vital first step in many vision systems. Many edge de-
tectors have been developed (for some reviews see Peli and
Malah 1982; Ziou and Tabbone 1998), often from informal
or ad hoc arguments. Canny (1986), in an influential paper,
suggested that edge detectors should optimize two specific
performance criteria. First, the edge detector should have
a good signal-to-noise ratio, so that edges can be detected
even when image quality is poor. Second, edge detectors
should accurately localize the edges, to support subsequent
visual processes that need a high degree of positional accu-
racy. Canny suggested that the optimal edge detector max-
imizes the product of signal-to-noise and localization. He
also found it necessary to constrain the smoothness of the
edge detector. The resulting constrained optimal filter was
similar to a derivative of a gaussian.

Unfortunately, Canny’s development of optimal edge de-
tectors contains two significant problems. The first, lesser,
problem is that Canny did not provide the correct ex-
pression for localization (Tagare and deFigueiredo 1990;
Koplowitz and Greco 1994). Here we provide a more ac-
curate expression for edge localization. This new measure
includes the filter smoothness, which explains why Canny
found it necessary to constrain this. The second, bigger,
problem is that the Canny criteria imply that the optimal
edge detector is infinitely wide. This renders the edge de-
tector useless, because it will pick up an infinite amount of
interference from other edges in the image. To solve this
problem, we need to include the effects of the other edges on
filter performance. This can be done by modelling the other
edges in the image as a Brown noise stochastic process.
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When we do this, we find that the optimal edge detector is
a derivative of an ISEF filter (Infinite Symmetric Exponen-
tial Filter, Shen and Castan 1992). This is surprising since
Shen and Castan did not use the Canny criteria in devel-
oping their edge detector. This means that the derivative of
ISEF filter is a step edge detector which optimizes two sets
of performance criteria: Canny’s, and Shen and Castan’s (al-
though the latter are related to Canny’s).

In addition to providing the correct optimal edge detec-
tor for step edges, we also generalize the edge detection task
to include detecting blurred edges of any width. When the
noise in the image is low, the resultant algorithm is similar
to a scheme proposed by Lindeberg (1998), but its optimal-
ity properties were not previously known. This optimal edge
detection scheme is demonstrated in two dimensions.

2 Canny’s Optimal Edge Detector

We begin by summarising Canny’s (1986) approach to edge
detection. Consider a linear filter f (x) designed to detect
an isolated step edge g(x), located at x = 0, in white noise
n(x). The filter response h(x) is given by

h(x) =
∫ +r

−r

g(x − t)f (t)dt +
∫ +r

−r

n(x − t)f (t)dt

= hg(x) + hn(x) (1)

where hg(x) and hn(x) are the filter responses to edge and
noise respectively. Edges are marked by peaks in the filter
response h(x). The edge is detected by a peak in the filter
response. In the absence of noise, hg(0) is the only peak.
The filter is zero outside the interval [−r, r].

The signal to noise ratio of the filter is its response
to the edge hg(0) divided by the r.m.s. response to noise
E[hn(0)2]1/2, which is

SNR(f ) =
∫ +r

−r

g(−x)f (x)dx
/

n0

√∫ +r

−r

f (x)2dx (2)

where n0 is the r.m.s. amplitude of the noise.
Suppose the response hg(x) has a peak at some point

xmax. This point varies randomly about the true edge loca-
tion x = 0, but we’d prefer it to be close to 0. Canny defined
the localization to be E[x2

max]−1/2, the reciprocal of the stan-
dard deviation of xmax. Close to the true location, the filter
response can be approximated by a Taylor expansion:

h(x) ≈ h(0) + xh′(0) + x2h′′(0)/2

= h(0) + xh′
g(0) + x2h′′

g(0)/2 + xh′
n(0)

+ x2h′′
n(0)/2 (3)

Since hg(0) is a maximum, h′
g(0) = 0. Taking the derivative

of (3) with respect to x and substituting xmax gives

h′(xmax) = h′
n(0) + xmax

(
h′′

g(0) + h′′
n(0)

)
(4)

Since h(xmax) is a maximum, h′(xmax) is zero. Solving (4)
for xmax gives

xmax = −h′
n(0)

h′′
g(0) + h′′

n(0)
(5)

where both h′
n(0) and h′′

n(0) are uncorrelated zero-mean
gaussian random variables when the noise is gaussian (Ko-
plowitz and Greco 1994).

Canny assumed h′′
n(0) = 0,1 so (5) simplifies to

E[x2
max] = E[h′

n(0)2]/h′′
g(0)2, and the localization is then

LC(f ) ≈ |h′′
g(0)|

E[h′
n(0)2]1/2

=
∣∣∣∣∣
∫ +r

−r

g′(−x)f ′(x)dx

∣∣∣∣∣
/

n0

√∫ +r

−r

f ′(x)2dx (6)

The subscript C in LC(f ) indicates that this is Canny’s ex-
pression for localization.

Both SNR(f ) and LC(f ) are proportional to the ratio of
edge amplitude A to noise amplitude n0. To obtain perfor-
mance criteria that depend only on the filter, Canny defined
� and �C as

SNR(f ) = A

n0
�(f ), and LC(f ) = A

n0
�C(f ) (7)

One way of optimizing both of these is to optimize their
product,

Opt(f ) = �(f )�C(f ) (8)

The filter which maximizes Opt(f ) is the optimal edge de-
tector. Unfortunately, the maximizing filter generates multi-
ple noise peaks in the vicinity of the edge, making it hard
to decide which of the peaks is the edge. To lessen this
problem, Canny constrained the average distance between
the noise peaks to be greater than some fraction of the filter
width, proportional to

Z(f ) = E[h′
n(0)2]1/2

E[h′′
n(0)2]1/2

=
√∫ +r

−r

f ′(x)2dx

/∫ +r

−r

f ′′(x)2dx (9)

This is a measure of filter smoothness. The filter which max-
imized the product Opt(f ) subject to a constraint on Z(f )

was similar to a gaussian derivative (Canny 1986).

1To be precise, Canny’s assumption was that E[h′
n(xmax)

2] ≈
E[h′

n(0)]2, which is only guaranteed when h′′
n(x) ≈ 0. See Tagare and

deFigueiredo (1990) for a different opinion of the problem.



Int J Comput Vis (2011) 91: 251–261 253

3 Two Problems with Canny’s Edge Detector

It has been previously noticed that Canny’s localization
measure LC(f ) is incorrect (Tagare and deFigueiredo 1990;
Koplowitz and Greco 1994). In Sect. 3.1 below we derive
a better localization criterion, which incorporates the func-
tional Z(f ) when the edge amplitude is small. This means
it is no longer necessary to impose a constraint on Z(f ) to
get a good edge detection filter.

It has not been previously noticed that the optimal fil-
ter, according to Canny’s criteria, must be infinitely wide.
In Sect. 3.2, we show why this occurs. Unfortunately, an
infinitely wide filter is useless for edge detection in real im-
ages. In Sect. 4, we suggest a solution to the infinite width
problem, which leads us to a different form of optimal edge
detector than that proposed by Canny.

3.1 Canny’s Localization Is Incorrect

Tagare and deFigueiredo (1990) and Koplowitz and Greco
(1994) have noted that Canny’s assumption that h′′

n(0) = 0
is most likely wrong. By defining standard normal ran-
dom variables X = h′

n(0)/E[h′
n(0)2]1/2 and Y = h′′

n(0)/

E[h′′
n(0)2]1/2, (5) can be written as

xmax =
(

E[h′
n(0)2]1/2

E[h′′
n(0)2]1/2

)
X

h′′
g(0)/E[h′′

n(0)2]1/2 + Y

= Z(f )
X

h′′
g(0)/E[h′′

n(0)2]1/2 + Y
(10)

X and Y are uncorrelated if the noise n(x) is white gaussian
noise. Note that

h′′
g(0)/E

[
h′′

n(0)2]1/2 = LC(f )Z(f ) (11)

so (10) becomes

xmax = 1

LC(f )

( [LC(f )Z(f )]X
[LC(f )Z(f )] + Y

)
(12)

For brevity, we will write � for the product LC(f )Z(f ).
The edge detector localization L(f ) is then

L(f ) = E
[
x2

max

]−1/2 = LC(f )E

[(
�X

� + Y

)2]−1/2

(13)

This is Canny’s localization LC(f ) divided by the stan-
dard deviation of a ratio of normal random variables,
E[(�X/(� + Y))2]1/2. Unfortunately this ratio, like the
Cauchy distribution it is related to, has an undefined first
moment and infinite higher moments (Marsaglia 1965;
Hinkley 1969), which makes the localization L(f ) zero.
Apparently, then, it is impossible to localize a step edge!
However, the infinite moments of the ratio �X/(� + Y) are
due to a subset of events where the denominator (� + Y)

Fig. 1 Monte Carlo estimates of E[(�X/(� + Y ))2]−1/2 as a func-
tion of the parameter �. One Monte Carlo run consisted of 10,000
samples of the ratio �X/(� + Y ) at a particular value of �, from
which E[(�X/(� + Y ))2]−1/2 is calculated. Circles are medians of
1000 such runs at the same value of �. Medians were used to discount
extreme values of the ratio �X/(� + Y ). The number of samples is
sufficient that repeated runs produce almost no change in the plotted
estimates. The curve shows the approximation given by (14)

is close to zero (Marsaglia 2006). These events most likely
occur when the edge couldn’t be detected at all (because of
noise), rather than being detected infinitely far from its true
location.

If we avoid these events by conditioning on a nonzero
denominator, |� + Y | > ε for small ε, then the moments
of the ratio �X/(� + Y) do exist (Marsaglia 2006). The
first moment is zero. There is no closed form for the sec-
ond moment, so it must be estimated by Monte Carlo meth-
ods. Figure 1 shows Monte-Carlo estimates of E[(�X/

(� + Y))2]−1/2 plotted as a function of �. A good approxi-
mation to these estimates is

E

[(
�X

� + Y

)2]−1/2

≈
(

0.5 + 1

π
arctan

(
� − 3.2

0.3

))1.2

(14)

This approximation is also plotted in Fig. 1.
Substituting (14) into (13), and expanding the abbrevia-

tion � gives

L(f ) ≈ LC(f )

(
0.5 + 1

π
arctan

(
LC(f )Z(f ) − 3.2

0.3

))1.2

(15)

We can, as before, define an optimality measure in terms of
�(f ) and �C(f ) as

Opt(f )

= �(f )�C(f )

×
(

0.5 + 1

π
arctan

(
(A/n0)�C(f )Z(f ) − 3.2

0.3

))1.2

(16)



254 Int J Comput Vis (2011) 91: 251–261

Fig. 2 Optimal edge detectors for different edge to noise ratios A/n0.
The topmost filter is the best for very low noise. It is not a matched
filter but is smoothed at either end because of the need to minimize the
derivative at the boundary. The filters for high noise levels (bottom fil-
ter) begin to look like the low noise filters again, because performance
at high noise levels is not dependent on Z(f ), although it is poor

Unlike Canny’s criterion, this still involves the edge-to-noise
ratio A/n0 and the functional Z(f ). This is almost certainly
why Canny had to constrain Z(f )to get a useful edge de-
tector. A set of optimal detectors for different A/n0 ratios is
shown in Fig. 2. These are very similar to detectors derived
by Canny for different constraints on Z(f ).

The choice of optimal detector depends on the ratio
A/n0, but we do not know what this is in advance. We can
derive a compromise filter, which works reasonably well at
all ratios, and Canny’s choice was a filter rather similar to
the one for A/n0 = 1.33 in Fig. 2. However, we will not
commit to a choice here, as there is a more serious problem
with Canny’s edge detector.

3.2 The Optimal Edge Detector Is Infinitely Wide

The width of the edge detection filter has so far been set at
some arbitrary value r . It would be useful to have an opti-
mality argument for choosing the best filter width; indeed,
without it, it is hard to claim that the filter at any particular

Fig. 3 This shows how a filter can be altered to improve SNR while
keeping localization LC and smoothness, Z, constant. The upper filter
is the original (narrow) filter. The peaks in the filter are identified by
circles. These peaks are stretched out to form plateaus in (b). These
plateaus do not affect localization and they increase signal-to-noise

width r is optimal. Canny (1986) argued that the signal-to-
noise ratio �(f ) increases with filter width while the local-
ization �C(f ) decreases so that the product �(f )�C(f ) is
constant. Thus all widths are equally good, and some other
consideration must be used to select the appropriate width.
However, Canny assumed that optimal filters at different
widths are stretched or compressed versions of one another,
presumably because step edges at different filter widths are
scaled versions of one another. Unfortunately, the noise does
not scale in the same way, and it turns out that widening the
filter improves signal-to-noise ratio without decreasing lo-
calization.

Consider the filter in Fig. 3(a). This can be widened to
improve the signal to noise ratio while keeping localiza-
tion constant. One way of doing this is by first locating
nonzero peaks or plateaus in the filter (shown by circles
in Fig. 3(a)) and then stretching them out (Fig. 3(b)). Such
peaks must always exist because the filter is odd, and is zero
at the endpoints and the centre. The localization LC(f )of
the stretched filter is unchanged because the added points
all have a derivative f ′(x) of zero, so they do not change
the integrals in LC(f ). Equally, the introduction of points
where f ′(x) = 0 does not change the numerator of Z(f )

in (9). The second derivative f ′′(x) is unchanged except at
the endpoints of the stretch (where it actually decreases), so
the denominator of Z(f ) is likewise unaffected. Hence the
localization L(f ) of the filter is unchanged because LC(f )

and Z(f ) are unchanged.
SNR(f ) is improved by this stretching process, intu-

itively because the stretched filter looks more like a step
edge. Consider the stretched filter in Fig. 3(b). Without loss
of generality, let n0 = 1 and g(x) = 1 or −1. Let the extreme
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value of the filter be fmax, and the total plateau length be y.
The SNR for the stretched filter is thus

1

2
SNR(f ) =

∫ +r

0 f (x)dx + yfmax√∫ +r

−r
f (x)2dx + yf 2

max

(17)

If stretching the filter increases the SNR, then the derivative
of SNR(f )2 with respect to y should be positive at y = 0.
The derivative is

1

4

∂SNR(f )2

∂y

∣∣∣∣
y=0

= 2fmax

∫
f (x)dx∫
f (x)2dx

−
(

fmax

∫
f (x)dx∫
f (x)2dx

)2

(18)

and it will be positive when

2 > fmax

∫
f (x)dx∫
f (x)2dx

(19)

The fraction on the right hand side attains a maximum when
f (x) is a constant, say α, and it then has the value 1/α.
However, if f (x) = α then fmax = α, so the maximum value
of the right hand side of the inequality is 1. We conclude
that the derivative of SNR with respect to y is positive, and
stretching the filter improves SNR.

Since the stretched filter has increased SNR(f ) and un-
changed L(f ), it has increased Opt(f ). Hence the optimum
filter must be infinitely wide.2 This undesirable outcome is
a direct consequence of the simplified edge model used so
far. Canny’s edge detection filter is optimized to detect an
isolated edge in white noise, and under those conditions, the
optimum filter is indeed infinitely wide, because there are
no other edges that might interfere with detection. In real
images, though, an infinitely wide filter will integrate over
infinitely many edges, and will obviously be useless at de-
tecting any one edge in particular. The only principled way
to solve this infinite-width problem is to change the edge
model to account for neighbouring edges. We do this in the
next section.

4 Optimal Edge Detection in the Presence of Other
Edges

In real applications we are interested in detecting one edge
in the presence of many other edges. A wide edge detector
will have better signal-to-noise ratio for a single edge, but
will be more likely to overlap other edges than a narrow de-
tector. If a filter overlaps the other edges, they will interfere

2This is different from the infinite filters of Deriche (1987) or Sarkar
and Boyer (1991), which have a finite second moment.

unpredictably with the detection of the edge we are inter-
ested in. In this respect the other edges behave like noise,
and they can be modelled as a stochastic process. Images
typically have a 1/ω2 power spectrum, where ω is the spatial
frequency (Burton and Moorhead 1987; Field 1987) which
make them similar to Brown noise, albeit with a more inter-
esting phase spectrum (Tadmor and Tolhurst 1993). Given
that the phase spectrum is unlikely to affect how the other
edges interfere with detection of the edge we’re interested
in, it is sufficient for our purposes to model the other edges
as simple Brown noise. This Brown noise will be what limits
the width of the edge detector.

4.1 The Optimal Detector in Brown Noise

Suppose the Brown noise in the image has a power spectrum
C2/ω2. This is added to the white noise, with power spec-
trum n2

0, to give a total noise power spectrum of C2/ω2 +n2
0.

With this sort of noise, it is easier to deal with the expres-
sions for SNR, LC and Z in the Fourier domain. Correspond-
ing to (2), (6), and (9), these are:

SNR(F ) =
∫

G(ω)F(ω)dω√∫ |F(ω)|2(C2/ω2+n2
0)dω

LC(F ) = |∫ ω2G(ω)F(ω)ds|√∫
ω2|F(ω)|2(C2/ω2+n2

0)dω
(20)

Z(F) =
√∫

ω2|F(ω)|2(C2/ω2+n2
0)dω√∫

ω4|F(ω)|2(
C2/ω2+n2

0
)
dω

Here, F(ω) is the Fourier transform of the filter f (x),
and G(ω) = −iA/ω is the Fourier transform of the step
edge g(x) with amplitude A. These expressions follow from
Parseval’s theorem and the derivative theorem (Bracewell
1986).

Let W(ω) be the filter with Fourier transform

W(ω) = iω√
C2 + n2

0ω
2

= iωB(ω) (21)

which is the derivative operator iω multiplied by a 1st-
order Butterworth filter B(ω) = (C2 +n2

0ω
2)−1/2. This filter

whitens the noise, because |W(ω)|2(C2/ω2 + n2
0) = 1. The

edge detector F(ω) can be factored into a product of the
whitening filter W(ω) and a post-whitening detector K(ω),

F(ω) = W(ω)K(ω) (22)

where K(ω) is the Fourier transform of some filter k(x).
Since W(0) = 0, this factorization requires that F(0) = 0,
which is satisfied since f (x) is an odd filter. By substituting
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the product W(ω)K(ω) for F(ω), we can rewrite (20) very
simply in terms of the post-whitening detector K(ω) as

SNR(K) =
∫

GW(ω)K(ω)dω√∫ |K(ω)|2dω

LC(K) = | ∫ ω2GW(ω)K(ω)dω|√∫
ω2|K(ω)|2dω

(23)

Z(K) =
√∫

ω2|K(ω)|2dω∫
ω4|K(ω)|2dω

where GW(ω) = W(ω)G(ω) = A/

√
C2 + n2

0ω
2 is the

Fourier transform of a whitened step edge, gW (x). The op-
timality criterion for the post-whitening detector K(ω) is
thus

Opt(K,A)

= �(K)�C(K)

×
(

0.5 + 1

π
arctan

(
A�C(K)Z(K) − 3.2

0.3

))1.2

(24)

where as before SNR(K) = A�(K) and LC(K) =
A�C(K). Here we explicitly note the functional depen-
dence of the optimality criterion on the edge amplitude A

by writing it as Opt(K,A). Note that after whitening the
noise amplitude is 1, so it can be dropped from (24). How-
ever, the noise amplitude implicitly affects the shape and
height of GW(ω), and thus of �(K) and �C(K).

The optimal detection filter K(ω) maximizes Opt(K,A).
In addition, we have to require the spatial version of the filter
k(x) to be non-negative. This is because the whitened edge
gW (x) is entirely positive or entirely negative depending on
the sign of the edge amplitude A.3 If k(x) has negative lobes,
it would be impossible to determine whether a positive peak
in the filter output was due to the overlap between a positive
edge gW (x) and the positive centre of k(x), or to a negative
edge −gW (x)which lines up with a negative part of k(x).
This constraint is necessary because otherwise the optimal
detector k(x) does indeed have wide negative regions for
some values of edge amplitude A.

When the edge amplitude A is large, Opt(K,A)simplifies
to �(K)�C(K), and is maximized by the matched filter
K(ω) = GW(ω) (Canny 1986). In this case, the edge de-
tector F(ω) is

F(ω) = W(ω)GW(ω) = iω

C2 + n2
0ω

2
(25)

3The whitened edge gW (x) is, to within a multiplicative constant,
AK0(|x|), where Kn(x) is the modified Bessel function of the second
kind of order n. If A is positive, gW (x) > 0 for all x.

which, up to a multiplicative constant, corresponds to the
spatial filter

f (x) = sign(x) exp
(−(C/n0)|x|) (26)

The width of the filter varies according to the ratio of white
noise to brown noise. In the extreme case of C = 0, the filter
is an infinitely wide step edge, which is consistent with the
infinitely wide filter found in Sect. 3.2. The other extreme,
as n0 tends to zero, yields a derivative operator.

The filter in (26) is identical to one previously suggested
by Shen and Castan (1992). It is the derivative of an infi-
nite symmetric exponential filter (ISEF), so we will refer
to it as a DISEF filter. Shen and Castan (1992) derived the
DISEF filter using an isolated edge model, like Canny, but
used different, albeit related, optimality criteria. They also
considered the problem of multiple edges, but they mod-
elled the edges in an image by a random telegraph-signal
(RTS), which switches randomly between two values. Un-
der the RTS model, Shen and Castan derived the scale fac-

tor in the exponential of (26) as
√

4λ2 + C2/n2
0, where λ

is the switching density, rather than C/n0. Shen (1995) fur-
ther considers a sum-of-RTS’s edge model, more similar to
the Brown noise model used here, but this yields a compli-
cated edge detection scheme. Despite these differences of
detail, there is a remarkable convergence of results between
the Canny approach used here and Shen and Castan’s edge
detector.

4.2 A Compromise Edge Detector

The DISEF filter of (26) is only optimal for large edge am-
plitudes A. When A is smaller, the optimal post-whitening
detector K(ω) is not matched to the whitened edge. Fig-
ure 4 shows some examples of optimal post-whitening de-
tectors in the spatial domain, k(x), and their corresponding
edge detectors f (x), for different values of A. These result
from numerical optimization of the spatial domain version
of (24). The dependence of the detectors on the unknown
amplitude A means it is impossible to find an edge detec-
tor which is universally optimal. We can nonetheless pro-
pose a compromise filter, which works reasonably well at
all amplitudes A. A common characteristic of the detectors
in Fig. 4(a) is that they are all wider than the matched filter
obtained when A = ∞. A good compromise edge detector
might therefore be obtained by simply widening, or blurring,
the matched filter slightly.

We need to define what we mean by a good compromise.
Let KA be the detector which maximizes Opt(K,A) at some
edge amplitude A. The matched detector (22) is K∞. We
wish to find a compromise detector

�
K which is good in a
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Fig. 4 (a) Plot of some optimal post-whitening detectors k(x), for var-
ious values of edge amplitude A, given C = 1 and n0 = 0.8. The thick
lined profile is the matched detector. The wider detectors are for in-
termediate values of A. The plots are 30 pixels wide. (b) Plot of cor-
responding edge detectors f (x), which are whitened versions of the
detectors k(x). The thick-lined edge detector is the DISEF filter (22)
which corresponds to the matched post-whitening detector in (a)

minimax sense compared to all the optimal detectors KA.
That is, we wish to find a detector

�
K which minimizes the

maximum loss

sup
A

{
Opt(KA,A)/Opt(

�
K,A)} (27)

In addition, we want to limit the loss for the compro-
mise detector at high edge contrasts, namely Opt(K∞,∞)/

Opt(
�
K,∞), to a “reasonable” value, so that the compromise

detector does not throw away too much performance when
the edge has high contrast. Finally, we would like the com-
promise filter to be mathematically simple. Here we restrict
ourselves to filters

�
K produced by convolving the matched

filter K∞ with a simple nonnegative smoothing function; a
gaussian smoother was found to produce good results. Thus
our compromise detector is given by

�
K(ω,σ) = K∞(ω) exp

(−(ωσ)2)

= exp
(−(ωσ)2)/

√
C2 + n2

0ω
2 (28)

where σ is the smoothing parameter. The choice of compro-
mise filter thus boils down to the choice of σ .

Figure 5 compares the performance of a compromise fil-
ter to the optimal filter performance. Here, the noise pa-
rameters are set to C = 1 and n0 = 0.05 (for the top
set of curves) or n0 = 0.8 (for the lower set of curves).
The crosses show the performance of the matched filter,
given by Opt(K∞,A), for various values of A. The thick
solid lines show Opt(KA,A). Each point in this curve
gives the performance of a different optimal filter KA. The
thin line shows the performance of a compromise filter
Opt(

�
K,A). This filter is given by smoothing the matched

Fig. 5 Performance of edge detectors at different noise levels. The
brown noise was set to C = 1. White noise density n0was either 0.05
(top curves) or 0.8 (bottom curves). In each group of curves, the thick
solid line shows the performance of the optimal detectors at different
values of the ratio A. The crosses show the performance of the matched
post-whitening filter K∞. The matched filter suffers a substantial loss
of performance for some values of A. The thin line shows the perfor-
mance of the best compromise filter, which is the matched filter con-
volved with a three-point gaussian

filter for that C/n0 ratio by a small 3-point gaussian equal
to [0.2221 0.5557 0.2221] ∼= [2/9,

5/9,
2/9]. The optimal

detector is no more than 85% better than this compromise
detector, and the matched filter is no more than 40% better
than it, while the compromise filter often greatly exceeds the
matched filter’s performance.

To summarize all this, the best compromise edge detec-
tion algorithm in one dimension is as follows:

Algorithm 1

1) Estimate C and n0 from the image, or use sensible pre-
sets.

2) Convolve the image with a 3 point gaussian [2/9,
5/9,

2/9]
3) Convolve the resultant blurred image with the DISEF fil-

ter f (x) = sign(x) exp(−(C/n0)|x|).
4) Positive-valued peaks or negative-valued troughs in the

output of this filter represent edges, if they are strong
enough.

This edge detection scheme can be easily extended to two
dimensions (although the optimality properties of this ex-
tension are unknown). To develop the 2D scheme, we can
write the optimal 1D edge detector as a series of filters

F(ω) = K(ω)W(ω)

= {
B(ω)G3(ω)

}{
iωB(ω)

}
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where in the second line we have factored the whitening fil-
ter W(ω) into the derivative iω and a Butterworth smooth-
ing filter B(ω), and the optimal post-whitening filter K(ω)

is factored into the product of a Butterworth filter (which is
matched to the whitened edge) and the three point gaussian
G3(ω). We can rearrange this to give

F(ω) = iωB(ω)2G3(ω)

where B(ω)2 is the ISEF filter. To extend the algorithm to
two dimensions, we replace B(ω)2 and G3(ω) with their
two-dimensional counterparts, and replace the derivative
with the directional derivative. This yields the following al-
gorithm:

Algorithm 2

1) Estimate C and n0 from the image, or use sensible pre-
sets.

2) Convolve the image rows, then the columns, with a 3
point gaussian [2/9,

5/9,
2/9]

3) Convolve the resultant blurred image with the circularly
symmetric ISEF filter exp(−(C/n0)

√
x2 + y2).

4) Compute the directional derivatives in all directions.
These can easily be computed from the direction deriva-
tives along the rows and columns.

5) Peaks in the output of this filter across space and
derivative direction represent edges, if they are strong
enough. It is usually necessary to use a hysteresis al-
gorithm (Canny 1986) to sort these peaks into coherent
edges.

The performance of this algorithm is shown in Fig. 7, middle
panel. One can see that in the absence of significant noise, it
appears to perform well. However, the shadow edge on the
figurine’s tank-top is poorly represented.

5 Detecting Blurred Edges

Like the shadow edge on the figurine, many edges are not
step edges. Generally, softer or blurred edges are caused by
defocus, self-shadowing of a curved surface, or by shadow
penumbrae (see e.g. Elder and Zucker 1998; Elder 1999).
These various kinds of blurred edge can be modelled as a
step edge blurred with a gaussian function,

g(x,σ ) = g(x) ∗ gauss(x, σ ) (29)

where gauss(x, σ ) = exp(−x2/(2σ 2))/
√

2πσ 2 is a unit
gaussian distribution with width σ . A step edge is the limit-
ing case of zero blur, i.e. g(x,0).

5.1 The Optimal Detector for Blurred Edges

Introducing blurred edges changes the expressions for
SNR(K) and LC(K) in (23) to the following:

SNR(K) =
∫ {GW(ω)Gauss(ω,σ )}K(ω)dω√∫ |K(ω)|2dω

LC(K) = | ∫ ω2{GW(ω)Gauss(ω,σ )}K(ω)dω|√∫
ω2|K(ω)|2dω

(30)

Here Gauss(ω,σ ) is the Fourier transform of gauss(x, σ )

in (25), and {GW(ω)Gauss(ω,σ )} is the Fourier transform
of the whitened gaussian edge. The product of SNR(K)

and LC(K) is, as before, maximized by the matched fil-
ter K(ω,σ) = GW(ω)Gauss(ω,σ ). Hence the optimal edge
detector for a gaussian edge of width σ,F (ω,σ ), is given by

F(ω,σ ) = W(ω)GW(ω) = iω

C2 + n2
0ω

2
Gauss(ω,σ ) (31)

which is just a blurred DISEF filter. The optimal spatial filter
is then

f (x,σ ) = sign(x) exp
(−(C/n0)|x|) ∗ gauss(x, σ ) (32)

where ∗ denotes convolution.
Each edge detector is optimized for a particular edge blur,

but will respond to other blurs as well. How can we se-
lect the appropriate blur detector for the edge, given that
we don’t know in advance what the blur is? When we re-
strict ourselves to matched detectors, this problem is easily
solved. Let k(x,σ )be the spatial version of K(ω,σ) above,
and let h(x,σ ) be the detector output obtained by convolv-
ing k(x,σ ) with the whitened signal. The detector output
h(x,σ ) forms a scale space representation of the input signal
(Witkin 1983). If we normalize the detector k(x,σ ) so that∫

k(x,σ )2dx = 1, then its expected response at any point is
identical to the signal to noise ratio, SNR(k). Hence a peak
in the scale space h(x,σ ) is a local maximum of SNR(k).
This will also be a local maximum of LC(k), since SNR and
LC are maximized by the same matched filter (Canny 1986).
The peak in the scale space h(x,σ ) is therefore a local max-
imum of the product SNR(k)LC(k) and identifies the locally
optimal detector.

The performance of this model in visualized in Fig. 6.
The top panel shows a one-dimensional noisy edge pro-
file. The bottom panel shows all the local maxima (after
thresholding to remove noise) accumulated over 1000 runs
of the optimal scale-space edge detector described above,
each with a different noise sample but the same set of edges.
The position of the edges is fairly well estimated, but the
blur is not estimated as well.
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Fig. 6 The top image shows an example of a one-dimensional sig-
nal with three gaussian edges, with widths of 1, 3 and 8 from left to
right. One thousand such images were generated, with different noise.
Each image was then convolved with a DISEF filter and gaussian blurs
of different sizes to yield a scale space map h(x,σ ). Strong peaks in
the scale space indicate edges. The bottom image shows all the edges
found in 1000 runs of the algorithm, given C = 0.5 and n0 = 0.2. Most

of the time, the edge is located within a few pixels of its true location,
but identification of the blur is less accurate. In particular, there is a
tendency to detect the edge at a finer scale than it really is. If we look
at the example image, however, we can see that sometimes the added
noise does make the edge (particularly the far right one) appear sharper
than it is. Incidentally, in equivalent conditions human observers also
seem to have this problem (May and Georgeson 2007)

The matched scale-space detector described above takes
on an interesting form when the white noise n0 is zero.
In this case, the whitening operator is a simple deriva-
tive, and the whitened edge gW (x) is an impulse function.
The matched post-whitening detector is k(x,σ ) = gW (x) ∗
gauss(x, σ ), which is simply gauss(x, σ ). The norm of
this is

∫
gauss(x, σ )2dx = 1/(2

√
πσ), hence k(x,σ ) =√

2π1/4σ 1/2gauss(x, σ ) is a normalized post-whitening fil-
ter. Since whitening is simply a derivative operation, this
means that the blurred edge detector is, to within a constant
scaling, just

f (x,σ ) = σ 1/2 d

dx
gauss(x, σ ) (33)

This is identical to Lindeberg’s (1998) edge detection
scheme (also suggested for human edge perception by
Georgeson et al. 2007), so these proposals can both be
understood as optimal blurred edge detectors for minimal
amounts of white noise.

5.2 Two Dimensions

As with step edges, the blurred edge detector can be ex-
tended to a 2D algorithm, in a similar way. The optimal one-
dimensional detector F(ω,σ ) for an edge of blur σ is given
by

F(ω,σ ) = K(ω,σ)W(ω)

= {
λGauss(ω,σ )B(ω)

}{
iωB(ω)

}

= iω Gauss(ω,σ )B(ω)2

where λ = (
∫ |K(ω,σ)|2dω)−1/2 is the normalization fac-

tor for the filter. For simplicity, the three-point gaussian
used to make a compromise filter has been left out here.
To extend this to two dimensions, we simply replace
B(ω)2 and Gauss(ω,σ ) with their two-dimensional coun-
terparts, and replace the derivative with the directional
derivative. The appropriate normalization factor is trick-
ier. At first sight it would seem reasonable to use λ =
(
∫ |K(ω1,ω2, σ )|2dω1dω2)

−1/2, where ω1 and ω2 are the
row and column frequencies. However, this is only appro-
priate for 2D white noise. In our case, the noise is only
white in the direction of the derivative, and remains brown
in the perpendicular direction. The exact normalization to
use depends on the behaviour of the brown noise at low fre-
quencies. If the noise is highly correlated across the filter
perpendicular width, the appropriate normalization would
be to sum the filter along the dimension perpendicular to the
directional derivative, and then square and integrate along
the derivative direction, thus:

λ2D =
(∫ ∣∣∣∣

∫
K(ω1,ω2, σ )dω1

∣∣∣∣
2

dω2

)−1/2

This is the normalization we use in simulations. This leads
to Algorithm 3, for 2D blurred edge detection.

Algorithm 3

1) Estimate C and n0 from the image, or use sensible pre-
sets.

2) Convolve the image with the circularly symmetric ISEF
filter exp(−(C/n0)

√
x2 + y2).
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Fig. 7 The optimal 2D edge detector in action. The grey scale image
on the left is analyzed by the 2D step edge detector (Algorithm 2) in
the middle panel. This algorithm is good at detecting many edges, but
performs poorly with blurred edges such as the shadow. The right hand

panel shows the edges found by Algorithm 3. This correctly identifies
the shadow edges. In both panels, the image noise parameters C and
n0were estimated from the image

Fig. 8 The grey scale image in
Fig. 7, with added noise. The
result of running Algorithm 3 on
it is shown on the right panel.
Visually, the noise has
eliminated much of the detail in
the image, but most of what
remains is detected by the
algorithm, and most of the noise
can be rejected

3) For each scale σ ,
a. convolve the image with a two-dimensional gaussian

gauss(x, y, σ ). The convolution is then scaled by the
normalization factor λ given above.

b. Compute the directional derivatives in all directions θ .
These can easily be computed from the direction
derivatives along the rows and columns.

4) Local peaks in the output of this filter across space (x, y),
derivative direction θ , and scale σ , represent edges, if
they are strong enough. It is necessary to use a hysteresis
algorithm (Canny 1986) to sort these peaks into coherent
edges.

The performance of this algorithm on a relatively noise free
image is shown in Fig. 7, right hand panel. Compared to the
middle panel (Algorithm 2), which only detects step edges,
we can see that Algorithm 3 correctly picks up the blurred
shadow edges. However, its performance in some other parts
of the image.

One useful feature of this edge detection model is its abil-
ity to cope with noise when the parameters of the whitening
filter, C and n0, are estimated from the image. This is shown
in Fig. 8. As the white noise increases, the smoothing pro-
vided by the Butterworth filter also increases.

6 Conclusion

Canny’s (1986) paper was a significant contribution to the
methodology of edge detection. Prior to it, the actual per-
formance criteria for edge detectors were rarely stated ex-
plicitly. After it, it is more or less impossible to propose an
edge detector without reference to the Canny criteria. After
such a major methodological advance, the issue of what an
optimal edge detector actually looks like is perhaps less vi-
tal, although since we must use them, it is important to get it
right. When we do so, we find that the optimal step edge de-
tector is not very similar to a derivative of a gaussian filter,
but is instead the derivative of an exponential filter (DISEF)
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proposed by Shen and Castan (1992). Since the DISEF fil-
ter was developed according to a different set of optimality
criteria, this means that it is “more optimal” (in the sense
of maximizing more performance criteria) than previously
thought. In addition, once we have solved the optimal detec-
tor for step edges, it is relatively easy to extend to the task of
detecting edges of different blurs. One remaining problem
with the optimal detector proposed here is localization: the
very complex localization criterion means that no one filter
can be optimal at all edge contrasts. There is room, there-
fore, for a different, more tractable localization criterion that
has a contrast-independent optimum.

The ISEF filter is optimal when the noise has a power
spectrum of the form C2 + n2

0. However, this sometimes is
not the true form of the noise. For example, if the imag-
ing device has optical quality issues (such as a cheap we-
bcam, a CCTV camera, or the human eye), the optical
blur will change the slope of the Brown noise. In this
case, the whitening filter will change, and one must re-
place the ISEF filter with something else; namely, a filter
with power spectrum K(ω) = |W(ω)|2, where the whiten-
ing filter W(ω) changes with the image statistics. Thus
the algorithms in this paper can be altered to adapt to im-
age statistics. A procedure like this is potentially behind
adaptation effects in human vision (e.g. Wainwright 1999;
Webster et al. 2002).

Finally, the optimality of the edge detectors here was only
shown for the 1D case. While the 2D algorithms perform
well, it is still an open problem what criteria should be used
to develop optimal 2D detectors.
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