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Abstract Regression analysis is a powerful tool for the
study of changes in a dependent variable as a function of
an independent regressor variable, and in particular it is
applicable to the study of anatomical growth and shape
change. When the underlying process can be modeled by
parameters in a Euclidean space, classical regression tech-
niques (Hardle, Applied Nonparametric Regression, 1990;
Wand and Jones, Kernel Smoothing, 1995) are applicable
and have been studied extensively. However, recent work
suggests that attempts to describe anatomical shapes us-
ing flat Euclidean spaces undermines our ability to rep-
resent natural biological variability (Fletcher et al., IEEE
Trans. Med. Imaging 23(8), 995–1005, 2004; Grenander and
Miller, Q. Appl. Math. 56(4), 617–694, 1998).

In this paper we develop a method for regression analy-
sis of general, manifold-valued data. Specifically, we extend
Nadaraya-Watson kernel regression by recasting the regres-
sion problem in terms of Fréchet expectation. Although this
method is quite general, our driving problem is the study
anatomical shape change as a function of age from random
design image data.

We demonstrate our method by analyzing shape change
in the brain from a random design dataset of MR images
of 97 healthy adults ranging in age from 20 to 79 years.
To study the small scale changes in anatomy, we use the
infinite dimensional manifold of diffeomorphic transforma-
tions, with an associated metric. We regress a representative
anatomical shape, as a function of age, from this population.

B.C. Davis (�) · E. Bullitt
University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA
e-mail: brad.davis@unc.edu

P.T. Fletcher · S. Joshi
University of Utah, Salt Lake City, UT, USA

Keywords Spatio-temporal shape analysis · Kernel
regression · Deformable atlas building

1 Introduction

An important area of medical image analysis is the develop-
ment of methods for automated and computer-assisted as-
sessment of anatomical change over time. For example, the
analysis of structural brain change over time is important
for understanding healthy aging. These methods also pro-
vide markers for understanding disease progression.

A number of longitudinal growth models have been de-
veloped to provide this type of analysis to time-series im-
agery of a single subject (e.g., Beg 2003; Clatz et al. 2005;
Miller 2004; Thompson et al. 2000). While these methods
provide important results, their use is limited by their re-
liance on longitudinal data, which can be impractical to ob-
tain for many medical studies. Also, while these methods
allow for the study of an individual’s anatomy over time,
they do not apply when the average growth for a population
is of interest.

Random design data sets, which contain anatomical data
from many different individuals, provide a rich environment
for addressing these problems. However, in order to de-
tect time-related trends in such data, two distinct aspects
of anatomical variation must be separated: individual vari-
ation and time effect. For measurements that naturally form
Euclidean vector spaces, this separation can be achieved by
regressing a representative value over time from the data.

For example, in Fig. 1 we apply kernel regression to mea-
surements reported in a study by Mortamet et al. (2005)
on the effect of aging on gray matter and ventricle volume
in the brain. The regression curves demonstrate the aver-
age volume, as a function of patient age, of these struc-
tures. These trends—on average there is a loss of gray matter
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Fig. 1 (Color online) Illustration of univariate kernel regression: the
effect of aging on gray matter (a) and ventricle volume (b) in the brain.
Circles represent volume measurements relative to total brain volume.

Kernel regression is used to estimate the relationship between patient
age and structure volume (filled lines)

Fig. 2 Brain image database. To demonstrate the extent of natural
brain shape variability within a population of healthy subjects, a mid-
axial slice is presented for a sample of images used in this study. The
images are arranged in order of increasing patient age from 30 (top

left) to 60 (bottom right). Because of the complexity of the shapes and
the high level of natural shape variability, it is extremely difficult to
visually discern any patterns within these data

and expansion of the ventricles—have been widely reported
in the medical literature on aging (Guttmann et al. 1998;
Matsumae et al. 1996; Mortamet et al. 2005). While volume-
based regression analysis is important, it does not provide
any information about the detailed shape changes that oc-
cur in the brain, on average, as a function of age. This has
motivated us to study regression of shapes.

Recent work has suggested that representing the geome-
try of shapes in flat Euclidean vector spaces limits our abil-
ity to represent natural variability in populations (Fletcher
et al. 2004; Grenander and Miller 1998; Miller 2004). For
example, Fig. 2 demonstrates the amazing non-linear vari-
ability in brain shape among a population of healthy adults.
The analysis of transformation groups that describe shape
change are essential to understanding this shape variabil-
ity. These groups vary in dimensionality from simple rigid
rotations to the infinite-dimensional group of diffeomor-
phisms (Miller and Younes 2001). These groups are not gen-

erally vector spaces and are instead naturally represented as
manifolds.

A number of authors have contributed to the field of sta-
tistical analysis on manifolds (see Pennec 2006 for a more
detailed history). Early work on manifold statistics includes
directional statistics (Bingham 1974; Jupp and Mardia 1989)
and statistics of point set shape spaces (Kendall 1984;
Le and Kendall 1993). The large sample properties of sam-
ple means on manifolds are developed in Bhattacharya and
Patrangenaru (2002, 2003). Jupp and Kent (1987) describe
a method of regression of spherical data that ‘unwraps’ the
data onto a tangent plane, where standard curve fitting meth-
ods can be applied. In Fletcher et al. (2004), Joshi et al.
(2004), Pennec (2006), statistical concepts such as aver-
aging and principal components analysis were extended to
manifolds representing anatomical shape variability. Many
of the ideas are based on the method of averaging in metric
spaces proposed by Fréchet (1948).
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In this paper we use the notion of Fréchet expecta-
tion to generalize regression to manifold-valued data. We
use this method to study spatio-temporal anatomical shape
change in a random design database consisting of three-
dimensional MR images of healthy adults. Our method gen-
eralizes Nadaraya-Watson kernel regression in order to com-
pute representative images of this population over time. To
determine the shape change in the population over time, we
apply a diffeomorphic growth model (Miller 2004) to this
time-indexed population representative image.

2 Methods

2.1 Review of Univariate Kernel Regression

Univariate kernel regression (Hardle 1990; Wand and Jones
1995) is a non-parametric method used to estimate the rela-
tionship, on average, between an independent random vari-
able T and a dependent random variable Y . The estimation
is based on a set of observations {ti , yi}Ni=1 drawn from the
joint distribution of T and Y . This relationship between T

and Y can be modeled as yi = m(ti)+εi , where εi describes
the random error of the model for the ith observation and m

is the unknown function that is to be estimated.
In this setting, m(t) is defined by the conditional expec-

tation

m(t) ≡ E(Y |T = t) =
∫

y
f (t, y)

fT (t)
dy (1)

where fT (t) is the marginal density of T and f (t, y) is the
joint density function of T and Y . For random design data,
both f (t, y) and fT (t) are unknown and so m has no closed-
form solution. A number of estimators for m have been pro-
posed in the kernel regression literature.

One such estimator—the Nadaraya-Watson kernel re-
gression estimator (Nadaraya 1964; Watson 1964)—can be
derived from (1) by replacing the unknown densities with
their kernel density estimates

f̂ h
T (t) ≡ 1

N

N∑
i=1

Kh(t − ti ) and

f̂ h,g(t, y) ≡ 1

N

N∑
i=1

Kh(t − ti )Kg(y − yi). (2)

In these equations, K is a function that satisfies
∫

R
K(t) dt =

1. Kh(t) ≡ 1
h
K( t

h
) and Kg(t) ≡ 1

g
K( t

g
) are kernel functions

with bandwidths h and g respectively.
Plugging these density estimates into (1) gives

m̂h,g(t) =
∫

y

1
N

∑N
i=1 Kh(t − ti )Kg(y − yi)

1
N

∑N
i=1 Kh(t − ti )

dy. (3)

Finally, assuming that K is symmetric about the origin, in-
tegration of the numerator leads to

m̂h(t) =
∑N

i=1 Kh(t − ti )yi∑N
i=1 Kh(t − ti )

. (4)

Intuitively, the Nadaraya-Watson estimator returns the
weighted average of the observations yi , with the weighting
determined by the kernel. Note that f̂ h,g(t, y) is factored out
of the estimator—the weights only depend on the values ti .

In Fig. 1 we illustrate univariate kernel regression by
applying it to demonstrate the effect of aging on ventri-
cle volume and gray matter volume in the brain. This il-
lustration is based on data collected by Mortamet et al.
(2005). Each point represents a volume measurement, rel-
ative to total brain volume, for a particular patient. These
measurements were derived from 3D MR images of 50
healthy adults ranging in age from 20 to 72 using an
expectation-maximization based automatic segmentation
method (Leemput et al. 1999). We used kernel regression
to estimate the relationship, on average, between volume
and patient age (filled lines). A Nadaraya-Watson kernel es-
timator with a Gaussian kernel of width σ = 6 years was
used.

2.2 Kernel Regression on Riemannian Manifolds

In this section we consider the regression problem in the
more general setting of manifold-valued observations. Let
{ti , pi}Ni=1 be a collection of observations where the ti are
drawn from a univariate random variable T , but where pi are
points on a Riemannian manifold M. The classical kernel
regression methods presented in Sect. 2.1 are not applicable
in this setting because they rely on the vector space structure
of the observations. In particular, the addition operator in (4)
is not well defined.

The goal is to determine the relationship, on average, be-
tween the independent variable T and the distribution of the
points {pi} on the manifold. This relationship can be mod-
eled by

pi = Expm(ti )
(εi) (5)

where m : R → M defines a curve on M. The error term
εi ∈ Tm(ti )M is a tangent vector that is interpreted as the dis-
placement along the manifold of each observation pi from
the curve m(t). The exponential mapping, Exp, returns the
point on M at time one along the geodesic flow beginning
at m(ti) with initial velocity εi .

Following the univariate case, we define the regression
function m(t) in terms of expectation. However, in this case
we generalize the idea of expectation of real random vari-
ables to manifold-valued random variables via Fréchet ex-
pectation (Fréchet 1948; Karcher 1977). Let f (p),p ∈ M
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Fig. 3 Manifold kernel
regression schematic. (a) For
any value of the predictor
variable t , the manifold-valued
observations pi are summarized
by the weighted Fréchet mean
point m̂h(t). (b) As in the
univariate case, the weights are
determined by the predictor
values ti and the kernel Kh

be a probability density on the manifold. The Fréchet expec-
tation is defined as

Ef [p] ≡ argmin
q∈M

∫
M

d(q,p)2f (p)dp (6)

where d(q,m) is the metric on the manifold M. This de-
finition is motivated by a minimum variance characteriza-
tion of the mean, where variance is defined in terms of the
metric. Note that Fréchet expectation might not be unique
(Karcher 1977). Using the above definition, an empirical es-
timate of the Fréchet mean, given a collection of observa-
tions {pi, i = 1 . . .N} on a manifold M, is defined by

μ = argmin
q∈M

1

N

N∑
i

d(q,pi)
2. (7)

Motivated by the definition of the Nadaraya-Watson esti-
mator as a weighted averaging, we define a manifold kernel
regression estimator using the weighted Fréchet empirical
mean estimator as

m̂h(t) = argmin
q∈M

(∑N
i=1 Kh(t − ti )d(q,pi)

2

∑N
i=1 Kh(t − ti )

)
. (8)

This estimator is illustrated in Fig. 3. Notice that when the
manifold under study is a Euclidean vector space, equipped
with the standard Euclidean norm, the above minimization
results in the Nadaraya-Watson estimator.

2.3 Bandwidth Selection

It is well known within the kernel regression literature that
kernel width plays a crucial role in determining regression
results (Wand and Jones 1995). In particular, it is important
to select a bandwidth that captures relevant population-wide
changes without either oversmoothing and missing relevant
changes or undersmoothing and biasing the results based on
individual noisy data points. The ‘Goldie Locks’ method of
tuning the bandwidth until the results are most pleasing is a

common subjective method for bandwidth selection. How-
ever, non-subjective methods may be required, for example,
when kernel regression is part of a larger statistical study.
A number of automatic kernel bandwidth selection tech-
niques have been proposed for this purpose (Wand and Jones
1995; Jones et al. 1996; Loader 1999).

One classic method for automatic bandwidth selection is
based on least squares cross-validation. This method is eas-
ily extended to the manifold regression setting in the fol-
lowing way. For observations {ti , pi}Ni=1, with ti ∈ R and
pi ∈ M, the least squares cross-validation estimate for the
optimal bandwidth h is defined as

ĥLSCV ≡ argmin
h∈R+

1

N

N∑
i=1

d(m̂i−
h (ti),pi)

2 (9)

where

m̂i−
h (t) ≡ argmin

q∈M

(∑N
j=1,j �=i Kh(t − tj )d(q,pj )

2

∑N
j=1,j �=i Kh(t − tj )

)
(10)

is the manifold kernel regression estimator with the i-th ob-
servation left out.

It is important to note that (9) may achieve multiple lo-
cal minima; this is true even in Euclidean space (Hall and
Marron 1991).

2.4 Regression of Rotational Pose (SO(3))

Before we present results of the study of brain growth,
we exemplify the methodology in detail on the finite-
dimensional Lie group of 3D rotations, SO(3).

Following the approach in Buss and Fillmore (2001), we
solve the weighted averaging problem in (8) by a gradient
descent algorithm. The tangent space of SO(3) at the identity
is the Lie algebra of 3×3 skew-symmetric matrices, denoted
so(3). We equip SO(3) with the standard bi-invariant metric,
given by the Frobenius inner product on so(3). The tangent
space at an arbitrary rotation R ∈ SO(3) is given by either
left or right multiplication of so(3) by R.
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The Lie group exponential map and its inverse, the log
map, are used to compute geodesics and distances. The ex-
ponential map for a tangent vector X ∈ so(3) is given by

exp(X) =
{
I, θ = 0,

I + sin θ
θ

X + 1−cos θ

θ2 X2, θ ∈ (0,π),
(11)

where θ =
√

1
2 tr(XT X). A geodesic γ (t) starting at a point

R ∈ SO(3) with initial velocity RX is given by γ (t) =
R exp(tX). The Lie group log map for a rotation matrix
R ∈ SO(3) is given by

log(R) =
{
I, θ = 0,

θ
2 sin θ

(R − RT ), |θ | ∈ (0,π),
(12)

where tr(R) = 2 cos θ + 1. The distance between two rota-
tions R1,R2 ∈ SO(3) is given by d(R1,R2) = ‖ log(R−1

1 R2)‖.
Now consider the weighted averaging problem with ro-

tation data Ri ∈ SO(3) and corresponding weights wi =
Kh(t − ti )/

∑N
j=1 Kh(t − tj ). The regression problem in (8)

minimizes the weighted sum-of-squared distance function
of the form f (R, {Ri,wi}) = (1/2)

∑
i wid(R,Ri)

2. The
gradient for this function at a point R ∈ SO(3) is given by
∇Rf = −∑

i wiR log(R−1Ri). Therefore, given the esti-
mate R̂k for the weighted average, the gradient descent up-
date to solve (8) is given by R̂k+1 = R̂ exp(−R−1∇

R̂k
f ).

2.5 Kernel Regression for Populations of Brain Images

In this section we apply our shape regression methodology
to study the effect of aging on brain shape from random de-
sign image data. We have observations of the form {ti , Ii}Ni=1
where ti is the age of patient i and Ii is a three-dimensional
image that we identify with the anatomical configuration of
patient i. We seek the unknown function m that associates
a representative anatomical configuration, and its associated
image Î , with each age.

Let � ⊂ R
3 be the underlying coordinate system of the

observed images Ii . Each image I ∈ I can be formally de-
fined as an L2 function from � to the reals. However, it is
important to point out that we cannot rely on the natural L2

structure of the images themselves for our analysis. While
images can be added voxel-wise, the result is a loss of any
identification with the anatomical configuration.

Instead, we represent anatomical differences in terms of
transformations of the underlying image coordinates. This
approach is common within the shape analysis literature
(Grenander and Miller 1998; Miller et al. 1997). Because we
are interested in capturing the large, natural geometric vari-
ability evident in the brain (cf. Fig. 2), we represent shape
change as the action of the group of diffeomorphisms, de-
noted by H. In the rest of this section, we formalize this no-
tion and define a distance between shapes that is valid in this

setting and will allow us to apply our regression methodol-
ogy.

Let H be the group of diffeomorphisms that are isotopic
to the identity. Each element φ : � → � in H deforms an
image according to the following rule

Iφ(x) = I (φ−1(x)). (13)

We apply the theory of large deformation diffeomor-
phisms (Beg et al. 2005; Dupuis and Grenander 1998;
Joshi and Miller 2000; Miller and Younes 2001) to gen-
erate deformations φ that are solutions to the Lagrangian
ODEs d

ds
φs(x) = vs(φs(x)) for a simulated time parameter

s ∈ [0,1]. The transformations are generated by integrating
the time-varying velocity fields vs forward in time.

We introduce a metric on H using a Sobelev norm via a
partial differential operator A applied to v where ‖vs‖2

V ≡∫
�
〈Avs, vs〉dx. Let e ∈ H be the identity transformation.

We define the squared metric dH(e,φ)2 as

dH(e,φ)2 = min
v:φ̇s=vs(φs)

∫ 1

0
‖vs‖2

V ds (14)

subject to

φ(x) = x +
∫ 1

0
vs(φs(x)) ds for all x ∈ �. (15)

The distance between any two diffeomorphisms is de-
fined by

dH(φ1, φ2)
2 = dH(e,φ−1

1 ◦ φ2)
2. (16)

This distance satisfies all of the properties of a metric: it is
non-negative, symmetric, and satisfies the triangle inequal-
ity (Miller et al. 2002).

Using this metric on H, we can define the distance be-
tween two images as

dI (I1, I2)
2

≡ min
v:φ̇s=vs(φs)

[∫ 1

0
‖vs‖2

V ds + 1

σ 2
‖I1(φ

−1) − I2‖2
L2

]

(17)

where the second term accounts for the noise model of the
image (Joshi et al. 2004). While this construction is moti-
vated by the metric on H, it does not strictly define a Rie-
mannian metric on the space of anatomical images (because
of the second term). In the future we plan to define distance
in terms of the elegant construction described in Trouvé and
Younes (2005).

Having defined a metric on the space of images that ac-
commodates anatomical variability, we can apply that met-
ric to regress a representative anatomical configuration, with
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associated image, from our observations {ti , Ii}

Îh(t) = argmin
I∈I

(∑N
i=1 Kh(t − ti )dI (I, Ii)

2

∑N
i=1 Kh(t − ti )

)
. (18)

Equation (18) expresses the following intuitive idea: For
any age t , the population can be represented by the anatom-
ical configuration that is centrally located, according to dI ,
among the observations that occur near in time to t . As in the
univariate case, the weights are determined by the kernel K .

2.6 Diffeomorphic Growth Model

Having regressed a population representative anatomical im-
age, as a function of age, we can now study the local shape
changes evident—for the population—as a function of age.
We use the manifold kernel regression estimator to extend
a single-subject longitudinal growth model in order to study
population-average geometric change. In particular, we es-
timate the age-indexed diffeomorphism that quantifies the
fine scale anatomical shape change of the population repre-
sentative Î .

2.6.1 Single-Subject Growth Model

The dynamic growth model described in Miller (2004) as-
sociates a single subject with a collection of image obser-
vations Jt ∈ I , which are acquired over a period of time
t ∈ [0,1]. The goal is to determine the diffeomorphic flow gt

that deforms an exemplar image Jα through time in such a
way that it matches these image observations. In practice J0

is used as the exemplar image. This methodology has been
applied, for example, to measure growth or atrophy of struc-
tures within the brain.

The formalization of the growth problem is similar to the
definition of the image metric dI (cf. (17)) in that it is de-
fined as a minimization problem that seeks to find a solution
gt that requires the least amount of deformation according
to the metric dH on the space of diffeomorphisms:

argmin
v:ġt=vt (gt )

[∫ 1

0
‖vt ‖2

V dt + 1

σ 2

∫ 1

0
‖Jα(g−1

t ) − Jt‖2
L2

dt

]
.

(19)

A primary difference between this equation and (17) is that
in the case of the growth model the second term is integrated
over time. This enforces the requirement that the deform-
ing exemplar image Jα(g−1

t ) match the observed imagery
Jt throughout the growth period.

It has been shown using the calculus of variations (Miller
et al. 2002) that the solution to (19) satisfies

Avt = − 1

2σ 2
∇(Jα ◦ g−1

t )

∫ 1

t

(Ju(gu ◦ g−1
t )

− Jα(g−1
t ))|D(gu ◦ g−1

t )|du (20)

where ∇(Jα ◦g−1
t ) is the gradient of the deformed exemplar

image and D(gu ◦ g−1
t ) is the Jacobian of the diffeomor-

phic transformation that maps the anatomical configuration
at time t to the configuration at time u. The discrete version
of this equation is used to construct an iterative solution for
vt . gt is initially set to the identity map for all t . At each
iteration vt , t ∈ [0,1] is updated according to the observed
images Jt and the current estimate of gt , t ∈ [0,1].

2.6.2 Population Growth Model

In order to extend this growth model to apply to a popula-
tion of subjects, we replace the subject-specific collection of
observed imagery Jt with the expected observed imagery,
as a function of time, for the population (cf. Fig. 4). This is
achieved by combining the manifold kernel regression esti-
mator (see (18)) with the growth model (see (19)):

argmin
v:ġt=vt (gt )

∫ 1

0
‖vt ‖2

V dt + 1

σ 2

∫ 1

0

∥∥∥∥∥Iα(g−1
t )

− argmin
I∈I

(∑N
i=1 Kh(t − ti )dI (I, Ii)

2

∑N
i=1 Kh(t − ti )

)∥∥∥∥∥
2

L2

dt. (21)

In this way the population representative images serve as a
collection of population average time-sequence imagery.

In order to solve (21) we first solve the interior mini-
mization problem for a discrete collection of time points.
This is legitimate since this problem does not depend on the
growth deformation gt . Once these population representa-
tive images are computed, the time-indexed deformation gt

is computed using the iterative method based on (20). We
use Iα ≡ Î (0) as our population exemplar image. In order
to speed convergence, we apply the growth model within
a three-level multi-resolution framework where initial solu-
tions at coarser scale levels are used to initialize the opti-
mization procedure at finer scale levels.

Once gt is computed, it can be analyzed to determine lo-
cal, age-indexed geometric change for the population. For
example, instantaneous local growth and atrophy can be
measured via the log-determinant of the Jacobian of the ve-
locity field defined by

log

∣∣∣∣∣∣∣∣∣∣

∂ġ1
t

∂x1 (x)
∂ġ1

t

∂x2 (x)
∂ġ1

t

∂x3 (x)

∂ġ2
t

∂x1 (x)
∂ġ2

t

∂x2 (x)
∂ġ2

t

∂x3 (x)

∂ġ3
t

∂x1 (x)
∂ġ3

t

∂x2 (x)
∂ġ3

t

∂x3 (x)

∣∣∣∣∣∣∣∣∣∣
. (22)

Values of the log-Jacobian greater than zero indicate local
expansion; values less than zero indicate local contraction.
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Fig. 4 (Color online) Population growth model schematic. (a) The dif-
feomorphism gt quantifies the geometric change of Î throughout the
growth period. (b) The velocity field that is identified with the tangent
vector vt = ġt is overlaid on the underlying anatomical image Î (t). The

arrows indicate instantaneous shape change at age t . (c) This colormap
identifies regions of local expansion and contraction of the underlying
anatomy at time t . Red indicates expansion; blue indicates contraction.
See text for details

2.6.3 Algorithm

In summary, the algorithm for computing a population
growth model for a collection of age/image pairs, {ti , Ii}Ni=1,
consists of two steps.

1. Compute the kernel regression. Choose a bandwidth pa-
rameter, h, and a discrete sampling of the age range,
s1, . . . , sT , and compute the corresponding regressed im-
ages, Îh(sk), as the weighted average given in (18). For
the results in this paper we approximate solutions to (18)
using an iterative greedy algorithm that is similar to the
method described in Joshi et al. (2004).

2. Compute the population growth model. Solve the growth
model (21), plugging in the regressed images, Ih(sk), as
the data. This is done using the gradient descent given
by (20). The result is a time-varying deformation repre-
sented by a set of age-indexed vector fields vsk . Changes
in shape over time can be quantified using these vector
fields, for instance, by analyzing the log of the deforma-
tion Jacobian.

3 Results

3.1 Synthetic Data Experiment

Before describing the anatomical study, we present a proof
of concept experiment based on synthetic data. In this ex-
periment, we apply our manifold regression method to a
database of synthetic 2D images that were generated from a
known, underlying geometric process. Or goal is to recover,
from the imagery alone, the underlying geometric change.

The database consists of two cohorts that each contain
100 256×256 2D bulls-eye images. The cohorts, B1 and B2,
differ by the amount of random geometric variation present.
Each image is associated with a particular value of the syn-
thetic predictor variable t ∈ [0,1]; the values of t for the

database were drawn from a uniform random distribution on
[0,1]. For the i-th image there are three disks which inde-
pendently change in radii according to

r1(ti) = f1(ti) + εi + εi,1

r2(ti) = f2(ti) + εi + εi,2

r3(ti) = f3(ti) + εi + εi,3

(23)

subject to

r1(t) < r2(t) < r3(t) for all t ∈ [0,1]. (24)

The functions f1, f2, and f3 are known; they define
the noise-free, ground-truth geometric change as a func-
tion of t . Noise is added to these radius functions via
the zero mean Gaussian random variables εi, εi,1, εi,2 and
εi,3. For cohort B1, εi ∼ N(μ = 0, σ 2 = 4 pixels) and
εi,1, εi,2, εi,3 ∼ N(μ = 0, σ 2 = 1 pixels). For cohort B2,
εi ∼ N(μ = 0, σ 2 = 16 pixels) and εi,1, εi,2, εi,3 ∼ N(μ =
0, σ 2 = 4 pixels). Once the image geometries are fixed i.i.d
Gaussian noise is added to the image intensities. Figure 5
contains a schematic of the image generation process. Fig-
ure 6 displays a sample of the images from this database.

For each cohort, we applied our algorithm in order to
regress a population representative bulls-eye image for 8
equally spaced values of t . A kernel bandwidth of σ = 0.045
was used. For this experiment, the solutions to (17) were
computed using MATLAB codes based on the LDDMM al-
gorithm described in Beg (2003), Beg et al. (2005).

Figure 7 contains the results of this experiment. The re-
gressed images are shown in the background. The ground
truth radii values, f1, f2, and f3, are depicted as colored
overlays. The close agreement with the regressed images
and the overlays indicates that the underlying geometric
process was recovered from the image database—that is, the
underlying time effect was separated from the random geo-
metric variation. Comparing the results for the two cohorts,
the regression of the geometries is rather robust to level of
the geometrical noise. Only a slight degradation in accuracy
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Fig. 5 (Color online) Synthetic bulls-eye data set construction. The
bulls-eye database contains 200 total 2D images; each images is asso-
ciated with a value of t drawn from a uniform distribution on [0,1].
(a) Images are generated from three independent, noisy radius values:
r1, r2, and r3. (b) Cohort B1: each observed radius value (markers)

is a function of t and is determined by adding random noise to the
ground truth functions f1, f2, and f3, which are depicted by the solid
curves. (c) The second cohort, B2, was generated using a higher level
of random geometric variation

Fig. 6 Random design database
of 2D bulls-eye images. These
images are taken from
cohort B2. Associated time
measurements increase from left
to right and from top to bottom.
Inner, middle, and outer disk
radii are generated by adding
noise to the underlying curves
depicted in Fig. 5(b) and (c)

of the estimate is seen with a four-fold increase in the radii
noise variance.

3.2 Regressing Average Change of the Healthy Brain
from 3D MR Images

To demonstrate our method for estimating cross-sectional
growth, we applied the algorithm to a database of 3D
MR images. The database contains MRA, T1-FLASH, T1-
MPRAGE, and T2-weighted images from 97 healthy adults
ranging in age from 20 to 79 (Lorenzen et al. 2006). For this
study we only utilized the T1-FLASH images; these images
were acquired at a spatial resolution of 1 mm × 1 mm ×
1 mm using a 3 Tesla head-only scanner. The tissue exte-
rior to the brain was removed using a mask generated by a
brain segmentation tool described in Prastawa et al. (2004).

This tool was also used for bias correction. In the final pre-
processing step, all of the images were spatially aligned to
an atlas using affine registration.

We applied our algorithm separately for males and fe-
males. We selected only patients for which T1-Flash data
was available. The final size of the male cohort is 38 subjects
ranging in age from 22 to 72; the final size of the female co-
hort is 46 subjects ranging in age from 20 to 66. Midaxial
slices for a sample of these subjects are shown in Fig. 2.

We applied the manifold kernel regression estimator (18)
to compute representative anatomical images for each co-
hort. Images were computed for ages 30 to 60 at increments
of 1 year using a Gaussian kernel with σ = 6 years. This
bandwidth was subjectively determined. Figures 8 and 9
contain slices from these representative images.

We applied the diffeomorphic growth estimation algo-
rithm described in Sect. 2.6 to determine the anatomical
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Fig. 7 (Color online)
Regression results for synthetic
bulls-eye database. These
images show the regression
results for the bulls-eye database
at 8 equally-spaced time points
for cohorts B1 and B2. Colored
overlays denote the ground truth
radii as determined by the
underlying curves in Fig. 6(b)
and (c)

shape change over time for each cohort. Figure 10 illustrates
the instantaneous change in the deformation at 8 different
ages. More precisely, the figure shows the log-determinant
of the Jacobian of the time-derivative of the deformation. In
these images, red pixels indicate expansion of the underly-
ing tissue, at the given age, while blue pixels indicate con-
traction. According to these determinant maps, expansion
of the ventricles is evident for each age group. However, the
expansion is accelerated for ages 50 to 60. Note that this
finding agrees well with volume-based regression analysis
from Fig. 1.

3.2.1 Computational Strategy

For this study we approximate solutions to (18) using an
iterative greedy algorithm that is similar to the method de-
scribed in Joshi et al. (2004). Results were computed us-
ing a multithreaded C++ implementation on an 8 proces-
sor (16 core) 3 GHz system with approximately 64 giga-
bytes of RAM. Processing time averaged 116 minutes per
256 × 256 × 256 regressed image volume.

When computing each representative image Î (x), we use
a multi-resolution approach that generates images at pro-
gressively higher resolutions, where each level is initialized
by the results at the next coarsest scale. This strategy has the
dual benefits of (a) addressing the large scale shape changes
first and (b) speeding algorithm convergence.

The dominating computation at each iteration is a Fast
Fourier Transform. The order of the algorithm is MNn logn

where M is the number of iterations, N is the number of im-
ages, and n is the number of voxels along the largest dimen-
sion of the images. Therefore, the complexity grows linearly
with the number of observations, making this algorithm suit-
able for application to large data sets.

4 Conclusion and Future Work

We have proposed a method for population shape regression
that enables novel analysis of population shape and growth
from random design data when the underlying shape model
is non-Euclidean. While the method is quite general, in this
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Fig. 8 Regressed brain images.
Representative anatomical
images for each cohort at
ages 30 (left) and 60 (right).
These images were generated
from the random design 3D MR
database using the shape
regression method described in
Sect. 2

Fig. 9 The average, aging
brain. These images show the
average brain shape as a
function of age for the female
(top) and male (bottom) cohorts.
These are not images from any
particular patient—they are
computed using the regression
method proposed in this
paper (18). Noticeable
expansion of the lateral
ventricles is clearly captured in
both the image data and the
determinant maps (Fig. 10). All
2D slices are extracted from the
3D volumes that were used for
computation

paper we apply this method to study the effect of aging on
the brain. We regress a population representative shape, in-
dexed by age, from a database of MR brain images. Finally,

we apply a longitudinal growth model to these representative
images to study the detailed local shape change that occurs,
on average, as a function of age.
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Fig. 10 (Color online)
Age-indexed local expansion
and contraction. Illustration of
the local brain shape change as a
function of age for the female
(top) and male (bottom) cohorts.
These data were generated by
applying a diffeomorphic
growth 21 model to the
representative images that were
computed using manifold
regression. Red voxels indicate
local expansion; blue voxels
indicate local contraction

The regression approach presented in this paper produces
purely descriptive trends of brain shape trajectories. Future
work will investigate methods for quantifying these result-
ing trends. One question that one would like to ask is if the
shape changes in a population are statistically significant.
This can be answered using permutation tests, where the
ages of the subjects are reassigned randomly. This tests the
null hypothesis that there is no relationship between the in-
dependent variable (age) and the dependent variable (brain
shape). The difficulties with this approach are designing an
appropriate test statistic. Since this is a nonparametric re-
gression method, there is no single “slope” to test. There-
fore, we have to either design a statistic that tests the overall
trend or use statistics that test the local slopes within par-
ticular age ranges. Another question that one would like to
investigate is whether two populations have significantly dif-
ferent brain shape trajectories. Again, permutation tests can
be used in this case, and test statistics must be developed
that test the differences between the population trends.
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