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Abstract In this article we consider adaptive, PDE-driven
morphological operations for 3D matrix fields arising e.g.
in diffusion tensor magnetic resonance imaging (DT-MRI).
The anisotropic evolution is steered by a matrix constructed
from a structure tensor for matrix valued data. An impor-
tant novelty is an intrinsically one-dimensional directional
variant of the matrix-valued upwind schemes such as the
Rouy-Tourin scheme. It enables our method to complete or
enhance anisotropic structures effectively. A special advan-
tage of our approach is that upwind schemes are utilised only
in their basic one-dimensional version, hence avoiding grid
effects and leading to an accurate algorithm. No higher di-
mensional variants of the schemes themselves are required.
Experiments with synthetic and real-world data substantiate
the gap-closing and line-completing properties of the pro-
posed method.
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1 Introduction

One of the primary tasks of mathematical morphology is the
enhancement and extraction of shape information from im-
age objects. This task is successfully tackled with a multi-
tude of morphological operations based on the fundamental
dilation and erosion processes. Dilation and erosion can be
realised in a set-theoretic or ordering based framework, see
e.g. (Matheron 1967, 1975; Serra 1967, 1982, 1988; Soille
2003), but it may also be implemented within the context
of partial differential equations (PDE) (Alvarez et al. 1993;
Arehart et al. 1993; Brockett and Maragos 1994; Sapiro et
al. 1993; van den Boomgaard 1992) and their numerical so-
lution schemes (see (Breuß and Weickert 2006) as well as
the extensive list of literature cited there). The PDE-based
approach is conceptually attractive since it allows for digital
scalability and even adaptivity of the represented structur-
ing element. This versatility was exploited, for example in
Breuß et al. (2007) to create an adaptive, PDE-based dila-
tion process for grey value images. In Burgeth et al. (2009b)
the idea of morphological adaptivity has been transferred to
the setting of matrix fields utilising the operator-algebraic
framework proposed in Burgeth et al. (2007c). Matrix fields
offer the opportunity of describing anisotropy in physical
measurements and in image processing models, see We-
ickert and Hagen (2006), Laidlaw and Weickert (2009) for
an overview. In diffusion tensor magnetic resonance imag-
ing (DT-MRI), for example, information about the diffusive
properties of water molecules is captured in symmetric pos-
itive definite matrices. The corresponding matrix field re-
flects the structure of the tissue under examination (Basser
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et al. 1994). The goal of Burgeth et al. (2009b) was to en-
hance line-like and coherent structures in DT-MRI data. In
this article we propose a concept for PDE-based adaptive
morphology for matrix fields, involving directional deriva-
tives in the formulation of the PDE-based dilation and ero-
sion processes. In contrast to the approach in Burgeth et al.
(2009b) and as a 3D-extension of the work in Pizarro et
al. (2009) the numerical realisation employed in this arti-
cle takes advantage of the accurate calculation of directional
derivatives that relies on tri-linear interpolation.

We will start from a scalar adaptive formulation for d-
dimensional data u in form of the dilation PDE

∂tu = ‖M(u) · ∇u‖ (1)

with a data dependent, symmetric, positive semidefinite
d × d-matrix M = M(u). Equation (1) describes a dilation
with an ellipsoidal structuring element since an application
of the mapping (x, y, z)� �→ M · (x, y, z)� transforms a
sphere centered around the origin into an ellipsoid. When
considering three-dimensional matrix-fields, for example, in
DT-MRI data sets (d = 3) one has

M =
⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ =

⎛
⎝

‖(a11, a11, a13)‖ν�
‖(a21, a21, a23)‖μ�
‖(a31, a31, a33)‖η�

⎞
⎠ (2)

with unit vectors ν, μ, and η where, e.g.

ν = 1

‖(a11, a12, a1,3)‖

⎛
⎝

a11

a12

a13

⎞
⎠ . (3)

This turns (1) into

∂tu =
(
(a11∂xu + a12∂yu + a13∂zu)2

+ (a21∂xu + a22∂yu + a23∂zu)2

+ (a31∂xu + a32∂yu + a33∂zu)2
) 1

2
(4)

=
(
‖(a11, a12, a13)‖2(∂νu)2

+ ‖(a21, a22, a23)‖2(∂μu)2

+ ‖(a31, a32, a33)‖2(∂ηu)2
) 1

2
. (5)

In Burgeth et al. (2009b) the partial derivatives ∂xu, ∂yu, and
∂zu in (4) were approximated with the standard Rouy-Tourin
scheme (Rouy and Tourin 1992) in its two-dimensional ver-
sion to obtain a directional derivative. However, in Pizarro et
al. (2009) the directional derivatives necessary for the steer-
ing process were realised directly by means of (5) with bet-
ter results than in Burgeth et al. (2009b). Hence it is deci-
sive for our approach to implement the directional deriva-
tives ∂νu, ∂μu, and ∂ηu in (5) via a directional version of

the Rouy-Tourin scheme as an upwind scheme suitable for
the numerical solution of a transport equation (5). As it will
be explained in Sect. 4 an important feature of the proposed
approach is the fact that the upwind schemes are employed
only in their simplest one-dimensional variant regardless of
the dimensionality of the data set. No specially designed
higher-dimensional versions or operator splitting methods
have to be engaged.

This opens the path for using a high resolution method
such as the flux-corrected-transport (FCT) scheme of Breuß
and Weickert (2006) for which its 3D-version is not eas-
ily obtained in adaptive form in the setting of matrix fields.
In total the novel features over Burgeth et al. (2009b) and
Pizarro et al. (2009) are the realisation of higher morpho-
logical operators based on an adaptive directional version of
the FCT scheme in three spatial dimensions.

The necessary directional information of the evolving u

contained in the matrix M(u) may be derived from the so-
called structure tensor. The structure tensor, dating back to
Förstner and Gülch (1987), Bigün et al. (1991), allows to
extract directional information from an image. It is given by

Sρ(u(x)) := Gρ ∗
(
∇u(x) · (∇u(x))�

)
(6)

= (
Gρ ∗ (

∂xi
u(x) · ∂xj

u(x)
))

i,j=1,...,d
. (7)

Here Gρ∗ indicates a convolution with a Gaussian of stan-
dard deviation ρ. For more details the reader is referred to
Bigün (2006) and the literature cited therein. In Brox et al.
(January 2006), Feddern et al. (2006) Di Zenzo’s approach
(Di Zenzo 1986) to construct a structure tensor for multi-
channel images has been extended to matrix fields yielding
a standard structure tensor

Jρ(U(x)) :=
m∑

p,q=1

Sρ(Up,q(x)) (8)

with U = (Up,q)p,q=1,...,m ∈ Symm(R), and Symm(R) de-
notes the set of symmetric m×m-matrices with real entries.
This tensor is a special case of the full structure tensor con-
cept for matrix fields as proposed in Burgeth et al. (2009c).
We will review this full structure concept in Sect. 2.

The article is structured as follows: In Sect. 2 we briefly
give an account of basic notions of matrix analysis needed
to establish a matrix-valued PDE for an adaptively steered
morphological dilation process. We introduce the steering
tensor that guides the dilation process adaptively in Sect. 3.
It is explained how the numerical FCT scheme is turned
into a directional variant that can be used on matrix fields
in Sect. 4. Section 5 contains the definitions of the morpho-
logical operators we are going to extend in their directional
versions to matrix fields. An evaluation of the performance
of our approach to adaptive morphology for matrix fields is
the subject of Sect. 6. The remarks in Sect. 7 conclude this
article.
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2 Matrix Analysis and an Extended Structure Tensor
Concept

This section contains the key definitions for the formulation
of matrix-valued PDEs. For a more detailed exposition the
reader is referred to Burgeth et al. (2007c).

A matrix field is considered as a mapping U : � ⊂
R

d −→ Symm(R) from a d-dimensional image domain
into the set of symmetric m × m-matrices with real entries,
U(x) = (Up,q(x))p,q=1,...,m. The set of positive (semi-) def-
inite matrices, denoted by Sym++

m (R) (resp., Sym+
m(R)),

consists of all symmetric matrices A with 〈v,Av〉 :=
v�Av > 0 (resp., ≥ 0) for v ∈ R

m \ {0}. This set is of spe-
cial interest since DT-MRI produces data with this prop-
erty. Note that at each point x the matrix U(x) of a field
of symmetric matrices can be diagonalised yielding U(x) =
V (x)�D(x)V (x), where V (x) is a orthogonal matrix, while
D(x) is a diagonal matrix. In the sequel we will denote
m × m-diagonal matrices with entries λ1, . . . , λm ∈ R from
left to right simply by diag(λ1, . . . , λm).

The extension of a function h : R −→ R to Symm(R)

is standard (Horn and Johnson 1990): With a slight abuse
of notation we set h(U) := V � diag(h(λ1), . . . , h(λm))V ∈
Sym+

m(R), h denoting now a function acting on matrices as
well. Observe that the systems of eigenvectors remains un-
touched. Specifying h(s) = |s|, s ∈ R as the absolut value
function leads to the absolute value |A| ∈ Sym+

m(R) of a ma-
trix A. Similarly, multivariate functions H : R

m −→ R
m can

be extended in principle to symmetric matrices via H(U) :=
V �diag(H1(λ1 . . . λm), . . . , (Hm(λ1 . . . λm))V ∈ Sym+

m(R).
It is natural to define the partial derivative for matrix

fields componentwise:

∂ωU = (
∂ωUp,q

)
p,q=1,...,m

(9)

where ω ∈ {t, x1, . . . , xd}, that is, ∂ω stands for a spatial or
temporal derivative. Viewing a matrix as a tensor (of second
order), its gradient would be a third order tensor according to
the rules of differential geometry. However, we adopt a more
operator-algebraic point of view by defining the generalised
gradient ∇U(x) at a voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1U(x), . . . , ∂xd
U(x))� (10)

which is an element of (Symm(R))d , in close analogy to the
scalar setting where ∇u(x) ∈ R

d . For W ∈ (Symm(R))d we
set |W |p := p

√|W1|p + · · · + |Wd |p for 0 < p < +∞. It
results in a positive semidefinite matrix from Sym+

m(R), the
direct counterpart of a nonnegative real number as the length
of a vector in R

d .
There will be the need for a symmetric multiplication of

symmetric matrices. We opt for the so-called Jordan product
A • B := 1

2 (AB + BA). It produces a symmetric matrix, it
is commutative and distributive but not associative.

Furthermore, for later use in numerical schemes we have
to clarify the notion of maximum and minimum of two
symmetric matrices A,B . In direct analogy with relations
known to be valid for real numbers one defines (Burgeth et
al. 2007a):

max(A,B) = 1

2
(A + B + |A − B|) (11)

min(A,B) = 1

2
(A + B − |A − B|) (12)

where |F | stands for the absolute value of the matrix F .
With this at our disposal we formulate the matrix-valued

counterpart of (1) as

∂tU = |M(U) • ∇U |2 (13)

with an initial matrix field F(x) = U(x,0). Here M(U) de-
notes a symmetric md × md-block matrix with d2 blocks
of size m × m that is multiplied block-wise with ∇U em-
ploying the Jordan product “•”. Note that | · |2 stands for the
length of M(U) • ∇U in the matrix valued sense. The con-
struction of M(U) is detailed in Sect. 3 and relies on the full
structure tensor.

The full structure tensor S L for matrix fields as defined
in Burgeth et al. (2009c) is used to extract directional infor-
mation and it plays a vital role in the steering of evolution
processes for matrix fields. It reads

S L(U) := Gρ ∗
(
∇U · (∇U)�

)
(14)

= (
Gρ ∗ (

∂xi
U · ∂xj

U
))

i,j=1,...,d
(15)

with Gρ∗ indicating a convolution with a Gaussian of stan-
dard deviation ρ.

S L(U(x)) is a symmetric md × md-block matrix with
d2 blocks of size m × m, S L(U(x)) ∈ Symd(Symm(R)) =
Symmd(R). Typically for the 3D medical DT-MRI data one
has d = 3 and m = 3, yielding a 9 × 9-matrix S L. It can be
diagonalised as S L(U) = ∑md

k=1 λkwkw
�
k with real eigen-

values λk (w.l.o.g. arranged in decreasing order) and an or-
thonormal basis {wk}k=1,...,md of R

md .
In order to extract useful d-dimensional directional infor-

mation, S L(U) ∈ Symmd(R) is reduced to a structure ten-
sor S(U) ∈ Symd(R) in a generalised projection step (Bur-
geth et al. 2009c) using the block operator matrix TrA :=
diag(trA, . . . , trA) containing the trace operation. We set
Tr := TrIm where Im denotes the m × m unit matrix. This
operator matrix acts on elements of the space (Symm(R))d

as well as on block matrices via formal block-wise matrix
multiplication,
⎛
⎜⎝

trA · · · 0
...

. . .
...

0 · · · trA

⎞
⎟⎠ =

⎛
⎜⎝

M11 · · · M1d
...

. . .
...

Md1 · · · Mdd

⎞
⎟⎠
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=
⎛
⎜⎝

trA(M11) · · · trA(M1d)
...

. . .
...

trA(Md1) · · · trA(Mdd)

⎞
⎟⎠ , (16)

provided that the square blocks Mij have the same size as
A. The projection that is conveyed by the reduction process
condenses the directional information contained in S L(U),
for a more detailed reasoning we must refer the reader to
Burgeth et al. (2009c) for the sake of brevity. The reduction
operation is accompanied by an extension operation: The
Im-extension is the mapping from Symd(R) to Symmd(R)

conveyed by the Kronecker product ⊗:

⎛
⎜⎝

v11 · · · v1d
...

. . .
...

vd1 · vdd

⎞
⎟⎠ �−→

⎛
⎜⎝

v11 · · · v1d
...

. . .
...

vd1 · · · vdd

⎞
⎟⎠ ⊗ Im (17)

:=
⎛
⎜⎝

v11Im · · · v1dIm
...

. . .
...

vd1Im · · · vddIm

⎞
⎟⎠ . (18)

This resizing step renders a proper matrix-vector multipli-
cation with the large generalised gradient (∇U(x)) possi-
ble. By specifying the matrix A in (16) one may invoke a
priori knowledge into the direction estimation (Burgeth et
al. 2009c). The research on these structure-tensor concepts
has been initiated by Weickert and Brox (2002), Brox et al.
(January 2006). The approaches to matrix field regularisa-
tion suggested in Chefd’Hotel et al. (2002) are based on
differential geometric considerations. Comprehensive sur-
vey articles on the analysis of matrix fields using various
techniques can be found in Weickert and Hagen (2006).

3 Steering Matrix M(U) for Matrix Fields

With these notions we are in the position to propose the
steering matrix M in the adaptive dilation process for ma-
trix fields. We proceed in four steps:

1. The matrix field R
d � x �→ U(x) provides us with a mod-

ule field of generalised gradients ∇U(x) from which we
construct the generalised structure tensor S L(U(x)) pos-
sibly with a certain integration scale ρ. This step corres-
ponds exactly to the scalar case.

2. We infer d-dimensional directional information by re-
ducing S L(U(x)) with trA with the help of the block op-
erator matrix given in (16). This leads to a symmetric
d × d-matrix S, for example S = Jρ if A = Im:

S(x) := TrA
(

S L(U(x))
)
. (19)

3. The symmetric d ×d-matrix S is spectrally decomposed,
and the following mapping is applied:

H :
{

R
d+ −→ R

d

(λ1, . . . , λd) �−→ 1∑d
i=1 λi

(c1λ1, . . . , cdλd)
(20)

where c = (c1, . . . , cd) is a vector with nonnegative en-
tries. With the choice of the vector c we select the
eigendirection in which the process is steered. For in-
stance, specifying c1 = · · · = cd−1 = k and cd = K � k

one obtains an ellipsoid associated with the matrix M

which is flipped if compared with S. Depending on the
choice of K it can be more excentric than the one accom-
panying S. H applied to S yields the steering matrix M ,

M := H(S). (21)

4. Finally we enlarge the d × d-matrix M to a md × md-
matrix M by the extension operation

M = M ⊗ Im. (22)

4 Directional Numerical Schemes in the Matrix-Valued
Setting

For the numerical solution of nonlinear PDEs governing
the dilation or erosion processes first-order finite differ-
ence methods such as the Osher-Sethian scheme (Osher and
Fedkiw 2002; Osher and Sethian 1988; Sethian 1999) and
the Rouy-Tourin method (Rouy and Tourin 1992; van den
Boomgaard 1999) are popular choices. They are capable
of correctly capturing propagating shocks, however, at the
price of introducing some dissipation and blurring of edges.
A remedy is provided by the flux-corrected transport (FCT)
scheme introduced in Breuß and Weickert (2006) for scalar-
valued morphology. By construction it utilises a first order-
scheme as a primary step and then performs a careful cor-
rection of the introduced dissipation in a second step. In the
subsequent two sections we sketch the directional versions
of the Rouy-Tourin scheme and the FCT scheme with their
extensions to the matrix-valued setting.

4.1 Directional form of the Rouy-Tourin Scheme

The first-order finite difference method of Rouy and Tourin
(1992) may be used to solve the scalar PDE (5) in the
isotropic case with M = Id . Let us denote by un

i,j,k the grey
value of a scalar 3D image data set u at the pixel centered in
(ihx, jhy, khz) ∈ R

3 at the time-level nτ of the evolution.
Furthermore, we employ standard forward, backward, and
central difference operators, i.e.,

Dx+un
i,j,k := un

i+1,j,k − un
i,j,k (23)
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and

Dx−un
i,j,k := un

i,j,k − un
i−1,j,k (24)

and finally

Dx
c un

i,j,k := (
un

i+1,j,k − un
i−1,j,k

)
/2 (25)

here in x-, but analogously in y- and z-direction as well.
The Rouy-Tourin method utilises an upwind approximation
in the pixel (ihx, jhy, khz) of the partial derivative ux (and
analogously uy,uz):

ux ≈ 1

hx

max
(
max

(−Dx−un
i,j,k,0

)
,max

(
Dx+un

i,j,k,0
))

.

(26)

For a unit vector ν = (ν1, ν2, ν3)
� the directional deriv-

ative ∂νu of u may be approximated by ∂νu = 〈ν,∇u〉 =
ν1∂xu + ν2∂yu + ν3∂zu. Hence it is close at hand to ap-
proximate numerically (4) directly. However, this favours
mass transport along the directions of the x-, y-, and z-axis
leading to a poor representation of the directional deriva-
tive. Instead we take advantage of (5) in this article and
propose an alternative involving an interpolated function
value ui+ν1,j+ν2,k+ν3 defined by the subsequent well-known
tri-linear1 approximation (27) employing as weights the
volumes of cuboids associated with the grid points (see
also (Pizarro et al. 2009) in the bilinear case):

ui+ν1,j+ν2,k+ν3

= ui,j,k · (1 − hx |ν1|) · (1 − hy |ν2|) · (1 − hz|ν3|)
+ ui+sign(ν1),j,k · hx |ν1| · (1 − hy |ν2|) · (1 − hz|ν3|)
+ ui,j+sign(ν2),k · (1 − hx |ν1|) · hy |ν2| · (1 − hz|ν3|)
+ ui+sign(ν1),j+sign(ν2),k · hx |ν1| · hy |ν2| · (1 − hz|ν3|)
+ ui,j,k+sign(ν3) · (1 − hx |ν1|) · (1 − hy |ν2|) · hz|ν3|
+ ui+sign(ν1),j,k+sign(ν3) · hx |ν1| · (1 − hy |ν2|) · hz|ν3|
+ ui,j+sign(ν2),k+sign(ν3) · (1 − hx |ν1|) · hy |ν2| · hz|ν3|
+ ui+sign(ν1),j+sign(ν2),k+sign(ν3) · hx |ν1| · hy |ν2| · hz|ν3|.

(27)

This leads to forward and backward difference operators in

the direction of ν with ‖ν‖ =
√

ν2
1 + ν2

2 + ν2
3 = 1:

Dν+un
i,j,k := un

i+ν1,j+ν2,k+ν3
− un

i,j,k (28)

1For the sake of efficiency we use tri-linear interpolation, although
higher order alternatives such as tri-cubic or spline interpolation can
be employed as well.

Dν−un
i,j,k := un

i,j,k − un
i−ν1,j−ν2,k−ν3

(29)

and to a direct approximation of the directional derivative

∂νu = uν

≈ 1

h
max

(
max

(
−Dν−un

i,j,k,0
)

,max
(
Dν+un

i,j,k,0
))

(30)

where h := min(hx,hy,hz). Furthermore, the resulting ap-
proximation of the directional derivatives is also consistent:
tri-linear approximation implies

ui+ν1,j+ν2,k+ν3 = u((i + ν1)hx, (j + ν2)hy, (k + ν3)hz)

+ O(max(hx,hy,hz)), (31)

and hence we have

1

h
Dν+ui,j,k

= 1

h

(
u((i + ν1)hx, (j + ν2)hy, (k + ν3)hz)

− u(ihx, jhy, khz)
) + O(max(hx,hy,hz)) (32)

= uν + O(max(hx,hy,hz)). (33)

Analogous reasoning applies to Dν−ui,j,k . With the calcu-
lus concept presented in Sect. 2 it is now straightforward
to define one-sided directional differences in ν-direction for
fields of m × m-matrices:

Dν+Un(ihx, jhy, khz)

:= Un((i + ν1)hx, (j + ν2)hy, (k + ν3)hz)

− Un(ihx, jhy, khz) (34)

Dν−Un(ihx, jhy, khz)

:= Un(ihx, jhy, khz)

− Un((i − ν1)hx, (j − ν2)hy, (k − ν3)hz) (35)

where Dν+Un, Dν−Un ∈ Symm(R). In order to avoid confu-
sion with the subscript notation for matrix components we
wrote U(ihx, jhy, khz) to indicate the (matrix-) value of the
matrix field evaluated at the voxel centred at (ihx, jhy, khz)

∈ R
3. The directions μ and η are treated accordingly. The

notion of supremum and infimum of two matrices—as
needed in a matrix variant of Rouy-Tourin—has been pro-
vided in Sect. 2 as well. Hence, having these generalisa-
tions at our disposal a directionally adaptive version of the
Rouy-Tourin scheme is available now in the setting of ma-
trix fields simply by replacing grey values un

i,j,k by matri-
ces Un(ihx, jhy, khz) and utilising the directional deriva-
tive approximations.
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4.2 Directional FCT Scheme

The FCT scheme in its original version (Breuß and Weick-
ert 2006) is by construction a new variant of a technique
originally proposed by Boris and Book (1973, 1976, 1975)
in the context of fluid flow simulation. As shown in Breuß
and Weickert (2006), the FCT scheme results in accurate
and (largely) rotationally invariant discrete representations
of continuous-scale morphological dilation/erosion. For the
sake of brevity we will not provide a derivation of the scalar
FCT scheme since it can be found in detail in Breuß and
Weickert (2006), see also Burgeth et al. (2009a) for its
isotropic extension to matrix fields. We will also provide
the directional modifications of the FCT method in the two-
dimensional case only.

The basic idea of FCT is as follows. In a predictor step,
the underlying PDE is solved by a simple and stable scheme
usually afflicted with a fairly high diffusive numerical er-
ror. In a subsequent corrector step this error is negated by
stabilised backward diffusion. The proposed FCT scheme
relies on one-sided upwind differences as presented above.
Using the Rouy-Tourin method as a predictor, denoting the
result pointwise as u

n+1,pred
i,j , the FCT method relies on a

corrector step, which will finally read as

un+1
i,j = u

n+1,pred
i,j + q

n+1,pred
h − q

n+1,pred
d . (36)

One can identify the term q
n+1,pred
h in (36) as

q
n+1,pred
h :=

((
τ

hx

∣∣∣Dx
c u

n+1,pred
i,j

∣∣∣
)2

+
(

τ

hy

∣∣∣Dy
c u

n+1,pred
i,j

∣∣∣
)2

)1/2

. (37)

Here τ stands for the time step size of any explicit scheme
usually employed to solve equations such as (1) numerically
(see also Breuß and Weickert 2006; Burgeth et al. 2009a).
For the term q

n+1,pred
d in (36) we make use of the quantities

gi+1/2,j

= mm

(
Dx−u

n+1,pred
i,j ,

τ

2hx

Dx+u
n+1,pred
i,j ,Dx+u

n+1,pred
i+1,j

)

(38)
gi,j+1/2

= mm

(
D

y
−u

n+1,pred
i,j ,

τ

2hy

D
y
+u

n+1,pred
i,j ,D

y
+u

n+1,pred
i,j+1

)

(39)

where mm(·, ·, ·) is the scalar minmod-function defined for
three arguments as

mm(a1, a2, a3)

:=

⎧⎪⎨
⎪⎩

inf(a1, a2, a3) for a1, a2, a3 > 0,

sup(a1, a2, a3) for a1, a2, a3 < 0,

0 else.

(40)

With these abbreviations we set

δxu
n+1,pred
i,j

:= τ

hx

∣∣∣Dx
c u

n+1,pred
i,j

∣∣∣ + gi+1/2,j − gi−1/2,j (41)

δyu
n+1,pred
i,j

:= τ

hy

∣∣∣Dy
c u

n+1,pred
i,j

∣∣∣ + gi,j+1/2 − gi,j−1/2 (42)

which finally yields the second new term in (36) as

q
n+1,pred
d :=

((
δxu

n+1,pred
i,j

)2 +
(
δyu

n+1,pred
i,j

)2
)1/2

. (43)

The directional version of the FCT-correction step (36)
is now obtained by replacing the finite differences Dx

(·) in
x-direction in (37) to (43) by the weighted finite differences
‖ν̂‖Dν

(·) in ν-direction with ν̂ = (a11, a12, a13), see (2). We
proceed in the same way with the other directions, substi-
tuting D

y

(·) by ‖μ̂‖Dμ

(·), and in the three-dimensional case,

exchanging Dz
(·) by ‖η̂‖Dη

(·) with corresponding interpreta-
tions of μ̂ and η̂. Together with the directional Rouy-Tourin
scheme we obtain the directional version of the FCT method
which is used in this article.

The non-directional FCT method has been successfully
transfered to the setting of matrix fields in Burgeth et al.
(2009a). So it is no surprise that the directional variant
is readily extended to matrix fields. For details, especially
concerning the matrix-valued counterpart of the minmod-
function of three arguments by means of the Loewner order-
ing, the reader is referred to Burgeth et al. (2009a).

5 Morphological Operations

As indicated in the introduction the solution u of (1) mim-
ics the dilation process with an adaptive ellipsoidal struc-
turing element E which changes in time since it depends
on u: E = Eu. Putting a minus sign on the right-hand-side
of (1) gives the PDE-formulation of the corresponding adap-
tive erosion process. Using a common notation we express
the dilation and the erosion of an original image f with such
a structuring element Eu by

f ⊕ Eu and f � Eu. (44)

The combinations of dilation and erosion lead to various
morphological operators such as opening and closing,
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Fig. 1 Comparison of different
methods in 2D. (a) Original
matrix field with ellipsoids in a
line-like arrangement.
(b) Coherence-enhancing
diffusion (CED) with ρ = 4,
t = 3. (c) Isotropic (classical)
dilation at t = 3 using the
Rouy-Tourin scheme. (d) and
(e) show the proposed adaptive,
anisotropic dilation using the
classical Rouy-Tourin scheme
as in Burgeth et al. (2009b) and
the directional Rouy-Tourin
scheme, respectively, with
ρ = 4, c = (0.2,20), t = 1
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Fig. 2 Comparison of different
methods in 2D. (a) Original
spiral with missing tensors.
(b) Coherence-enhancing
diffusion (CED) with ρ = 3,
t = 6. (c) Isotropic dilation at
t = 3 using the Rouy-Tourin
scheme. (d) and (e) show the
proposed adaptive, anisotropic
dilation using the classical
Rouy-Tourin scheme as in
Burgeth et al. (2009b) and the
directional Rouy-Tourin
scheme, respectively, with
ρ = 3, c = (0.2,20), t = 1



154 Int J Comput Vis (2011) 92: 146–161

Fig. 3 Top row: Synthetic 2D
circle with missing information.
Second row: From left to right:
Dilation with directional
Rouy-Tourin scheme in the
tangential direction and in the
radial direction. Third row: The
same using the directional FCT
scheme. Bottom row: Scaled
absolute differences between
both schemes



Int J Comput Vis (2011) 92: 146–161 155

Fig. 4 Adaptive, anisotropic
dilation and closing in 3D using
the directional FCT scheme
with parameters ρ = 2,
c = (0.2,0.2,20), t = 5

f ◦ Eu := (f � Eu) ⊕ Eu, (45)

f • Eu := (f ⊕ Eu) � Eu. (46)

In an image, boundaries of objects are loci of high grey value
variations, and as such they can be detected by derivative
operators. The so-called Beucher gradient

�Eu(f ) := (f ⊕ Eu) − (f � Eu), (47)

as well as the internal and external gradient,

�−
Eu

(f ) := f − (f � Eu),

�+
Eu

(f ) := (f ⊕ Eu) − f,

(48)

are morphological counterparts of the norm of the gradient
f , ‖∇f ‖, if f is considered as a differentiable image.

In van Vliet et al. (1989) a morphological Laplacian has
been introduced. We define a variant by

�Euf := �+
Eu

(f ) − �−
Eu

(f ) (49)

= (f ⊕ Eu) − 2 · f + (f � Eu). (50)

This Laplacian is a morphological equivalent of the sec-
ond derivative ∂ηηf where η stands for the unit vector
in the direction of the steepest slope. It allows us to dis-
tinguish between influence zones of minima and maxima
of the image f . This is a vital property for the construc-
tion of so-called shock filters (Guichard and Morel 2003;
Kramer and Bruckner 1975; Osher and Rudin 1990). Shock
filtering amounts to applying either a dilation or an ero-
sion to an image, depending on whether the pixel is lo-
cated within the influence zone of a minimum or a maxi-
mum:
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Fig. 5 Real world data used in
our experiments

SEuf :=

⎧⎪⎨
⎪⎩

f ⊕ Eu, �Euf < 0,

f, �Euf = 0,

f � Eu, �Euf > 0.

(51)

A considerable number of variants of shock filters have been
considered in the literature (Alvarez and Mazorra 1994;
Gilboa et al. 2002; Osher and Rudin 1991; Remaki and
Cheriet 2003; Schavemaker et al. 1997; Weickert 2003).
When they are applied iteratively, experiments show that
their steady state is given by a piecewise constant image
with discontinuities (“shocks”) between adjacent segments
of constant grey value. For more details about the morpho-
logical shock filter as introduced above, see Burgeth et al.
(2007b).

In the experimental Sect. 6 we will see the results ob-
tained by the various adaptive, PDE-driven morphological
operators when applied to 2D and 3D matrix fields.

6 Experiments

The matrix data are visualised as an ellipsoid in each voxel
via the level sets of quadratic form {v ∈ R

3 : v�U−2(i, j, k)v

= const.}. It is associated with the matrix U(i, j, k) ∈
Sym+

3 (R) representing the matrix field at voxel (ihx, jhy,

khz). By using U−2 the length of the semi-axes of the el-
lipsoid correspond directly with the three eigenvalues of the
matrix. Changing the constant const. amounts to a mere scal-
ing of the ellipsoids. Note that only positive definite matrices
produce ellipsoids as level sets of its quadratic form.

In the following we employ the Rouy-Tourin scheme, the
FCT scheme, and their corresponding directional versions.
In all schemes we use a grid size hx = hy = hz = 1.

6.1 Synthetic Data in 2D and 3D

Figure 1(a) exhibits a 32 × 32 matrix field composed of two
interrupted diagonal stripes with different thickness, both
built with cigar-shaped ellipsoids of equal size but different
orientation. The line-like structures are tilted with respect
to the x-axis by an angle of about 117 degrees. Figure 1(b)
shows the result of applying coherence-enhancing diffusion
(CED) (Burgeth et al. 2009c). Figure 1(c) contains the re-
sult of isotropic (classical) dilation (Burgeth et al. 2007a)
using the standard (non-directional) Rouy-Tourin scheme.
Figure 1(d) and Fig. 1(e) show the result of the proposed
adaptive anisotropic dilation using the Rouy-Tourin scheme
in its standard and directional versions, respectively. The pa-
rameters used were chosen in a way that every method fills
in the missing tensors of both stripes. Our approach is able
to complete the line-like structures much faster and more
accurate than the other methods. A noticeable improvement
is introduced by the directional numerical scheme, which
overcomes the numerical bias towards the coordinate axes
of classical upwind schemes (e.g. Rouy-Tourin). Moreover,
note that the direction and amount of adaptive anisotropic
dilation does not depend on the orientation of the ellipsoids,
but on the orientation and width of the structures. It is worth
mentioning that the CED approach decreases the overall size
of matrices since the total mass, that is, the volume of the
ellipsoids is only redistributed due to the property of mass
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Fig. 6 Adaptive, anisotropic
dilation and erosion in 3D and
2D using the directional FCT
scheme with parameters ρ = 1,
c = (0.05,0.05,5), t = 3 in the
3D case, and ρ = 1,
c = (0.05,5), t = 1 in the 2D
case

conservation. The same experiment is performed on a 2D
spiral data set with missing information, whose outcome is
depicted in Fig. 2. Again, only the anisotropic dilation suc-
ceeds to close the gaps satisfactorily preserving the spiral
structure of the object. As expected, the adaptive dilation
process is faster than the diffusion based method and the
classical isotropic dilation. Furthermore, the effect of em-
ploying a directional numerical scheme becomes more evi-
dent when the anisotropic dilation is steered along circular
structures.

We now use both the directional Rouy-Tourin scheme
and the directional FCT scheme for dilating the test im-
age with an interrupted circular structure shown at the top
of Fig. 3. In the first test the dilation process is steered in
tangential direction while in a second test the radial direc-
tion is selected via the choice of the parameter c = (c1, c2),
namely c = (0.1,10) in the first case and c = (10,0.1) in
the second one. Both directional schemes were applied, the
results together with a scaled (×5) absolute difference im-
age are depicted in Fig. 3. As expected the directional FCT
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Fig. 7 Adaptive, anisotropic
opening and closing in 3D and
2D using the directional FCT
scheme with parameters ρ = 1,
c = (0.05,0.05,5), t = 3 in the
3D case, and ρ = 1,
c = (0.05,5), t = 1 in the 2D
case

method performs favourable in terms of edge preservation
over the directional Rouy-Tourin scheme. This can be seen
in the difference images at the bottom of Fig. 3, which dis-
play the (scaled) dissipation introduced by the Rouy-Tourin
scheme that has been corrected by the FCT scheme.

A much more elaborate matrix field can be seen in
Fig. 4(a). This 3D data set2 is sparsified by removing 80%

2The 3D spiral data set is freely available as part of the Teem toolkit at
http://teem.sourceforge.net.

of the matrices (Fig. 4(b)). Both adaptive anisotropic dila-
tion (Fig. 4(c)) and closing (Fig. 4(d)) performed with the
superior directional FCT scheme, provide a reasonable re-
construction of the original data.

6.2 Real World Data: 3D DT-MRI

We also tested the proposed method on a real DT-MRI data
set of a human head consisting of a 128 × 128 × 38-field
of positive definite matrices. Figure 5(a) displays part of the

http://teem.sourceforge.net
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Fig. 8 Adaptive, anisotropic
Beucher gradient and shock
filtering in 3D and 2D using the
directional FCT scheme with
parameters ρ = 1,
c = (0.1,0.1,10), t = 5 in the
3D case, and ρ = 1,
c = (0.1,10), t = 2 in the 2D
case

lateral ventricles as an actual three-dimensional 40×55×3-
data set while Fig. 5(b) shows only a 2D-slice. In the ex-
periments on real-world data we will always juxtapose the
results of various adaptive morphological operations when
applied to 2D-slices and truly 3D data. However, in order to
avoid visual cluttering, we will in general extract and depict
from the processed 3D data an appropriate 2D-slice only.
Note that we use for the adaptive morphological operations

from now on only the directional FCT scheme in its 3D and
2D realisations.

In Fig. 6 we zoom into the lateral ventricles to show the
effect of applying adaptive dilation and erosion in both the
3D and 2D setting. We see that the adaptive dilation and ero-
sion processes on matrix fields respect the underlying shape
of the ventricles if compared to the isotropic case (Burgeth
et al. 2009a). We notice that the results are quite similar in
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the 3D and in the 2D setting. However, the 3D process seems
to be more accurate at the price of a longer evolution time
(t = 3), than in the 2D case (t = 1).

The lateral ventricles serve also as a test case for the
reconstructing operations of adaptive opening and closing,
Fig. 7. In 3D the lateral ventricles are nicely recovered in
a slightly simplified form, as expected, since the processes
incorporate also information from neighbouring slices.

The difference in processing of 2D and 3D data sets be-
comes prominent in the case of the morphological deriv-
atives, e.g. the Beucher gradient. The gradient operations
detect the boundary of the ventricles, which are three-
dimensional anatomical structures. This boundary in a
cross-section can be seen clearly in Fig. 8(a). In contrast
to this, the boundaries are less localised in the 2D case,
Fig. 8(b).

For the adaptive version of the morphological shock fil-
ter we obtain the matrix valued equivalent of a piece-wise
constant image both in the 3D and the 2D case. In the three-
dimensional setting, Fig. 8(c), we observe a slightly better
localisation of the shock segments than in 2D, Fig. 8(d).

7 Conclusion

We have presented a method for an adaptive, PDE-based di-
lation and erosion processes in the setting of matrix fields.
The evolution governed by matrix-valued PDEs is guided by
a steering tensor whose construction relies on the full struc-
ture tensor for matrix data.

In order to enable proper directional steering we extended
the schemes of Rouy-Tourin and the FCT method in two
ways: First, turning them into directional schemes based
on directional finite differences via interpolation. Second,
by means of advanced matrix calculus, extending these di-
rectional variants to matrix fields solving the matrix-valued
adaptive PDEs of dilation and erosion. Having these two key
operations at our disposal we were able to propose higher
order morphological operators such as morphological deriv-
atives that are adaptive and act on matrix fields.

As a proof-of-concept we applied these adaptive morpho-
logical operations to synthetic and real DT-MRI data. The
tests reveal that the various adaptive morphological opera-
tors behave as one might expected from their scalar coun-
terparts. For instance, the adaptive dilation and closing are
indeed capable of filling in missing data and to complete
directional structures. We also confirmed that the FCT per-
forms preferable over the scheme of Rouy and Tourin.

The direct application of an elementary morphological
operation is usually not suitable for improving an image or
extracting useful information from it. Morphology (adaptive
or not) gains its power from the capability of concatenating
and combining elementary operations according to the task

at hand. We hope to have just opened the adaptive morpho-
logical toolbox for matrix fields. In this respect the proposed
approach to adaptive morphology for matrix fields may have
its merits, for example, in the segmentation of directional
structures or as a preprocessing step for fiber tracking algo-
rithms in medical imaging.
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