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Abstract Gait recognition algorithms often perform poorly
because of low resolution video sequences, subjective hu-
man motion and challenging outdoor scenarios. Despite
these challenges, gait recognition research is gaining mo-
mentum due to increasing demand and more possibilities
for deployment by the surveillance industry. Therefore every
research contribution which significantly improves this new
biometric is a milestone. We propose a probabilistic sub-
gait interpretation model to recognize gaits. A sub-gait is
defined by us as part of the silhouette of a moving body.
Binary silhouettes of gait video sequences form the basic
input of our approach. A novel modular training scheme has
been introduced in this research to efficiently learn subtle
sub-gait characteristics from the gait domain. For a given
gait sequence, we get useful information from the sub-gaits
by identifying and exploiting intrinsic relationships using
Bayesian networks. Finally, by incorporating efficient infer-
ence strategies, robust decisions are made for recognizing
gaits. Our results show that the proposed model tackles well
the uncertainties imposed by typical covariate factors and
shows significant recognition performance.

Keywords Gait recognition · Biometrics · Human motion
analysis · Bayesian Network · Machine learning

1 Introduction

Biometrics is the study of automated methods for recogniz-
ing people, and a biometric is a physiological or behavioral
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characteristic that can be used to identify a person. A key ob-
jective of machine vision researchers is to build automated
recognition systems that can compete and eventually sur-
pass human visual intelligence. The importance of biometric
technology as a tool for addressing national security chal-
lenges has been the focus of federally supported research
agencies such as the Defense Advanced Research Projects
Agency (US-DARPA) and the Intelligence Advanced Re-
search Projects Activity (US-IARPA). The pressing need of
the Intelligence Community for reliable biometric recog-
nition performance has been expanding since 9/11. This
expansion is expected to evolve beyond the scope of to-
day’s access control and verification applications that op-
erate within tightly controlled conditions. Identifying in-
dividuals at a distance by observing their walking behav-
ior when other features such as face and hand geometry
are not clearly visible is a common task for the human vi-
sual system. Processing this human behavior by machines
to identify individuals, which is termed gait recognition, is
an ongoing investigation. In this study we address the gait
recognition problem under unconstrained scenarios using a
probabilistic sub-gait interpretation model.

Literature shows that in the early 1970’s medical stud-
ies have first tried to treat gait as a discriminating trait (Jo-
hansson 1973). Only in the early 1990’s was gait recogni-
tion addressed by machine vision researchers (Nixon et al.
2006). Biometrics such as fingerprint and iris are considered
direct signatures of the physiology of an individual. Obtain-
ing them is intrusive by nature. On the other hand, gait bio-
metrics deal with the behavioral aspect, specifically the pat-
tern of shape and motion in a video of a walking individual
(Liu and Sarkar 2006). Like a biometric based on face recog-
nition, it is unobtrusive in nature. Mature biometrics such
as fingerprint, face and iris have crossed the experimental
stage. But gait recognition is still in its infancy. Approaches
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from researchers in various fields such as psychophysics,
cognitive science and machine vision have tried to meet
the various challenges thrown up by gait recognition. Re-
cent advances in computing technology, especially high-
speed processors, bulk storage and memory resources, are
enabling gait as a practicable biometric right now, although
the idea has emerged decades ago (Nixon and Carter 2006).
Gait recognition can be broadly divided into three categories
namely temporal alignment-based, static parameter-based
and silhouette shape-based (Liu and Sarkar 2006). The first
category considers both shape and dynamics and treats gait
sequences as time series-based patterns. The second cate-
gory characterizes human motion based on parameters such
as stride length, speed etc. Approaches that use static body
parameters such as ratio of sizes of various body parts need
to be much improved to be practical. Silhouette-based gait
recognition techniques are gaining much interest among cur-
rent gait recognition researchers (Boulgouris et al. 2006;
Nixon et al. 2006; Bauckhage et al. 2006). The reason is that
they do not need any further information such as color, tex-
ture or grey-scale metrics. Intuitively the silhouette, which
represents the binary map of walking humans, forms a ro-
bust feature to represent gait. This is because it captures
the motion of most of the body parts (Kale et al. 2004).
Recent studies Collins et al. (2002), Veeraraghavan et al.
(2004) have shown that silhouette shape has equal, if not
more, recognition potential than gait kinematics as referred
by Liu and Sarkar (2005). Motivated by these approaches
we too mainly use binary silhouettes.

In the class of object recognition problems, identification
is considered to be harder than verification (Liu and Sarkar
2005). Although gait can disclose more than identity, it is
increasingly being applied to identification tasks (Bauck-
hage et al. 2006). We don’t address the verification problem
where a single probe is matched with a single gallery, a one-
to-one match. Rather we focus on the identification problem
which matches a given probe gait sequence against a set of
gallery gait sequences, a one-to-many matching.

Our PRObabilistic Sub-gait Interpretation Model which
we abbreviate as (PROSIM) is based on a fundamental in-
sight about human pattern matching and memory. While rea-
soning with objects which are prone to uncertainties, in our
case visual processing of gaits, humans are often able to no-
tice similarities between sub-gaits and gaits. When we see
a person at a distance, we may notice a particular pattern
of arm-swinging or hip movement as a characteristic of the
whole walking gait of that person. A sub-gait is defined by
us as part of the silhouette of a moving body. A formal defin-
ition of sub-gait is given in (2)–(6) of Sect. 3.1. First a set of
sparse components or sub-gaits of the cluttered gait pattern
is perceived, this is the probe. These are then matched to a
bulk set of gait patterns, the gallery, that are remembered.
This reasoning based on similarity mapping is processed in

such a way to reveal inherent conditional independencies be-
tween gaits. In our study we intend to scientifically represent
these independencies using Bayesian Networks (BN). BNs
serve as fundamental tools in tackling uncertainty problems
as they characterize intuitive notions of human reasoning. In
other words, PROSIM employs BNs to find out and learn
intrinsic sub-gait mappings that naturally exist in gait pat-
terns. We derive robust probabilistic decisions by exploiting
the mappings established. We have identified three potential
sub-gaits among the possible sub-gaits of a gait silhouette,
by experimental evaluation. Selecting potential sub-gaits is
based on how significantly they contribute to the recognition
mechanism of gaits. We will provide details in Sect. 4.2.

We briefly present PROSIM’s architecture with the aid
of the flow diagram shown in Fig. 1. Firstly we decompose
the gallery silhouettes into sub-gaits and subject them to an
appropriate feature extraction process to construct a low di-
mensional feature space. PROSIM is a generic model which
could be applied to any feature space (subspace) projection
technique, such as PCA or SVM. For demonstration sake we
have used the recently proposed MPCA feature space (Lu
et al. 2008). PROSIM further learns subtle sub-gait charac-
teristics using a novel modular training scheme introduced
in this study. Also using standard machine learning proce-
dures, PROSIM estimates the parameters of the BN. All
these preliminary activities are performed off-line to make
minimal use of computing resources. Secondly the probe
silhouettes are decomposed into similar sub-gaits and their
extracted features are projected onto the feature space. Then
gaits are shortlisted with the aid of similarity mapping-based
reasoning. The intrinsic relationships between the sub-gaits
and gaits are represented intuitively using BNs. Finally gaits
are recognized by exploiting these relationships using robust
probabilistic inference techniques.

The rest of the paper is organized as follows. Section 2
briefly describes papers related to our research problem and
the relevance of Bayesian Network-based approaches to un-
certainty problems. Section 3 presents the theoretical con-
structs of PROSIM. Section 4 discusses experimental results
and evaluates its performance. Section 5 concludes our re-
search.

2 Related Work

2.1 Motivation from Component-Based Object Models

Object recognition techniques can be classified as holistic
or component-based. Holistic (global) approaches treat the
entire object as one unit and are characterized by the lack
of a-priori decomposition of the image into semantically
meaningful components. Component-based models subdi-
vide the object under study into components, then process
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Fig. 1 Framework of the
proposed probabilistic model

and manipulate these components, to finally classify them
based on one-to-many and many-to-one mappings. Due to
the intricacies of real world scenarios, the focus has shifted
from holistic approaches to representations of individual ob-
ject parts linked by structural information, with richer con-
textual descriptions of object configurations (Bergtholdt et
al. 2009). Pioneering medical studies (Murray et al. 1964;
Murray 1967) infer that human gait is composed of move-
ments of many body parts as referred by Kale et al. (2004).
This indicates that gait recognition performance can be en-
hanced by a component-based representation and analysis.
We will survey some typical gait-based component mod-
els here. Recently a human body component-based ap-
proach has been proposed (Boulgouris and Chi 20007).
Body components are manually labeled and weights have
been assigned to them based on their contribution to recog-
nition performance. By combining the results of various
body components into a common distance metric, improved
recognition performance has been achieved. In Lee and
Grimson (2002), the silhouettes of gait sequences are subdi-
vided into seven regions, fitted into ellipses and a set of mo-
ment related features are computed. This component-based
approach shows improved recognition and gender classifi-
cation using a small dataset captured at indoors. In Bauck-
hage et al. (2006) a method to establish homeomorphisms
between 2D lattices and binary silhouettes is proposed. This
method provides a robust vector space embedding of seg-
mented body silhouettes. Feature vectors obtained from this
scheme show improved detection of abnormal gait. Li et al.

(2008) have proposed a component based approach by seg-
menting silhouettes into seven components, namely head,
arm, trunk, thigh, front-leg, back-leg and feet. The effec-
tiveness of these components for gait recognition and gen-
der recognition has been analyzed. The approach relies on
manually selected control points. These studies show that
component-based algorithms have been attempted for gait
and can lead to performance improvement.

Performance of the newly emerging gait recognition can
be significantly improved by getting insight into related ob-
ject recognition studies. A component-based person detec-
tion system has been proposed by Mohan et al. (2001) to
detect humans in cluttered scenes. Initially example-based
detectors are trained to find whether components of the hu-
man body are present in the specified geometric configura-
tion. After ensuring this, a pattern classifier finally performs
the recognition task. The authors have highlighted that the
system is robust to covariate factors such as low resolution
and occlusion due to the component-based approach. Early
holistic approaches (Hallinan et al. 1999; Turk and Pentland
1991) used the intensity pattern of the whole face as input
and modeled the photometric variation by linear combina-
tion of the eigenfaces. Although these well-known meth-
ods captured some geometric and photometric variations,
they are limited in handling large-scale structural variations
due to their fixed topology and holistic assumptions (Xu et
al. 2008). Component-based algorithms have been proven
to be superior for recognizing faces under unconstrained
scenarios prone to local distortions, imprecise localizations,
occlusions and variations in expression (Kim et al. 2005;
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Martinez 2002). Heisele et al. (2007) compare holistic ver-
sus component-based approaches to perform face detection
and identification in the presence of pose and illumination
variance. Their experimental results clearly show that their
component-based approach is much superior than the global
approach. Abeni et al. (2006) compare an exclusive unified
face recognition approach with a hybrid component-based
approach. They show that the component-based system sig-
nificantly outperforms the holistic system. These studies
motivates us to consider an important phenomenon. That
is performance degradation factors such as viewing angle
(pose), occlusion, illumination that are inherent in typical
object recognition scenarios (in our case gait recognition),
could be mitigated well by component-based approaches.

2.2 Bayesian Models to Address Uncertainties

A Bayesian network (or a belief network) is a probabilis-
tic graphical model that represents a set of variables and
their probabilistic independencies. Bayesian models have
been applied in various applications that work in uncon-
strained and realistic environments and they are now the
mainstay of the AI research field known as “reasoning un-
der uncertainty” (Jensen and Nielsen 2007). Bayesian net-
works have been proposed as tools to systematically analyze
how humans make judgments under uncertainty (Krynski
and Tenenbaum 2007). Intille and Bobick (2001) have pro-
posed a Bayesian framework to recognize highly structured,
multi-person action amidst multiple sources of visual per-
ceptual uncertainties. Dahyot et al. (2004) have suggested a
Bayesian approach inspired by probabilistic principal com-
ponent analysis to detect objects subject to cluttered back-
grounds coupled with occlusions. Tong et al. (2007) have
proposed a Bayesian model to recognize facial expressions
amidst uncertainties such as occlusions, pose and illumina-
tion variation. The proposed model is capable of represent-
ing the relationships among different facial action units in
a coherent and unified hierarchical structure, accounting for
the uncertainties in the recognition process and providing
principled inference. The performance of facial action unit
recognition algorithms gets affected by errors encountered
during the feature extraction and face alignment process due
to uncertainties such as occlusions. The authors claim that
their Bayesian model could compensate these errors, by ex-
ploiting intrinsic relationships among the facial action units.
Kemp et al. (2006) have presented a Bayesian model of in-
ductive reasoning that combines causal reasoning with simi-
larity-based reasoning and shown that it accounts well for
human inferences about the properties of biological species.
In a way their model exploits intrinsic similarity relation-
ships between objects and their features to make predictions.
Zhou et al. (2006) have proposed a Bayesian framework
based on a simple human intuition which assumes that all

humans have a head and two legs and each leg is jointed at
the knee. A 2D articulated model which is a crude approxi-
mation to a real walker is fitted to gait silhouettes. The gait
images were manually labeled to find out sections of gait
cycles. The objective of this approach is to determine the
likelihood of the image given the model. The authors claim
that their approach tackles well uncertainties such as occlu-
sion and noise. Such Bayesian studies inspired us to design
PROSIM, which employs Bayesian Networks to recognize
gaits under unconstrained scenarios by learning and inter-
preting sub-gait characteristics.

3 PRObabilistic Sub-gait Interpretation Model
(PROSIM)

3.1 Sub-gait Segmentation

Segmenting specific body components such as head, torso,
arms and legs demands manual labeling. However, manual
labeling may not guarantee accurate marking of the body
components on video sequences. This is because of factors
such as low-image quality due to overall intensity, occlu-
sion of feet when walking on grass, similarity of dark skin
tones of some subjects with the background, occlusion of
the arms due to various viewing angles, and the presence
of dark or baggy clothing (Liu and Sarkar 2005). We in-
tend to avoid such manual labeling and at the same time uti-
lize the information from those body components. Hence we
strategically segment the silhouettes into sub-gaits viz., Up-
per Gait (U ), Mid Gait (M), Lower Gait (L), LeFt Gait (LF)
and Right Gait (R). We will represent the set of sub-gaits by
S = {U,M,L,LF,R}.

By manipulating the binary files that represent silhou-
ettes, we compute the bounding rectangle that encompasses
a silhouette and resize them to a standard dimension of
64 × 44 pixels. A typical silhouette frame of a gait video se-
quence and its sub-gaits are shown in Fig. 2. We define these
sub-gaits using the language of mathematical morphology
which is widely used to represent and describe image se-
mantics (Gonzalez and Woods 2002). For a given silhouette
frame I (x, y) with width w and height h, its centre (xc, yc)

can be computed by

(xc, yc) =
(

w

2
,
h

2

)
. (1)

Then the sub-gaits U, M and L can be defined as

U(I (x, y)) =
{
(x, y)|xc − w

2
≤ x ≤ xc + w

2
,

yc + h

2
≤ y ≤ yc + h

2
− hε1

}
, (2)
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Fig. 2 A typical silhouette and its sub-gaits

M(I (x, y)) =
{
(x, y)|xc − w

2
≤ x ≤ xc + w

2
,

yc + h

2
− hε1 < y ≤ yc + h

2
− h(ε1 + ε2)

}
,

(3)

L(I (x, y)) =
{
(x, y)|xc − w

2
≤ x ≤ xc + w

2
,

yc + h

2
− h(ε1 + ε2) < y ≤ yc − h

2

}
. (4)

For the sub-gait definitions above, the heights of each of the
sub-gait segments are distinct and determined by constants
ε1 and ε2. Values of these constants were chosen based on
rough estimates performed on the mean silhouette of the
gallery set. The left and right sub-gaits viz., LF and R, which
are segmented from the centre are just a function of width
(w) and do not require extra constants. Hence their defini-
tions are straight forward as follows:

LF(I (x, y)) =
{
(x, y)|xc − w

2
≤ x ≤ xc,

yc + h

2
≤ y ≤ yc − h

2

}
, (5)

R(I (x, y)) =
{
(x, y)|xc < x ≤ xc + w

2
,

yc + h

2
≤ y ≤ yc − h

2

}
. (6)

In this paper we describe a procedure to recognize gaits by
representing and interpreting sub-gait characteristics using
a reasonable probabilistic framework. Finding optimal sub-
gait dimensions such as the optimal height of the sub-gaits
might further improve recognition performance. Such oper-
ational motivation factors needs further scrutiny of rigorous

iterative experiments, exploration of advanced image seg-
mentation and optimization techniques which deserve an-
other dedicated study.

3.2 Formulation of the Probabilistic Framework

We employ BNs to establish intrinsic similarity mappings
between the sub-gaits and the gaits. Each node of a BN
has a set of probable values for each variable which are
known as belief states. These belief states are propagated
between nodes of the BN effectively. A BN maps intrinsic
relationships that are inherent in a domain in terms of par-
ent and child nodes. It is capable of learning these relation-
ships and storing the belief states of a given domain in the
form of Conditional Probability Tables (CPT). By manipu-
lating these belief states, the state of a particular node can
be queried from other nodes with the aid of probabilistic in-
ference techniques. In our case we would like to query the
belief state of a gait sequence by observing the probabilities
entailed by its sub-gaits.

Though gait motion is periodic in nature, various sub-
gaits contain different information about the gait they con-
stitute. Owing to this variation, all the sub-gaits will not have
the same probability of influencing the gait to be recognized.
Therefore each sub-gait of a gait will have different belief
states and this varies from subject to subject as the walking
style of individuals varies. The more unique features a sub-
gait contains, the more strength it will have to influence the
recognition of the gait to which the sub-gait belongs. We de-
fine the strength of a sub-gait Si which crucially contributes
to the recognition of the gait Gp as Influence Strength and
denote it as Zip . This leads to an important hypothesis. That
is the gait pattern being recognized by observing the sub-
gait of a probe gait sequence X will be more similar to
the corresponding gallery gait pattern, X’s gallery set, if the
magnitude of the influence strength is high. Hence influence
strengths are closely associated to similarities and have an
impact over recognition accuracy. By observing a sub-gait, if
the suspect is ranked first or within a reasonable range, then
the influence strength of that sub-gait tends to be high. Else
if the ranking is beyond this range, the influence strength
will be low.

Let the sub-gaits of a probe gait sequence be represented
by S = {U,M,L,LF,R}. Let G = {G1,G2,G3, . . . ,Gn}
represent the gallery gait sequences of n subjects. Let k be
the total number of sub-gaits. Suppose that a probe gait’s
sub-gait, say Si ⊂ S for any 1 ≤ i ≤ k, has led to the recog-
nition of a set of gaits {Gp,Gq,Gr} ⊂ G, where p, q and r

represent unique integers between 1 to n. Let Zip,Ziq and
Zir represent the corresponding influence strengths. Since
Si is influencing the recognition of {Gp,Gq,Gr}, we draw
edges from Si to the elements of {Gp,Gq,Gr}, resulting in
a typical Directed Acyclic Graph (DAG) as shown in Fig. 3.
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Fig. 3 DAG that establishes similarity mappings between sub-gait to
gaits

This way we establish mappings from the set of sub-gaits
to the subset of gaits that are activated. Conceptually these
gallery gait patterns which are consequences of observing
the sub-gait Si , will be nearly similar to the probe gait pat-
tern. As the mappings established by the DAG are based on
similarities we call them similarity mappings.

In the DAG shown in Fig. 3 each gait is conditionally
independent of the other gaits given its parent. That is

IP ({Gp}, {Gq,Gr}|Si), IP ({Gq}, {Gr,Gp}|Si)

and

IP ({Gr}, {Gp,Gq}|Si).

We denote independence of variables by IP . This can be
precisely written in the following general form

P(Gj |Gc,Si) = P(Gj |Si), j = 1, . . . , n, i = 1, . . . , k,

(7)

where Gc = G \ Gj . Let the DAG shown in Fig. 3 be called
D and its underlying probability distribution be called P .
Then (D,P ) satisfies the Markov condition provided by
(7), as each element of D is conditionally independent of
the set of all its non-descendents given the set of parents.
Such a Markov conditioned DAG leads to what is known
as a Bayesian Network (BN) by definition, see (Neapolitan
2003). The graphical nature of PROSIM helps us to visual-
ize the abstract intrinsic similarity mappings (relationships)
that exists in the gait domain. This is a consequence of map-
ping Si to {Gp,Gq,Gr}.

3.3 Learning Sub-Gait Characteristics

3.3.1 Learning Parameters

We will call the parent nodes of the proposed BN the prior
belief states of the sub-gaits. The gaits influenced by the

sub-gaits are the child nodes of the BN. In this probabilistic
framework we will infer the belief state of the gaits con-
ditional on the sub-gaits, in order to recognize the gaits.
Dirichlet density functions are widely used in Bayesian sta-
tistics as they provide intuitive means in representing prior
beliefs which can be updated gradually by observing evi-
dence, Neapolitan (2003). The prior belief states of the pro-
posed BN can be quantified using the following Dirichlet
density function

ρ(f1, f2, f3, . . . , fr−1)

= �(N)∏r
k=1 �(ak)

f
a1−1
1 f

a2−1
2 · · ·f ar−1

r , (8)

where f1, f2, . . . , fr−1 are values taken on by random vari-
ables F1,F2, . . . ,Fr−1, 0 ≤ fk ≤ 1. The variable fr is de-
fined by

∑r
k=1 fk = 1, N = ∑r

k=1 ak and a1, a2, a3, . . . , ar

are integers ≥ 1.
The gamma function used in (9) is computed by

�(x) = (x − 1)!, x ∈ N. (9)

The prior belief states of the parameters which are the funda-
mental building blocks of the BN are updated by a machine
learning procedure called parameter estimation. Out of sev-
eral such procedures available, Maximum Likelihood Esti-
mation (MLE) and Bayesian Estimation are considered most
often by researchers (Duda et al. 2001). MLE has been rec-
ommended by Myung (2003) as it has many optimal proper-
ties in estimation including asymptotic consistency and un-
biased nature. MLE demands large training samples. For-
tunately as the BN can be realized through large samples
available in the gait domains, MLE will converge to pre-
cise estimates enabling the distribution of the parameters
to be normal. Consequently many of the inference meth-
ods in statistics such as Chi-square test, Akaike information
criterion (Akaike 1974) and Bayesian information criteria
(Schwarz 1978) are developed based on MLE. Equation (7)
reveals that the Markov condition has been satisfied by the
probability distribution entailed by the DAG of the proposed
PROSIM. Hence we have

P(G|Si) =
n∏

j=1

P(Gj |Si), i = 1, . . . , k. (10)

Recall from Sect. 3.2 that G represents the n gait silhouette
sequences in the gallery set. We mathematically define the
influence strength Zij of a sub-gait Si as

Zij = (n − �)/n, (11)

where � is the rank in which the gait Gj is being recognized
by the sub-gait Si . The objective of MLE is to estimate the
unknown parameters Zij (j = 1, . . . , n; i = 1, . . . , k) that
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best agree with the gallery samples. MLE of Zij is by de-
finition the value Ẑij that maximizes lnP(G|Si), the log-
likelihood of the parameter set Zij with respect to the gallery
set G. Ẑij can be computed by

Ẑij = arg max
Zij

lnP(Gj |Si). (12)

To be a maximum, the shape of the log-likelihood function,
lnP(Gj |Si), should be convex in the neighborhood of Ẑij

which can be checked by computing the second derivatives
of the log likelihoods. Finally a set of necessary conditions
for the maximum likelihood estimate for Zij can be obtained
from the set of n equations

k∑
i=1

∇Zi
lnP(Gj |Si) = 0, j = 1, . . . , n, (13)

where the gradient operator ∇Zi
is given by

∇Zi
≡

⎛
⎜⎜⎜⎜⎜⎝

∂
∂Zi1

∂
∂Zi2
...

∂
∂Zin

⎞
⎟⎟⎟⎟⎟⎠

, i = 1, . . . , k. (14)

3.3.2 Proposed Modular Training Scheme

We will describe a novel modular training scheme employed
by PROSIM here. A training or test sample is well defined
in many object recognition (e.g. face, iris recognition) prob-
lems. For example, a face or an iris image is considered as
a sample without any further partitions. However, the def-
inition of a gait sample is subjective and not so precisely
defined. Usually a gait sample is represented in terms of gait
cycles (either full, multiple or partial cycles). A gait cycle
begins when one foot contacts the ground and ends when the
same foot contacts the ground again. Thus, each cycle begins
at initial contact with a stance phase and proceeds through a
swing phase until the cycle ends with the next initial contact
of the limb. Prior to factoring the gait samples into modules,
we have constructed the sub-gaits data sets from the gallery
data sets by applying the sub-gait segmentation scheme for-
mulated in Sect. 3.1. In the gallery set, because each sub-
ject’s behavior is represented as several gait samples due to
variations in walking speed, the number of frames per sam-
ple will be different. A suitable time mode normalization al-
gorithm can be applied to normalize the gait samples to have
a unique number of frames. We have normalized the number
of frames in each sample by applying the time mode normal-
ization technique proposed by Lu et al. (2008). We intend to
decompose the normalized sub-gait samples into compact
modules and train PROSIM to learn the intrinsic relation-
ships between these modularized sub-gaits. The proposed

Fig. 4 Modular scheme of a typical sub-gait

modular training scheme enables PROSIM to represent and
learn subtle walking patterns of human gaits. Figure 4 shows
the modular scheme applied to a typical sub-gait. For exam-
ple’s sake we have shown the scheme for a lower sub-gait.
We initially modularize all training samples into two subsets
namely A and B . An even number of samples is split 50–50,
an odd number the closest integer partition to 50–50. Gait
subsamples of modules A and B represent how the subjects
walk during the first part and second part of a walking seg-
ment. We further modularize these subsets into AB and BA

which will have mixtures of walking samples from A and
B together. That is AB will have some samples from the
first half of A and B and BA will have some samples from
the second half of A and B . Finally we modularize AB and
BA into tiny modules viz., AB1, AB2, BA1 and BA2. That
is each of these tiny modules represent about a quarter of a
sub-gait sample. Mathematically we can model this modular
scheme as follows:
Let the gallery set of sub-gait (or gait) silhouettes of a sub-
ject say U be represented by d gait samples. Let the ith sub-
gait sample be denoted by ui , where 1 ≤ i ≤ d . We wish to
modularize U such that

U = AB1 ∪ BA1 ∪ AB2 ∪ BA2, (15)

where

AB1 =
a∑

i=1

ui; BA1 =
b∑

i=a+1

ui; (16)

AB2 =
c∑

i=b+1

ui; BA2 =
d∑

i=c+1

ui. (17)

The indices a, b and c of (16) and (17) can be computed as

a = 	d/4
; b = a + d − a

3
; c = b + d − a

3
. (18)
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Table 1 CPT showing belief states of subtle sub-gait relationships
learned from the proposed modular training scheme for some typical
subjects. The sub-gait operators L(·) and LF(·) have been defined in
(4) and (5)

Sub-gaits Learned belief states of typical subjects

G5 G10 G15 G20 G25

L(A) 0.97 0.86 0.75 0.93 0.86

L(B) 0.79 0.84 0.73 0.79 0.84

L(A) L(B) 0.78 0.99 0.92 0.99 0.99

LF(A) 0.94 0.86 0.89 0.95 0.86

L(A) LF(A) 0.97 0.86 0.68 0.79 0.86

L(B) LF(A) 0.78 0.97 0.67 0.99 0.97

L(A) L(B) LF(A) 0.93 0.58 0.69 0.91 0.58

LF(B) 0.92 0.87 0.86 0.97 0.87

L(A) LF(B) 0.97 0.78 0.83 0.99 0.78

L(B) LF(B) 0.97 0.66 0.85 0.97 0.66

L(A) L(B) LF(B) 0.56 0.58 0.33 0.77 0.58

LF(A) LF(B) 0.75 0.99 0.92 0.99 0.99

L(A) LF(A) LF(B) 0.93 0.58 0.69 0.91 0.58

L(B) LF(A) LF(B) 0.58 0.73 0.39 0.72 0.73

L(A) L(B) LF(A) LF(B) 0.97 0.78 0.83 0.99 0.78

Obviously the tiny modules defined in (16) and (17) can be
appropriately merged to yield

AB = AB1 ∪ AB2; BA = BA1 ∪ BA2. (19)

Modules can be combined using the following rules

AB ∩ A = AB1; BA ∩ A = BA1; (20)

AB ∩ B = AB2; BA ∩ B = BA2. (21)

We will show shortly how the proposed modular scheme en-
ables us to relate the various sub-gaits and learn subtle walk-
ing patterns that are inherent in a subject’s walking behav-
ior. We perceive that the intrinsic relationships that exist be-
tween the modularized sub-gaits contribute significantly in
governing the gait patterns. The BN employed in PROSIM
learns the belief states of these relationships systematically
from the sub-gait data sets using the MLE approach out-
lined in Sect. 3.3.1. The learned belief states are stored in
the form of Conditional Probability Tables (CPTs). For k

sub-gaits and m modules, the BN yields a CPT comprising
of 2k∗m − 1 number of rows. A typical CPT for the case
of two sub-gaits L and LF whose samples are factored into
two subsamples A and B is shown in Table 1. By combining
various sub-gait modules we can reveal intrinsic characteris-
tics of gait patterns. For example the CPT entry L(A)LF(B)

intends to reveal the belief state of “left leg sub-gait pat-
tern” for a portion of a walking sequence. The sub-gait oper-
ators L(·) and LF(·) have been defined in (4) and (5). Triv-
ially L(A) ∩ LF(B) = L(LF(AB)). When more combina-
tions of sub-gaits and subsamples are involved, the interpre-
tation needs a few more steps. For example a typical CPT

entry and its interpretation are as follows:

L(A) L(B) LF(A)

= L(A) ∩ L(B) ∩ LF(A)

= L(AB) ∩ LF(A)

= L(LF(AB1)) ∵ Eq.(20)

Similar logical reasoning can be extended to interpret any
other entry in the CPT. The conditional probabilities in Ta-
ble 1 give a measure of the strength of sub-gait relation-
ships. For example, referring to the first column in the table,
we observe that the conditional probabilities P(G5|L(A)),
P(G5|L(A),LF(A)) and P(G5|L(A),LF(B)) are higher.
This reveals the fact that the gait motion of the sub-
ject G5 is highly characterized by these intrinsic sub-gait
relationships. Whereas P(G15|L(A),L(B),LF(B)) and
P(G15|L(B),LF(A),LF(B)) (middle column of the table),
being low indicate that G15 is poorly characterized by these
sub-gait modules. We will shortly see how robust proba-
bilistic decisions can be made by interpreting and exploiting
these subtle relationships.

3.3.3 Gait Score Formulation

In this section we will propose a formula that will aid to
decide on the most probable gaits. The Bayesian Network
(BN) generated by PROSIM for a typical probe gait, whose
gallery representation is G20, is shown in Fig. 5. We have
made use of the resources provided by Murphy (2007) to
build the BN. The parent nodes viz., LA,LB, LFA,LFB,RA
and RB represent the sub-gaits. An edge from a sub-gait to a
gait indicates that, the sub-gait has influenced the gait. Also
the gaits (e.g. G22,G40, . . .) influenced by the sub-gaits are
represented by the child nodes. By this way PROSIM estab-
lishes similarity mappings from the set of sub-gait modules
to the subset of gaits. Recall from Sect. 3.2 that the mappings
established by the BN are based on similarities. Naively the
more sub-gaits mapping to a gait, roughly infers that the gait
has more chances of being similar to the probe. For exam-
ple, in Fig. 5, the gait G20 has been mapped by maximum
number of sub-gaits and as such could have more chances of
being recognized in the first rank. But however as each sub-
gait has a different recognition potential, this intuition is not
adequate enough to make a robust decision. That is, it is not
always necessary that a winner gait will always have more
mappings. We will propose a gait score formula to make a
robust decision.
Let C number of gaits be shortlisted by PROSIM from the
huge gallery set, as a consequence of the similarity map-
pings. The formula which we intend to formulate will yield
a score for each of the C gaits. This score will aid to fi-
nally rank list the shortlisted gaits. By exploiting the graph-
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Fig. 5 A typical Bayesian
Network showing similarity
mappings between the sub-gait
modules and the gaits
influenced by them. G20 is the
gallery representation of the
probe (typically chosen from the
USF dataset) being observed

Fig. 6 Predicting winner gaits using a robust gait score function

ical structure of the BN, the probability distribution over
Gm,0 < m ≤ C can be computed by

P(Gm) =
∑
Si

P (Si)P (Gm|Si), (22)

where P(Si) is the prior probability of sub-gaits and
P(Gm|Si) is the probability of a gait given the condition
that some sub-gaits (or a sub-gait) has influenced it. The
probability distribution of the short listed gaits are shown
in the bar chart of Fig. 6a). We see that the probability
of the gait G20 falls some where in the middle. Also the
probabilities of gaits G5,G1,G35, . . . ,G53,G9 which are
larger than G20, fetch nearly similar values without much
discrimination between them. This reveals that mere prob-
abilities are not adequate enough to make a meaningful de-
cision. To counter this problem we consider the well known

rule of thumb given by Russel and Norvig (1995) which
emphasizes that “Probability theory and utility theory to-
gether constitute decision theory”. By utilizing the crucial
influence strengths Z defined in Sect. 3.2 to weigh the prior
probability of sub-gaits, logically the gait score could yield
meaningful results if it is a function of the following two
factors:

(i) The probability distribution of the gaits and their sub-
gaits.

(ii) Prior probabilities of sub-gaits duly weighed by their
corresponding influence strengths.

Consolidating the above factors, the gait score μ of an mth
gait can be computed using

μ(Gm) =
∑
Si

P (Si)P (Gm|Si) +
∑
Si

ZimP (Si). (23)

The probe gait sequence (for the typical case), had been
subjected to two covariate factors namely surface and view.
The variations caused by surface and view are considered as
one of the hard problems in gait recognition which impose
vast uncertainty to the recognition process. With the aid of
the gait score, (23), gaits have been rank listed as shown in
Fig. 6(b). The chart shows that the gait score discriminates
the winner gaits well; G20, which is the gallery represen-
tation of the observed probe, clearly stands out compared
to Fig. 6(a). Thus the above formulation of face score aids
PROSIM to make robust decisions under uncertainties.

3.3.4 Robustness to Common Variations

Some common uncertainties encountered in the process of
gait recognition are caused due to variations present in chal-
lenging outdoor environments such as view, surface, shoe,
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Fig. 7 A scenario that depicts
the recognition process of a
probe gait (typically chosen
from CASIA dataset) with a
typical viewing variation of 18◦.
Normalized silhouettes of gait
sequences of the probe, the
associated Bayesian Network
generated by PROSIM and the
bar chart of first ten winner gaits
being recognized are shown

missing body components and so on. The experimental re-
sults of PROSIM’s robustness against these uncertainties
will be presented in Sect. 4. Here we will analyse the ef-
fect of uncertainties caused by two typical variations viz.
view and missing body components. The scenario of a typi-
cal probe gait whose gallery representation is G58 has been
subjected to viewing variations of 18◦ and 162◦ as shown in
Figs. 7 and 8 respectively. The Bayesian Network (BN) gen-
erated by PROSIM (Figs. 7 and Fig. 8) helps us to analyse
how this uncertainty affect the recognition mechanism, in
particular the relationships between the gaits and sub-gaits.

As the viewing variation of 18◦ is relatively small and
probably other variations being less severe, all the sub-gaits
of G58 collectively contribute to the recognition process as
seen in Fig. 7. Further the silhouettes are noisy due to fac-
tors such as similarity of colors of the subject and the back-
ground, varying illumination caused by the operating envi-
ronment and so on. Despite these variations, G58 has been
successfully recognized as a winner gait as shown in the bar
chart.

Body components such as head, arms and some portion
of the torso are missing in most of the normalized silhouette
sequences shown in Fig. 8. A huge viewing variation of 162◦

along with the complexity of missing body components, ob-
viously causes more uncertainty and consequently G58 has
been degraded from rank 1 to rank 2 as shown in the bar
chart. Interestingly when the gait of a subject is viewed from
162◦, the left body motion is more visible than the right body
motion. This is intuitively reflected by the sub-gait to gait re-
lationships captured by the BN shown in Fig. 8. Specifically
the right sub-gaits, RA and RB, have not contributed to the
recognition of G58. However these sub-gaits played their
role when the viewing angle was 18◦ as seen in Fig. 7. The
proposed framework enables us to visualize such interesting
relationships that exists between gaits and sub-gaits. We see
that sub-gaits RA and RB lack to provide evidence due to
uncertainties in the scenario. However PROSIM grasps in-
formation by accumulating evidences from other sub-gaits.
By manipulating the available evidences (LA, LB, LFA and
LFB) and the learned belief states from the stored CPTs,
PROSIM is still able to recognize G58 reasonably well (in
second rank).

The gait samples of a subject is represented in terms of
normalized gait cycles which is comprised of a set of sil-
houettes. Some of the samples might have silhouettes with
missing parts (weak samples). Within a sample the uncer-
tainty caused by silhouettes with missing parts will be com-
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Fig. 8 A scenario that depicts
the recognition process of a
probe gait (typically chosen
from CASIA dataset) with a
typical viewing variation of
162◦. Normalized silhouettes of
gait sequences of the probe with
missing body components, the
associated Bayesian Network
generated by PROSIM and the
bar chart of first ten winner gaits
being recognized are shown

Table 2 Experimental notation
and description with compliance
to human identification in USF
HumanID data sets

Probe set A B C D E F G

Capturing condition GAL GBR GBL CAR CBR CAL CBL

Covariate factors View Shoe Shoe, view Surface Surface, shoe Surface, view Surface, shoe, view

pensated by the ones which are complete. Furthermore, as
we decompose the samples into compact modules (please
see Sect. 3.3.2), the modules which have more good sam-
ples would compensate the uncertainty caused by modules
that contain silhouettes with missing parts. For example a
module of the left sub-gait (LFA) might fail to provide evi-
dence or provide less evidence (influence strength could be
weak due to weak samples). However the other module of
the left sub-gait (LFB) or modules of other sub-gaits might
provide sufficient evidence to mitigate the uncertainties im-
posed by the weak module.

4 Experimental Results

4.1 Data Set and Experimental Design

We have used the University of South Florida (USF) Hu-
manID gait challenge data set (Sarkar et al. 2005) and the
multi-view gait dataset offered by Chinese Academy of Sci-

ences (CASIA 2006) to evaluate PROSIM and compared
it with the state-of-the-art gait recognition algorithms. The
USF data set which was collected on typical outdoor envi-
ronment, consists of 122 subjects comprising of 1870 video
sequences. The gait challenge baseline algorithm (Sarkar et
al. 2005) as well as very recent algorithms such as Veer-
araghavan et al. (2009) consider seven standard experi-
mental probe sets, the details of which are tabulated in Ta-
ble 2. The seven probe sets, A to G, are designed to perform
a range of experiments in the order of increasing difficul-
ties. The abbreviations of various capturing conditions in the
table viz., C,G,A,B,L, and R refers to Concrete surface,
Grass surface, shoe type A, shoe type B, Left view and Right
view respectively.

4.2 Identifying Potential Sub-gaits

Recall from Sect. 3.1 that we have defined five sub-gaits
(k = 5) viz., Upper Gait (U ), Mid Gait (M), Lower Gait
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Fig. 9 Recognition potential of
sub-gaits for the HumanID gait
challenge data

Fig. 10 CMC response of PROSIM with respect to HumanID gait challenge experiments A, B and C

(L), Left Gait (LF) and Right Gait (R). Also recall from
Sect. 3.3.2 that the size of the Bayesian Network tends to
grow exponentially as the number of sub-gaits (i.e. the pa-
rameters) increase. This will in turn demand more comput-
ing resources. Hence prior to parameter estimation, strate-
gically selecting just a few potential sub-gaits would enable
PROSIM to be computationally feasible. In this section, we
will identify such potential sub-gaits based on their recog-
nition power. We have computed recognition rates for all of
the sub-gaits for the seven core experiments using the ap-
proach proposed by Lu et al. (2008), the results of which
are shown in Fig. 9. The mean performance of all the ex-
periments shown at the right most end of Fig. 9 justifies that
the sub-gaits L,LF and R have higher recognition potential
than U and M . Hence we will only employ these potential
sub-gaits in the subsequent experiments.

4.3 Performance Evaluation

We have experimented PROSIM with the HumanID gait
challenge experiments by gradually increasing the number
of sub-gaits. A Cumulative Match Characteristic (CMC)

curve (Moon and Phillips 2001) shows various probabilities
of recognizing an individual depending on how similar their
measurements are to that of others in the gallery. The rank
1 point on the CMC curve is the nearest-neighbor recog-
nition performance. The CMC graphs of these experiments
are shown in Figs. 10, 11 and 12. Initially by considering
the lower sub-gait alone (i.e. L), mean recognition rates of
about 60% and 67% have been yielded by PROSIM respec-
tively for the rank 1 and rank 5 performance. Then by com-
bining two potential sub-gaits (i.e. L + LF), this improved
to about 67% and 82%. Finally by considering all the three
potential sub-gaits (i.e. L + LF + R), the mean recognition
rates have been considerably improved to about 75% and
90% for rank 1 and rank 5 performance respectively. These
experimental results clearly show that when all the potential
sub-gaits are used, PROSIM achieves maximum recognition
performance.

Further we subject PROSIM to the HumanID gait chal-
lenge experiments using USF dataset and compared it
against the following state-of-the-art gait recognition algo-
rithms:
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Fig. 11 CMC response of
PROSIM with respect to
HumanID gait challenge
experiments D and E

Fig. 12 CMC response of
PROSIM with respect to
HumanID gait challenge
experiments F and G

i. Baseline (Sarkar et al. 2005)
ii. HMM—Hidden Markov Model (Kale et al. 2004)

iii. DATER—Discriminant Analysis with Tensor Repre-
sentation (Yan et al. 2005)

iv. DTW/HMM—Dynamic Time Warpring/HMM (Veer-
araghavan et al. 2004)

v. ETGLDA—Eigen Tensor Gaits based on Linear Dis-
criminant Analysis (Lu et al. 2008)

vi. GEI—Gait Energy Image (Han and Bhanu 2006)
vii. LTN—Linear Time Normalization (Boulgouris et al.

2006)
viii. MR—Matrix Representation (Xu et al. 2006)

ix. NTWN—Nonlinear Time-Warp Normalization (Veer-
araghavan et al. 2009)

x. pHMM—Population Hidden Markov Model (Liu and
Sarkar 2006).

We have experimented PROSIM with two modes of recog-
nition experiments. Initially we used the conventional ex-
perimental setting proposed by Sarkar et al. (2005) where
training was done with a limited gallery set (capturing con-
dition was fixed as Grass, Shoe Type A and Right Camera).
Recognition tests were performed with various probe sets

described in Table 2. We refer to this conventional recogni-
tion experiment as PROSIM-a. Very recently Veeraraghavan
et al. (2009) have shown that improved recognition rates can
be achieved by using multiple samples for training. They
proposed a round-robin recognition experiment in which
one of the challenge sets was used as test while the other
seven were used as training examples. The process was re-
peated for each of the seven challenge sets. We refer this ex-
periment as PROSIM-b. The rank 1 and rank 5 performance
comparisons with state-art-of-the-art gait recognition algo-
rithms are shown as bar charts in Figs. 13 and 14 respec-
tively. Though PROSIM-a competes fairly with other algo-
rithms, it is not as significant as PROSIM-b due to the re-
stricted mode training. We see that PROSIM-b outperforms
other algorithms in majority of the tests. Recognition rates
of 75.3% and 89.6% achieved by PROSIM-b respectively
for rank 1 and rank 5 performance, on an average of all the
seven gait-challenge experiments, justifies the robustness of
the proposed approach.

4.3.1 Experiments with the CASIA Dataset B

In this section we will investigate the generalization capabil-
ity of PROSIM with the large multi-view CASIA dataset B
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Fig. 13 PROSIM Vs.
state-of-the-art gait recognizers:
Rank 1 Performance

Fig. 14 PROSIM Vs.
state-of-the-art gait recognizers:
Rank 5 Performance

which contains gait sequences of 124 subjects captured from
11 viewing angles. There were totally 10 gait sequences for
each subject (6 normal + 2 with a coat + 2 with a bag) for
each of the 11 views. The dataset (CASIA 2006) enables
us to experiment the effect of the following co-variate fac-

tors.

(i) View (Camera angles were varied from 0◦ to 180◦ in
increments of 18◦)

(ii) View and clothing ((i) + Subjects walked by covering
them with a long coat)
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Fig. 15 PROSIM compared with GEI using CASIA dataset B

(iii) View and carrying ((i) + Subjects walked by carrying
a bag).

The first four sequences (normal) were used for training and
the remaining were used for testing. Yu et al. (2006) has im-
plemented the GEI algorithm using the CASIA dataset. We
have compared our results with the GEI algorithm which
are shown in Fig. 15. When tested by varying the carry-
ing condition alone (i.e. for the same view), PROSIM and
GEI yielded a recognition rate of about 87% and 68% re-
spectively. When tested by varying the clothing condition
alone, PROSIM and GEI yielded a recognition rate of about
50% and 29% respectively. This indicates that clothing is
a tough test as the occlusion caused by long coat (most of
the body parts are occluded by a long coat) imposes vast
uncertainty to the recognition process. For a small view-
ing variation of 18◦, PROSIM and GEI yields a recog-
nition rate of about 49% and 39% respectively. However
when viewing is varied extremely (trained with 0◦ and
tested with 90◦) coupled with clothing variation the recog-
nition rate has been degraded to 8.3% and 2.5% respec-
tively by PROSIM and GEI. We see that PROSIM shows
improved results especially over cloting and carrying condi-
tions.

5 Conclusion

We have identified potential sub-gaits and discovered inter-
esting sub-gait characteristics within the gait domain. The
novel Probabilistic Sub-gait Interpretation Model (PROSIM)
introduced in this work does not require manual labeling of
body components. Further the proposed modular training
scheme enables PROSIM to learn subtle gait patterns. The
graphical nature of PROSIM aids to intuitively visualize in-
trinsic sub-gait relationships and demonstrates how these

sub-gaits collectively contribute to the recognition process.
With the aid of few potential sub-gaits PROSIM reports a
reliable recognition performance and competes well with
the state-of-the-art gait recognizers. PROSIM is a generic
model which can be fitted to suit any subspace technique.
Our results show that extreme viewing angle variations cou-
pled with change of clothing remains to be the toughest test
among the experiments we have performed.

An interesting avenue for future directions could be “The
proposed model does not have direct dependencies among
parts and does this detract from the power of the model-
ing?” We have applied Bayesian Networks (which use di-
rected edges) in the proposed framework to exploit the con-
ditional independence properties that exists between gaits
and their sub-gaits to achieve robust gait recognition. Such
independence assumptions reduce the number of parameters
in the model, and therefore making the model computation-
ally feasible for real time applications. However setting de-
pendencies among parts could be modeled using undirected
links. Graphical models such as Markov networks (Pearl
1997) which use undirected graphs can be employed to cap-
ture dependency among various sub-gaits. In this regard, it
will be an interesting avenue in the future to apply undi-
rected graphical models, to investigate the impact of depen-
dencies between sub-gaits and ultimately how they would
influence the gait recognition process. Further we intend to
apply the proposed approach to a wide range of object recog-
nition problems in the future.
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