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Abstract Deformable model fitting has been actively pur-
sued in the computer vision community for over a decade.
As a result, numerous approaches have been proposed with
varying degrees of success. A class of approaches that has
shown substantial promise is one that makes independent
predictions regarding locations of the model’s landmarks,
which are combined by enforcing a prior over their joint
motion. A common theme in innovations to this approach
is the replacement of the distribution of probable landmark
locations, obtained from each local detector, with simpler
parametric forms. In this work, a principled optimization
strategy is proposed where nonparametric representations
of these likelihoods are maximized within a hierarchy of
smoothed estimates. The resulting update equations are rem-
iniscent of mean-shift over the landmarks but with regu-
larization imposed through a global prior over their joint
motion. Extensions to handle partial occlusions and reduce
computational complexity are also presented. Through nu-
merical experiments, this approach is shown to outperform
some common existing methods on the task of generic face
fitting.
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1 Introduction

Deformable model fitting is the problem of registering a
parametrized shape model to an image such that its land-
marks correspond to consistent locations on the object of
interest. It is a difficult problem as it involves an opti-
mization in high dimensions, where appearance can vary
greatly between instances of the object due to lighting con-
ditions, image noise, resolution and intrinsic sources of
variability. Many approaches have been proposed for this
problem with varying degrees of success. Of these, one
of the most promising is that which models an object us-
ing local spatially-coherent image observations (i.e. image
patches) centered around landmarks of interest within the
object (Cootes and Taylor 1992; Cristinacce and Cootes
2004, 2006, 2007; Wang et al. 2008a). For computation
and generalization purposes, these image patches are as-
sumed to be conditionally independent of one another, an
assumption that has shown superior performance in com-
parison to holistic approaches in recent literature (Liu 2007;
Matthews and Baker 2004; Nguyen and De la Torre Frade
2008; Zhou and Comaniciu 2007). Local image patch de-
tectors are typically learned, from labeled training images,
for each landmark in the object. Due to their small local
support and large appearance variation in training, however,
these local detectors are plagued by the problem of ambigu-
ity. This ambiguity can be observed in the non-parametric
distribution of landmark locations (i.e., the response map)
obtained from each landmark detector. The central dilemma
addressed in this work is how to synergetically employ these
non-parametric measures of the likely locations for each
landmark, while limiting the effects of their ambiguity, when
fitting the deformable model.
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Our key contribution towards solving this dilemma lies in
the realization that a number of popular optimization strate-
gies are all, in some way, simplifying the non-parametric
distribution of landmark locations obtained from each local
detector parametrically. The motivation for this simplifica-
tion is to ensure that the approximate objective function:
(i) exhibits properties that make optimization efficient and
numerically stable, and (ii) still approximately preserve the
true certainty/uncertainty associated with each local detec-
tor. The question then remains: how should one simplify
these local distributions in order to satisfy (i) and (ii)? In this
work we propose a novel answer to this question that, unlike
methods hitherto, does not require a parametric simplifica-
tion, but still ensures an optimization that is efficient and
numerically stable. Our non-parametric approach is remi-
niscent of the well known and understood mean-shift (Fuku-
naga and Hostetler 1975) mode seeking algorithm. The ap-
proach differs, however, from the traditional mean-shift al-
gorithm as it is being applied over all landmarks simultane-
ously and also imposes a global prior over their joint motion.
The resulting fitting algorithm is simple and efficient as well
as affords significant improvements in convergence rate and
accuracy over existing approaches.

We begin in Sect. 2 with a detailed overview of the prob-
lem of deformable model fitting with conditionally indepen-
dent landmark detections. Many approaches are unified un-
der a consistent formulation in which the observed behav-
ior of the various approaches can be better understood. We
present our approach in Sect. 3, which leverages on the for-
mulation detailed in the previous section. Extensions to han-
dle partial occlusions and reduce computational complexity
of the proposed approach are also presented in this section.
Empirical experiments, comparing the proposed approach
against existing methods are presented Sect. 4. We conclude
in Sect. 5 with a discussion and mention of future work.

2 Background

2.1 Problem Formulation

Most deformable model fitting methods employ a linear ap-
proximation to how the shape of a non-rigid object deforms,
coined the point distribution model (PDM) by Cootes and
Taylor (1992). It models non-rigid shape variations linearly
and composes it with a global rigid transformation, placing
the shape in the image frame:

xi = sR(x̄i + �iq) + t, (1)

where xi denotes the 2D-location of the PDM’s ith landmark
and p = {s,R, t,q} denotes the PDM parameters, which
consist of a global scaling s, a rotation R, a translation t and
a set of non-rigid parameters q. Here, x̄i denotes the mean

Fig. 1 An illustration of detection ambiguity reduction facilitated by
a constraint on joint motion. The landmarks {x1,x2} are constrained
by the linear form: xi = xc

i + Jip, which jointly parameterizes their lo-
cations with p. Although the independent landmark likelihoods p(x1)

and p(x2) are multimodal, under the joint motion constraint the ambi-
guity is removed in: p(p) = p(x1)p(x2)

location of the ith PDM landmark in the reference frame
(i.e. x̄i = [x̄i; ȳi] for a 2D model) and �i denotes the sub-
matrix of the basis of variations, �, pertaining to that land-
mark. Such a model is both simple and efficient, and has
been shown to adequately model the deformations of ob-
jects such as the human face (Cootes and Taylor 1992) and
organs in medical image analysis (Zhou et al. 2005).

In recent years, an approach that utilizes an independent
set of local detectors for all PDM landmarks (see Cootes
and Taylor 1992; Cristinacce and Cootes 2007, 2004, 2006;
Wang et al. 2008a; Zhou et al. 2005, for example) has at-
tracted some interest as it circumvents many of the draw-
backs of holistic approaches, such as modeling complexity
and sensitivity to lighting changes. The effects of ambiguous
landmark detections, a result directly related to the limited
support region assumed for detection, are reduced by virtue
of the shape model that constrains the joint motion of these
landmarks (see Fig. 1). Although we are primarily interested
in approaches that utilize a statistical shape model, such as
that in (1), the utility of such a framework has been demon-
strated using more generic constraints in problems such as
optical flow (Bruhn et al. 2005) and stereo matching (Sun
et al. 2003), where constraints take the form of a smoothing
process over the motion domain of landmarks. In this work,
we will refer to these methods collectively as constrained
local models (CLM).1

2.1.1 Fitting Objective

CLM fitting is generally posed as the search for the PDM
parameters, p, that jointly minimizes the misalignment error

1This term should not be confused with the work in Cristinacce and
Cootes (2006) which is a particular instance of CLM in our nomencla-
ture.
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over all landmarks, regularized appropriately:

Q(p) = R(p) +
n∑

i=1

Di (xi; I), (2)

where R penalizes complex deformations (i.e. the regular-
ization term) and Di denotes the measure of misalignment
for the ith landmark at xi in the image I (i.e. the data term).
The form of regularization is related to the assumed distribu-
tion of PDM parameters describing plausible object shapes,
common examples of which include the Gaussian (Basso
et al. 2003) and Gaussian mixture model (GMM) (Gu and
Kanade 2008) estimates. Examples of the misalignment er-
ror functions include the Mahalanobis distance over local
patch appearance (Cootes and Taylor 1992) and the boosted
Harr-like feature based classifier (Cristinacce and Cootes
2006).

Although it is possible to utilize general purpose op-
timization strategies to minimize (2), this is rarely done
in practice. With the exception of tracking-targeted ap-
proaches, where Di is often chosen as the least squares dif-
ference between the template and the image (Zhou et al.
2005), most variants of CLM fitting employ a specialized
fitting strategy. One reason for this is that the misalignment
error functions typically exhibit significant noise in the spa-
tial domain of xi . As such, local deterministic optimization
strategies, such as the Newton method, are often unstable.
Stochastic optimization strategies, such as the simplex based
method used in Cristinacce and Cootes (2004), are more
stable since they do not make use of gradient information,
which renders them somewhat insensitive to measurement
noise. However, convergence may be slow when using these
optimizers, especially for a complex PDM with a large num-
ber of parameters.

Since a landmark’s misalignment error depends only
on its spatial coordinates, an independent exhaustive local
search for the location of each landmark can be performed
efficiently (i.e. at all integer pixel locations around the es-
timated landmark locations). Therefore, most CLM variants
implement a two step fitting strategy, where an exhaustive
local search is first performed to obtain a response map for
each landmark. Optimization is then performed over these
response maps, which admit more sophisticated strategies
compared to generic optimization methods that make no use
of domain specific knowledge. An illustration of this two
step procedure is presented in Fig. 2. It should be noted that
this is made possible by the restricted search domains for
{xi}ni=1, a condition specific to CLM’s formulation. A de-
tailed discussion of such strategies is presented in Sect. 2.2.

2.1.2 A Probabilistic Interpretation

The CLM objective in (2) can be interpreted as maximiz-
ing the likelihood of the model parameters such that all of

Fig. 2 Illustration of CLM fitting and its two components: (i) an ex-
haustive local search for feature locations to get the response maps
{p(li = 1|x, I)}ni=1, and (ii) an optimization strategy to maximize the
responses of the PDM constrained landmarks

its landmarks are aligned with their corresponding locations
on the object in an image. The specific form of the objec-
tive implicitly assumes conditional independence between
detections for each landmark, the probabilistic interpretation
of which takes the form:

p(p|{li = 1}ni=1, I) ∝ p(p)

n∏

i=1

p(li = 1|xi , I), (3)

where li ∈ {1,−1} is a discrete random variable denoting
wether the ith landmark is aligned or misaligned. With this
formulation, the regularization and misalignment error func-
tions in (2) take the following forms:

R(p) = − ln{p(p)} (4)

Di (xi; I) = − ln{p(li = 1|xi , I)}. (5)

To clarify exposition in the following sections, let us ex-
plicate the specific forms of the prior and likelihood in (3)
utilized in this work. We model the likelihood of alignment
at a particular landmark location, x, as follows:

p(li = 1|x, I) = 1

1 + exp{li Ci (x; I)} , (6)

where Ci denotes a classifier that discriminates aligned from
misaligned locations. Notice that this likelihood is a proper
probability mass function since it is non-negative every-
where, and:

p(li = 1|x, I) + p(li = −1|x, I) = 1. (7)

For the classifier Ci we use the logistic regressor (Wang et al.
2008a):

Ci (x; I) = wT
i P (W (x; I)) + bi, (8)

where {wi , bi} respectively denote the gain and bias, and
P (c) normalizes c to zero mean and unit variance. Here,
W (x; I) is an image patch:

W (x; I) = [I(z1); . . . ; I(zP )]; {zi}Pi=1 ∈ �x, (9)
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where �x denotes the set of integer pixel locations within
a bounding box centered at x. An advantage of using this
classifier is that the response map can be computed using
efficient convolution operations.

When assuming a non-informative (uniform) prior over
the PDM parameters, the formulation in (3) leads to a Max-
imum Likelihood (ML) estimate, otherwise it leads to a
Maximum a-posterior (MAP) estimate. When using a lin-
ear shape model attained by applying PCA to a set of reg-
istered shapes, the nonrigid shape parameters are often as-
sumed to exhibit a Gaussian distribution, leading to the fol-
lowing prior:

p(p) ∝ N (q;0,�); � = diag{[λ1; . . . ;λm]}, (10)

where λi denotes the eigenvalue of the ith mode of nonrigid
deformation. Finally, a non-informative prior is commonly
placed on the rigid transformation that places the model in
the image frame, which assumes all rigid transformations
are equally likely.

2.2 Existing Fitting Strategies

There are two sources of difficulty in optimizing (3): (i) how
to avoid local optima whilst affording an efficient evalua-
tion, and (ii) how to handle outlying detections. In the fol-
lowing sections, we show that existing optimization strate-
gies entail replacing the true response maps with simpler
parametric forms and performing optimization over these
instead of the original response maps. The relative perfor-
mance of these methods can be explained by the specific
choice made for the parametric form in their approxima-
tions. As a general rule, the complexity of the approximated
response maps dictates the computational cost of optimiza-
tion and its sensitivity towards local minima as well as how
faithful a representation it is of the true objective.

2.2.1 Isotropic Gaussian Estimate

The simplest optimization strategy for CLM fitting is that
used in the Active Shape Model (ASM), first proposed
by Cootes and Taylor (1992). The method entails first find-
ing the location within each response map for which the
maximum was attained: μ = [μ1; . . . ;μn]. The objective of
the optimization procedure is then to minimize the weighted
least squares difference between the PDM and the coordi-
nates of the peak responses, regularized appropriately:

QISO(p) = ‖q‖2
�−1 +

n∑

i=1

wi‖xi − μi‖2, (11)

where the weights {wi}ni=1 reflect the confidence over peak
response coordinates and are typically set to some function
of the responses at {μi}ni=1, making it more resistant towards

such things as partial occlusion, where occluded landmarks
will be more weakly weighted.

Equation (11) is iteratively minimized by taking a first
order Taylor expansion of the PDM’s landmarks:

xi ≈ xc
i + Ji�p, (12)

and solving for the parameter update:

�p = −H−1
ISO

(
�̃

−1
p +

n∑

i=1

wiJT
i (xc

i − μi )

)
, (13)

which is then applied additively to the current parame-
ters: p ← p + �p. Here, �̃ = diag{[0;λ1; . . . ;λm]}, J =
[J1; . . . ;Jn] is the PDM’s Jacobian, xc = [xc

1; . . . ;xc
n] is the

current shape estimate, and:

HISO = �̃
−1 +

n∑

i=1

wiJT
i Ji (14)

is the Gauss-Newton Hessian.
From a probabilistic perspective, the ASM’s optimization

procedure is equivalent to approximating the response maps
with isotropic Gaussian estimators2:

p(li = 1|xi , I) ∝ p(xi |li = 1, I) ≈ N
(
xi;μi , σ

2
i I

)
, (15)

where wi = σ−2
i . It is easily verified that substituting this

approximation into (3) and taking its negative log results in
the objective in (11).

2.2.2 Anisotropic Gaussian Estimate

Although the approximation described above is simple and
efficient, in some cases it may be a poor estimate of the true
response map. Firstly, the landmark detectors, such as the
logistic regressor in (8), are usually imperfect in the sense
that the maximum of the response may not always coincide
with the correct landmark location. Secondly, as the features
used in detection consist of small image patches they often
contain limited structure, leading to detection ambiguities.
A common example of this is the aperture problem, where
detection confidence across the edge is better than along it
(see example response maps for the nose bridge and chin in
Fig. 3).

To account for these problems, a number of authors have
proposed incorporating directional uncertainty into the re-
sponse map estimate (see Nickels and Hutchinson 2002;

2The proportionality of p(li = 1|xi , I) and p(xi |li = 1, I) stems from
the assumption that p(xi |I) is non-informative which is a direct result
of assuming that all rigid transformations, which place the shape in the
image frame, are equally likely.
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Zhou et al. 2005; Wang et al. 2008a, for example). Simi-
lar to the approximation in (15), here the response maps are
approximated by a full covariance Gaussian distribution:

p(li = 1|xi , I) ≈ N (xi;μi ,�i ). (16)

The main difference between the various methods that uti-
lize such an approximation is in how the mean and covari-
ance are estimated. In Nickels and Hutchinson (2002), μi is
chosen as the maximum in the true response map, with the
covariance set to the ML solution:

�i =
∑

x∈�i

p(li = 1|x, I)∑
y∈�i

p(li = 1|y, I)
(x − μi )(x − μi )

T , (17)

where �i is a 2D-rectangular grid over which the exhaustive
local search is performed (i.e. the search window). In Wang
et al. (2008a), a convex quadratic function was fit to the neg-
ative log of the response map, from which the mean and
covariance of the approximating density can be inferred.
In Zhou et al. (2005), where the summed-squared-difference
is used as a measure of landmark fit, Laplace’s approxima-
tion (Gelman et al. 1995) was used in conjunction with the
small motion approximation to arrive at the scaled Gram-
mian as the covariance estimate, with the mean defined as
the ML optical flow solution and the scaling defined as the
variance of appearance error at this solution.

Regardless of the strategy used in computing the aniso-
tropic Gaussian estimate of the response map, by substitut-
ing this approximation into the objective in (3), the opti-
mization problem can be written as the minimization of:

QANI(p) = ‖q‖2
�−1 +

n∑

i=1

‖xi − μi‖2
�−1

i

, (18)

which can be solved for iteratively. The Gauss-Newton up-
date for this objective takes the form:

�p = −H−1
ANI

(
�̃

−1
p +

n∑

i=1

JT
i �−1

i (xc
i − μi )

)
, (19)

where:

HANI = �̃
−1 +

n∑

i=1

JT
i �−1

i Ji . (20)

2.2.3 A Gaussian Mixture Model Estimate

Although the anisotropic Gaussian approximation of the
response maps may overcome some of the drawbacks of
its isotropic counterpart, its process of estimation can be
poor in some cases. In particular, when the response map is
strongly multimodal, such an approximation smoothes over

Fig. 3 Response maps, RES, and their approximations used in various
methods, for the outer left eye corner, the nose bridge and chin. Crosses
on the response maps denote the true landmark locations. The GMM
approximation has five cluster centers. The KDE approximations are
shown for ρ ∈ {20,5,1}

the various modes (see the example response map for the
eye corner in Fig. 3), limiting the fidelity of the resulting fit.

To account for this, in Gu and Kanade (2008) a Gaussian
mixture model (GMM) was used to approximate the re-
sponse maps:

p(li = 1|xi , I) ≈
Ki∑

k=1

πik N (xi;μik,�ik), (21)

where Ki denotes the number of modes and {πik}Ki

k=1 are
the mixing coefficients for the GMM of the ith landmark.
Treating the mode membership for each landmark, {zi}ni=1,
as hidden variables, the maximum likelihood solution can be
found using the expectation-maximization (EM) algorithm,
which maximizes:

p(p|{li}ni=1, I) ∝ p(p)

n∏

i=1

Ki∑

k=1

pi(zi = k, li |xi , I) (22)

for {li = 1}ni=1.
The E-step of the EM algorithm involves computing the

posterior distribution over the latent variables {zi}ni=1:

p(zi = k|li ,xi , I) = p(zi = k)p(li |zi = k,xi , I)
∑Ki

j=1 p(zi = j)p(li |zi = j,xi , I)
,

(23)

where {li = 1}ni=1, p(zi = k) = πik and:

p(li = 1|zi = k,xi , I) = N (xi;μik,�ik). (24)

Letting q(z) = ∏n
i=1 pi(zi |li = 1,xi , I), the M-step of the

EM algorithm involves minimizing the expectation of the
negative log of the complete data:

QGMM(p) = Eq(z)

[
− ln

{
p(p)

n∏

i=1

p(li = 1, zi |xi , I)

}]

∝ ‖q‖2
�−1 +

n∑

i=1

Ki∑

k=1

wik‖xi − μik‖2
�−1

ik

, (25)
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where wik = p(zi = k|li = 1,xi , I). This objective can be
minimized iteratively using the Gauss-Newton optimization
procedure, for which the updates take the form:

�p = −H−1
GMM

(
�̃

−1
p +

n∑

i=1

Ki∑

k=1

wikJT
i �−1

ik �xik

)
, (26)

where �xik = μik − xc
i , and:

HGMM = �̃
−1 +

n∑

i=1

Ki∑

k=1

wikJT
i �−1

ik Ji . (27)

Note that the Gauss-Newton optimization procedure does
not guarantee convergence to the global minimum for non-
linear least squares functions (for which this is one, due to
the bilinear relationship between the pose and non-rigid pa-
rameters in the shape model). As such, this strategy is in fact
the generalized EM algorithm (Dempster et al. 1977).

Although the GMM is a better approximation of the re-
sponse map compared to a Gaussian approximation, it ex-
hibits two major drawbacks. Firstly, the process of estimat-
ing the GMM parameters from the response maps is a non-
linear optimization in itself. It is only locally convergent
and requires the number of modes to be chosen a-priori. As
GMM fitting is required for each PDM landmark, it consti-
tutes a large computation overhead. Although some approx-
imations can be made, they are generally suboptimal. For
example, in Gu and Kanade (2008), the modes are chosen
as the Ki -largest responses in the map. The covariances are
parametrized isotropically, with their variance heuristically
set as the scaled distance to the closest mode in the previous
iteration of the fitting algorithm. Such an approximation al-
lows an efficient estimate of the GMM parameters without
the need for a costly EM procedure but with a poorer approx-
imation of the true response map. The second drawback of
the GMM response map approximation is that the approx-
imated objective in (22) is almost always multimodal. As
such, fitting with the GMM simplification is prone to termi-
nating in local optima.

3 Regularized Landmark Mean-Shift

Due to the truncation used in PCA, the shape model can not
perfectly reconstruct the true landmark locations in an im-
age. The error in this estimate, which is assumed to originate
from observation noise, is often modeled as homoscedastic
isotropic Gaussian:

yi = xi + εi , where εi ∼ N (εi;0, ρI). (28)

Here, ρ denotes the variance of the noise on landmark lo-
cations, which can be inferred from the training set as fol-

lows (Moghaddam and Pentland 1997):

ρ = 1

N − m

N∑

i=m+1

λi, (29)

which is simply the arithmetic average of the eigenvalues in
the subspace orthogonal to �.

Let us assume that there exists a set of candidate locations
for each landmark of the model that we denote {�i}ni=1. This
may be the case, for example, when the search is constrained
to a local rectangular region, where �i denotes all integer
pixel locations within this region. Treating the locations of
the true landmarks as hidden variables, we marginalize them
out of the likelihood that the landmarks are aligned:

p(li = 1|xi , I) =
∑

yi∈�i

p(li = 1|yi , I)p(yi |xi ), (30)

where, from (28), we have:

p(yi |xi ) = N (yi;xi , ρI). (31)

In (30), p(li = 1|yi , I) denotes the likelihood that the ith

landmark is aligned at location yi in image I . The main
difference between the formulation here and existing fit-
ting strategies discussed in Sect. 2.2 is that the response
maps are only evaluated at fixed locations defined through
yi ∈ �i , whereas optimization is performed over p, which
effects only {xi}ni=1. As such, rather than approximating the
response map with a particular parametric form, here, a non-
parametric estimate of the response map is made in the form
of a homoscedastic isotropic Gaussian kernel density esti-
mate (KDE) (Silverman 1986)3:

p(li = 1|xi , I) =
∑

yi∈�i

πyi
N (xi;yi , ρI), (32)

where πyi
= p(li = 1|yi , I).

The quality of this nonparametric estimate of the re-
sponse map depends largely on the choice of candidate land-
mark location sets {�i}ni=1. If the candidates are sampled
too sparsely, they may not adequately cover the space of
variations and ρ, which is learned from training data as in
(29), will be underestimated. However, since the space of
yi is the 2D image plane, it is computationally tractable to
compute the likelihood of a dense set of candidates locally
around the current PDM estimate through an exhaustive lo-
cal search over all integer pixel locations.

Substituting (32) into (3), we get:

p(p|{li = 1}ni=1, I) ∝ p(p)

n∏

i=1

∑

yi∈�i

πyi
N (xi;yi , ρI). (33)

3Since optimization is over the model parameters p, which only effect
{xi}ni=1, and not its fixed candidates {yi}ni=1, we have substituted the
mean and variable of the Gaussian distribution from that in (31).
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It is interesting to note that a graphical interpretation of
CLM fitting using belief propagation (Yedidia et al. 2002)
results in exactly in the same form for the marginal likeli-
hood of the PDM parameters. An elaboration of such a per-
spective can be found in Appendix.

Equation (33) can be maximized using the EM algorithm,
as in the case of the GMM approximated approach described
in Sect. 2.2. Treating the true landmark locations {yi}ni=1 as
hidden variables, in the E-step the posterior over the candi-
dates are evaluated:

wyi
= p(yi |li = 1,xi , I) = πyi

N (xi;yi , ρI)∑
zi∈�i

πzi
N (xi; zi , ρI)

. (34)

Then, the M-step involves minimizing:

QKDE(p) = Eq(y)

[
− ln

{
p(q)

n∏

i=1

p(li = 1,yi |xi , I)

}]

∝ ‖q‖2
�−1 +

n∑

i=1

∑

yi∈�i

wyi

ρ
‖xi − yi‖2, (35)

where q(y) = ∏n
i=1 p(yi |li = 1,xi , I). Using the relation-

ship:
∑

yi∈�i
wyi

= 1, the solution for the linearized shape
model can be written:

�p = −(ρ�̃
−1 + JT J)−1(ρ�̃

−1
p − JT v), (36)

where v = [v1; . . . ;vn] is the concatenation of the mean
shift vectors from each landmark:

vi =
(

∑

yi∈�i

πyi
N (xc

i ;yi , ρI)
∑

zi∈�i
πzi

N (xc
i ; zi , ρI)

yi

)
− xc

i . (37)

Notice that in the case that a ML solution is desired4 (i.e.
p(p) is non-informative), the solution for the parameter up-
date �p is simply the non-orthogonal projection of the mean
shift vectors onto the subspace spanned by the PDM’s Ja-
cobian. In any case, the solution in (36) suggests a simple
and efficient implementation, consisting of an alternation
between computing the mean shift vectors and their regular-
ization by the shape model. The complete fitting procedure,
which we will refer to as regularized landmark mean-shift
(RLMS), is outlined in Algorithm 1.

Fashing and Tomasi (2005) previously showed that
mean-shift is a bound optimization. This was later extended
in Carreira-Perpinan (2007) by showing that for Gaussian
kernels, mean-shift is equivalent to employing the EM al-
gorithm as an optimization strategy. With the derivation of
RLMS presented here, we show that such an interpretation

4The derivation in this section is an extension of the ML formulation
we originally proposed in Saragih et al. (2009).

Algorithm 1 Regularized landmark mean-shift
Require: I and p

1: Compute responses {(6)}
2: while not_converged(p) do
3: Linearize shape model {(12)}
4: Compute mean-shift vectors {(37)}
5: Compute PDM parameter update {(36)}
6: Update parameters: p ← p + �p
7: end while
8: return p

can be generalized further to problems with conditionally
independent likelihoods. As such, the desirable properties
of the EM algorithm, namely provably convergent and im-
proving, are adopted by the RLMS optimization strategy.

3.1 Avoiding Local Minima

The response map approximations discussed in Sect. 2.2
can be though of as a form of smoothing. This explains
the relative performance of the various methods. Gaussian
approximations smooth the most but approximate the true
response map the poorest, whereas smoothing effected by
GMMs are not as aggressive but exhibits a degree of sensi-
tivity towards local optima. One might consider using the
Gaussian and GMM approximations in tandem, where a
Gaussian approximation is used to get within the conver-
gence basin of a GMM approximation. However, such an
approach is inelegant and affords no guarantee that the mode
of the Gaussian approximation lies within the convergence
basin of the GMM’s.

With the KDE approximation in RLMS a more elegant
approach can be devised, whereby the complexity of the re-
sponse map estimate is directly controlled by the variance
of the Gaussian kernel (see Fig. 3). The guiding principle
here is similar to that of optimizing on a Gaussian pyramid.
It can be shown that when using Gaussian kernels, there ex-
ists a ρ < ∞ such that the KDE is unimodal, regardless of
the distribution of samples (Carreira-Perpinan and Williams
2003). As ρ is reduced, modes divide and smoothness of the
objective’s terrain decreases. However, it is likely that the
optimum of the objective at a larger ρ is closest to the de-
sired mode of the objective with a smaller ρ, promoting its
convergence to the correct mode. As such, the policy under
which ρ is reduced acts to guide optimization towards the
global optimum of the true objective.

It should be noted that in formulating RLMS, the
Gaussian kernel is in fact a particular incarnation of the like-
lihood of selecting a landmark candidate given the PDM’s
landmark estimate: p(yi |xi ). As such, given sufficient gran-
ularity in the local search (i.e. the choice of {�i}ni=1), then
the variance of the kernel, ρ, that best represents the like-
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lihood is given by (29). However, since PCA retains the
majority of total variance of the shape, typically in the order
of 95–98%, ρ will generally be quite small, which results in
a highly multimodal objective terrain. When initialization is
far from the global maximum, optimization over this terrain
is susceptible to terminating in local maxima. The variance
tightening policy described above essentially replaces the
optimal objective terrain with a smoothed estimate of itself,
for which local maxima are reduced, but the global optimum
is perturbed, the magnitude of which is directly related to the
choice of ρ.

Drawing parallels with existing methods, as ρ → ∞ the
RLMS update approaches the solution of a homoscedastic
Gaussian approximated objective function. As ρ is reduced,
the KDE approximation resembles a GMM approximation,
where the approximation for smaller ρ settings is similar to
a GMM approximation with more modes.

3.2 Handling Partial Occlusions

One of the main limitations of RLMS as well as the other ex-
isting strategies described in Sect. 2.2 is that the likelihood
that a landmark is aligned, p(li = 1|xi , I), encodes no in-
formation regarding the effects of occlusion. Typically, it is
trained on a set of image patches cropped from aligned (and
misaligned in the case of a discriminative classifier) loca-
tions in occlusion free images. Modeling the alignment like-
lihood for occluded landmarks is not tractable in most realis-
tic applications since one can not adequately cover the space
of occluded appearance (i.e. the occluding object could be
anything). However, ignoring such cases during training can
have detrimental effects when the object of interest in the
image is partially occluded.

Observations that do not adhere to the assumed model
are generally referred to as outliers. In CLM fitting, out-
liers stem from non-Gaussian image noise, unseen appear-
ance and occlusions. An example of non-Gaussian image
noise often observed in medical image analysis is the signal
drop-out effect (Zhou et al. 2005). Although non-Gaussian
over the whole image, these outliers can be handled quite
robustly by existing fitting strategies since their main effect
is in increasing the spatial spread of the likelihood, which
is equivalent to increasing the uncertainty in its estimation.
This in turn results in a smaller contribution to the global
objective, limiting deterioration effected by such noise. Out-
liers stemming from unseen appearance is not so problem-
atic in a CLM fitting framework since only the appearance
of a patch is considered when learning the alignment like-
lihood. These patches are typically quite small (i.e. in the
order of (11 × 11)-pixels). As such, for many problems
there exists an adequate amount of data to train a model that
generalizes well over most instances of the object. Varia-

tions due to lighting changes can be partially accounted for
by a power normalization (Wang et al. 2008a). This is in
stark contrast to holistic based approaches (see Liu 2007;
Matthews and Baker 2004; Nguyen and De la Torre Frade
2008; Zhou and Comaniciu 2007, for example), where cor-
relations between all pixels within the object are consid-
ered.

Although existing approaches are somewhat robust to-
wards the two aforementioned outlier types, the same can
not be said for occlusions. The reason for this is that the
patch appearance of an occluding object may be similar to
that of the object of interest, which is a direct result of the
conditional independence assumed for the aligned landmark
likelihood. For example, the patch appearance of a landmark
on the periphery of the face simply looks like an edge, which
is easily confused with any occluding object with a strong
edge.

The parameter update in the RLMS optimization strategy
in (36) is essentially a regularized projection of the mean-
shift vector for each landmark onto the space of plausible
shape variations. As discussed previously, due to the mis-
leading landmark likelihood in the presence of occlusion,
the mean-shift vectors for occluded landmarks may be erro-
neous. As such, a least squares projection to regularize the
solution is no longer suitable. A simple approach to handle
such cases, therefore, is to use an M-estimator for this pro-
jection. Formally, this entails substituting the Q-function in
(35) with:

QKDE(p) ∝ ‖q‖2
�−1 +

n∑

i=1

∑

yi∈�i

ωyi
�(‖xi − yi‖2; θ), (38)

where � is an M-estimator, for example the Geman-McClure
function, which has been used extensively in optical flow
estimation (see Black and Anandan 1993; Blake et al. 1994,
for example):

�(r2; θ) = r2

r2 + α2
; θ = {α}. (39)

Equation (38) can then be solved for using iteratively re-
weighted least squares as follows:

�p = −H−1
KDE

[
�̃

−1
p +

n∑

i=1

JT
i

∑

yi∈�i

ωyi
�′(xc

i − yi )

]
, (40)

where �′ denotes the derivative of the M-estimator evaluated
at ‖xc

i − yi‖2, and the Hessian takes the form:

HKDE = �̃
−1 +

n∑

i=1

(
∑

yi∈�i

ωyi
�′

)
JT
i Ji . (41)

Since the optimization strategy for RLMS is essentially
the generalized EM algorithm, in order to preserve the prop-
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erties of EM optimization, namely convergent and provably
improving, the posterior weights ωyi

must be adjusted to
reflect the new parameterization of p(yi |xi ) in accordance
with the choice of � (i.e. ωyi

�= wyi
from (34)). For a partic-

ular �, the landmark candidate likelihood takes the form:

p(yi |xi ) = 1

Z(θ)
exp{−�(‖xi − yi‖2; θ)}, (42)

where Z is a partition (normalizing) function that enforces
(42) to be a PDF:

Z(θ) =
∫

ri

p(ri |xi ) dri < ∞; ri ∈ �, (43)

with � denoting the bounded spatial domain of the im-
age. When the same hyperparameters θ are chosen for the
M-estimator of all candidates of all landmarks (i.e. a ho-
moscedastic KDE), then the partition function need not be
evaluated explicitly as it factors out of the equations as a
scaling constant. The posterior over the candidates can now
be written:

ωyi
= πyi

exp{−�(‖xi − yi‖2; θ)}∑
zi∈�i

πzi
exp{−�(‖xi − zi‖2; θ)} . (44)

With the use of a robust error function to reduce the ef-
fects of outlying landmark candidates, the resulting algo-
rithm is equivalent to RLMS with a non-Gaussian kernel,
where the type of kernel depends on the choice of �. One
of the complications introduced by such a choice, however,
is the selection of the hyperparameters θ . For the case of
a Gaussian kernel: θ = {ρ}, the optimal setting of which is
given in (29). For more general �, a closed form solution for
the optimal θ does not exist. Nonetheless, for certain � rea-
sonable estimates can be made without resorting to a Monte-
Carlo strategy. For example, for the Geman-McClure robust
function in (39) the inlier region is given by: |r| ≤ α√

3
. Due

to the assumed parametric shape model, the inlier standard
deviation is given by

√
ρ. As such, following (Roberts et al.

2007) we can set: α = γ
√

3ρ, where γ is the multiple of
the inlier standard deviation, which is typically chosen as
γ ∈ [1,3].

Finally, it should be noted that the robust formulation
of RLMS described here defines outlying landmark candi-
dates as those that are inconsistent with the shape model. Al-
though such an assumption is reasonable for many cases, it
is certainly possible that an outlying candidate is consistent
with the shape model but does not represent the true land-
mark location. This occurrence becomes increasingly likely
as the number of directions of variability of the shape model
increases. Although the regularization induced by the prior,
p(p), partially addresses this problem, it is not a complete

solution and how best to handle such cases remains an open
question.

3.3 Practical Considerations

3.3.1 Similarity Normalized Search

Since the exhaustive local search used in CLM fitting is per-
formed over the spatial dimensions only, such an approach
poorly accounts for significant variations in scale and in-
plane rotation. However, landmark detectors that are trained
on images exhibiting such variations will lack in specificity,
limiting the fidelity of the fitting procedure.

Generative holistic deformable model fitting algorithms,
for example (Edwards et al. 1998; Matthews and Baker
2004), typically measure model fit in a predefined refer-
ence shape, often chosen according to the mean shape over
the training data. We use the same principle here, whereby
the image is transformed to the reference frame using the
PDM’s current estimate of scale and rotation. The fitting
procedure outlined in Algorithm 1, is then performed on this
similarity normalized image. The PDM parameters describ-
ing the shape in the image frame can then be found by com-
posing the converged shape with the inverse of the similarity
transform used to normalize the image. As the fitting proce-
dure converges, the estimate of the similarity transform ap-
proaches that of the true pose of the object, improving the
reliability of the landmark detections.

3.3.2 1D vs. 2D Search Regions

One of the remaining open questions with the CLM formu-
lation is the selection of the search region for each landmark
{�i}ni=1. Some CLM variants, for example (Cootes and Tay-
lor 1992; Gu and Kanade 2008), perform the exhaustive lo-
cal search along a profile that is typically (manually) cho-
sen to be perpendicular to the direction of largest edgedness
of landmark appearance. Others search within a rectangular
bounding box around the current landmark estimate (Cristi-
nacce and Cootes 2007; Wang et al. 2008a).

The motivation for a profile search is two-fold. First, it is
much cheaper to compute, with only d-detector evaluations
required, as opposed to d2 for square search regions. Sec-
ondly, it leverages on the limited structure of patches used
for detection. As discussed in Sect. 2.2, landmarks located
on edges tend to have poor discriminative capacity along the
edge. As such, little motion information is gained by evalu-
ating the detector at those locations.

Although common choices for landmarks of many de-
formable objects are indeed placed on edges, this is not
strictly required. For example, landmarks on the human face
almost always include eye and lip corners as they facilitate
better consistency in manual annotations. For these land-
marks, the local structure is sufficient to distinguish it from
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image patches at neighboring locations. Therefore, restrict-
ing the search to a profile may bias the estimated objec-
tive function. This is made worse by the heuristic choice
often made for the uncertainty in the direction perpendicu-
lar to the search profile (i.e. typically set to be equivalent to
the uncertainty along the profile, Cootes and Taylor 1992;
Gu and Kanade 2008). There is also some difficulty in de-
termining the best profile direction for these landmarks. Al-
though the optimal profile direction can be learned from the
data through a cross-validation strategy, most methods sim-
ply define the direction as some function of the respective
locations of the neighboring landmarks. Finally, in order to
ensure robust fitting, the profile directions should be chosen
such that they adequately cover the space of directions (i.e.
a model with horizontal search profiles only can not move
vertically).

Rectangular search regions do not suffer the aforemen-
tioned limitations of profile searches. Their only drawback is
that they involve more detector evaluations, which may lead
to inefficient fitting when complex detectors are utilized. In
this work we use rectangular search regions since the linear
classifier used for detection can be evaluated using efficient
convolution operations. It is certainly possible to combine
profile and rectangular search regions, where the choice of
search region is specialized to the local structure exhibited
by each landmark, however we do not pursue such an ap-
proach in this work.

3.3.3 Precomputed Grid for Efficiency

In the KDE representation of the response maps, the kernel
centers are placed at the grid nodes defined by the search
window. From the perspective of GMM fitting, these ker-
nels represent candidates for the true landmark locations.
Although no optimization is required for determining the
number of modes, their centers and mixing coefficients, the
number of candidates used here is much larger than what
would typically be used in a general GMM estimate (i.e.
GMM based representations typically use Ki < 10, whereas
the search window size typically has > 100 nodes). As such,
the computation of the posterior in (34) will be more costly.
However, if the variance ρ is known a-priori (see Sect. 3.1),
then some approximations can be made to significantly re-
duce computational complexity.

The main overhead when computing the mean-shift up-
date is in evaluating the kernel between the current land-
mark estimate and every grid node in the response map.
Since the grid locations are fixed and ρ is assumed to be
known, one might choose to precompute the kernel for var-
ious settings of xi . In particular, a simple choice would be
to precompute these values along a grid sampled at or above
the resolution of the response map grid �i . During fitting
one simply finds the location in this grid closest to the cur-
rent estimate of a PDM landmark and estimate the kernel

Fig. 4 Illustration of the use of a precomputed grid for efficient
mean-shift. Kernel evaluations are precomputed between c and all
other nodes in the grid. To approximate the true kernel evaluation, xi

is assumed to coincide with c and the likelihood of any response map
grid location can be attained by a table lookup

evaluations by assuming the landmark is actually placed at
that node (see Fig. 4). This only involves a table lookup
and can be performed efficiently. The higher the granular-
ity of the grid the better the approximation will be, at the
cost of greater storage requirements but without a signifi-
cant increase in computational complexity. An interpolation
process over the lookup table might further improve estima-
tion accuracy here, however we found that given sufficient
granularity of the grid, such an addition offers little over-
all benefit. Finally, although this approximation ruins the
strictly improving properties of EM, we empirically show
in Sect. 4 that accurate fitting can still be achieved with this
approximation. In our implementation, we found that such
an approximation reduced the average fitting time by one
half.

4 Experiments

4.1 Empirical Comparison of Fitting Approaches

4.1.1 Still Images

The various CLM optimizations strategies discussed above
were compared on the problem of generic frontal face fit-
ting on two publicly available databases: (i) the CMU Pose,
Illumination and Expression Database (MultiPie) (Gross
et al. 2008), and (ii) the XM2VTS database (Messer et al.
1999). MultiPie is annotated with a 68-point markup used
as ground truth landmarks. We used 762 frontal face images
of 339 subjects. XM2VTS consists of 2360 frontal face im-
ages of 295 subjects for which ground truth annotations are
publicly available but different from the 68-point markup
we have for MultiPie. XM2VTS contains neutral expres-
sion only whereas MultiPie contains significant expression
variations. The average interocular distance for the MultiPIE
and XM2VTS databases are 80 and 100 pixels respectively.
Four-fold cross validation experiments were performed on
both MultiPie and XM2VTS, separately, where the images
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Fig. 5 Fitting curves for the
ASM, CQF, GMM and RLMS
optimization strategies on the
MultiPie and XM2VTS
databases

were partitioned into four sets of non-overlapping subject
identities. In each trial, three partitions were used for train-
ing and the remainder for testing.

On these databases we compared four types of optimiza-
tion strategies: (i) ASM (Cootes and Taylor 1992) described
in Sect. 2.2.1, (ii) convex quadratic fitting (CQF) (Wang
et al. 2008a) described in Sect. 2.2.2, (iii) GMM (Gu and
Kanade 2008) described in Sect. 2.2.3, and (iv) RLMS de-
rived in Sect. 3. For GMM, we empirically set Ki = 5 and
used the EM algorithm to estimate the parameters of the
mixture models describing the response maps. For RLMS,
we used the efficient approximation described in Sect. 3.3.3
with a grid spacing of 0.1-pixels and a variance tightening
policy of ρ = {20,10,5,1}. In all cases the linear logistic re-
gressor defined in (8) was used as landmark detectors. The
local experts were (11 × 11)-pixels in size and the exhaus-
tive local search was performed over a (15 × 15)-pixel win-
dow. As such, the only difference between the various meth-
ods compared here is the way in which the response maps
are approximated along with their specialized optimization
strategies. To better illustrate the performance difference be-
tween these methods, a ML formulation was used, where a
non-informative prior is assumed over the PDM parameters.
In all cases, the scale and location of the model was initial-
ized by an off-the-shelf face detector, the rotation and non-
rigid parameters in (1) set to zero (i.e. the mean shape), and
the model fit until the optimization converged as measured
by:

∑n
i=1 ‖�xi‖2 ≤ 0.01, where �xi denotes the change in

the ith landmarks position between iterations.
Results of these experiments can be found in Fig. 5. The

graphs (fitting curves) show the proportion of images at
which various levels of maximum perturbation was exhib-
ited, measured as the root-mean-squared (RMS) error be-
tween the ground truth landmarks and the resulting fit in the
image frame. The average fitting times for the various meth-
ods on a 2.5 GHz Intel Core 2 Duo processor are shown in
the legend.

The results show a consistent trend in the relative perfor-
mance of the four methods. Firstly, CQF has the capacity to
significantly outperform ASM. As discussed in Sect. 2.2.2

this is due to CQF’s ability to account for directional uncer-
tainty in the response maps as well as being more robust to-
wards outlying responses. However, CQF has a tendency to
over-smooth the response maps, leading to limited conver-
gence accuracy. GMM shows an improvement in accuracy
over CQF as shown by the larger number of samples that
converged to smaller shape RMS errors. However, it exhibits
sensitivity towards local optima due to its multimodal objec-
tive. This can be seen by its poorer performance than CQF
for reconstructions errors above 4.2-pixels RMS in Multi-
Pie and 5-pixels RMS in XM2VTS. In contrast, RLMS at-
tains even better accuracies than GMM but still retains a
degree of robustness against local optima, where its perfor-
mance over grossly misplaced initializations is comparable
to CQF. Finally, despite the significant improvement in per-
formance, RLMS exhibits only a modest increase in com-
putational complexity compared to ASM and CQF. This is
in contrast to GMM that requires much longer fitting times,
mainly due to the complexity of fitting a mixture model to
the response maps.

4.1.2 Tracking in a Sequence

Evaluating the performance of fitting algorithms on images
outside of a particular database is more meaningful as it
gives a better indication on how well a method generalizes.
However, this is rarely conducted as it requires the tedious
process of annotating new images with the PDM configu-
ration of the training set. Here, we utilize the freely avail-
able FGNet talking face sequence.5 Quantitative analysis on
this sequence is possible since ground truth annotations are
available in the same format as that in XM2VTS. The same
model used in the still image experiments was used here,
except that it was trained on all images in XM2VTS. All
four fitting methods were evaluated on this sequence using
a ML formulation with the same criterion for convergence
as described previously. We initialize the model using a face

5http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_
face.html.

http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html
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Fig. 6 Top row: Tracking results on the FGNet Talking Face database for frames {0,1230,4200}. Clockwise from top left are fitting results for
ASM, CQF, RLMS and GMM. Bottom: Plot of shape RMS error from ground truth annotations throughout the sequence

detector in the first frame and fit consecutive frames using
the PDM’s configuration in the previous frame as an initial
estimate. Although an improvement in performance may be
attained by performing some kind of temporal smoothing,
using a Kalman filter for example, this was not performed
here as we are investigating the effects of the response map
estimates and their subsequent optimization strategy on fit-
ting performance.

In Fig. 6, the shape RMS error for each frame is plot-
ted for the four optimization strategies being compared.
The relative performance of the various strategies is sim-
ilar to that observed in the still image experiments. CQF
exhibits excellent stability throughout the sequence, but is
limited in its fidelity. GMM outperforms CQF in many
frames, but is not consistent. Furthermore, as with ASM,
it appears particularly unstable on this sequence, loosing
track at around frame 4200, and fails to recover until the
end of the sequence. The unstable nature of GMM fit-
ting here is due to its estimation of the mixture model
describing the response maps, which is a nonlinear opti-
mization procedure that is initialization dependent. As we
initialize its Ki -centers based on the Ki -best responses,
which can be noisy, very different mixture model esti-
mates can be made for similar response maps (i.e. from
neighboring frames). A similar observation can be made
for ASM, explaining its instability. In contrast, RLMS ex-
hibits the stability of CQF but with consistently better accu-
racy.

4.2 Qualitative Analysis and Occlusion Handling

A quantitative analysis of the performance of fitting algo-
rithms on real occluded images is difficult as it requires
the collection and annotation of occluded images. Typically
evaluation is performed by synthesizing occlusions (Gross
et al. 2004; Saragih 2008). However, the performance of a
fitting method is often dependent on the choice made for
the synthesized occlusions (Saragih 2008). Furthermore, it
is difficult to model the effects of an occluding object on
non-occluded parts of the image, such as that of shadowing.
As such, in this work we analyze the effects of occlusion on
RLMS qualitatively, by observing its behavior in a tracking
sequences with real occlusions.

In Figs. 7 and 8 frames from two sequences with gross
occlusions are shown, where tracking was performed us-
ing four variants of RLMS, namely the ML and MAP vari-
ants with Gaussian and Geman-McClure kernels. The model
was trained on the entire MultiPie database with a 3D shape
model learned by applying nonrigid structure from motion
on the available annotations (Torresani et al. 2008). The
types of occlusions in these sequences are quite challenging
as they occlude the eye and mouth regions in Figs. 7 and 8,
respectively, which generally give strong responses com-
pared to other landmarks. Notice also the change in light-
ing over non-occluded landmarks effected by the occluding
object in Fig. 7.

On these sequences, both ML and MAP variants of CLM
fitting with a Gaussian kernel fail to track the subject, where
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Fig. 7 Example of tracking with gross occlusion. Top to bottom rows: ML fitting with a Gaussian kernel, MAP fitting with a Gaussian kernel, ML
fitting with a Geman-McClure kernel, and MAP fitting with a Geman-McClure kernel. Left to right columns: Frames 0, 30, 40 and 50

significant perturbations are immediately observed as the
object starts occluding some landmarks. ML fitting with the
Geman-McClure kernel exhibits better robustness, where
the effects of occlusion are not as pronounced. However, the
accumulation of errors lead to a loss of tracking towards the
end of the sequence. As discussed in Sect. 3.2, the use of a
robust kernel enforces occlusion invariance only through the
consistency of the landmarks’ joint motion with the shape
model. As such, erroneous landmark candidates that are
consistent with the shape model are not accounted for. Al-
though the MAP formulation utilizes the same assumption,
the use of a prior restricts the variability of the shape model,
which reduces sensitivity of the fitting procedure towards
such candidates. The tracking results for MAP fitting with
the Geman-McClure kernel supports this analysis, where it
successfully tracks until the end of the sequences.

Finally, a qualitative analysis of RLMS was performed on
the Faces in the Wild database (Huang et al. 2007). It con-
tains images taken under varying lighting, resolution, image
noise and partial occlusion. As before, the model was ini-
tialized using a face detector and fit until convergence was
attained. Some fitting results are shown in Fig. 9. Results

suggest that RLMS exhibits a degree of robustness towards
variations typically encountered in real images.

5 Conclusion

The optimization strategy for local experts-based deform-
able model fitting was investigated in this work. Various ex-
isting methods were posed within a consistent probabilis-
tic framework where they were shown to make different
parametric approximations to the true likelihood maps of
landmark locations. From this perspective, the fitting be-
havior of a number of popular approaches were explained
and validated through numerical experiments. To address
the difficulties inherent in these approaches, and leverag-
ing on insights gained from the aforementioned formulation,
a new approximation of the likelihood maps was proposed
that uses a nonparametric representation. Further innova-
tions that reduce online computational complexity, avoid lo-
cal optima and encourage robustness against partial occlu-
sions were also proposed. The resulting fitting algorithm
for this formulation was shown to be simple and efficient



Int J Comput Vis (2011) 91: 200–215 213

Fig. 8 Example of tracking with gross occlusion. Top to bottom rows: ML fitting with a Gaussian kernel, MAP fitting with a Gaussian kernel, ML
fitting with a Geman-McClure kernel, and MAP fitting with a Geman-McClure kernel. Left to right columns: Frames 0, 30, 40 and 50

Fig. 9 Example fitting results on the Faces in the Wild database (red rectangles denote detected face regions used for initialization). Top:
Un-occluded images. Bottom: Partially occluded

as well as exhibit superior performance over some existing
approaches on the task of generic face fitting.

The approach proposed in this work is a framework for
deformable model fitting rather than a complete system in
itself. It is a generic optimization strategy in the sense that a

number of its components can be specialized to a particular
application. As such, future work will involve investigations
into the use of different feature detectors (see Avidan 2004;
Cootes and Taylor 1992; Cristinacce and Cootes 2006, for
example), more sophisticated shape models (see Gu and
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Fig. 10 Undirected graphical
model of CLM fitting. Squares
denote the observations and
circles denote hidden variables

Kanade 2008; Romdhani et al. 1999, for example), the appli-
cation of temporal smoothness constraints (see Wang et al.
2008b; Zhou et al. 2005, for example), and different kernel
types, all of which can be integrated seamlessly into the pro-
posed framework.

Appendix

Many problems in computer vision lend themselves natu-
rally to representations using graphical models. Examples
of this include stereo matching (Sun et al. 2003) and opti-
cal flow estimation (Felzenszwalb and Huttenlocher 2004)
to name a few. In this section we motivate the formulation
used in RLMS described in Sect. 3 from a graphical model
perspective.

An undirected graph G is defined by a set of nodes V and
a corresponding set of edges E . For the problem of CLM fit-
ting, let us define: V = {y1, . . . ,yn,p}, where, as in Sect. 3,
p denotes the PDM parameters and yi denotes a random
variable describing the true location of the ith landmark lo-
cation in the image. The neighborhood of a node a ∈ V is
defined as: 	(a) = {b|(a, b) ∈ E }, where, for the problem of
CLM fitting we have: 	(yi ) = {p} and 	(p) = {yi}ni=1. Let-
ting the alignment labels {li}ni=1 denote the observed vari-
ables,6 the graph describing this system takes the particu-
larly simple acyclic form illustrated in Fig. 10.

Since the CLM graph is acyclic, the conditional distrib-
ution of all random variables can be directly calculated by
a local message-passing algorithm known as belief propa-
gation (BP) (Yedidia et al. 2002). At iteration t of the BP
algorithm, each node a calculates a message mt

a→b to be
sent to each of its neighbors b ∈ 	(a). For the CLM graph,
only two types of messages need to be sent:

mt
yi→p ∝

∑

yi∈�i

φ(yi ,p)ϕ(yi , li ) (45)

mt
p→yi

∝
∫

φ(yi ,p)p(p)

n∏

j=1,j �=i

mt−1
yi→p dp, (46)

6Typically the observed variables in graphical models of computer vi-
sion problems relate to image pixels. We depart from this convention
here, in order to remain consistent with the discriminative interpreta-
tion of landmark alignment in Sect. 2.1, where the observation of the
image is implicit in its formulation.

where φ(yi ,p), ϕ(yi , li ) and p(p) are the various potentials
given by (31), (6) and (10), respectively.

Although the BP algorithm over the CLM graph con-
verges within two iterations, evaluations of mt

p→yi
are not

analytically tractable (i.e. integration over a GMM). How-
ever, since we are interested only in the conditional marginal
distribution of the PDM parameters:

p(p|{li = 1}ni=1, I) ∝ p(p)

n∏

i=1

mt
yi→p, (47)

the messages {mt
p→yi

}ni=1 need not be computed since they
do not contribute to the messages {mt

yi→p}ni=1 in (45). This
is a direct result of assumed graph structure, where land-
mark detections are conditionally independent. Therefore,
we arrive at the desired conditional marginal distribution by
computing only the messages from the landmark candidate
nodes to the PDM parameter node, yielding the RLMS ob-
jective in (33).
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