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Abstract This article improves recent methods for large
scale image search. We first analyze the bag-of-features ap-
proach in the framework of approximate nearest neighbor
search. This leads us to derive a more precise representation
based on Hamming embedding (HE) and weak geometric
consistency constraints (WGC). HE provides binary signa-
tures that refine the matching based on visual words. WGC
filters matching descriptors that are not consistent in terms
of angle and scale. HE and WGC are integrated within an
inverted file and are efficiently exploited for all images in
the dataset. We then introduce a graph-structured quantizer
which significantly speeds up the assignment of the descrip-
tors to visual words. A comparison with the state of the art
shows the interest of our approach when high accuracy is
needed.

Experiments performed on three reference datasets and
a dataset of one million of images show a significant im-
provement due to the binary signature and the weak geo-
metric consistency constraints, as well as their efficiency.
Estimation of the full geometric transformation, i.e., a re-
ranking step on a short-list of images, is shown to be com-
plementary to our weak geometric consistency constraints.
Our approach is shown to outperform the state-of-the-art on
the three datasets.
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1 Introduction

We address the problem of searching for similar images in
a large set of images. Similar images are defined as im-
ages of the same object or scene viewed under different
imaging conditions, cf. Fig. 16 for examples. Many pre-
vious approaches have addressed the problem of match-
ing such transformed images (Lowe 2004; Mikolajczyk and
Schmid 2004; Matas et al. 2002; Sivic and Zisserman 2003;
Nistér and Stewénius 2006). They are in most cases based
on local invariant descriptors, and either match descriptors
between individual images or search for similar descriptors
in an efficient indexing structure. Various approximate near-
est neighbor search algorithms such as kd-tree (Lowe 2004)
or sparse coding with an over-complete basis set (Omercevic
et al. 2007) allow for fast search in small datasets. The prob-
lem with these approaches is that all individual descriptors
need to be compared to and stored.

In order to deal with large image datasets, most of the
recent image search systems build upon the bag-of-features
representation, introduced in the context of image search in
Sivic and Zisserman (2003). Descriptors are quantized into
visual words with the k-means algorithm. An image is then
represented by the frequency histogram of visual words ob-
tained by assigning each descriptor of the image to the clos-
est visual word. Fast access to the frequency vectors is ob-
tained by an inverted file system. Note that this approach is
an approximation to the direct matching of individual de-
scriptors and somewhat decreases its performance. It com-
pares favorably in terms of memory usage against other ap-
proximate nearest neighbor search algorithms, such as the
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popular Euclidean locality sensitive hashing (LSH) (Datar et
al. 2004; Andoni et al. 2006). LSH typically requires 100–
500 bytes per descriptor to index, which is not tractable, as a
one million image dataset typically produces up to 2 billion
local descriptors.

Some recent extensions of the BOF approach speed up
the assignment of individual descriptors to visual words
(Nistér and Stewénius 2006; Philbin et al. 2007) or the
search for frequency vectors (Jégou et al. 2007; Fraundorfer
et al. 2007). Others improve the discriminative power of the
visual words (Schindler et al. 2007), in which case the en-
tire dataset has to be known in advance. It is also possible to
increase the performance by regularizing the neighborhood
structure (Jégou et al. 2007) or using multiple assignment
of descriptors to visual words (Jégou et al. 2007; Philbin
et al. 2008) at the cost of reduced efficiency. Finally, post-
processing with spatial verification, a re-occurring technique
in computer vision (Lowe 2004), improves the retrieval per-
formance. Such a post-processing is evaluated in Philbin et
al. (2007).

In this article we present an approach complementary
to those mentioned above. We make the distance between
visual word frequency vectors more significant by using
a more informative representation. Firstly, we add binary
signatures to the descriptors, which are compared with the
Hamming distance, resulting of a Hamming Embedding
(HE) of the SIFT descriptors. The idea of using short binary
codes was recently proposed in Torralba et al. (2008), where
they are used to compress global GIST descriptors (Oliva
and Torralba 2001). Secondly, we integrate a weak geomet-
ric consistency (WGC) check within the inverted file sys-
tem which penalizes the descriptors that are not consistent
in terms of angle and scale. A priori knowledge of the trans-
formations can be combined with WGC. This contribution
can be viewed as a partial answer to the question in Philbin
et al. (2007) on how to integrate geometrical information in
the index for very large datasets. Both HE and WGC require
to store additional information, hence increasing the mem-
ory usage of the index. However the efficiency of the search
is not significantly modified when these methods are jointly
used.

We then propose two strategies to improve the assign-
ment of SIFT descriptors to visual words. First, we introduce
a graph-structured quantizer that improves the efficiency of
the descriptor assignment. Second, we propose an asymmet-
ric multiple assignment strategy that reduces the probability
of missing matching descriptor pairs in case of mismatched
visual word assignment.

This article is organized as follows. The evaluation of
a BOF representation as an approximate nearest neighbor
search approach is presented in Sect. 2. Our contributions,
HE and WGC, are described in Sects. 3 and 4. Section 5
analyzes the complexity of querying the inverted file, and

our strategy to assign descriptors to visual words. The prac-
tical complexity of our approach within an inverted file sys-
tem and the memory usage are discussed in Sect. 6. Finally,
Sect. 7 presents the experimental results.

2 Voting Interpretation of Bag-of-Features

In this section, we show how image search based on BOF
vectors compared with the cosine similarity (or equivalently,
with the L2 distance), can be interpreted as a voting system
which matches individual descriptors with an approximate
nearest neighbor (NN) search. We then evaluate BOF from
this perspective. The main notations used in this article are
summarized in Table 1.

2.1 Voting Approach

Given a query image represented by its local descriptors yi′
and a set of database images j = 1..n represented by their
local descriptors xi,j , a voting system can be summarized
as:

1. Dataset image scores sj are initialized to 0.
2. For each query image descriptor yi′ and for each descrip-

tor xi,j of the dataset, update the score sj of the corre-
sponding image by

sj := sj + f (xi,j , yi′), (1)

where f is a matching function that reflects the similarity
between descriptors xi,j and yi′ . For a matching system
based on ε-search or k-NN, f (., .) is defined as

fε(x, y) =
{

1 if d(x, y) < ε

0 otherwise
(2)

Table 1 Notations

n Number of images in the dataset

d Dimension of the local descriptors

mj Number of descriptors describing image j of the dataset

m′ Number of descriptors describing the query

m′
l Number of descriptors describing the query assigned to the

visual word l

k Number of centroids (= visual words) defining the quantizer

xi,j ith descriptor of image j

yi′ i′th descriptor of the query image

q(.) Quantizer: q(xi,j ) is the quantized index associated with xi,j

s∗
j Final score of dataset image j

δx,y Kronecker delta function:

{
1 if x = y,

0 otherwise.

f (., .) Descriptor matching function, see (1)

h(., .) Hamming distance (9)

nd Total number of descriptors (= ∑n
j=1 mj )
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and

fk-NN(x, y) =
{

1 if x is a k-NN of y

0 otherwise
(3)

where d(., .) is a distance (or dissimilarity measure) de-
fined in descriptor space. SIFT descriptors are typically
compared using the Euclidean distance.

3. The image score s∗
j = gj (sj ) used for ranking is obtained

from the final sj by applying a post-processing function
gj :

s∗
j = gj

⎛
⎝ m′∑

i′=1

mj∑
i=1

f (xi,j , yi′)

⎞
⎠ . (4)

The simplest choice for gj is the identity: s∗
j = sj .

In this case the score reflects the number of matches be-
tween the query and each database image. Note that this
score counts possible multiple matches of a descriptor.
Another popular choice is to take into account the num-
ber of image descriptors, for example s∗

j = sj /mj . The
score then reflects the rate of descriptors that match.

2.2 Bag-of-Features: Voting and Approximate NN
Interpretation

Bag-of-features (BOF) image search uses descriptor quanti-
zation. A quantizer q is formally a function

q : R
d → [1, k]

x �→ q(x)
(5)

that maps a descriptor x ∈ R
d to an integer index. The quan-

tizer q is often obtained by performing k-means clustering
on a learning set. The quantizer q(x) is then the index of
the centroid closest to the descriptor x. Intuitively, two de-
scriptors x and y which are close in descriptor space satisfy
q(x) = q(y) with a high probability. The matching function
fq defined as

fq(x, y) = δq(x),q(y), (6)

allows the efficient comparison of the descriptors based on
their quantized index. Injecting this matching function in (4)
and normalizing the score by the number of descriptors of
both the query image and the dataset image j , we obtain

s∗
j = 1

mj m′
m′∑

i′=1

mj∑
i=1

δq(xi,j ),q(yi′ ) =
k∑

l=1

m′
l

m′
ml,j

mj

, (7)

where m′
l (respectively ml,j ) denotes the number of descrip-

tors of the query (respectively dataset image j ) that are as-
signed to the visual word l. In this equation, the normalizing
value m′ does not affect the ordering of the dataset images.

Note that these scores correspond to the inner product be-
tween two BOF vectors. They are computed very efficiently
using an inverted file, which exploits the sparsity of the BOF,
i.e., the fact that δq(xi,j ),q(yi′ ) = 0 for most (i, j, i′) tuples.

At this point, the scores do not take into account the
tf-idf scheme (Sivic and Zisserman 2003), which weights
the visual words according to their frequency: rare visual
words are assumed to be more discriminative and are as-
signed higher weights. In this case the matching function f

can be defined as

ftf-idf(x, y) = (tf-idf (q(y)))2 δq(x),q(y), (8)

such that the tf-idf weight associated with the visual word
considered is applied to both the query and the dataset image
in the BOF inner product. Using this new matching function,
the image scores sj become identical to the BOF similarity
measure used in Sivic and Zisserman (2003). This voting
scheme normalizes the number of votes by the number of
descriptors of the database image (normalization by the L1

norm of the visual word histogram of the database image).
In what follows, we will use the L2 normalization instead.
For large vocabularies, the L2 norm of a BOF is very close
to the square root of the L1 norm. In the context of a voting
system, the division of the score by the L2 norm is very
similar to s∗

j = sj /
√

mj , which is a compromise between
measuring the number and the rate of descriptor matches.

2.3 Weakness of Quantization-Based Approaches

Image search based on BOF combines the advantages of lo-
cal features and of efficient image comparison using inverted
files. However, the quantizer significantly reduces the dis-
criminative power of the local descriptors. Two descriptors
are assumed to match if they are assigned the same quanti-
zation index, i.e., if they lie in the same Voronoi cell. Choos-
ing the number of centroids k is a compromise between the
quantization noise and the descriptor noise (due to changing
imaging conditions).

Figure 1(b) shows that a low value of k leads to large
Voronoi cells: the probability that a noisy version of a de-
scriptor belongs to the correct cell is high. However, this also
reduces the discriminative power of the descriptor: different
descriptors lie in the same cell. Conversely, a high value of
k provides good precision for the descriptor, but the proba-
bility that a noisy version of the descriptor is assigned to the
same cell is lower, as illustrated in Fig. 1(a). Moreover, for a
flat visual vocabulary, the complexity of assigning the query
descriptors is O(k × d × m′

l ), hence the computing cost is
significantly higher for larger vocabulary sizes.

Figure 2 shows the impact of this trade-off when match-
ing a pair of images. The matches obtained with a BOF
quantization are analyzed. A coarse quantization clearly
leads to many incorrect matches, as shown in Fig. 2(a). We
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Fig. 1 Illustration of k-means clustering and our binary signature. (a) Fine quantization (high k). (b) Low k and binary signature: the similarity
search within a Voronoi cell is based on the Hamming distance. Key: · = centroid, � = descriptor, × = noisy versions of this descriptor

can observe that many of the corresponding regions are quite
different. Using a finer quantization, many incorrect matches
are removed (see Fig. 2(b)), but at the same time many cor-
rect matches are also removed.

To evaluate quantitatively the approximate nearest neigh-
bor search performed by BOF, Fig. 3 measures the trade-off
between

◦ the average recall of the ground truth nearest neighbor
(NN recall)

◦ and the average rate of vectors that are retrieved from the
dataset.

Clearly, a good approximate nearest neighbor search al-
gorithm should retrieve the nearest neighbor with high prob-
ability and arbitrary vectors with low probability. In BOF,
the trade-off between these two quantities is managed by
the number k of clusters.

For the evaluation, we have used the approximate nearest
neighbor evaluation set available at Jégou and Douze (2008).
It has been generated using the affine covariant features pro-
gram of Mikolajczyk (2007). A one million vector set to be
searched and a test query set of 10000 vectors are provided.
All these vectors have been extracted from the INRIA Holi-
days image dataset described in Sect. 7.

Figure 3 shows the performance of BOF as an ANN
search algorithm for this dataset. We can observe that the
accuracy is good, for k = 1000, the NN recall is of 45% and
the proportion of the retrieved dataset vectors is 0.1%.

One key advantage of BOF is that its memory usage is
much lower than competing approximate nearest neighbor
search algorithms. For instance, with 20 hash functions the
memory usage of LSH (Datar et al. 2004) is 160 bytes per

descriptor1 compared with the 4 bytes used in BOF to store
the image identifier.

3 Hamming Embedding of Local Descriptors

In this section, we present an approach which combines the
advantages of a coarse quantizer (low number of centroids
k) with those of a fine quantizer (high k). It consists in refin-
ing the quantized index q(xi) with a db-dimensional binary
signature b(xi) = (b1(xi), . . . , bdb

(xi)) that encodes the lo-
cation of the SIFT descriptor within the Voronoi cell, see
Fig. 1(b). It is designed so that the Hamming distance

h(b(x), b(y)) =
db∑

i=1

|bi(x) − bi(y)| (9)

between two descriptors x and y lying in the same cell re-
flects the Euclidean distance d(x, y): the Hamming distance
h between a descriptor and its NNs in the Euclidean space is
small. This mapping from the Euclidean space into the Ham-
ming space, is referred to as Hamming Embedding (HE).

Note that this method is different from the Euclidean
version of LSH (E2LSH) (Datar et al. 2004; Andoni et al.
2006), which produces several hash keys per descriptor.
LSH assumes that two descriptors are similar if they have
the same hash values for at least one hash function, i.e. if the
descriptors lie in the same cell of one of the space partition-
ing. This corresponds to a distance having only two distinct

1For each hash function, we count 4 bytes for the descriptor identifier
and 4 bytes for the hash value, see Andoni et al. (2006).
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Fig. 2 Matching the points of a query image (center) with a corresponding (left) and non-corresponding (right) image, for different quantizers:
(a) Coarse quantization (k = 20k), (b) Fine quantization (k = 200k), (c) Coarse quantization with Hamming Embedding (k = 20k, ht = 24)
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Fig. 3 SIFT descriptors: approximate nearest neighbor search accu-
racy of BOF (dashed) and Hamming Embedding (plain) for different
numbers k of centroids and Hamming thresholds ht (for a 64-bit sig-
nature). This figure depicts the probability of retrieving the NN (NN
recall) as a function of the fraction of vectors that are returned. For in-
stance, by returning on average 0.1% of the vectors, i.e., 1000 vectors
in this experiment, the probability of having the NN returned is about
0.45 with standard k-means and 0.60 with HE

values: same cell or not. In contrast, HE defines a single par-
titioning of the feature space and uses the Hamming metric
between signatures in the embedded space to measure their
similarity.

3.1 Binary Signature Generation

In the following we present an approach for generating bi-
nary signatures for SIFT descriptors.2 We first describe the
off-line procedure that determines a projection matrix P and
k × db median values (db values for each of the k clusters).
To compute these median values, we use the same Dtrain

dataset as for the k-means clustering, see Sect. 7. We then
describe the assignment procedure for a descriptor.

The Off-line Learning of the Parameters consists in three
steps.

1. Random matrix generation: A db × d orthogonal pro-
jection matrix P is generated. We randomly draw a ma-
trix of Gaussian values and apply a QR factorization to
it. The first db rows of the orthogonal matrix obtained by
this decomposition form the matrix P .

2. Descriptor projection and assignment: The descriptors
xi from the dataset Dtrain are assigned to their closest
centroid q(xi) and projected by P to (zi1, . . . , zidb

).

2This approach has also been applied to GIST descriptors in Douze et
al. (2009).

3. Median values of projected descriptors: For each cen-
troid l and each projected component h = 1, . . . , db , we
compute the median value τl,h of the set {zih|q(xi) = l}
that corresponds to the descriptors assigned to cell l.

The signature generation of a descriptor x proceeds as
follows. The quantizer q , the projection matrix P and the
k × db median values τh,l are used to perform the HE:

1. Assign x to its closest centroid, resulting in q(x).
2. Project x using P , producing a vector z = Px =

[z1, . . . , zdb
]	.

3. Compute the signature b(x) = (b1(x), . . . , bdb
(x)) as

bi(x) =
{

1 if zi > τq(x),i ,

0 otherwise.
(10)

At this point, a descriptor is represented by q(x) and
b(x). We can now define the HE matching function as

fHE(x, y)

=
⎧⎨
⎩

(tf-idf(q(x)))2

if q(x) = q(y) and h(b(x), b(y)) ≤ ht

0 otherwise
(11)

where h is the Hamming distance defined in (9) and ht is
a fixed Hamming threshold such that 0 ≤ ht ≤ db . It has to
be sufficiently high to ensure that the Euclidean NNs of x

match, and sufficiently low to filter many points that lie in a
distant region of the Voronoi cell.

Remarks

◦ We use the same projection matrix P for all the visual
words. For a 200k visual vocabulary and db = 64, storing
a projection matrix per visual word would require about
6 GB of memory. Also, learning a projection per cell,
for instance using principal component analysis (PCA),
would require several times more learning data than sim-
ply adjusting the median values τh,l . We typically use the
same learning set as for the k-means clustering.

◦ We have evaluated the retrieval performance using a
global PCA projection matrix for db = 64, instead of a
random one. The PCA is performed on the matrix of all
descriptor coordinates relative to the centroid they are as-
signed to. This method does not significantly improve the
results.

◦ Our binary signature generation procedure is not opti-
mal with respect to the trade-off between 1) memory us-
age and 2) preserving the neighborhood in the embedded
Hamming space. The spectral hashing proposed in Weiss
et al. (2009) specifically addresses this optimization. Note
that this method uses a PCA. Therefore, learning the em-
bedding function for each visual word leads to the same
practical issue.
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3.2 Evaluation of Nearest Neighbor Search Using HE

Figures 4 and 5 illustrate the impact of the parameters on
the quality of the approximate nearest neighbor search pro-
vided by HE for SIFT descriptors. There is a compromise
between the filtering rate, i.e. returning a limited number of
descriptors, and finding the nearest descriptors. These plots
have been generated by analyzing a set of 1000 descriptors
assigned to the same centroid. Given a descriptor x we com-
pare the average rate of descriptors that are retrieved by the
matching function to the rate of 5-NN that are retrieved.

Figure 4 shows that choosing an appropriate threshold
ht (here between 20 and 28) ensures that most of the cell’s

Fig. 4 Rate of SIFT descriptors retrieved as a function of the Ham-
ming distance threshold for (a) all descriptors in a cell and (b) the
5 NNs. The number of bits is db = 64

Fig. 5 HE: Filtering effect on the SIFT descriptors within a cell and
on the 5 NNs for different Hamming thresholds. The number of bits db

of the binary signature varies between 8 and 128

descriptors are filtered out and that the descriptor’s NNs
are preserved with a high probability. For instance, setting
ht = 22 filters about 97% of the descriptors while preserving
53% of the 5-NN. A higher value ht = 28 keeps 94% of the
5-NN and filters 77% of the cell descriptors. Figure 5 rep-
resents this trade-off for different binary signature lengths.
Clearly, the longer the binary signature db , the better the HE
filtering quality. In the following, we have fixed db = 64, a
good compromise between HE accuracy and memory usage
(8 bytes per signature).

Figure 6 shows the Hamming distance probability mass
functions (PMF) obtained for corresponding and non-
corresponding SIFT descriptors. It is averaged over all the
Voronoi cells. The corresponding descriptors are defined as
the descriptors 1) which, according to the ground-truth, cor-
respond to matching images and 2) which have been geo-
metrically verified.3 These PMF have been obtained em-
pirically using the full Holidays dataset (see Sect. 7). Here
again, one can clearly see the impact of the signature length
on the quality of the comparison. It is worth noticing that
the PMF of the non-corresponding descriptors is close to
the binomial distribution B(db,0.5). This distribution corre-
sponds to the case where the binary signatures are uniform
on the Hamming hypercube, i.e., if all the bits have proba-
bility 0.5 and are independent.

A comparison with standard BOF shows that the approxi-
mate nearest neighbor search performed by HE is much bet-
ter. This is qualitatively shown in Fig. 2(c), where one can
observe that many matches have been removed without re-
moving most correct ones. With HE, the query image has
many more point matches with the relevant image than with
the irrelevant one.

This is confirmed by the quantitative evaluation of Fig. 3.
Using HE for the same number of vectors that are retrieved
increases the probability that the NN is among these voting
vectors.

3.3 Weighting the Hamming Distance

In this section, we propose a weighting based on the Ham-
ming distance, i.e., smaller distances result in higher match-
ing scores. In the spirit of the tf-idf weighting scheme, the
weight wd(a) associated with an observed distance a =
h(b(x), b(y)) is obtained as the minus log-probability of
having the Hamming distance between binary signatures
lower than or equal to a. We assume that the PMF of the
binary signatures is uniform on the Hamming hypercube
{0,1}db , which is motivated by the binomial form of the dis-

3This geometrical verification uses the exact Euclidean distance to
compare the descriptors.
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Fig. 6 Holidays dataset: empirical probability mass function of the
Hamming distances for corresponding and non-corresponding points,
for several binary signature sizes. The corresponding points have been

geometrically verified. The binomial distribution B(db,0.5) is a theo-
retical model obtained by assuming the bits are uniform and indepen-
dent

tances between non-corresponding descriptors in Fig. 6. The
weights are then given by

wd(a) = − log2

(
1

2db

a∑
i=0

(
i

db

))
. (12)

These weights are stored in a look-up table of db + 1 el-
ements, corresponding to all possible Hamming distances.
They are used in combination with the tf-idf weight of (11).
High Hamming distances, in particular those above db/2,
have a very low impact on the score. We can therefore set
them to zero, as done in (11) by using the threshold ht . This
improves the efficiency of the indexing structure.

4 Large-Scale Geometric Consistency

Image search based on BOF ranks the database images with-
out exploiting geometric information. Accuracy is improved

by adding a re-ranking step (Philbin et al. 2007) that com-
putes a geometric transformation between the query and a
short-list of database images returned by the BOF search.
To obtain an efficient and robust estimation of this trans-
formation, the model is often kept as simple as possible
(Lowe 2004; Philbin et al. 2007). In Lowe (2004) an affine
2D transformation is estimated in two steps. First, a Hough
scheme estimates a transformation with 4 degrees of free-
dom. Each pair of matching regions generates a set of para-
meters that “vote” in a 4D histogram. In a second step, the
sets of matches from the largest bins are used to estimate
a finer 2D affine transform. In Philbin et al. (2007) further
efficiency is obtained by a simplified parameter estimation
and an approximate local descriptor matching scheme.

Despite these optimizations, geometric matching algo-
rithms are costly and cannot reasonably be applied to more
than a few hundred images. In this section, we propose to
exploit weak, i.e., partial, geometrical information without
explicitly estimating a transformation mapping the points
from one image to another. The method is integrated into
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the inverted file and can efficiently be applied to all images.
Our weak geometric consistency constraints refine the vot-
ing score and make the description more discriminant.

Note that the re-ranking step can still be applied on a
short-list to estimate the full geometric transformation. It is
complementary to the weak consistency constraints and fur-
ther improves the results (see Sect. 7.5).

4.1 Analysis of Weak Geometric Information

In order to obtain orientation and scale invariance, region
of interest detectors extract the dominant orientation of the
region (Lowe 2004) and its characteristic scale (Lindeberg
1998). This extraction is performed independently for each
interest point. When an image undergoes a rotation or scale
change, these quantities are consistently modified for all
points, see Fig. 7 for an illustration in the case of image
rotations. It shows the difference in dominant orientations
for pairs of matching regions. One can observe that only the
incorrect matches are not consistent with the global image
rotation.

Similarly, the characteristic scales of interest points are
consistently scaled between two images of the same scene
or object, as shown on Fig. 8.

4.2 Weak Geometrical Consistency

The key idea of our method is to verify the consistency
of the angle and scale differences of the matching descrip-
tors. We build upon and extend the BOF formalism of (1)
by using several scores sj per image. For a given image
j , the entity sj then represents the histogram of the angle
and scale differences, computed from the characteristic an-
gle and scale of the interest regions of corresponding de-
scriptors. Although these two parameters are not sufficient
to map the points from one image to another, they can be
used to improve the image ranking. The update step of (1) is
modified:

sj (δa, δs) := sj (δa, δs) + f (xi,j , yi′), (13)

Fig. 7 Orientation consistency. Top-left: Query image and its inter-
est points. Top-right: Two images of the same location viewed under
different image rotations. The slices on each matched interest point
show the difference in orientation between the interest point and the

matching point on the query image. Matches are obtained with our HE
method. Bottom-right: Histogram of the differences between the dom-
inant orientations of matching points. The peak clearly corresponds to
the global angle variation
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Fig. 8 Scale consistency for
two pairs of matching images.
Top two rows: The matched
interest point regions. Bottom:
The corresponding histograms
of log-scale differences between
the characteristic scales of
matched points. The peak
clearly corresponds to the scale
change between images

where δa and δs are the quantized angle and log-scale dif-
ferences between the interest regions. The image score then
becomes

s∗
j = g

(
max
(δa,δs )

sj (δa, δs)

)
. (14)

The motivation behind the scores of (14) is to use angle
and scale information to reduce the scores of images whose
points are not transformed by consistent angles and scales.
Conversely, a set of points consistently transformed will ac-
cumulate its votes in the same histogram bin, resulting in a
high score.
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Experimentally, the quantities δa and δs have the desir-
able property of being largely independent: computing sep-
arate histograms for angle and scale is as precise as comput-
ing the full 2D histogram of (13). Two histograms sa

j and ss
j

are separately updated by

sa
j (δa) := sa

j (δa) + f (xi,j , yi′),

ss
j (δs) := ss

j (δs) + f (xi,j , yi′).
(15)

The two histograms can be thought as marginal probabil-
ities of the 2D histogram. Therefore, the final score

s∗
j = g

(
min

(
max

δa

sa
j (δa), max

δs

ss
j (δs)

))
(16)

is a reasonable estimate of the maximum of (14). This
approximation will be used in the following as it signif-
icantly reduces the memory requirements. In practice, the
histograms are smoothed by a moving average to reduce the
angle and log-scale quantization artifacts. Note that a more
complex model (including translations) model could theo-
retically be included in WGC. However, for a large number
of images, the number of parameters should be kept below
2, otherwise the memory and CPU costs of obtaining the
scores would not be tractable.

4.3 Injecting a Priori Knowledge

Figure 9(a) shows that the repartition of angle differences δa

between matched descriptors is different for corresponding
and non-corresponding point pairs. The shallow peaks on
multiples of π/2 for non-corresponding points are due to the
higher frequency of horizontal and vertical gradients in pho-
tos. The probability mass function of angle differences for
corresponding points follows a highly non-uniform reparti-
tion. This is due to the human tendency to shoot either in
“portrait” or “landscape” mode. A similar bias is observed
for δs : image pairs with the same scale (δs = 0) are more
frequent.

The orientation and scale priors are used to weight the en-
tries of our histograms before extracting their maxima. We
have designed two different orientation priors (Fig. 9(b)):
“same orientation” for image datasets known to be shot with
the same orientation and “±π/2 rotation” for sets including
non-straightened shots. On average, using priors improves
the performance, as shown in the experimental section. Note
however that images that underwent rare modification of ori-
entation or scale are less likely to be correctly ranked when
using transformation priors.

5 Descriptor Quantization

In this section, we first analyze the complexity of query-
ing the inverted file and introduce a cost factor represent-
ing the dictionary suboptimality. We then propose a strategy
that increases the efficiency of the assignment of descriptors
to visual words. Finally, we propose a multiple assignment
strategy that improves the search accuracy at the cost of an
increased query time.

5.1 Codebook Construction and Complexity

In contrast to the hierarchical method of Nistér and Stewén-
ius (2006) and to the method of Philbin et al. (2007), we
use an exact brute-force k-means algorithm to generate the
visual vocabulary. This is computationally expensive, but as
this step is performed off-line, it has no impact at search
time. Compared to Nistér and Stewénius (2006), an exact k-
means algorithm generates more balanced clusters, i.e., the
lists in the inverted file have roughly the same length. This
results in a better efficiency when querying the inverted file,
as the expected computing cost C associated with a single
query descriptor is

C = nd

k∑
i=1

p2
i , (17)

Fig. 9 (a) Histogram of δa

values accumulated over all
query images of the Holidays
dataset. Corresponding pairs are
geometrically verified matching
points between corresponding
images. Non-corresponding
pairs are HE-filtered point
matches with
non-corresponding images
(from the Kentucky dataset).
(b) Weighting function applied
to the scores sa

j
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where nd is the number of descriptors stored in the inverted
file, and pi denotes the probability that a given SIFT de-
scriptor is assigned to the ith visual word. The minimum of
C is obtained when pi = 1/k for all visual words, i.e., when
the inverted lists are of equal length. In that case, for a single
input descriptor, the expected number of entries analyzed is
equal to nd/k.

The imbalance factor of a quantizer (visual vocabulary)
is defined as

u = k

k∑
i=1

p2
i , (18)

which is ratio of the number of visited entries in the inverted
file over the one of an optimal quantizer (minimal C). In
other terms, for a given vocabulary size k, the imbalance
factor is a measure of the query cost associated with a given
visual word distribution.

Using k-means, the imbalance factors for vocabulary
sizes of k = 20000 and k = 200000 are equal to 1.21 and
1.34, respectively. We have computed u from (18) by mea-
suring the empirical probabilities pi on one million images.
Hierarchical clustering approaches, as proposed in Nistér
and Stewénius (2006), Fraundorfer et al. (2007) leads to
higher values: Fraundorfer et al. (2007) reports factors be-
tween 4 and 5 for the hierarchical clustering.

5.2 Approximate Visual Word Assignment

In order to efficiently assign descriptors to visual words with
large vocabularies (e.g., for k = 200000 in our experiments),
we use an approximate assignment scheme. It relies on a
layered graph structure (Fig. 10) constructed as follows:

Clustering We compute a full k-means clustering on the
training set to obtain a vocabulary of size k. The resulting
centroids are the second-layer nodes of our structure.

Tree Construction A k-means clustering is performed on
the visual words, producing k′ centroids. These centroids
form the first layer of our hierarchical structure. Each vi-
sual word of the original codebook is a leaf in the second

Fig. 10 Two-layer graph structure used for the approximate assign-
ment of visual words. Plain: The original connections between the two
layers, as generated by the clustering. Dashed: Additional connections
learned on an independent dataset.

layer, and is connected with its closest centroid in the first
level.

Compared to the top-down approach of Nistér and
Stewénius (2006), the bottom-up construction of the tree is
clearly more costly, as it requires to perform a k-means clus-
tering for a large vocabulary. However, since this construc-
tion is performed off-line, its efficiency is not critical. Us-
ing standard centroids as tree leaves preserves the k-means
Voronoi cells, which minimize the reconstruction error be-
tween a descriptor and its visual word.

Graph Construction At this point, the tree structure can
already be used to assign descriptors to visual words as in
Nistér and Stewénius (2006). However, the nearest centroid
of a descriptor in the second layer may not be connected to
the nearest one in the first layer. In this case an assignment
based on the tree structure does not find the visual word clos-
est to the descriptor. The greedy N-best paths search strat-
egy (Schindler et al. 2007) addresses this issue by keeping
several nodes in each level and by exploring their children,
which may be of interest when using a large number of lay-
ers and a small branching factor.

Here, we complete the graph structure by connecting any
first-layer node and leave that are the nearest neighbors of a
descriptor. The connections are learned on a large dataset, by
quantizing each descriptor with both quantizers, and by con-
necting the nodes of the resulting visual words. The number
of connections is controlled by the size n′ of the learning set.
Figure 11 shows the total number of connections generated
between the first graph layer and the leaves for a vocabulary
size of k = 200k for varying values of k′ and n′.

To assign a descriptor to a visual word, we first search
for the nearest neighbor in the first layer. We then search
for the nearest neighbor in the leaves connected to it. Fig-
ure 12 shows the average number of distance computations

Fig. 11 Number of connections in the graph structure, for several
coarse quantizer sizes k′, as the function of the size n′ of the learning
set. Note that the number of connections in the original tree structure
is k = 200k
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Fig. 12 Graph-structured quantizer: number of vector distance com-
putations per query. To be compared to that of a linear search, 200k for
the visual vocabulary considered here

performed for a single query, as a function of the learning set
size. This cost takes into account the two layers of the graph
structure. For the proposed parameters, the number of dis-
tance computations is typically divided by 40 for a learning
set of n′ = 50M descriptors. The advantage of this method is
that the structure is computed off-line and takes into account
the statistics of the data. If the training set used for learning
the connections is large enough, only connections that occur
with a low probability are missed. This method is evaluated
in the experimental Sect. 7.3.

5.3 Multiple Assignment

At query time it is also possible to assign a descriptor to
not only one but several nearest visual words (using approx-
imate visual word assignment for large k). Our strategy is
similar to the multiple descriptor assignment proposed in Jé-
gou et al. (2007) or the soft quantization method proposed
in Philbin et al. (2008). The method we propose hereafter is
slightly different from Jégou et al. (2007) in that

◦ we perform multiple assignment for the query only, not
for the images in the database. Therefore, the inverted
file’s memory usage is unchanged.

◦ the distance d0 to the nearest centroid is used to filter cen-
troids for which the distance to the descriptor is above
αd0 (typically, α = 1.2). This criterion removes improba-
ble matches and reduces the number of cells to explore.

Given these criteria, we assign on average each descriptor
to 4 visual words, if the 10 nearest neighbors are considered.
Hence, the query time is approximately multiplied by this
value. This loss of efficiency is rewarded by a significantly
higher accuracy, as shown in the experimental Sect. 7.

6 Complexity

Both HE and WGC are integrated in the inverted file. This
structure is usually implemented as an array that associates
a list of entries with each visual word. Each entry contains
a database image identifier and the number of descriptors of
the image assigned to the visual word. The tf-idf weights
and the BOF vector norms can be stored separately. The
search consists in iterating over the entries corresponding
to the visual words in the query image and in accumulating
the scores accordingly.

We use an alternative implementation that consists in
storing one entry per descriptor in the inverted list corre-
sponding to the assigned visual word instead of one entry
per image. This is required by HE and WGC, because ad-
ditional information is stored per local descriptor. In our
experiments, the overall memory usage was not noticeably
changed by this implementation.

HE Impact on the Complexity For each inverted file entry,
we compute the Hamming distance between the signature of
the query descriptor and that of the database descriptor. This
is done efficiently with a binary xor operation followed by
a bit weight counter, which is efficiently implemented by
combining 8-bit table lookups. Entries with a distance above
ht are rejected, which avoids the update of image scores
for these entries. This is the case for most of the entries,
as shown in Fig. 4.

WGC Impact on the Complexity WGC modifies the score
update by applying (15) instead of (1). Hence, two bins are
updated, instead of one for a standard inverted file. With
the tested parameters, see Table 2, the memory usage of the
histogram scores is 127 (one per possible quantized differ-
ence, i.e., from −63 to +63) floating point values per image,
which is small compared with the inverted lists.

Runtime All experiments were carried out on 2.6 GHz
quad-core computers. As the new inverted file contains more
information, we carefully designed the size of the entries to
fit into 12 bytes per point, as shown in Table 2.

Table 3 summarizes the average query time for a one mil-
lion image dataset. We can observe that the baseline BOF

Table 2 Inverted file memory usage

WGC HE WGC + HE

Image id 21 bits x x x

Orientation 6 bits x x

Log-scale 5 bits x x

Binary signature 64 bits x x

Total memory usage per entry: 4 bytes 11 bytes 12 bytes
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Table 3 Query time per image for a one million-image dataset. Tim-
ings were measured in batch mode on a quad-core

k = 20k k = 200k

Compute descriptors 0.88 s 0.88 s

Quantization + binary signature 0.36 s 0.60 s

Search, baseline BOF 2.74 s 0.62 s

Search, WGC 10.19 s 2.11 s

Search, HE 1.16 s 0.20 s

Search, HE+WGC 1.82 s 0.65 s

approach is significantly faster for a larger visual vocabu-
lary, i.e., for k = 200k. This is due to the high rate of zero
components in the case of large visual vocabularies. Inter-
estingly, HE reduces the inverted file query time compared
to the baseline BOF approach for both values of k. This is
due to the fact that the Hamming distance computation and
thresholding is cheaper than updating the scores. WGC is
costly, mostly because the histograms do not fit in cache
memory and their memory access pattern is almost random.
Overall, the search time of HE + WGC is comparable to
the inverted file baseline BOF. Note that for k = 200k vi-
sual words, we use the approximate nearest neighbor search
(Sect. 5), i.e., the assignment is not ten times slower than for
k = 20k, but increases by less than 2.

7 Experiments

We perform our experiments on three annotated datasets:
our own Holidays dataset (Jégou et al. 2008), the Oxford5k
dataset and the University of Kentucky object recognition
benchmark (Nistér and Stewénius 2006). To evaluate large
scale image search we also introduce a distractor dataset
downloaded from Flickr. For evaluation we use mean aver-
age precision (mAP), as in Philbin et al. (2007), i.e., for each
query image we obtain a precision/recall curve, compute its
average precision and then take the mean value over the
set of queries (it coincides with the area under the average
precision curve). Descriptors are obtained by the Hessian-
Affine detector and the SIFT descriptor, using the software
of Mikolajczyk (2007) with the default parameters. Cluster-
ing is performed with k-means on the independent Flickr60k
dataset. The number of clusters is specified for each experi-
ment.

7.1 Datasets

In the following we present the different datasets used in our
experiments, see Table 4 for an overview.

Table 4 Datasets used in our experiments

Dataset #images #queries #descriptors

Holidays 1,491 500 4,455,091

Oxford5k 5,062 55 15,886,585

Kentucky 10,200 10,200 19,415,079

Flickr60k 67,714 N/A 140,211,550

Flickr1M 1,000,000 N/A 2,072,739,475

Holidays We have collected a dataset which mainly con-
tains personal holiday photos (Jégou et al. 2008), but also
images taken on purpose to test the robustness to vari-
ous transformations: rotations, viewpoint and illumination
changes, blurring, etc. The dataset includes a large variety
of scene types (natural, man-made, water and fire effects,
etc) and images are of high resolution. The dataset contains
500 image groups, each of which represents a distinct scene.
The first image of each group is the query image and the
correct retrieval results are the other images of the group.
The dataset is available at Jégou and Douze (2008). It corre-
sponds to a usage scenario in a personal photo management
tool.

Oxford5k The Oxford dataset (Philbin et al. 2007) repre-
sents images of Oxford buildings. There are 55 query im-
ages corresponding to 11 distinct buildings. All the queries
are defined by a rectangle delimiting the building and are
in “upright” orientation. For each building, the 5062 images
are annotated as relevant (good + OK), not relevant (bad),
and should not be taken into account when measuring the ac-
curacy (junk), because they only contain a partial view (less
than 25%) of the building. The usage scenario is a filter that
re-ranks image results returned by a textual search.

Kentucky This object recognition benchmark (Nistér and
Stewénius 2006) contains 2550 different objects or scenes.
Each one is represented by four images taken from four dif-
ferent viewpoints. For this dataset only, we give both the
mAP and the measure of accuracy proposed by the authors,
denoted by KS (Kentucky Score): it is the average number of
relevant images ranked in top four positions when querying
the dataset.

Flickr60k and Flickr1M We have retrieved arbitrary im-
ages from Flickr and built two distinct sets: Flickr60k is
used to learn the quantization centroids and the HE parame-
ters (median values). For these tasks we have used respec-
tively 5M and 140M randomly selected descriptors. They
were also used to learn the graph structure of the approxi-
mate descriptor assignment introduced in Sect. 5.2 (for the
200K vocabulary only). Flickr1M are distracting images
for large scale image search. Compared to Holidays, the
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Flickr datasets are slightly biased, because they include low-
resolution images and more photos of humans.

For all our experiments, we have used a visual vocabu-
lary learned on Flickr60k. Compared with learning the vo-
cabulary on the query set, this choice is more representative
of the behavior of the search in very large image datasets,
for which 1) query descriptors represent a negligible part of
the total number of descriptors, and 2) the number of visual
words represents a negligible fraction of the total number of
descriptors.

7.2 Evaluation of HE and WGC

Table 5 compares the proposed methods to the standard BOF
baseline. One can observe that both HE and WGC result in
significant improvements in terms of mAP. Furthermore, the
combination of the two further increases the quality. Note
that these results are obtained without spatial verification
and query expansion. The parameters and variants have the
following impact on the accuracy.

1. The vocabulary size of 200k visual words is signifi-
cantly better than the 20k vocabulary for the BOF base-

line. However, with HE the results are very similar for
both sizes, as HE filters most incorrect matches.

2. The WGC prior significantly improves the performance
for the Oxford dataset, as the images of this dataset are
all upright. The prior penalizes matches that correspond
to strong rotations. For the Kentucky benchmark, it is not
useful, probably because many images have arbitrary an-
gles.

3. Weighting the Hamming distances as proposed in the
Sect. 3.3 increases the mAP by 1% to 4% (absolute per-
centage points), depending on the dataset and the other
parameters.

4. The MA of descriptors to visual words proposed in the
Sect. 5.3 significantly improves the mAP as well, provid-
ing on average an improvement of 4%. Interestingly, MA
does not improve the performance of the standard BOF
method.

5. The impact of the threshold ht is shown in Fig. 13. One
can observe a consistent behavior for all the datasets. The
maximum mAP score is reached for ht ranging from 20
to 26, depending on the vocabulary size and the dataset.
Unsurprisingly, larger dictionary should be associated

Table 5 Results for the 3
datasets and for the different
methods and variants: HE (see
Sect. 3) and distance
weighting (3.3), WGC (Sect. 4)
without or with prior (4.3) and
MA (5.3). For HE, the threshold
ht is set to 24 for all
experiments

Kentucky Oxford Holidays

KS mAP mAP mAP

k = 20k 200k 20k 200k 20k 200k 20k 200k

BOF 2.88 2.95 0.752 0.771 0.338 0.384 0.469 0.572

HE 3.26 3.20 0.843 0.826 0.497 0.489 0.707 0.723

HE + weights 3.30 3.24 0.852 0.834 0.517 0.507 0.745 0.745

HE + weights + MA 3.42 3.38 0.878 0.868 0.549 0.561 0.735 0.775

WGC, no prior 2.95 2.93 0.771 0.764 0.391 0.404 0.600 0.612

WGC 2.93 3.00 0.768 0.781 0.445 0.462 0.647 0.688

HE + WGC + weights 3.27 3.23 0.845 0.834 0.562 0.545 0.770 0.761

HE + WGC + weights + MA 3.38 3.35 0.870 0.863 0.605 0.615 0.813 0.804

Fig. 13 Hamming threshold ht and distance weighting: impact on the search accuracy
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with a slightly lower value of ht . Finally, weighting the
distance is beneficial for all threshold values. The gain is
especially important for higher values of the threshold.
Note, however that the weights are not ultimately opti-
mal, as the mAP is not a monotonously increasing func-
tion of the threshold.

The proposed methods and variants are complementary
to each other. Except for the Kentucky benchmark, for which
the WGC is not useful, the best accuracy is obtained by
using all of them together. Note that the size of the vo-
cabulary does not significantly influence the accuracy of
the best method, but does results in a speed-up. Compared
to the standard BOF, our method increases the mAP by
10% on the Kentucky recognition benchmark, by 23% on
the Oxford dataset and by 24% on the INRIA Holidays
dataset.

7.3 Graph-Structured Quantizer

Figure 14 compares three ANN search algorithms:

◦ the baseline is an optimized implementation of the ex-
haustive linear search based on blocked matrix multipli-
cations. This is faster than the baseline implementation
used in Muja and Lowe (2009) when several computa-
tions can be done in parallel. The performance of the
other algorithms are measured as speedups over this base-
line;

◦ the state-of-the-art FLANN algorithm (Muja and Lowe
2009). We use the source code provided by the au-
thors, which automatically tunes the parameters by cross-
validation. We used various settings of the target precision
to obtain different speed/accuracy operating points;

◦ our graph-structured ANN search algorithm proposed in
Sect. 5.2. The method requires an independent learning
set to learn the graph connections. The trade-off between
speed and accuracy is obtained by varying the sizes of
1) the coarse quantizer (parameter k′) and of 2) the learn-
ing set (denoted by n′ in the figure).

One can observe that there is a trade-off between accu-
racy and speedup. For the 200k set, FLANN is better when a
limited probability of correct assignment is sufficient, while
our graph-structured algorithm offers a higher speedup for
smaller sets, or when high nearest neighbor search accu-
racy is required. The performance strongly depends on the
set size: for both algorithms, the speedup is limited for the
small set, an observation already made in Muja and Lowe
(2009). Our algorithm is significantly better than FLANN on
the 200k vector set. However, the learning stage of FLANN
is significantly faster than that of our graph-structured algo-
rithm, as our method requires 1) to perform k-means clus-
tering on the vector set and 2) to find the nearest neigh-
bors of the two graph layers for a large training set of vec-
tors.

Except for the evaluation performed in Fig. 14, all our
experimental results with the 200k vocabulary have been
generated using k′ = 10000 and a very large learning set.
In this case, the probability of assigning a descriptor to its
nearest centroid is 96.09% and grows to 99.87% when us-
ing our graph-structured quantizer jointly with MA (with the
parameters given in Sect. 5.3). In this setup, the impact on
the image retrieval quality is negligible even in the single-
assignment case. For example, the mAP obtained for the
Holidays dataset with weighted HE is 0.74566 with approx-
imate assignment against 0.74454 for exact nearest centroid
assignment. The difference of 0.1% is not statistically sig-
nificant.

Fig. 14 Speedup, over exhaustive distance computation, as a function of the obtained precision for our graph-structured quantizer and for the
FLANN algorithm (Muja and Lowe 2009)
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Fig. 15 Performance of the image search as a function of the dataset size for various methods. The three reference datasets (Kentucky, Oxford and
Holidays) have been merged with a varying number of distractors from Flickr1M

7.4 Large Scale Experiments

Figure 15 shows an evaluation of the different approaches
for large datasets, i.e., we combined each dataset with a

varying number of “distractor” images from the 1M Flickr
dataset. For HE we have used the entropic weighting intro-
duced in Sect. 3.3 and set, again, the threshold ht to 24. For
WGC we used priors. We clearly see that the gain obtained
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Fig. 16 Queries from the Holidays dataset and some corresponding re-
sults for Holidays + 1M distractors from Flickr1M. True positives are
marked by TP and false positives by FP. As the Holidays dataset in-

cludes pictures of popular tourist attractions, matches were also found
in the distractor dataset. They count as false positives and are marked
by FFP (false false positive)

with WGC + HE is very significant. For all the datasets, the
mAP is better with our method on about one million images
(evaluation dataset + Flickr) than the standard BOF without
any distractor. This reflects the very good behavior of our
scheme on a large scale.

Results for various queries are presented in Fig. 16. One
can observe that the scenes returned are taken from very dif-
ferent viewpoints and orientations. The last three rows show
that some images from the Flickr1M dataset (marked as FFP,
false false positive) are actually relevant to the query image.



334 Int J Comput Vis (2010) 87: 316–336

Fig. 17 Two queries from the
Holidays dataset and the ranks
obtained with different methods
(BOF, WGC, HE, HE + WGC,
re-ranked) for two true
positives. The database is
Holidays + 1M. Note that in the
first row the “easiest” true
positive is not shown

They are counted as false positives and artificially decrease
the results in terms of mAP given in Fig. 15. Figure 17 shows
for examples for which HE and WGC improve the quality of
the ranking significantly.

7.5 Re-Ranking and Query Expansion

In this subsection, we evaluated two successful state-of-
the-art post-processing methods, re-ranking (Lowe 2004;
Philbin et al. 2007) and query expansion (Chum et al. 2007),
jointly with our approach. They are applied only to a frac-
tion of the images due to complexity reasons. Therefore, the
quality of the final results depends significantly on the re-
sults of the initial search system.

Geometrical Re-ranking verifies the global geometrical
consistency between matches (Lowe 2004; Philbin et al.
2007) for a short-list of database images returned by the
image search system. Here we implement the approach of
Lowe (2004) and apply it to a short-list of 200 images.

We first obtain a set of matches, i.e., each descriptor of
the query image is matched to the 10 closest ones in all the
short-list images. We then estimate an affine 2D transforma-
tion in two steps. First, a Hough scheme estimates a trans-
formation with 4 degrees of freedom. Each pair of matching
regions generates a set of parameters that “vote” in a 4D
histogram. In a second step, the sets of matches from the
largest bins are used to estimate a finer 2D affine transform.
The images for which the geometrical estimation succeeds
are returned in first positions and ranked with a score based
on the number of inliers. The images for which the estima-
tion failed are appended to the geometrically matched ones,
with their order unchanged.

Figure 15 shows the results obtained with a short-list
of 200 images. The further improvement confirms that this
stage is complementary to WGC.

Query Expansion Images with a large number of geomet-
rically consistent matches are reliable. Therefore, they can
be re-used as new queries that “expand” the original query
(Chum et al. 2007). The results of these “expanded” queries

Table 6 Evaluation of the two methods for query expansion when
combined with HE, WGC and MA. The Oxford building dataset is
combined with distractors from Flickr1M. The vocabulary size is 20k

Re-ranking method Oxford + Holidays

0 10k 100k 1M

Geometric verification 0.667 0.652 0.591 0.486 0.848

TCE 0.757 0.735 0.674 0.582 0.827

AQE 0.747 0.736 0.687 0.572 0.842

are considered relevant to the initial query. We adapted two
query expansion methods from Chum et al. (2007):

Transitive closure expansion (TCE) considers the tree of
images with the initial query being its root. The children
of a node are images that reliably match with it. TCE con-
sists of a breadth-first scan of the tree, where nodes are
returned as results in the order they are visited. The num-
ber of expansions is limited to 20 to avoid drift.

Additive query expansion (AQE). The interest points of re-
liable results to the initial query are geometrically re-
mapped to this image. The resulting set of points is used
to perform a second query. The returned images are ap-
pended to results of the initial query. Only one re-querying
is performed. This method is similar to the average query
expansion of Chum et al. (2007).

Table 6 shows results of the two query expansion tech-
niques. In contrast to Chum et al. (2007), our AQE method is
not necessarily more accurate than the TCE method. We can
observe a performance gain of around 10% on the Oxford
dataset. Unsurprisingly, query expansion does not improve
the results on the Holidays dataset, which contains only a
few images of the same object.

Note that both re-ranking and query expansion are quite
slow. Per query, re-ranking takes 18 seconds and query ex-
pansion costs 78 seconds for TCE and 48 seconds for AQE
(to be compared with the timings of Table 3). The memory
usage does not change: these methods are only performed
on a fraction of the dataset.
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Table 7 Comparison of our
best results with the
state-of-the-art, using the same
accuracy measures: mAP for
Oxford and KS for the Kentucky
benchmark

Dataset Oxford Kentucky

Distractors 0 100K 0 1M

Soft assignment (Philbin et al. 2008) 0.493 0.343

Ours 0.615 0.516

Soft + geometrical re-ranking (Philbin et al. 2008) 0.598 0.480

Ours + geometrical re-ranking 0.667 0.591

Soft + query expansion (Philbin et al. 2008) 0.718 0.605

Ours + query expansion 0.747 0.687

Hierarchical vocabulary (Nistér and Stewénius 2006) 3.19

CDM (Jégou et al. 2007) 3.61 2.93

Ours 3.42 3.10

Ours + geometrical re-ranking 3.55 3.40

7.6 Comparison with the State-of-the-Art

In this subsection we compare to the state-of-the art on the
Oxford and Kentucky datasets. The Holidays dataset has
been introduced in the preliminary version of this paper
(Jégou et al. 2008) and results with HE+WCG have been
improved here by adding a weighting, MA and query ex-
pansion. Table 7 compares our results with state-of-the-art
methods. All the results presented have been obtained for a
vocabulary learned on an independent dataset.

Oxford Without post-processing, our best result on the Ox-
ford Building dataset is 0.615, which is significantly better
than the state-of-the-art (Philbin et al. 2008) of 0.493 in a
comparable setup, i.e., the visual vocabulary is learned on
a set of Paris images. On Oxford combined with 100,000
distractors we obtain better results before re-ranking than
Philbin et al. (2008) on a similar setup referred to by
D1 + D2 in their paper: 0.516 vs. 0.343.

With geometrical re-ranking, our results are also signif-
icantly better on the Oxford dataset (respectively Oxford
with 100,000 distractors) than Philbin et al. (2008): 0.667
vs. 0.598 (respectively 0.591 vs. 0.480). Finally, when us-
ing query expansion, Philbin et al. (2008) reports 0.718 and
0.605 without and with 100K distractors, respectively. In a
similar setup, we obtain 0.747 and 0.687, respectively.

In all cases, with or without post-processing, the gain due
to our method is more significant for a large dataset, here
100k. This is probably due to the precision of our descrip-
tor matching, i.e., the larger the number of descriptors the
more important is the matching based on the inverted file.
Note that a comparison with one million descriptors is not
possible, as no results have been reported in the literature.

Kentucky The comparison is performed with initial results
obtained by the authors of the dataset (Nistér and Stewénius

2006) and our previous work (Jégou et al. 2007), which to
our knowledge is the state-of-the-art for this benchmark. In
a similar setup, our new method obtains a lower mAP value
on the benchmark itself. However, on a large scale we ob-
tain a better mAP value of 3.10 (against 2.93), probably be-
cause an approximate strategy was required at this scale in
the method of Jégou et al. (2007).

8 Conclusion

This article has introduced several ways of improving a stan-
dard bag-of-features representation. The first one is based
on a Hamming embedding which provides binary signatures
that refine visual words. It results in a similarity measure
for descriptors assigned to the same visual word. The sec-
ond is a method that enforces geometrical consistency con-
straints and uses a priori knowledge on the rotation and scal-
ing transformations. The constraints are integrated within
the inverted file and are applied to all the database images.
Both these methods improve the performance significantly,
especially for large datasets. Interestingly, these modifica-
tions do not result in an increase of the runtime. We have
then proposed a graph-structured quantizer to improve the
efficiency of the assignment of SIFT descriptors to visual
words. This quantizer is shown to be competitive compared
to those of the state of the art when high assignment accu-
racy is required.
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