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Abstract Humans demonstrate a remarkable ability to
parse complicated motion sequences into their constituent
structures and motions. We investigate this problem, at-
tempting to learn the structure of one or more articulated
objects, given a time series of two-dimensional feature
positions. We model the observed sequence in terms of
“stick figure” objects, under the assumption that the rela-
tive joint angles between sticks can change over time, but
their lengths and connectivities are fixed. The problem is
formulated as a single probabilistic model that includes mul-
tiple sub-components: associating the features with partic-
ular sticks, determining the proper number of sticks, and
finding which sticks are physically joined. We test the al-
gorithm on challenging datasets of 2D projections of opti-
cal human motion capture and feature trajectories from real
videos.

Keywords Structure from motion · Graphical models ·
Non-rigid motion

1 Introduction

An important aspect of analyzing dynamic scenes involves
segmenting the scene into separate moving objects and
constructing detailed models of each object’s motion. For
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scenes represented by trajectories of features on the ob-
jects, structure-from-motion methods are capable of group-
ing the features and inferring the object poses when the
features belong to multiple independently moving rigid
objects. Recently, however, research has been increas-
ingly devoted to more complicated versions of this prob-
lem, when the moving objects are articulated and non-
rigid.

In this article we investigate the problem, attempting to
learn the structure of an articulated object while simultane-
ously inferring its pose at each frame of the sequence, given
a time series of feature positions. We propose a single proba-
bilistic model for describing the observed sequence in terms
of one or more “stick figure” objects. We define a “stick fig-
ure” as a collection of line segments (bones or sticks) joined
at their endpoints. The structure of a stick figure—the num-
ber and lengths of the component sticks, the association of
each feature point with exactly one stick, and the connec-
tivity of the sticks—is assumed to be temporally invariant,
while the angles (at joints) between the sticks are allowed to
change over time. We begin with no information about the
figures in a sequence, as the model parameters and structure
are all learned. An example of a stick figure learned by ap-
plying our model to 2D feature observations from a video of
a walking giraffe is shown in Fig. 1.

Learned models of skeletal structure have many possi-
ble uses. For example, detailed, manually constructed skele-
tal models are often a key component in full-body track-
ing algorithms. The ability to learn skeletal structure could
help to automate the process, potentially producing mod-
els more flexible and accurate than those constructed man-
ually. Additionally, skeletons are necessary for convert-
ing feature point positions into joint angles, a standard
way to encode motion for animation. Furthermore, knowl-
edge of the skeleton can be used to improve the reliabil-
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Fig. 1 Four frames from a video of a walking giraffe, with the artic-
ulated skeleton learned by our model superimposed. Each black line
represents a stick, and each white circle a joint between sticks. The

tracked features, which serve as the only input, are shown as coloured
markers. Features associated with the same stick are assigned markers
of the same colour and shape

ity of optical motion capture, permitting disambiguation of
marker correspondence and occlusion (Herda et al. 2001).
Finally, a learned skeleton might be used as a rough prior
on shape to help guide image segmentation (Bray et al.
2006).

In the following section we discuss other recent ap-
proaches to modelling articulated figures from tracked fea-
ture points. In Sect. 3 we formulate the problem as a prob-
abilistic model, and in Sect. 4 we propose an algorithm
for learning the model from data. Learning proceeds in
a stage-wise fashion, building up the structure incremen-
tally to maximize the joint probability of the model vari-
ables.

In Sect. 5 we test the algorithm on a range of datasets. In
the final section we describe assumptions and limitations of
the approach, and discuss future work.

Research presented in this paper is a continuation of Ross
et al. (2008), and includes results from Ross (2008a).

2 Related Work

Humans demonstrate a remarkable ability to parse com-
plicated motion sequences, even from apparently sparse
streams of information. One field where this is readily appar-
ent is in the study of human response to point light displays.
A point light display (PLD), as depicted in Fig. 2, is con-
structed by attaching a number of point light sources to an
object, then recording (only) the positions of these lights as
the object moves. The canonical example is to instrument a
human’s limbs and body with lights, then to record their po-
sitions as he or she performs motions such as walking, run-
ning, or swinging a golf club. PLDs have received consider-
able attention in psychology research (e.g. Johansson 1973)
due to one remarkable property. Despite the apparently lim-
ited information they contain, biological motion depicted in
PLDs is almost instantly recognizable by humans. From a
PLD of a person or animal, humans are able to understand
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Fig. 2 A point light display of a human, in four different poses

the structure of the display (how the lights are connected via
the performer’s underlying skeleton), and the motions that
are performed.

Point light displays are also common in several domains
of computer science research. The field of motion capture,
in essence, is the study of recording and analyzing PLDs.
In computer animation, PLDs obtained via motion capture
are used to animate synthetic character models. Finally, in
computer vision many applications choose to represent dig-
ital images sequences in terms of feature point trajectories.
When the original image data is discarded, the feature points
locations are equivalent to a PLD.

What follows is a discussion of three recent approaches
to modelling articulated figures from tracked feature points.
Each of these approaches addresses the problem from a dif-
ferent viewpoint: the first as structure from motion, the sec-
ond as geometrical constraints in motion capture data, and
the third as learning the structure of a probabilistic graphical
model.

2.1 Articulated Structure from Motion

The first work we will consider is “Automatic Kinematic
Chain Building from Feature Trajectories of Articulated Ob-
jects” by Yan and Pollefeys (2006b, 2008). This work builds
on a history of solutions for the structure from motion (SFM)
problem, extending them to handle articulated objects. We
begin with a brief overview of this evolution, before describ-
ing the Yan and Pollefeys approach.

2.1.1 Standard Structure from Motion

Given a set of feature points observed at a number of frames,
the goal of SFM is to recover the structure—the time-
invariant relative 3D positions of the points—while simul-
taneously solving for the motion—the per-frame pose of the

object(s) relative to the camera—that produced the observa-
tions. Generally, the input for SFM is assumed to be two-
dimensional observations (image coordinates) of points on
an inherently three-dimensional object. However most algo-
rithms, including the ones presented here, work equally well
given 3D inputs.

When the trajectories come from one rigid object (or
equivalently, the scene is static and only the camera moves),
and the camera is assumed to be orthographic, Tomasi and
Kanade (1992) have shown that structure and motion can re-
covered by using the singular value decomposition (SVD) to
obtain a low-rank factorization of the matrix of feature point
trajectories.

Suppose we are given a matrix W where each column
contains the x and y image coordinates of one of the ob-
served points, at all time frames. Thus, given P points
and F frames, the size of W is 2F × P (or 3F × P for
three-dimensional observations). Considering the generative
process that produced the observations (and disregarding
noise), W is the product of a motion matrix and a structure
matrix,

W = MS,

both of which are rank 4. The structure S is a 4 × P ma-
trix containing the time-invariant (homogeneous) 3D coor-
dinates of the points. At each frame f , the observations are
produced by applying a rigid-body motion—a rotation Rf

and a translation tf —to S, and projecting the points onto
the image plane:

[
xf,1 . . . xf,P

yf,1 . . . yf,P

]
=

[
1 0 0
0 1 0

][
Rf tf

]
S.

Hence, M is formed by stacking the first two rows of each
of these F motion matrices. From W, M and S can be re-
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covered by taking the singular value decomposition1:

W = U�V� ⇒ M = U�
1
2 S = �

1
2 V�.

In practice, feature trajectories will be contaminated by
noise, giving W a rank larger than 4. In this case Tomasi
and Kanade suggest retaining only the columns of U,� and
V corresponding to the four largest singular values, which
is the optimal rank-4 approximation to W (under squared
error).

Despite the elegance and popularity of this solution,
Tomasi and Kanade (1992) assume a rather unrealistic cam-
era model—scaled orthography—for the projection of three-
dimensional points down to two dimensions. As such, this
does not represent a complete solution to rigid-body SFM.2

However, when the input consists of three-dimensional
points (e.g. obtained from a motion capture system), scaled
orthography is perfectly reasonable assumption.

2.1.2 Multibody SFM

Recovering structure and motion when the scene contains
multiple objects moving independently is more challeng-
ing. Consider the case in which the point trajectories arise
from two independent rigid objects. If the columns of W are
sorted so that all points from object 1 come first, and the
points from object 2 come second, the low-rank factoriza-
tion can be written as follows:

W = MS = [
M1 M2

][
S1 0
0 S2

]
. (1)

In this case the ranks of the motion and structure matrices
(and hence, of W) have increased to 8, or 4× the number
of objects. If the grouping of point trajectories into objects
was known, the structure and motion of each object, Mi and
Si , could be recovered independently, using the method de-
scribed earlier. The problem now becomes, how to group the
points?

The solution proposed by Costeira and Kanade (1996,
1998) involves considering what they term the shape-
interaction matrix, Q ≡ VV�. When the columns of W are
correctly sorted, as in (1), Q assumes a distinctive block-

1In most cases, although the columns of U and V span the correct sub-
spaces, they are actually linear transformations of the columns of M
and S respectively. This can be corrected by solving, via nonlinear op-
timization, for a transformation that satisfies the constraints on the ro-
tational components of M (Tomasi and Kanade 1992).
2Solutions based on the more-realistic projective camera, perhaps us-
ing the above method as an initialization, can be obtained via an algo-
rithm for bundle adjustment (Hartley and Zisserman 2003).

diagonal structure3

Q ≡ VV�= S��−1S =
[

S1
��−1

1 S1 0
0 S2

��−1
2 S2

]
,

where V and � again arise from the SVD of W. Regardless
of the sorting of the points, Qi,j is nonzero if points i and j

are part of the same rigid object, and 0 otherwise. The shape-
interaction matrix has the advantage of being invariant to
object motion, image scale, and choice of coordinate system.

Costeira and Kanade suggest that grouping point trajec-
tories can now be accomplished by reordering the points
to make Q block-diagonal. This problem, however, is NP-
complete, thus the greedy algorithm they propose obtains
only sub-optimal solutions. Interestingly, Q can be inter-
preted as a pairwise affinity matrix. In fact, VV� is sim-
ply a weighted version of the inner product matrix W�W.
This interpretation suggests that other ways of normal-
izing the shape-interaction matrix are possible, and that
points could be grouped by any clustering algorithm which
takes as input an affinity matrix, such as spectral cluster-
ing (Shi and Malik 2000; Culverhouse and Wang 2003;
Weiss 1999) or Affinity Propagation (Frey and Dueck 2007).

The primary disadvantage to this approach is that the
shape-interaction matrix is highly sensitive to noise in the
observations (Gruber and Weiss 2004). First of all, in the
presence of noise Qi,j is no longer zero when i and j come
from different objects. Furthermore, computing Q requires
knowing the rank of W, which is the number of columns of
V retained after the SVD. (Note that if we retain all columns
of V, then Q = VV�= I.) In the simplest case, this rank is
4× the number of objects, but it can be less when an object
does not express all its degrees of mobility. Noise makes
the rank of W difficult to determine, requiring an often-
unreliable analysis of the eigenspectrum. One approach for
dealing with this, in the presence of noise, is described by
(Gear 1998).

2.1.3 Probabilistic SFM

Gruber and Weiss (2003) have noted that the approach of
Tomasi and Kanade can be reinterpreted as a probabilis-
tic graphical model, specifically factor analysis. In factor
analysis, each observed data vector is generated by tak-
ing a linear combination of a set of basis vectors, and
adding diagonal-covariance Gaussian noise. In the context
of single-body SFM each row wi of W, the x or y coor-
dinates of all feature points in one frame, is generated by
taking a linear combination mi of the rows of S. Including

3VV� is also block-diagonal if we allow V� to more generally be an

invertible linear transformation of the true structure: S = A−1�
1
2 V�

(Costeira and Kanade 1998).
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a standard Gaussian prior on the rows of the motion matrix
produced the following model:

wi = miS + ni , where

ni ∼ N (0,diag(ψ i ))

mi ∼ N (0, I).

Structure and motion can be recovered by fitting the model
using the standard Expectation Maximization (EM) algo-
rithm for factor analysis (Ghahramani and Hinton 1996a).
An advantage of this formulation is that missing observa-
tions can be dealt with easily; setting the corresponding vari-
ances to ∞ has the effect of eliminating them from the cal-
culations (Gruber and Weiss 2003).

Another key innovation of the Gruber and Weiss ap-
proach is to assume temporal coherence of motions. This
allows them to take advantage of the fact, when estimating
motions, that motions for adjacent frames should be similar.
In the graphical model, temporal coherence is incorporated
easily through the use of a Markov chain prior (a Kalman
filter) over the latent motion variables. The result is closely
related to the EM algorithm for learning linear dynamical
systems (Ghahramani and Hinton 1996b).

Multibody Factorization

The probabilistic approach has also been extended to han-
dle multiple independent rigid objects (Gruber and Weiss
2004). Structure and motion are modeled in much the same
way as (Costeira and Kanade 1996): one independent factor
analyzer of dimension 4 for each object. However, the ap-
proach of Gruber and Weiss to grouping point trajectories is
quite different.

Instead of grouping points by clustering a pairwise affin-
ity matrix, Gruber and Weiss incorporate additional discrete
latent variables that assign each of the points to one of
the motions. With this addition, the grouping, together with
the structures and motions, can be estimated jointly using
EM. This provides a distinct advantage over the method of
Costeira and Kanade which, once it has grouped the points,
is unable to reestimate the grouping based on subsequent
information. Although fitting with EM often leads to local
minima, in the presence of noise it outperforms Costeira and
Kanade.

The core of this model is the same as Multiple Cause
Factor Analysis (Ross and Zemel 2006), independently pro-
posed for simultaneous segmentation and appearance mod-
elling of images.

2.1.4 Articulated Structures

The motion of an articulated object can be described as a
collection of rigid motions, one per part, with the added con-
straint that the motions of connected parts must be spatially

coherent. Yan and Pollefeys (2005a) have shown that this
constraint causes the motion subspaces of two connected ob-
jects to intersect, making them linearly dependent. In partic-
ular, for each pair of connected parts, the motion subspaces
share one dimension (translation) if they are joined at a point
and two dimensions (translation and one angle of rotation)
if they are joined at an axis of rotation. As a result of this
dependence, the method of Costeira and Kanade (1996) for
grouping points is no longer applicable.

To illustrate this, consider two parts that are connected by
a rotational joint. Without loss of generality the shape ma-
trices of the objects, S1 and S2 (dropping the homogeneous
coordinate) can be adjusted to place this joint at the origin.
Now, because the objects are connected at the joint, at each
frame the translation components of their motions must be
identical. Thus the ranks of W, M, and S have been reduced
to at most 7 (Yan and Pollefeys 2005a, 2005b).

W = MS = [
R1 R2 t

]
⎡
⎣S1 0

0 S2

1 1

⎤
⎦

From this equation, we can see that the off-diagonal blocks
of the shape interaction matrix, VV� = S��−1S, are no
longer zero, so clustering it will not effect the grouping of
point trajectories.

Recognizing this, Yan and Pollefeys (2006a, 2006b,
2008) propose an alternative affinity matrix to use for group-
ing points, and an approach for recovering the full articu-
lated structure and motion of the sequence. Their method
consists of four key steps: (1) segmenting the feature point
trajectories into a number of rigid parts, (2) computing an
affinity measure indicating the likelihood that each pair of
parts is connected by a joint, (3) obtaining a spanning tree
that connects parts while maximizing affinity, and finally (4)
solving for the locations of joints.

When specifying the affinity between a pair of features,
instead of relying on the dot product (angle) between rows
vi and vj of V, they suggest that a more robust measure
could be obtained by comparing the subspace spanned by
vi and its nearest neighbors with that of vj and its neigh-
bors. Given these two subspaces, they compute the principal
angles θ1, . . . , θm between them, and define the affinity be-
tween i and j to be

exp

(
−

∑
n

sin2(θn)

)
.

The affinity is used as input for spectral clustering (Shi and
Malik 2000), thereby producing a grouping of feature point
trajectories.

Principal angles are also used as a basis for learning the
articulated structure. Noting that the four-dimensional mo-
tions (and hence shape subspaces) of parts connected by an
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articulated joint will have at least one dimension in common,
at least one of the principal angles between the parts should
be zero. Using minimum principal angle as an edge weight,
Yan and Pollefeys set up a fully connected graph and solve
for the articulated structure by finding the minimum span-
ning tree. The method can be extended to finding multiple
articulated objects in a scene simply by disallowing edges
with weight exceeding a manually specified threshold.

Finally, the locations of the joints can be obtained from
the intersections of the motion subspaces of connected parts,
as described in Yan and Pollefeys (2005a)

Due to the reliance on estimating subspaces, this method
requires each body part to have at least as many feature
points as the dimensionality of its motion subspace. (In prac-
tice, segmenting two independent objects requires at least
five points per object, using at least three neighbors to es-
timate the local subspace, in the noise-free case.) However,
relying on subspaces provides an additional advantage: the
approach is able to deal with non-rigid body parts–single
subspaces with rank higher than four.

Alternative approaches to articulated structure from mo-
tion are presented by Tresadern and Reid (2005) and Smin-
chisescu and Triggs (2003).

2.2 Geometric Analysis of Motion Capture Data

When observations are the 3D world locations of feature
points, rather than 2D projections, the geometry of re-
covering 3D skeletal structure becomes easier. Based on
a simple analysis of the distance between feature points,
and following roughly the same four steps as Yan and
Pollefeys (2006b), Kirk et al. (2005) are able to automat-
ically recover skeletal structure from motion capture data.
This is an improvement upon existing methods of fitting a
skeleton to motion capture data (e.g. Silaghi et al. 1998;
Abdel-Malek et al. 2004), which often require a user to man-
ually associate markers with positions on a generic human
skeleton.

The key property motivating the approach of Kirk et al.
(2005) is, if two feature points are attached to the same rigid
body part, then the distance between these points is constant.
Furthermore, if two body parts are connected by a rotational
joint, then the distances between the joint and the points be-
longing to both parts should also be constant. Feature points
are grouped, to obtain body parts, by computing the standard
deviation of the distance between each pair of points and us-
ing that as the (negative or inverse) affinity matrix for spec-
tral clustering (Ng et al. 2002). The number of body parts is
chosen manually, or again by analysis of the eigenspectrum.

When determining the skeletal connectivity of the body
parts, Kirk et al. define a joint cost, which is the average
variance in the distance from a putative joint to each of the
points in the two parts it connects. Joint costs are computed

for each pair of body parts. Evaluating the joint cost requires
non-linear conjugate gradient minimization, but also returns
the optimal joint location at each frame. Note that joint lo-
cations can be estimated as long as one stick has at least
two observed markers and the other stick has at least one.
Finally, the skeletal structure is obtained by running a min-
imum spanning tree algorithm, using the joint costs as edge
weights.

This method has a few drawbacks. First, it is only able to
work on 3D observations–none of the distance constraints it
relies upon apply when points are projected into 2D. Second,
like (Yan and Pollefeys 2006b), it consists of a sequence
of steps without feedback or reestimation. Finally, beyond
computing the positions of joints in each frame, the method
does not produce a time-invariant model of structure or a
set of motion parameters. As such, filling in missing ob-
servations or computing joint angles would require further
processing.

One further caveat regarding this method is that, contrary
to the images included in Kirk et al. (2005), its output is
not actually a “stick figure”—a collection of line segments
(bones or sticks) joined at their endpoints. Instead, in the
learned graph, parts of the body are nodes and joints are
edges, which is a more-difficult structure to visualize.

2.3 Learning a Graphical Model Structure

Another approach to the analysis of PLDs is to model the
relationships between feature point locations with a proba-
bilistic graphical model. In this setting, recovering the skele-
ton is a matter of learning the graph structure and parame-
ters of the model. This is the approach taken by Song et al.
(2001, 2003), with a goal of automatically detecting human
motion in cluttered scenes.

Treating each frame as an independent, identically dis-
tributed sample, Song et al. construct a model in which each
variable node represents the position and velocity of one of
the observed points. No latent variables are included, instead
each feature point is treated as a unique part of the body.
This presumes a much sparser set of features than Yan and
Pollefeys (2006b) and Kirk et al. (2005), which require each
part to give rise to multiple feature point trajectories. The
set of graphs considered is restricted to a particular class,
decomposable triangulated graphs, in which all cliques are
of size three. The limitation placed on the structure ensures
that, although these graphs are more complicated than trees,
efficient exact inference is still possible. The clique poten-
tials, over triplets of nodes, are multivariate Gaussian distri-
butions over the velocities and relative positions of the parts.

The maximum likelihood (ML) graph is the one that min-
imizes the empirical entropy of each feature point given
its parents. Unfortunately no tractable algorithm exists for
computing the ML graph, so Song et al. propose the fol-
lowing approximate greedy algorithm. Assuming all nodes
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are initially disconnected, choose the first edge in the graph
by connecting the nodes B and C that minimize the joint
entropy h(B,C). Then, for all possible ways of choosing
an pair of connected parents (B,C) already in the graph,
find the child A that minimizes the conditional entropy
h(A|B,C) and connect it to the graph. Continue connecting
child nodes to the graph until it has reached the desired size,
or the entropy of the best putative child exceeds a threshold.
The cost of this algorithm is O(n4), where n is the number
of feature points.

Note that if the class of graphical models considered is re-
stricted to trees, the graph structure can be found efficiently,
by calculating the mutual information between each pair of
body parts and solving for the maximum spanning tree (Tay-
cher et al. 2002; Song et al. 2003).

Song et al. further extend their approach to handle clut-
tered scenes, obtained by automatically tracking features in
video. Since the results of tracking are invariably noisy, this
requires solving the correspondence problem at each frame
(identifying which feature points are body parts, which
come from the background, and which body parts are oc-
cluded). Learning can now be accomplished via an EM-
like algorithm, which alternates optimizing the feature cor-
respondence with learning the graphical model structure and
parameters.

Although the authors are able to show some interesting
results, this approach has a number of drawbacks. First,
learned models are specific to the 3D position and orien-
tation of the subject, accounting only for invariance to trans-
lation parallel to the image plane. Thus a model trained on
a person walking from left to right is unable to detect a per-
son walking from right to left (Song et al. 2003). Secondly,
a single time-invariant model is learned on the data from all
frames, thereby confounding structure and motion. Instead
of trying to model these two latent factors separately, the
presence of motion serves only to increase uncertainty in
the graphical model.

3 Model

Here we formulate a probabilistic graphical model for se-
quences generated from articulated skeletons. By fitting this
model to a set of feature point trajectories (the observed lo-
cations of a set of features across time), we are able to parse
the sequence into one or more articulated skeletons and re-
cover the corresponding motion parameters for each frame.
The observations are assumed to be 2D, whether tracked
from video or projected from 3D motion capture, and the
goal is to learn skeletons that capture the full 3D struc-
ture. Fitting the model is performed entirely via unsuper-
vised learning; the only inputs are the observed trajectories,
with manually tuned parameters restricted to a small set of
thresholds on Gaussian variances.

Fig. 3 The generative process for the observed feature positions, and
the imputed positions of the stick endpoints. For each stick, the rela-
tive positions of its feature points and endpoints are represented in a
time-invariant local coordinate system (left). For each frame in the se-
quence (right), motion variables attempt to fit the observed feature po-
sitions (e.g. wf

P ) by mapping local coordinates to world coordinates,
while maintaining structural cohesion by mapping stick endpoints to
inferred vertex (joint) locations

The observations for this model are the locations wf
p of

feature points p in frames f . A discrete latent variable R as-
signs each point to one of S sticks. Each stick s consists of
a set of time-invariant 3D local coordinates Ls , describing
the relative positions of all points belonging to the stick. Ls

is mapped to the observed world coordinate system by a dif-
ferent motion matrix Mf

s at every frame f (see Fig. 3). For
example, in a noiseless system, where rp,1 = 1, indicating

that point p has been assigned to stick 1, Mf

1 l1,p = wf
p .

If all of the sticks are unconnected and move indepen-
dently, then this model essentially describes multibody SFM
(Costeira and Kanade 1998; Gruber and Weiss 2004), or
equivalently an instance of Multiple Cause Factor Analy-
sis (Ross and Zemel 2006). However, for an articulated
structure, with connections between sticks, the stick motion
variables are not independent (Yan and Pollefeys 2006a).
Allowing connectivity between sticks makes the problems
of describing the constraints between motions and infer-
ring motions from the observations considerably more diffi-
cult.

To deal with this complexity, we introduce variables to
model the connectivity between sticks, and the (unobserved)
locations of stick endpoints and joints in each frame. Every
stick has two endpoints, each of which is assigned to ex-
actly one vertex. Each vertex can correspond to one or more
stick endpoints (vertices assigned two or more endpoints are
joints). We will let ki specify the coordinates of endpoint
i relative to the local coordinate system of its stick, s(i),
and vf

j and ef
i represent the world coordinate location of

vertex j and endpoint i in frame f , respectively. Again, in
a noiseless system, ef

i = Mf

s(i)ki for every frame f . Not-

ing the similarity between the ef
i variables and the observed
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Fig. 4 The graphical model. The bottom half shows the model for
independent multibody SFM; the top half describes the vertices and
endpoints, which account for motion dependencies introduced by the
articulated joints

feature positions wf
p , these endpoint locations can be inter-

preted as a set of pseudo-observations, inferred from the data
rather than directly observed.

Vertices are used to enforce a key constraint: for all the
sticks that share a given vertex, the motion matrices should
map their local endpoint locations to a consistent world co-
ordinate. This restricts the range of possible motions to only
those resulting in appropriately connected figures. For ex-
ample, in Fig. 3, endpoint 2 (of stick 1), is connected to end-
point 4 (of stick 2); both are assigned to vertex 2. Thus in
every frame f both endpoints should map to the same world
location, the location of the knee joint, i.e. vf

2 = ef

2 = ef

4 .
The utility of introducing these additional variables is

that, given the vertices V and endpoints E, the problem of
estimating the motions and local geometries (M and L) fac-
torizes into S independent structure-from-motion problems,
one for each stick. Latent variable gi,j = 1 indicates that
endpoint i is assigned to vertex j ; hence G indirectly de-
scribes the connectivity between sticks. The assumed gen-
erative process for the feature observations and the vertex
and endpoint pseudo-observations is shown in Fig. 3, and
the corresponding probabilistic model is shown in Fig. 4.

The complete joint probability of the model can be de-
composed into a product of two likelihood terms, one for
the true feature observations and the second for the endpoint
pseudo1-observations, and priors over the remaining vari-
ables in the model:

P =P(W|M,L,R)P(E|M,K,V,φ,G)

× P(V)P(φ)P(M)P(L)P(K)P(R)P(G) (2)

Assuming isotropic Gaussian noise with precision (in-
verse variance) τw , the likelihood function is

P(W|M,L,R) =
∏
f,p,s

N (wf
p |Mf

s ls,p, τ−1
w I)rp,s (3)

where rp,s is a binary variable equal to 1 if and only if point
p has been assigned to stick s. This distribution captures the
constraint that for feature point p, its predicted world lo-
cation, based on the motion matrix and its location in the
local coordinate system for the stick to which it belongs
(rp,s = 1), should match its observed world location. Note
that dealing with missing observations is simply a matter of
removing the corresponding factors from this likelihood ex-
pression.4

Each motion variable consists of a 2 × 3 rotation matrix
Rf

s and a 2 × 1 translation vector tfs : Mf
s ≡ [Rf

s tfs ]. The
motion prior P(M) is uniform, with the stipulation that all
rotations be orthogonal: Rf

s Rf
s

�= I.
We define the missing-data likelihood of an endpoint lo-

cation as the product of two Gaussians, based on the predic-
tions of the appropriate vertex and stick:

P(E|M,K,V,φ,G)

∝
∏
f,i

N (ef
i |Mf

s(i)
ki , τ

−1
m I)

∏
f,i,j

N (ef
i |vf

j ,φ−1
j I)gi,j (4)

Here τm is the precision of the isotropic Gaussian noise on
the endpoint locations with respect to the stick, and gi,j is
a binary variable equal to 1 if and only if endpoint i has
been assigned to vertex j . The second Gaussian in this prod-
uct captures the requirement that endpoints belonging to the
same vertex should be coincident. Instead of making this a
hard constraint, connectivity is softly enforced, allowing the
model to accommodate a certain degree of non-rigidity in
the underlying structure, as illustrated by the mismatch be-
tween endpoint and vertex positions in Fig. 3. The vertex
precision variables φj capture the degree of “play” in the
joints, and are assigned Gamma prior distributions:

P(φ) =
∏
j

Gamma(φj |αj ,βj ). (5)

The prior on the vertex locations incorporates a temporal
smoothness constraint, with precision τt :

P(V) =
∏
f,j

N (vf
j |vf −1

j , τ−1
t I) (6)

4This likelihood is applicable if the observations wf
p are 2D or 3D. In

the 2D case, we assume an affine camera projection. However, it would
be possible to extend this to a projective camera by making the mean
depend non-linearly on Mf

s ls,p .



222 Int J Comput Vis (2010) 88: 214–237

The priors for feature and endpoint locations in the local
coordinate frames, L and K, are zero-mean Gaussians, with
isotropic precision τp .

P(L) =
∏
s,p

N (ls,p|0, τ−1
p I) P(K) =

∏
i

N (ki |0, τ−1
p I)

Finally, the priors for the variables defining the structure of
the skeleton, R and G, are multinomial. Each point p se-
lects exactly one stick s (enforced mathematically by the
constraint

∑
s rp,s = 1) with prior probability cs , and each

endpoint i selects one vertex j (similarly
∑

j gi,j = 1) with
probability dj :

P(R) =
∏
p,s

(cs)
rp,s , P(G) =

∏
i,j

(dj )
gi,j .

4 Learning

Given a set of observed feature point trajectories, we pro-
pose to fit this model in an entirely unsupervised fashion,
by maximum likelihood learning. Conceptually, we divide
learning into two challenges: recovering the skeletal struc-
ture of the model, and given a structure, fitting the model’s
remaining parameters. Structure learning involves grouping
the observed trajectories into a number of rigid sticks, in-
cluding determining the number of sticks, as well as deter-
mining the connectivity between them. Parameter learning
involves determining the local geometries and motions of
each stick, as well as imputing the locations of the stick
endpoints and joints—all while respecting the connectivity
constraints imposed by the structure.

Both learning tasks seek to optimize the same objective
function—the expected complete log-likelihood of the data
given the model—using different, albeit related, approaches.
Given a structure, parameters are learned using the standard
variational expectation maximization algorithm. Structure
learning is formulated as an “outer loop” of learning: be-
ginning with a fully disjoint multibody SFM solution, we
incrementally merge stick endpoints, at each step greedily
choosing the merge that maximizes the objective. Finally
the expected complete log-likelihood can be used for model
comparison and selection.

A summary of the proposed learning algorithm is pro-
vided in Fig. 5.

4.1 Learning the Model Parameters

Given a particular model structure, indicated by a specific
setting of R and G, the remaining model parameters are fit
using the variational expectation-maximization (EM) algo-
rithm (Neal and Hinton 1998; Dempster et al. 1977). This

well-known algorithm takes an iterative approach to learn-
ing: beginning with an initial setting of the parameters, each
parameter is updated in turn, by choosing the value that max-
imizes the expected complete log-likelihood objective func-
tion, given the values (or expectations) of the other parame-
ters.

The objective function—also known as the negative Free
Energy (Neal and Hinton 1998)—is formed by assuming a
fully factorized variational posterior distribution Q over a
subset of the model parameters, then computing the expec-
tation of the model’s log probability (2) with respect to Q,
plus an entropy term:

L = EQ[log P] − EQ[log Q]. (7)

For this model, we define Q over the variables V, E, and φ,
involved in the world-coordinate locations of the joints. The
variational posterior for vf

j is a multivariate Gaussian with

mean parameter μ(vf
j ) and precision parameter τ(vf

j ), for

ef
i is also a Gaussian with mean μ(ef

i ) and precision τ(ef
i ),

and for φ is a Gamma distribution with parameters α(φj )

and β(φj ):

Q = Q(V)Q(E)Q(φ)

Q(V) =
∏
f,j

N (vf
j |μ(vf

j ), τ (vf
j )−1)

Q(E) =
∏
f,i

N (ef
i |μ(ef

i ), τ (ef
i )−1)

Q(φ) =
∏
j

Gamma(φj |α(φj ),β(φj )).

The EM update equations are obtained by differentiating the
objective function L, with respect to each parameter, and
solving for the maximum given the other parameters. We
now present the parameter updates, with detailed derivation
of L and the updates appearing in Ross (2008b). As a re-
minder, the constants appearing in these equations denote:
Do the dimensionality of the observations, generally 2 but
3 will also work; F the number of observation frames; J

the number of vertices; P the number of data points; S the
number of sticks.

τ−1
w =

∑
f,p,s rp,s‖wf

p − Mf
s ls,p‖2

FPDo

τ−1
m =

∑
f,i ‖μ(ef

i ) − Mf

s(i)ki‖2

2FSDo

+
∑

f,i τ (ef
i )−1

2FS

τ−1
t =

∑F
f =2

∑
j ‖μ(vf

j ) − μ(vf −1
j )‖2

(F − 1)JDo

+
∑

f,j τ (vf
j )−12h(f )

(F − 1)J
,
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where h(f ) = 1 if 1 < f < F and 0 otherwise.

τ(ef
i ) =

∑
j

gi,j

α(φj )

β(φj )
+ τm

μ(vf
j ) =

(
α(φj )

β(φj )

∑
i

gi,jμ(ef
i ) + [f > 1]τtμ(vf −1

j )

+ [f < F ]τtμ(vf +1
j )

)

/(
α(φj )

β(φj )

∑
i

gi,j + τt2
h(f )

)

τ(vf
j ) = α(φj )

β(φj )

∑
i

gi,j + τt2
h(f )

α(φj ) = αj + FDo

2

∑
i

gi,j

β(φj ) = βj + 1

2

∑
f,i

gi,j‖μ(ef
i ) − μ(vf

j )‖2

+ Do

2

∑
f,i

gi,j [(τ (ef
i ))−1 + (τ (vf

j ))−1]

αj = α(φj )

βj = β(φj )

The update for the motion matrices is slightly more chal-
lenging due to the orthogonality constraint on the rotations.
A straightforward approach is to separate the rotation and
translation components of the motion and to solve for each
individually. The update for translation is obtained simply
via differentiation:

Mf
s =

[
Rf

s tfs
]

ts,f =
(

τw

∑
p

rp,s(w
f
p − Rf

s ls,p)

+ τm

∑
{i|s(i)=s}

(μ(ef
i ) − Mf

s ks,i )

)

/(
τw

∑
p

rp,s + 2τm

)

To deal with the orthogonality constraint on Rf
s , its update

can be posed as an orthogonal Procrustes problem (Golub
and Van Loan 1996; Viklands 2006). Given matrices A and
B, the goal of orthogonal Procrustes is to obtain the matrix R
that minimizes ‖A − RB‖2, subject to the constraint that the
rows of R form an orthonormal basis. Computing the most
likely rotation involves maximizing the likelihood of the ob-
servations (3) and of the endpoints (4), which can be writ-
ten as the minimization of

∑
p ‖(wf

p − ts,f )− Rf
s ls,p‖2 and

∑
{i|s(i)=s} ‖(μ(ef

i ) − ts,f ) − Rf
s ks,i‖2 respectively. Con-

catenating the two problems together, weighted by their re-
spective precisions, allows the update of Rf

s to be written
as a single orthogonal Procrustes problem argminRf

s
‖A −

Rf
s B‖2, where

A =
[[√

τw rp,s(w
f
p − ts,f )

]
p=1..P

× [√
τm (μ(ef

i ) − ts,f )
]
{i|s(i)=s}

]

B =
[[√

τw rp,s ls,p
]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

The solution is to compute the singular value decomposition

of BA� SV D= U�V�, and let R = V Im×nU�, where m and n

are the numbers of rows in A and B respectively.
Given Rf

s and tfs , the updates for the local coordinates
are:

ls,p =
(∑

f

Rf
s

�Rf
s + τp

τw

I
)−1 ∑

f

Rf
s

�(wf
p − ts,f )

ki =
(∑

f

Rf

s(i)
�Rf

s(i) + τp

τm

I
)−1 ∑

f

Rf

s(i)
�(μ(ef

i ) − tfs(i))

The final issue to address for EM learning is initial-
ization. Many ways to initialize the parameters are pos-
sible; here we settle on one simple method that produces
satisfactory results. The motions and local coordinates, M
and L, are initialized by solving SFM independently for
each stick (Tomasi and Kanade 1992). The vertex locations
are initialized by averaging the observations of all sticks
participating in the joint: μ(vf

j ) = (
∑

i,p gi,j rp,s(i) wf
p)/

(
∑

i,p gi,j rp,s(i)). The endpoints are initially coincident

with their corresponding vertices, μ(ef
i ) = ∑

j gi,j μ(vf
j ),

and the Ks by averaging the backprojected endpoint loca-
tions: ki = 1

F

∑
f Rf

s(i)
�(μ(ef

i ) − tfs(i)). All precision pa-
rameters are initialized to constant values, as discussed in
Sect. 5.1.

4.2 Learning the Skeletal Structure

Structure learning in this model entails estimating the as-
signments of feature points to sticks (including the num-
ber of sticks), and the connectivity of sticks, expressed via
the assignments of stick endpoints to vertices. The space of
possible structures is enormous. We therefore adopt an in-
cremental approach to structure learning: beginning with a
fully disconnected multibody-SFM model, we greedily add
joints between sticks by merging vertices. After each merge
the model parameters are updated via EM, and the assign-
ments of observations to sticks are resampled. After per-
forming the desired number of merges, model selection—
that is, choosing the optimal number of joints—is guided
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Fig. 5 A summary of the learning algorithm

Fig. 6 Excavator Data: Shown
at the top are the models learned
in each of the five successive
stages of greedy learning.
Reconstructions of the observed
markers are shown with
different symbols depending on
their stick assignments. The
locations of vertices are shown
as black o’s, and black lines are
drawn to connect each stick’s
pair of vertices. At the bottom,
the selected model (stage 3) is
used to reconstruct the observed
feature trajectories, and the
results are superimposed over
the corresponding frames of the
input video

by comparing the expected complete log-likelihood of each

model.

The first step in structure learning involves hypothesiz-

ing an assignment of each observed feature trajectories to a

stick. This is accomplished by clustering the trajectories us-

ing the Affinity Propagation algorithm of (Frey and Dueck

2007). Affinity Propagation takes as input an affinity ma-

trix, for which we supply the affinity measure from (Yan and

Pollefeys 2006a, 2006b, 2008) as presented in Sect. 2.1.4 (or

for 3D data, Kirk et al. 2005 discussed in Sect. 5.1). During

EM parameter learning, the stick assignments R are resam-

pled every 10 iterations using the posterior probability dis-
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Fig. 7 Excavator Log-likelihood and Error. At the top-left we see that
stage 3 of merging produces the model with the highest log-probability.
At the top-right are individual plots of the four most significant terms

comprising the log probability. At the bottom, we can see that the
learned model exhibits less reconstruction error than either single or
multibody SFM models

tribution

P(rp,s) ∝ cs exp

⎛
⎝−αw

2

∑
f

‖wf
p − Mf

s ls,p‖2

⎞
⎠

s.t.
∑
s′

rp,s′ = 1.

Instead of relying only on information available before
model fitting begins (Costeira and Kanade 1998; Kirk et al.
2005; Yan and Pollefeys 2006b), resampling of stick assign-
ments allows model probability to be improved by leverag-
ing current best estimates of the model parameters.

The second step of structure learning involves determin-
ing which sticks endpoints are joined together. As discussed
earlier, connectivity is captured by assigning stick endpoints
to vertices; each endpoint must be associated to one ver-
tex, and vertices with two or more endpoints act as artic-
ulated joints. (Valid configurations include only cases in
which endpoints of a given stick are assigned to different
vertices.) We employ an incremental greedy scheme for in-
ferring this graphical structure G, beginning from an ini-
tial structure that contains no joints between sticks. Thus,
in terms of the model, we start with J = 2S vertices, one
per stick-endpoint, so gi,j = 1 if and only if j = i. Given
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Fig. 8 Giraffe structures
learned during greedy merging.
Stage 10 has the highest
expected log-likelihood

this initial structure, parameters are fit using variational

EM.

A joint between sticks is introduced by merging together

a pair of vertices. The choice of vertices to merge is guided

by our objective function L. At each stage of merging we

consider all valid pairs of vertices, putatively joining them

and estimating (via 20 iterations of EM) the change in log-

likelihood if this merge were accepted. The merge with the

highest log-likelihood is performed, by modifying G ac-

cordingly, and the model parameters are re-optimized with

200 additional iterations of EM, including resampling of the

stick assignments R. This process is repeated until no valid

merges remain, or the desired maximum number of merges

has been reached.

4.2.1 Computational Cost

By examining the updates presented in Sect. 4.1, in can be
seen that the cost of each iteration of EM parameter learning
scales linearly in the following quantities: F the number of
frames, J the number of joints, P the number of observed
feature point trajectories, and S the number of sticks. (Note
that since the number of rows in A and B are fixed, each
orthogonal Procrustes update of Rf

s has a cost that is lin-
ear in P —the initial multiplication AB�—in addition to a
constant-cost SVD and final multiplication.)

Each stage of greedy merging requires computing the ex-
pected log-likelihood for all of the possible pairs of vertices
to be merged. The number of possible merges scales with
O(J 2), which, since J = 2S during the first stage, can be
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Fig. 9 Giraffe log-likelihood and error

as high as 4S2. In practice, however, it is possible to re-
duce the number that must be considered. Savings can be
obtained by noting the symmetry of the merge operation,
reducing the number of unique merges by a factor of two,
as well as by disallowing self-merges between the two end-
points of a stick. A less obvious savings can be realized by
avoiding duplication when merging with a stick that has two
free endpoints, since the change in probability from merging
to either of these otherwise unconstrained endpoints will be
identical. During the initial stage, when the structure con-
tains no joints, this reduces the number of unique merges
by an additional factor of four. During later stages, there are
fewer possible merges to consider since J , the number of
vertices, decreases by one for each stage, and our previously
mentioned restriction—that the endpoints of a stick cannot
be assigned to the same vertex—eliminates a greater propor-
tion of potential merges.

In our experiments these optimizations are sufficient to
yield acceptable runtimes, however given much larger mod-

els the number of possible merges could be reduced to O(J )

by allowing each stick to merge with only a fixed number
(e.g. five) of its nearest neighbors. It may also be possible
to achieve further savings through caching—approximating
the expected change in log-likelihood of a merge with its
value from the previous stage, without recomputing (Ross
et al. 2007).

5 Experimental Results and Analysis

We now present results of the proposed algorithm on a
range of different feature point trajectory datasets. This in-
cludes data obtained by automatically tracking features in
video, from optical motion capture (both 2D and 3D), as
well as a challenging artificially generated sequence. In each
experiment a model was learned on the first 70% of the
sequence frames, with the remaining 30% held out as a
test set used to measure the model’s performance. Learning
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Fig. 10 2D Human structures
learned during greedy merging,
of which stage 11 most closely
matches human intuition.

was performed using the algorithm summarized in Fig. 5,
with greedy merging continuing (generally) until no valid
merges remained. After each stage of merging, we saved the
learned model and corresponding expected complete log-
likelihood—the objective function learning maximizes. The
likelihoods were plotted for comparison, and used to select
the optimal model.

The learned model’s performance was evaluated based on
its ability to impute (reconstruct) the locations of missing
observations. For each test sequence we generated a set of
missing observations by simulating an occluder that sweeps
across the scene, obscuring points as it passes. We aug-
mented this set with an additional 5% of the observations
chosen to be “missing at random”, to simulate drop-outs
and measurement errors, resulting in a overall occlusion rate
of 10–15%. The learned model was fit to the un-occluded
points of the test sequence, and used to predict the location

of the missing points. Performance was measured by com-
puting the root-mean-squared error between the predictions
and the locations of the heldout points. We compared the
performance of our model against similar prediction errors
made by single-body and multibody structure from motion
models.

This section begins with a brief analysis of the effect
of precision parameters during learning, followed by ex-
perimental results on five datasets: a video of an excava-
tor, a video of a walking giraffe, 2D feature trajectories
obtained from human motion capture, an synthetic dataset
of a jointed ring, and an additional set of human motion
data in 3D. Finally we conclude with a brief compari-
son against two related methods (Yan and Pollefeys 2008;
Kirk et al. 2005).

Videos of the experimental results may be found at
http://www.cs.toronto.edu/ dross/articulated/.

http://www.cs.toronto.edu/~dross/articulated/
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Fig. 11 2D Human log-likelihood and error

5.1 Setting Precision Parameters During Learning

As presented, the model contains a number of precision pa-
rameters to be determined during learning: τw , τm, τt , τp ,

τ(vf
j ), τ(ef

i ), as well as the parameters of the prior dis-
tribution on the joint prior, αj and βj . In practice, sim-
ply initializing these precisions to arbitrary values and al-
lowing them to adapt freely during EM leads to poor re-
sults. Some of the precisions—particularly αw , αm, τ(vf

j ),

and τ(ef
i )—tend to grow unbounded, thus we have found

it useful to specify a maximum precision of 50 (a stan-
dard trick during EM). In contrast, the joint precisions
φj (given by α(φj )/β(φj )) tend towards relatively small
values, resulting in a model that has very little cohesion
in the joints. To counteract this we specify a very strong
prior on φj encouraging it towards large values: αj = 2 ×
105 × maximum precision and βj = 105, resulting in an ex-

pected value of 2 × maximum precision with limited vari-
ance. When fitting the motion of a stick, assuming other
precisions saturate at the maximum, this means that keep-
ing an endpoint near its vertex is at least twice as important
as keeping a feature point near its observed location.

In our experiments, we have found temporal smoothing
of the vertices, governed by precision τt to be a disadvan-
tage during learning. Particularly at the beginning, when the
structure contains no joints, smoothing causes the uncon-
nected vertices and endpoints to drift away from the actual
observations at each frame, towards their temporal mean.
Thus, in all of the following experiments we disable smooth-
ing during learning. However, when measuring test perfor-
mance it’s not uncommon for one or more adjacent sticks
to be entirely occluded during a frame. When this happens,
smoothed locations of the vertices provide the only source of
information about the location of the stick, and thus tempo-
ral smoothing is essential for limiting test error. When mea-
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Fig. 12 Synthetic Ring Data: Six frames selected from a synthetic data sequence depicting the motion of a 5-segmented ring. The ring undergoes
significant out-of-plane motion

suring test performance, therefore, we enable smoothing and
set τt = 2000.

Finally, the precisions play an important role in deter-
mining the optimal number of joints. During model selec-
tion we seek the model with the largest expected complete
log-likelihood, hoping that this will include as many plau-
sible joints as possible. However most terms in this objec-
tive function favour a disconnected model, with more ver-
tices and fewer joints. To understand this, consider the prob-
lem of estimating the motion of an unconnected stick. Since
there are no constraints on the vertices, they can be triv-
ially placed to be coincident with endpoints, thus the mo-
tion variable needs only focus on maximizing the proba-
bility of the observations. However when two sticks are
joined together, perfect placement of the vertices is gen-
erally not possible, requiring modelling compromises that
introduce slight reductions in observation probability. The
one term in the objective function that does not decrease
as merges are performed is the entropy of the vertices
EQ(V)[logQ(V)].

Assuming each precision parameter in Q(v) is equal to
the maximum precision, p, this entropy is (FJDo/2) ×
log(2πe/p). If p is greater than 2πe ≈ 17.08, then the dif-
ferential entropy is negative.5 The result is that decreasing
the number of vertices J causes the log-likelihood to in-

5Although unintuitive, negative differential entropies are perfectly ac-
ceptable (Cover and Thomas 1991).

crease. In fact a fixed cost of (FDo/2) log(2πe/p) is paid
for each vertex in the model, giving us the desired bias
towards connectivity. Plots of the relevant log-likelihood
terms are included for the datasets presented below.

5.2 Excavator

Our first dataset consisted of a video clip of an excavator.
We used a Kanade-Lucas-Tomasi tracker (Shi and Tomasi
1994) (with manual assistance to correct for frequent loss-
of-track) to obtain 35 feature trajectories across 176 frames.
Our algorithm processed the data in 4 minutes on a 2.8 GHz
processor. The learned model at each stage of greedy merg-
ing is depicted in Fig. 6. The optimal structure was chosen
by comparing the log-likelihood at each stage, as plotted in
Fig. 7 (left). The four most significant terms comprising this
objective function are plotted individually in Fig. 7 (right).
As can be seen, joining sticks adds additional constraints
that reduce the expected probability of the observations (top
left), the endpoints given vertices (top right), and the end-
points given Mk (bottom left). In contrast the vertex en-
tropy term (bottom right) acts as a per-vertex penalty, which
decreases as we merge vertices, favoring more highly con-
nected models. Figure 7 (bottom) shows that the system’s
prediction error for occluded data was significantly better
than either multibody or single-body SFM.

As can be seen in Fig. 6, the model does a good job at
recovering the structure—the grouping and connectivity—



Int J Comput Vis (2010) 88: 214–237 231

Fig. 13 Synthetic Ring
Structures learned during greedy
merging, of which stage 8 is the
best. In comparison to the
ground-truth structure, shown in
the lower-right, the learned
model over-segments the data
into 8 sticks, rather than 5.
However, since this involves
splitting three of the true sticks
in half, the learned model still
provides a good fit to the data

of the observed trajectories. The reconstruction shows some
deviation between the inferred locations of the joints and
their intuitive positions. The probable source of this inac-
curacy is that the small range of motion exhibited by the
excavator’s arm permits a range of possible joint positions,
while the Gaussian prior says that the joints should be near
the center of mass of each stick. Apparently, while mathe-
matically convenient, the Gaussian prior is not always the
best choice. Nevertheless, the model is fully able to capture
the observed motion of the excavator’s arm, despite the in-
accurate joints.

Using the excavator data, we also examined the model’s
robustness to learning with occlusions in the training data.
When the occlusion scheme described earlier was employed
to generate a training set with missing observations, and the
learning algorithm was applied to this data, it was still able
to recover the correct structure. Similarly, when training ob-
servations were randomly withheld during training, rather
than using structured occlusion, the correct structure was re-
liably recovered with up to 75% of the training observations
missing.

5.3 Giraffe

Our second dataset consisted of a video of a walking gi-
raffe. As before features were tracked, producing 60 trajec-
tories across 128 frames. Merging results are depicted in
Fig. 8. Using the objective function to guide model selec-
tion (Fig. 9), the best structure corresponded to stage 10, and
this model is shown superimposed over the original video in
Fig. 1, appearing at the start of this article.

5.4 2D Human

Our third dataset consisted of optical human motion cap-
ture data (courtesy of the Biomotion Lab, Queen’s Uni-
versity, Canada), which we projected from 3D to 2D us-
ing an isometric projection. The data contained 53 fea-
tures, tracked across a 1018-frame range-of-motion exercise
(training data), and 318 frames of running on an inclined
plane (test data). The structures learned during greedy merg-
ing are shown in Fig. 10, of which stage 11 most closely
matches human intuition.
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Fig. 14 Synthetic Ring Log-likelihood and Error. The sharp downturn in log-likelihood at stage 9 suggests selecting the structure learned during
stage 8

By examining the plots in Fig. 11, it can be noted that
the expected log-likelihood of the various models forms a
plateau, roughly between stages 8 and 11, rather than a sharp
peak as seen for the Excavator data. Although stage 11 is not
actually the most likely model (stage 8 is slightly higher),
the log-likelihood decreases rapidly after stage 11. This sug-
gests that having too many joints—and thereby hampering
the ability of sticks to move so as to fit the observations—is
a bigger disadvantage to the model than simply having too
few joints. Theoretically it may be possible to encourage a
global maximum in log-likelihood at stage 11 by simply in-
creasing the maximum precision (thereby penalizing stage 8
which has more vertices). However, recognizing our prefer-
ence for models with as many plausible joints as possible,
selecting the stage at the edge of the plateau—stage 11—
seems a reasonable choice.

Again, the articulated model achieved a lower test error
than either SFM or multibody SFM.

5.5 Synthetic Ring

In order to evaluate the performance of the model on data
which contains significant out-of-plane motion, we created a
challenging synthetic dataset depicting a segmented ring de-
forming in space. The generated sequence consisted of 100
features across 300 frames, to which independent Gaussian
noise of standard deviation 0.05 was added. (For compar-
ison, each stick was approximately 0.5 units wide and 5
units long.) Six frames from the sequence are depicted in
Fig. 12.

The models learned for the successive stages of merging
are shown in Fig. 13. The sharp downturn in log-likelihood
between stages 8 and 9, shown in Fig. 14, suggests selecting
stage 8 as the best model. (Note that although stage 0, which
is equivalent to multibody SFM, has a higher expected log-
probability, stage 8 has the lower test error.) Unlike methods
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Fig. 15 3D Human structures
learned during greedy merging.
Stage 15 has the highest
log-likelihood

based on spanning trees, our approach was able to recover
the correct closed ring structure.

Interestingly, all of the learned structures chose to group
the feature points into eight sticks, three more than were in
the true grouping used to generate the data, as illustrated in
the bottom-right of Fig. 13. Examination of the results show
that these extra groups arise from splitting three of the true
sticks each into a pair sticks connected by a joint. Although
the learned structure is an over-segmentation of the ground
truth structure, it still provides a perfectly acceptable model
of the data.

As a further analysis of the algorithm’s inability to iden-
tify the correct number of sticks and joints, an experiment
was performed in which the correct ground-truth segmenta-
tion for the ring data was provided as an initialization. From
this starting point, the learning algorithm was able to recover
the connectivity, joint locations, and parameters correctly.
This suggests that the problem is not inherent in the repre-
sentative capability of the model, rather that the greedy/EM
optimization algorithm has difficulty escaping from a poor
initial segmentation, thereby impairing the ability to identify
the correct number of sticks.
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Fig. 16 3D Human Log-likelihood

5.6 3D Human

Although recovering 3D structure from 3D observations is
much simpler than from 2D data, it also receives attention
in the literature. As mentioned previously, our model eas-
ily extends to 3D observations, so we include an additional
experiment demonstrating this ability. Here we trained our
model on optical human motion capture data obtained from
the Carnegie Mellon University Motion Capture Database.
The data consisted of 174 feature points tracked across 732
frames (downsampled by a factor of three from the origi-
nal framerate). The results of greedy merging are shown in
Fig. 15, and the corresponding log-likelihoods in Fig. 16.
Since learning from 3D observations is an easier problem,
the most likely structure—stage 15—is visually more ap-
pealing than the structure learned earlier on the 2D human
data.

5.7 Comparisons with Related Methods

Finally, as an additional qualitative comparison, we ran our
method on two sequences from Yan and Pollefeys (2008),
and ran a re-implementation of Kirk et al. (2005) on our 3D
datasets.

The results of our method on Yan and Pollefeys’s “pup-
pet” and “dancing” sequences are shown in Fig. 17, at the
top left and top right respectively. (Please compare with
Figs. 10 and 11 in Yan and Pollefeys 2008.) As can be seen,
our method does a good job recovering the structure, includ-
ing segmentation and joints, of the puppet. In contrast with
Yan and Pollefeys’s, our approach finds more segments: the
arms and legs are split into two segments each, instead of
only one; and the head, neck, and chest are subdivided, in-
stead of being combined into one segment. An unintuitive

choice made by our algorithm was to place a joint connect-
ing the legs, above the knees. This placement makes more
sense upon watching the entire sequence, and noticing how
little the legs appear to move. Specifically, the left leg is sta-
tionary, and the right leg moves only slightly, back and for-
ward perpendicularly to the image plane. In this case the al-
gorithm favours a simpler model which still adequately cap-
tures the visible motion.

The results on the “dancing” sequence are similar. Again
our method find more segments. In particular the chest is
divided into four segments instead of one. Interestingly, the
algorithm learned interconnections between these chest seg-
ments, producing a near-fully connected graph. This shows
that the model does a good job capturing the near-rigidity
of the chest segments. However it also suggests there is a
limitation in the extent to which initial segments which are
actually tightly coupled can be combined into a single seg-
ment during learning. The segments which show the most
motion, the forearms and head, each are reasonably mod-
eled by sticks which extend from the main body.

As described earlier, the method of Kirk et al. is designed
to work on 3D optical motion capture data, thus we trained
it on the 3D Human dataset used in Sect. 5.6, as well as
on the 3D feature locations that gave rise to the 2D Human
dataset from Sect. 5.4. In the original paper, Kirk et al. focus
on fitting their model to “calibration” sequences, in which
the actor fully flexes each of his individual joints. Indeed,
as shown in Fig. 17 (bottom right), the method does a good
job at recovering the structure from the range-of-motion se-
quence. (For comparison, the results of our method trained
on the 2D-projection of the same sequence is shown in
Fig. 10.) In contrast, on the other 3D Human sequence which
depicts walking and sitting rather than range-of-motion ex-
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Fig. 17 A comparison of results by related methods. Our method was trained on the “puppet” and “dancing” sequences from (Yan and Pollefeys
2008) (top row). The Kirk et al. (2005) method was trained on 3D feature locations from the two datasets of human motion capture (bottom row)

ercises, Kirk’s method fares much more poorly (Fig. 17 (bot-
tom left), c.f. our method Fig. 15).

6 Discussion

We have demonstrated a single coherent model that can
learn the structures and motion of articulated skeletons. This
model can be applied to a variety of structures, requiring no
input beyond the observed feature trajectories, and a mini-
mum of manually adjusted precision parameters.

Our model makes a number of contributions to the state
of the art. First, it is based optimizing a single global ob-

jective function, which details how all aspects of learning—
grouping, connectivity, and parameter fitting—contribute to
the overall quality of the model. Having this objective func-
tion permits iteration between updates of the structure and
parameters, allowing information obtained from one stage
to assist learning in the other. Moreover, the value of the
objective function proves useful for model selection, deter-
mining the optimal number of joints. Also, the noise in our
generative model plays an important role, allowing a degree
of non-rigidity in the motion with respect to the learned
skeleton. This not only allows a feature point to move in
relation to its associated stick, but also permits complexity
in the joints, as the stick endpoints joined at a vertex need
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not coincide exactly. In addition we presented a method for
quantitative comparison, based on imputing the locations of
occluded observations, and were able to demonstrate that
our model performs measurably better than single-body or
multibody structure from motion.

Our model has some limitations. First, as illustrated in
the “excavator” example (Sect. 5.2) the choice of a Gaussian
prior for joint locations, while mathematically convenient, is
not ideal, since it encourages the model to place joints in the
middle of each stick, rather than at its endpoints. In many
cases the effect of the prior is minor, and the problem does
not arise. However, when the range of observed motion in a
particular joint is quite limited, the prior can be more pro-
nounced, moving the inferred joint away from its true loca-
tion. Secondly, when starting from a poor initial segmenta-
tion, the greedy/EM learning algorithm can have difficulty
identifying the correct number of sticks, due to challenges
escaping from local minima. This problem occurs in the syn-
thetic ring experiment (Sect. 5.5), and suggests that alterna-
tive optimization procedures be investigated.

To obtain good results, the model requires a certain den-
sity of features, in particular because the affinity matrix used
for initialization Yan and Pollefeys (2006a, 2008) requires at
least 4 points per stick. In addition, the flexibility of learned
models is limited to the degrees of freedom visible in the
training data; if a joint is not exercised, then the body parts
it connects cannot be distinguished. Finally, our model re-
quires that the observations arise from a scene containing
roughly articulated figures; it would be a poor model of an
octopus, for example.

An important direction for future study is the ability of
learned skeletal structures to generalize: applying them to
new motions not seen during training, and to related se-
quences, such as using a model trained on one giraffe to
parse the motion of another.
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