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Abstract Tracking people in a dense crowd is a challeng-
ing problem for a single camera tracker due to occlusions
and extensive motion that make human segmentation diffi-
cult. In this paper we suggest a method for simultaneously
tracking all the people in a densely crowded scene using
a set of cameras with overlapping fields of view. To over-
come occlusions, the cameras are placed at a high elevation
and only people’s heads are tracked. Head detection is still
difficult since each foreground region may consist of multi-
ple subjects. By combining data from several views, height
information is extracted and used for head segmentation.
The head tops, which are regarded as 2D patches at vari-
ous heights, are detected by applying intensity correlation
to aligned frames from the different cameras. The detected
head tops are then tracked using common assumptions on
motion direction and velocity. The method was tested on se-
quences in indoor and outdoor environments under challeng-
ing illumination conditions. It was successful in tracking up
to 21 people walking in a small area (2.5 people per m2), in
spite of severe and persistent occlusions.

Keywords Tracking · Detection · Multiple-view

1 Introduction

People tracking is a well-studied problem in computer vi-
sion, mainly, but not exclusively, for surveillance applica-
tions. One of the main challenges encountered by tracking
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Fig. 1 Tracking results using combined data from all views, overlaid
on the reference frame (original frame can be seen in Fig. 2)

methods is the severe and persistent occlusion prevalent in
images of a dense crowd (as shown in Fig. 1). Most ex-
isting tracking methods use a single camera, and thus do
not cope well with crowded scenes. For example, trackers
based on a human shape model such as Rodriguez and Shah
(2007) or Zhao and Nevatia (2004) will encounter difficul-
ties since body parts are not isolated, and may be signif-
icantly occluded. Multiple camera tracking methods often
perform segmentation in each view separately, and are thus
susceptible to the same problems (e.g., Mittal and Davis
2001 or Krumm et al. 2000).

In this paper we present a new method for tracking multi-
ple people in a dense crowd by combining information from
a set of cameras overlooking the same scene. Our method
avoids occlusion by only tracking heads. We place a set of
cameras at a high elevation, from which the heads are al-
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Fig. 2 Six views of a single scene taken at the same time

most always visible. Even under these conditions, head seg-
mentation using a single image is challenging, since in a
dense crowd, people are often merged into large foreground
blobs (see Fig. 7a). To overcome this problem, our method
combines information from a set of static, synchronized and
partially calibrated cameras, with overlapping fields of view
(see examples in Fig. 2).

We rely on the fact that the head is the highest region of
the body. A head top is roughly a 2D blob on the plane par-
allel to the floor at the person’s height. The set of frames
taken from different views at the same time step is used to
detect such blobs. For each height, the foreground images
from all views are transformed using a planar homography
(Faugeras 1993) to align the projection of the plane at that
height in all images. (Note that each of the foreground re-
gions may contain several people.) Intensity correlation in
the set of transformed frames is used to detect the candi-
date blobs. In Fig. 4 we demonstrate this process on a scene
with a single person. Repeating this correlation for a set of
heights produces 2D blobs at various heights that are can-
didate head tops. By finding the centers of these blobs, and
projecting them to the floor, multiple detections of the same
person at different heights can be removed. At the end of
this phase we obtain, for each time step, the centers of the
candidate head tops projected to the floor of a reference se-
quence.

In the next phase of our algorithm, the detected head
top centers are combined into tracks. At the first level of

tracking, atomic tracks are detected using conservative as-
sumptions on the expected trajectory, such as consistency of
motion direction and velocity. At the second level, atomic
tracks are combined into longer tracks using a score which
reflects the likelihood that the two tracks belong to the same
trajectory. Finally, a score function based on the length of
the trajectory and on the consistency of its motion is used
to detect false positive tracks and filter them out. Tracking
results can be seen in Fig. 1.

The main contributions of this paper are: (1) The use
of multiple height homographies for head top detection;
(2) The fusion of information from multiple views through
intensity correlation. The described method overcomes hard
challenges of tracking people: severe and persistent occlu-
sions, subjects with non-standard body shape (e.g., a person
carrying a suitcase or a backpack), people wearing similar
clothing, shadows and reflections on the floor, highly var-
ied illumination within the scene, and poor image contrast.
The method was tested on indoor and outdoor sequences
with challenging lighting conditions, and was successful in
tracking up to 21 people walking in a small area (2.5 peo-
ple per m2). A preliminary version of this paper appeared
in Eshel and Moses (2008).

The rest of the paper is organized as follows: in the next
section we present a review of previous work. Section 3 de-
scribes the two main elements of our method: the head top
detection phase, and the tracking phase. Experimental re-
sults for real-world video sequences are presented in Sect. 4.
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Finally, in Sect. 5, we discuss these results, and suggest fu-
ture research directions.

2 Related Work

There is extensive literature on multiple target tracking, and
specifically on people tracking, mostly from a single view. In
Sect. 2.1 we review some single camera detection and track-
ing methods, and discuss their limitations when applied to
densely crowded scenes. The use of multiple cameras for
people tracking is becoming more common, and such meth-
ods are described in Sect. 2.2. Finally, in Sect. 2.3, we give
an overview of homography based methods, which are most
similar to ours.

2.1 Single Camera Approaches

Until recent years, the bulk of research in the field of peo-
ple detection and tracking concentrated on using a single
camera to track a small number of subjects, most commonly
detected using machine learning techniques. Earlier meth-
ods try to match the image against templates of full human
figures (Felzenszwalb 2001; Gavrila and Philomin 1999; Pa-
pageorgiou and Poggio 1998), and therefore do not perform
well when subjects are even partially occluded. More recent
methods detect body parts separately, by breaking down re-
gions of interest into sub-regions that correspond to local
features (Shashua et al. 2004), by using a full-body repre-
sentation but allowing interpolation between local parts seen
on different training objects (Leibe et al. 2005), or by boost-
ing weak classifiers based on edgelet features and combin-
ing them to form a joint likelihood model (Wu and Nevatia
2007). While these local feature based methods are less sen-
sitive to occlusions, they still require that most of the tracked
person will be visible most of the time.

Another class of single camera detection and tracking al-
gorithms rely on motion information rather than on appear-
ance, by looking for repetitive motion (Polana and Nelson
1994) or by tracking simple image features and probabilis-
tically grouping them into clusters representing indepen-
dently moving entities (Brostow and Cipolla 2006). Much
like the full body detection methods discussed above, these
methods rely on an almost full visibility of the object, and
are thus intolerant to occlusions. Viola et al. (2005) improve
on previous results by integrating motion information with
appearance information. While using a combination of mo-
tion and appearance results in a more robust approach, it is
still limited when a dense crowd is considered. Under dif-
ficult conditions, which preclude the use of either motion
or appearance, their combination cannot be expected to pro-
duce significantly better results.

Several approaches employ a Bayesian framework to im-
prove tracking, relying on relatively simple detection meth-
ods. Some use various types of particle filters (e.g. Isard
and MacCormick 2001; Smith et al. 2005), while others use
Markov Chain Monte Carlo approaches to sample the so-
lution space efficiently (Yu et al. 2007). These, like other
single camera methods, are inadequate for handling highly
dense crowds such as those considered in this paper, due
to severe occlusion which results in large foreground re-
gions comprised of multiple people. For example, a sug-
gested comparison between our method and the state-of-the-
art single view tracking system developed by Wu et al. could
not be performed, since their method was reported to be in-
applicable under these challenging density and illumination
conditions.1

Recently, Ali and Shah (2008) suggested applying
methodologies from the field of evacuation dynamics for
tracking people in highly dense crowds. By relying on the
static structure of the scene and on the dynamic behavior
of the crowd in the vicinity of the tracked person, a strong
prior on the person’s motion is assumed. This produces im-
pressive tracking results for people that move along with the
crowd. However, any deviation from the expected behav-
ior (e.g. a person moving in the opposite direction from the
crowd), will most likely result in a detection failure, since in
that case the prior will preclude detection, rather than facili-
tate it.

2.2 Multiple Camera Approaches

Due to the inherent limitations of single camera trackers
when applied to dense crowds, or to environments where no
single camera position provides an unobstructed view of the
scene, new approaches attempt to fuse the data from multi-
ple cameras. Traditionally, multiple cameras were used for
extending the limited viewing area of a single camera. In
this case, tracking is performed separately for each camera,
and the responsibility of tracking a given subject is trans-
fered from one camera to another (Cai and Aggarwal 1999;
Kettnaker and Zabih 1999; Quaritsch et al. 2007). This ap-
proach does not offer any improvement in tracking results,
since at any given time, only a single camera is responsi-
ble for tracking. To mitigate the effects of occlusion, some
methods use multiple cameras with overlapping fields of
view. Kobayashi et al. (2006) and Nummiaro et al. (2003)
use multiple cameras to robustly track a single target, but
most multiple camera methods attempt to negotiate more
challenging scenarios.

Krumm et al. (2000) use pairs of cameras to resolve am-
biguity using 3D stereo information. Their method is based
on background subtraction, and is hence limited when a

1Personal communication.
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Fig. 3 Intensity correlation improves detection. (a) Combined fore-
ground from all views, without using intensity correlation, at ground
plane. Detection result is a single large blob, containing most of the
people in the scene. (b) Same as (a), but for height 170 cm. Detection
results at the head height are significantly improved compared to those
at the ground plane, but still the number of false positives, specifically

in the dense areas, is too large to facilitate proper separation of the dif-
ferent people. (c) Our method: detection using intensity correlation at
height 170 cm. All people at the given height are detected, and there
are no false positives. (Note that in order to detect all of the people in
the scene, detection results from multiple heights must be combined,
as described in Sect. 3.1.2)

dense crowd is considered. Orwell et al. (1999) use color
histograms to maintain consistent labeling of tracked ob-
jects. While this may provide reliable cues for coordinat-
ing between different cameras tracking the same object, the
color histograms will be significantly altered when objects
are occluded, and therefore this approach cannot be used for
tracking in a dense crowd. Mittal and Davis (2001) employ a
higher level of collaboration between cameras, by matching
foreground blobs from different views along epipolar lines.
Initial separation of the foreground into regions is performed
using a simple color segmentation algorithm. The main lim-
itation of their method is its reliance on the assumption that
different people within a single foreground blob are sepa-
rable based on color segmentation alone. This assumption
does not always hold, since people often wear similarly col-
ored clothes. The same authors later introduced a much more
discriminative color model (Mittal and Davis 2003), which
provides better distinction between different people, but this
will still fail in tracking people with very similar appearance,
such as sports fans wearing team jerseys.

Du and Piater (2007) track targets in each camera sep-
arately using particle filters, and then pass the results to
combined particle filters on the ground plane. Additionally,
tracking results from the ground plane are passed back to
each camera, to be used as boosted proposal functions. To
alleviate the need for precise foot positioning, target loca-
tion on the ground plane is found by intersecting the tar-
gets’ principal axes. The main limitation of this method
is the dependence on separate trackers in each camera,
which are limited in their ability to handle occlusion. In-
tersection of principal axes is also used by Kim and Davis
(2006). They perform segmentation of foreground regions
using a viewpoint-independent appearance model, and iter-
atively combine segmentation results with the axes intersec-

tion point. This detection process is embedded within a par-
ticle filter framework for tracking. Fleuret et al. (2007) use
a generative model which represents people as rectangles to
approximate the probabilities of occupancy at every loca-
tion on the ground plane. These probabilities are combined
using a greedy algorithm which tracks each target over a
long period of time, and uses a heuristic approach to avoid
switching labels between targets. However, since the initial
occupancy map is generated based on the results of a back-
ground subtraction algorithm, the perfect tracking results
achieved in their experiments will diminish significantly in
high crowd densities.

2.3 Homography-Based Multiple Camera Approaches

The use of multiple plane homographies for detection,
which is a fundamental part of our method, was previously
suggested by Garibotto and Cibei (2005). Since their method
attempts to completely reconstruct the objects, but includes
no mechanism for handling occlusions, its utilization is only
feasible for sparse scenes.

The method most similar to ours for detecting people
from multiple cameras was proposed by Khan and Shah
(2006), except that it detects people’s feet, rather than their
heads. They align the foreground of the ground plane in im-
ages taken from a set of cameras with overlapping fields of
view, to detect people’s feet. Their method handles occlu-
sions by applying the homography constraint, which states
that any 3D point lying inside the foreground object in
the scene will be projected to a foreground pixel in every
view. This works quite well for moderately crowded scenes,
but seems inadequate for handling higher crowd densities:
On one hand, tracking people’s feet rather than their heads
precludes the use of intensity value correlation, since the
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Fig. 4 2D patch detection demonstrated, for clarity, on a single, unoc-
cluded person. (The second person, at the back of the image, is 8 cm
shorter, therefore the top of his head does not lie on the plain, and is
thus not detected at this height.) (a, b) Two views of a single scene
taken at the same time. (c) Applying homography transformation to

image (b) to align points on the 3D plane at the head-top height with
their counterparts in image (a). (d) Image (c) overlaid on image (a).
(e) Overlay of additional transformed images. (f) Variance map of the
hyper-pixels of image (e), color coded such that red corresponds to a
low variance

occlusion of the feet in a dense crowd is likely to cause
many false negative detections. On the other hand, detec-
tion based solely on foreground/background separation of
images rather than on a more discriminative correlation of
intensity values can result in false positive detections (as ex-
plained in Sect. 3.1.4, and demonstrated in Fig. 3).

Recently, Arsic et al. (2008) suggested applying the same
concept to planes at multiple heights. Indeed, since they also
rely on detection of foreground regions, their method suf-
fers from a high false positive rate, which is made worse by
the cumulation of results from multiple heights, specifically
lower heights where occlusion is more severe.

Khan et al. (2007) use multiple height homographies
for 3D shape recovery of non-occluded objects. Several
other methods have utilized multiple cameras viewing a sin-
gle object from different directions for 3D reconstruction,
based on the visual hull concept (Laurentini 1994), or on

constructing a space occupancy grid (Cheung et al. 2000,
Franco and Boyer 2005). However, none of these methods
was used for tracking, or in the presence of occlusion.

For a more thorough discussion of tracking techniques,
we refer the reader to the comprehensive survey by Yilmaz
et al. (2006).

3 The Method

We assume a set of synchronized and partially calibrated
cameras overlooking a single scene, where head tops are
visible. The setup, described in Sect. 4.1, allows to compute
homographies between views and between different heights
within the same view.

Initially, head top centers and their heights are detected
(each represented by a single feature point), and projected
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Fig. 5 After applying the plane transformation which corresponds to
the imaginary plane in the scene, the hyper-pixel of the aligned im-
ages will contain the marked rays. (a) A 3D point at the plane height

is detected where a person is present. (b) No person to detect: points
belonging to different objects have different colors. This results in high
hyper-pixel intensity variance, which prevents false positive detection

to the floor. These feature points are then tracked to recover
the trajectories of people’s motion, and filtered to remove
false positives.

3.1 Head Top Detection

The head top is defined as the highest 2D patch of a per-
son. The detection of candidate head tops is based on co-
temporal frames, that is, frames taken from different se-
quences at the same time. Since we assume synchronized
sequences, co-temporal frames are well defined. Figure 7
shows intermediate results of the method described below,
and Algorithm 3.1 gives a synopsis of the algorithm.

3.1.1 2D Patch Detection

To detect a 2D patch visible in a set of co-temporal frames,
we use the known observation that images of a planar sur-
face are related by a homography transformation. When a
homography transformation is applied to images of an ar-
bitrary 3D scene, the points that correspond to the plane
will align, while the rest of the points will not. This idea is
demonstrated in Fig. 4 for a single person at a given height.

Consider n synchronized cameras. Let Si be the sequence
taken by camera i, with S1 serving as the reference se-
quence. Let πh be a plane in the 3D scene parallel to the
floor at height h. A π -mapping between an image and a ref-
erence image is defined as the homography that aligns the
projection of points on the plane π in the two images. For a
plane πh and sequences Si and S1, it is given by the 3 × 3

homography matrix Ah
i,1. Using the correspondences given

by the partial calibration, the homography matrices Ah
i,1 can

be computed for any height h (see Appendix).
Consider S1(t), a frame of the reference sequence in

time t . To detect the set of pixels in S1(t) that are projections
of a 2D patch at height h, the co-temporal set of n frames
is used. Each of the frames is aligned to the sequence S1,
using the homography given by the matrix Ah

i,1. Let Si(t) be
a frame from sequence i taken at time t . Let p ∈ Si(t), and
let Ii(p) be its intensity. A hyper-pixel is defined as an n×1
vector q̄h consisting of the set of intensities that are πh-
mapped to q ∈ S1(t). The πh-mapping of the point p ∈ Si(t)

to a point q in frame S1(t) is given by q = Ah
i,1pi . The in-

verse transformation, pi = Ah
1,iq , allows us to compute q̄h:

q̄h =

⎛
⎜⎜⎜⎝

I1(q)

I2(p2)
...

In(pn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

I1(q)

I2(A
h
1,2q)

...

In(A
h
1,nq)

⎞
⎟⎟⎟⎠

The hyper-pixel q̄h is computed for each pixel q ∈ S1(t).
Highly correlated intensities within a hyper-pixel indicate
that the pixel is a projection of a point on the considered
plane πh (see Fig. 5a). A low correlation can be expected
for other points provided that the scene is not homogeneous
in color (see Fig. 5b). Using hyper-pixel intensity variance,
we obtain a set of pixels that are likely to be projections
of points on the plane πh. Simple clustering, using double
threshold hysteresis on these pixels and a rough estimation
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Algorithm 3.1 2D patch detection at time t

foreach image Si(t) do
Detect foreground pixels using background subtraction

end for
// Detect head top centers at each height separately:
for h ∈ H do

// Create hyper-pixel intensity map S̄(t)h for height h

at time t :
foreach point q ∈ S1(t) do

for i = 1 to n do // Create hyper-pixel q̄h

q̄h(i) ← Ii(A
h
1,iq)

end for
Compute intensity variance of q̄h

end for
Perform hysteresis thresholding on S̄(t)h

Perform segmentation on S̄(t)h to create 2D patches
// Find head top centers, and project to ground plane:
foreach patch p̄j ∈ S̄(t)h do

c̄j ← center of p̄j

cj ← projection of c̄j to ground plane
C(t)h ← C(t)h ∪ {cj } // Add to head centers list for
height h

end for
end for
// Find the highest 2D patch at each floor location:
for h ∈ H do // Traverse heights from top to bottom

foreach projected patch center cj ∈ C(t)h do
L(t) ← L(t) ∪ {cj } // Add to final list of heads
Delete all ci ∈ C(t)h

′
s. t. h′ < h and ‖ci − cj‖ ≤

thresh
end for

end for
return L(t)

of the head top size (in pixels), can be used for detecting
candidate 2D patches on the plane πh. If a blob is larger
than the expected size of a head top, a situation that may oc-
cur in extremely dense crowds, the blob is split into several
appropriately sized blobs using K-means clustering (Lloyd
1982). The number of clusters is determined by dividing the
blob size by the expected head size. The centers of the 2D
patches are then used for further processing.

A possible source of false positive detections is homo-
geneous background. For example, in an outdoor scene, the
texture or color of the ground may be uniform, as may be
the floor or walls in an indoor scene. We therefore align
only the foreground regions, computed using a simple back-
ground subtraction algorithm (which subtracts each frame
from a single background frame, taken when the scene was
empty).

3.1.2 Finding the Highest 2D Patch

The process of detecting 2D patches is repeated for a set
H = {h1, . . . , hn} of expected people heights. The set is
taken at a resolution of 5 cm, within the range 150–190 cm.
We assume that the head tops are visible to all cameras.
It follows that at this stage of our algorithm, all head tops
are detected as 2D patches at one or more of the consid-
ered heights. However, a single person might be detected as
patches at several heights, and all but the highest one should
be removed. To do so, we compute the foot location of each
of the 2D patches as would appear in the reference sequence.

The foot location is assumed to be the orthogonal projec-
tion of a 2D patch at a given height h to the floor. The projec-
tion is computed using a homography transformation from
the reference sequence to itself. The homography aligns the
location of each point on the plane πh in the reference im-
age with the location of its projection to the plane π0 in
the same image. For each height hi ∈ H , the homography
transformation that maps the projection of the plane πhi to
the floor of sequence S1 is given by the 3 × 3 homography
matrix Bhi . These matrices can be computed based on the
partial calibration assumption of our system. For a head top
center q ∈ S1(t), detected at height h, the projection to the
floor of S1 is given by Bhi q . For each floor location, a sin-
gle 2D patch is chosen. If more than one patch is projected
to roughly the same foot location, the highest one is chosen,
and the rest are ignored. This provides, in addition to de-
tection, an estimation of the detected person’s height, which
can later assist in tracking.

3.1.3 Applying Multiple Thresholds

The results of the head top detection process described
above depend on the choice of threshold to be applied to the
hyper-pixel intensity variance. To reduce this dependence,
the complete process is performed twice, with two differ-
ent thresholds. First, a relatively high threshold is applied:
this produces reliable results, with few false positive detec-
tions, but possibly some false negatives. Then, the process is
repeated with a lower threshold to recover the patches that
were missed in the first stage, resulting in an increase in false
positive detections. The results from both stages are sent to
the tracker, where tracks are formed from the high threshold
results, and the low threshold results are used to fill in gaps
within the tracks.

3.1.4 Expected Problems

‘Phantoms’ typically occur when people are dressed in sim-
ilar colors, and the crowd is dense. As a result, portions
of the scene may be homogeneous, and accidental inten-
sity correlation of aligned frames may be detected as head
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Fig. 6 Possible causes of misdetection. (a) A false positive detection
occurs due to accidental projections of points from different people.
This will only happen if all points coincidentally have the same color.
(b) When the surface of the object is reflective (for example, if the per-
son is bald), the same point on the object may seem to have different

colors when viewed from different viewpoints, resulting in high hyper-

pixel intensity variance, and a false negative detection. Note that this

figure is identical to Fig. 5a except for the ray colors, which differ due

to specularity

tops. Figure 6a illustrates how plane alignment can correlate
non-corresponding pixels originating from different people
who happen to be wearing similarly colored clothes. In this
case, rays intersect in front of the people, and the created
phantom is taller. Similarly, shorter phantoms may appear if
the rays intersect behind the people. Note that if only back-
ground/foreground values are used, as in Khan and Shah
(2006), such accidental detections will occur even if peo-
ple are wearing different colors (as in Fig. 5b). Our method
will not detect a phantom in this case, since it uses intensity
value correlation.

Phantoms can also affect the detection of real people
walking in the scene: the head of a phantom can be just
above a real head, causing it to be removed since it is not
the highest patch above the foot location. The probability of
detecting phantoms can be reduced by increasing the num-
ber of cameras, as demonstrated by the experimental results
(see Sect. 4.3).

Phantoms are removed in the tracking phase, by filtering
out tracks that exhibit abnormal motion behavior. Phantom
removal can be further improved by utilizing human shape
detection methods, but this is beyond the scope of this paper.

3.2 Tracking

The input to the tracker for each time step consists of two
lists of head top centers projected to the floor of the ref-
erence sequence. Each list is computed using a different

threshold. The high threshold list will have less false pos-
itive head top detections but more false negative detections
than the lower threshold list.

At the first stage of tracking, atomic tracks are computed
using prediction of the feature location in the next frame
based on its motion velocity and direction in previous ones.
Tracking is performed using the high threshold list. If sev-
eral features are found within a small radius of the predicted
location, the nearest neighbor is chosen. If no feature is
found within this region, the search is repeated using the
lower threshold list. Failure to find the feature in either list
is considered a negative detection. The termination of tracks
is determined by the number of successive negative detec-
tions. After all tracks have been matched to features in a
given time step, the remaining unmatched features are con-
sidered as candidates for new tracks. Tracks are initialized
from these candidates only after two or more consecutive
positive detections.

The result of the first stage of tracking is a large number
of tracks, some of which are fragments of real trajectories
and others which are false positives. The next stage com-
bines fragments into long continuous tracks, leaving short
unmatched tracks for deletion in the final stage.

Let tri and trj be two atomic tracks. The time stamps of
the first and last frames of a track are denoted by f (tri ) and
�(tri ), respectively. The time overlap of two tracks is defined
as:
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Fig. 7 Intermediate results of head top detection. (a) Background
subtraction on a single frame. (b) Aligned foreground of all views for
a given height (color coded for the number of foregrounds in each
hyper-pixel, where red is high). (c) Variance of the foreground hyper-

pixels (red for low). (d) Detected head tops at a given height, and their
projection to the floor. (e) The same as (d) for all heights. (f) Tracking
results with 20 frame history

overlap(tri , trj ) = min(�(tri ), �(trj ))

− max(f (tri ), f (trj )) + 1

If instead of an overlap, there exists a gap between the
two tracks, then the value of overlap will be negative. Two
tracks, tri and trj , are considered for merging if:

−10 ≤ overlap(tri , trj ) ≤ 40

A match likelihood score is computed for each pair of tracks
that satisfies this condition. A high value indicates a low
probability that the two tracks belong to the same real tra-
jectory. The score is a normalized sum of the following mea-
sures (see Fig. 8):

• m1—The number of overlapping frames between the two
tracks, or the size of the gap between them (in the case
of a negative overlap). The value is 0 for a zero overlap,
and increases as the overlap or the gap between the tracks
grows. A gap incurs a higher penalty than an overlap with
the same size (see Fig. 8c).

• m2—The difference between the two tracks’ motion di-
rections. A low value, indicating that the tracks are mov-
ing in roughly the same direction, increases the proba-

bility that they belong to the same real trajectory (see
Fig. 8a).

• m3—The direction change required by tri in order to
reach the merge point with trj . Even if the locations and
motion directions of the two tracks are similar, joining
them might require a sharp change in direction. Tracks
belonging to the same trajectory are expected to require a
small direction change (see Fig. 8b).

• m4—The height difference between tri and trj . The
heights compared are the average heights of the two
tracks, which are assumed to be very similar if both tracks
follow the same person.

• m5—The minimal distance between corresponding points
along the overlapping segments (or along the expected
paths of the trajectories, in case of a negative overlap).
The distance between the tracks is highly indicative of
whether they should be merged or not (see Fig. 8c).

• m6—The average distance between corresponding points
along the overlapping segments. Since the minimal dis-
tance is relatively volatile, and might be influenced by
outliers, the average distance, which is more robust, is
also considered (see Fig. 8c).
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Fig. 8 The measures used to
determine the likelihood that
two tracks belong to the same
real trajectory. (a) m2—the
difference between the two
tracks’ motion directions.
(b) m3—the direction change
required by tri in order to reach
the merge point with trj .
(c) m1—the number of
overlapping frames between the
tracks (in this example, 4);
m5—the minimal distance
between corresponding points
(in this example, the points
designated 3 in each track);
m6—the average distance
between corresponding points
along the overlapping segments

The match likelihood score is defined by:

score(tri , trj ) = 1

6

∑
mi/m̂i

where m̂i is the maximal expected value of the measure mi .
The goal of this normalization is to adjust the six different
measures to a comparable scale.

Finally, tracks suspected as false positives are removed,
based either on their length (very short tracks are assumed
to be false positives), or on their motion consistency score.
To compute this score, the change in speed, direction and
height between any two consecutive time steps is computed,
and averaged over the entire track length. These three mea-
sures are then normalized and summed into a single score, in
a manner similar to the computation of the match likelihood
score above. This heuristic successfully removes most of the
phantom tracks. In addition, pairs of tracks that consistently
move together, staying within a very small distance of each
other, are assumed to belong to the same person (e.g. sepa-
rate detections of the head and of the shoulder), and one of
them is deleted.

To summarize, we handle false negative detections of
partial trajectories by allowing a small number of missed
detections when computing atomic tracks, and then combin-
ing atomic tracks into longer tracks. In both cases we use
common assumptions on motion speed and direction to re-
solve ambiguities. False positive detections are removed us-
ing heuristics based on length and on motion consistency.

4 Experimental Results

To demonstrate the effectiveness of our method, we per-
formed experiments on real video sequences under changing
conditions. In Sect. 4.2 we describe the scenarios and the re-
sults of applying our method to several indoor and outdoor

sequences with varying degrees of crowd density and chal-
lenging illumination conditions. In Sect. 4.3 we investigate
how changing the number of cameras affects the tracking
results.

4.1 Implementation and System Details

We used between 3 and 9 USB cameras (IDS uEye UI-
1545LE-C), connected to 3 Intel Core Duo 1.7 MHz lap-
tops. The cameras were placed around the scene, 2–3 meters
apart, with the vertical viewing angle of each camera rotated
at 30° relative to its neighbor. Horizontally, they were placed
at an elevation of 6 m, viewing the scene at a relatively sharp
angle (45° or more below the horizon). Detection and track-
ing were performed on an area of 3 m × 6 m. All test se-
quences were taken at a rate of 15 frames per second, with
an image size of 640 × 512.

The cameras were calibrated using a novel method de-
scribed in Goldschmidt and Moses (2008). Vertical poles
are placed at the corners of the scene, with blinking LEDs
at the top, middle, and bottom of each. The LEDs on each
pole blink at a unique frequency, which can be detected
and used for generating correspondences between all views.
From these correspondences, it is possible to extract pla-
nar homographies between the views for planes parallel to
the ground at any height (see Appendix). The same data is
also used to synchronize the sequences, and to compute the
ground plane projection homography matrices, Bh.

The algorithm was implemented in Matlab on gray level
images. The algorithm’s behavior is controlled by several
parameters, all of which have a single global setting except
for the hysteresis thresholds. These are used to isolate high
correlation (low variance) hyper-pixels of plane-aligned im-
ages, and are set manually for each sequence, since they de-
pend on volatile factors such as the number of cameras used,
their relative positions, the lighting conditions in the scene,
and the accuracy of the homographies.
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Fig. 9 Examples of tracked trajectories from four sequences. (a) Cir-
cles mark the tracked heads, and straight lines connect the heads to
the feet. The tails represent the full tracking history of each person.

(b, c) In a denser crowd, only a 20 frame history is displayed for each
person. (d) To show the complexity of the motion paths, only heads are
displayed, but with full tracking history

4.2 Sequences and Results

Below we describe the different scenarios used for testing
our approach, and assess the system’s performance.

The following evaluation criteria reflect both the success
of recovering each of the trajectories and the success of as-
signing a single ID to each one:

• True Positive (TP): 75%–100% of the trajectory is tracked,
possibly with some ID changes

• Perfect True Positive (PTP): 100% of the trajectory is
tracked, with a single ID (note that these trajectories are
counted in TP as well)

• Detection Rate (DR): percent of frames tracked compared
to ground truth trajectory, independent of ID changes
(false negative tracks are also included, counted as hav-
ing 0 tracked frames)

• ID Changes (IDC): number of times a track changes its
ID

• False Negative (FN): less than 75% of the trajectory is
tracked

• False Positive (FP): a track with no real trajectory

Table 1 summarizes the tracking results. Examples can
be seen in Fig. 1 and in Fig. 9, where each detected per-
son is marked by his head center, and its projection to the



140 Int J Comput Vis (2010) 88: 129–143

Table 1 Tracking results on 7 sequences (GT—Ground Truth; TP—True Positive, 75%–100% tracked; PTP—Perfect True Positive, 100% tracked,
no ID changes along the trajectory; IDC—ID Changes; DR—Detection Rate; FN—False Negative; FP—False Positive)

Sequence GT TP PTP IDC DR% FN FP

S1 27 26 23 3 98.7 1 6

S2 42 41 39 0 97.9 1 5

S3a 19 19 19 0 100.0 0 0

S3b 18 18 18 0 100.0 0 2

S3c 21 21 20 1 99.1 0 0

S4 23 23 22 0 99.1 0 1

S5 24 23 14 12 94.4 1 0

Total 174 171 155 16 98.4 3 14

ground plane. The tails mark the detected trajectories up to
the displayed frame.

We next describe each sequence in detail2:

S1: A 1500 frame long, relatively sparse (up to 6 concurrent
trajectories), outdoor sequence using only 6 cameras
which, due to physical limitations, are all collinear. The
sequence was taken at twilight, and thus suffers from
dim lighting and poor contrast. The tracking results are
very good, except for a high false positive rate result-
ing from the low threshold chosen to cope with the low
image contrast. Two of the three ID changes are caused
by two people hugging each other, virtually becoming
a single object for a while. Another person who enters
and quickly leaves the scene is tracked only half-way,
and counted as a false negative. Figure 9a presents the
tracking results on this sequence.

S2: A 1100 frame long indoor sequence, with medium
crowd density using 9 cameras. The scene contains up
to 9 people concurrently, some of them moving to-
gether in groups. Lighting conditions are very hard:
bright lights coming in through the windows and re-
flected by the shiny floor create a highly contrasted
background; long dark shadows interfere with fore-
ground/background separation; inconsistent lighting
within the scene significantly alters an object’s appear-
ance along different parts of its trajectory. In addition,
tall statues are placed along the path, sometimes caus-
ing almost full occlusion. Despite these problems, the
tracking quality is good, with only a single track lost,
and most of the others perfectly tracked.

S3: Three excerpts (200, 250 and 300 frames long) from
an indoor sequence with a high crowd density, taken
with 9 cameras. The scene is the same brightly lighted
indoor scenario described in the previous sequence.
The sequences contain 57 trajectories in total, with

2Tracking results can be seen in: ftp://ftp.idc.ac.il/Pub/Users/CS/Yael/
CVPR-2008/CVPR-2008-results.zip.

up to 19 concurrent. All of the people move very
closely together in a single group and in the same di-
rection (S3a and S3b), or split into two groups which
pass close to each other in opposite directions (S3c).
An additional difficulty is the inclusion of several bald-
headed people in the sequence: the bright overhead
lights falling on a bald head give it a different appear-
ance in different views, resulting in a high hyper-pixel
variance and a detection failure. Tracking results are
good: the detection rate is almost perfect (99.7%), and
the error rate is very low (a total of 2 false positives,
0 false negatives and 2 ID changes for the three se-
quences combined). Figure 9b presents the tracking re-
sults on sequence S3b. Figures 1 and 12 present the
tracking results on sequence S3c.

S4: A high crowd density sequence (200 frames), taken us-
ing 6 cameras placed around the scene. Most of the
people are visible at the same time (up to 19), and all
of them move in the same direction, making separa-
tion based on motion impossible. Tracking results are
very good: one of the tracks is detected late (30 frames
after first appearing), while all the others are perfectly
tracked, yielding a 99.1% detection rate. There are no
false negatives and no ID changes, and only a single
false positive. Figure 9c presents the tracking results on
this sequence.

S5: A high crowd density sequence (200 frames) with com-
plex motion taken with the same setup as above. The
sequence begins with 21 people crowded into an 8 m2

area, a density of over 2.5 people per m2. People then
start to move in an unnaturally complex manner—
changing directions sharply and frequently, and passing
very close to each other. The detection results are good,
with a 94.4% detection rate and no false positives, but
the tracking consistency is not as good, with almost half
of the trajectories changing their ID at some point along
their path. Figure 9d presents the tracking results on this
sequence. The tails demonstrate the complex motion of
the people.

ftp://ftp.idc.ac.il/Pub/Users/CS/Yael/CVPR-2008/CVPR-2008-results.zip
ftp://ftp.idc.ac.il/Pub/Users/CS/Yael/CVPR-2008/CVPR-2008-results.zip
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Fig. 10 System performance as a function of the number of cameras.
Results improve as the number of cameras increases. When this num-
ber drops below 5, system performance deteriorates considerably. (a)

Ground truth and true positives. (b) False positives, false negatives and
ID changes. (c) Detection rate

4.3 Varying the Number of Cameras

In theory, two or three cameras are sufficient for applying
our method. In this experiment we test the effect of varying
the number of cameras in one of our more challenging se-
quences, S3b. The results are summarized in Fig. 10. In gen-
eral, both detection and tracking quality improve as the num-
ber of cameras increases. However, increasing this number
beyond six has a negligible effect. The detection rate and the
true positive detection remain high even when the number of
cameras is decreased to three. As mentioned in Sect. 3.1 and
demonstrated in Fig. 6a, decreasing the number of cameras
may increase the number of accidental matchings, causing
phantoms to appear. The effect of this phenomenon is ap-
parent in Fig. 10b. The ambiguity caused by the presence
of a large number of phantoms also affects other parame-
ters, resulting in an increase in the number of ID changes
and of false negative detections. We can therefore conclude
that our tracker performs well when the number of cameras
is sufficient for handling the crowd density. Otherwise, its
performance gradually degrades as the number of cameras
decreases.

5 Conclusion

We suggest a method based on a multiple camera system for
tracking people in a dense crowd. The use of multiple cam-
eras with overlapping fields of view enables robust tracking
of people in highly crowded scenes. This may overshadow
budget limitations when essential or sensitive areas are con-
sidered. The sharp decline in camera prices in recent years
may further increase the feasibility of this setup.

Our main contributions are the use of multiple height ho-
mographies for head top detection, and the fusion of infor-
mation from multiple views through intensity correlation,

which make our method robust to severe and persistent oc-
clusions, and to challenging lighting conditions. Most of the
false positives generated by this method are removed by a
heuristic tracking scheme.

Possible directions for future work include augmenting
our detector with a human shape detector to reduce the num-
ber of false positives, and using appearance features to im-
prove track consistency and thus reduce the number of ID
changes.

Acknowledgements This research was supported by the Israel Sci-
ence Foundation (grant No. 1339/05). We would like to thank Ran
Goldschmidt for assisting in data capture and in calibration and syn-
chronization of the sequences.

Appendix: Transforming Between Views

This appendix describes how to compute the homographies
between the different views using the given point correspon-
dences.

Fig. 11 Detected points along a pole
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Fig. 12 Selected frames from sequence S3c

In order to compute a homography between two views,
four corresponding points on a plane are required. For our
algorithm, only planes parallel to the ground are used. Our
setup consists of four vertical poles placed in the scene, with
three points at known heights on each of them. We next show
how from the projection of these points to an image, the pro-
jection of new points along the poles at any given height can
be found. Using these new points, the required homography
can be computed.

Let z, k, and m be the heights of the three points along
a pole (on the bottom, middle and top of the pole, respec-
tively), and let their projections to the image plane be Z, K

and M (see Fig. 11). The projection, H , of a new point at
height h along the pole can be computed using the observa-
tion that the cross-ratio of the four scene points is equal to
the cross-ratio of their projections.

In world coordinates, all four points are known (located
at known heights along the pole), and therefore their cross-
ratio can be computed (all values are scalar):

r = (h − z)(m − k)

(h − k)(m − z)
(A.1)

Since cross-ratio is preserved by perspective projection,
we can write the same equation for the distances between

the image points:

r = HZ · MK

MZ · HK
(A.2)

where HZ denotes the distance between points H and Z on
the image plane.

In the above equation, r is known, but HZ and HK are
not. Since HK = HZ − KZ, we can replace HK, and remain
with a single unknown parameter, HZ:

r = HZ · MK

MZ · (HZ − KZ)
(A.3)

From this, HZ can be extracted:

HZ = r · MZ · KZ

r · MZ − MK
(A.4)

Repeating this process for each of the four poles, four
points on the plane parallel to the ground at height h can
be obtained. From these points, the required homography
can be computed (using the Direct Linear Transformation
algorithm, as described in Hartley and Zisserman (2000)).
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